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Abstract
Despite their importance for assessing reliability
of predictions, uncertainty quantification (UQ)
measures for machine learning models have only
recently begun to be rigorously characterized.
One prominent issue is the curse of dimensional-
ity: it is commonly believed that the marginal like-
lihood should be reminiscent of cross-validation
metrics and that both should deteriorate with
larger input dimensions. We prove that by tuning
hyperparameters to maximize marginal likelihood
(the empirical Bayes procedure), the performance,
as measured by the marginal likelihood, improves
monotonically with the input dimension. On the
other hand, we prove that cross-validation met-
rics exhibit qualitatively different behavior that
is characteristic of double descent. Cold poste-
riors, which have recently attracted interest due
to their improved performance in certain settings,
appear to exacerbate these phenomena. We verify
empirically that our results hold for real data, be-
yond our considered assumptions, and we explore
consequences involving synthetic covariates.

1. Introduction
With the recent success of overparameterized and nonpara-
metric models for many predictive tasks in machine learning
(ML), the development of the corresponding uncertainty
quantification (UQ) has unsurprisingly become a topic of
significant interest. Naïve approaches for forward propaga-
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tion of error and other methods for inverse uncertainty prob-
lems typically apply Monte Carlo methods under a Bayesian
framework (Zhang, 2021). However, the large-scale nature
of many problems of interest results in significant compu-
tational challenges. One of the most successful approaches
for solving inverse uncertainty problems is the use of Gaus-
sian processes (GP) (Rasmussen & Williams, 2006). This
is now frequently used for many predictive tasks, including
time-series analysis (Roberts et al., 2013), regression and
classification (Rasmussen & Williams, 2006; Williams &
Barber, 1998). GPs are also valuable in deep learning the-
ory due to their appearance in the infinite-width limits of
Bayesian neural networks (Jacot et al., 2018; Neal, 1996).

A prominent feature of modern ML tasks is their large num-
ber of attributes: for example, in computer vision and natural
language tasks, input dimensions can easily scale into the
tens of thousands. This is concerning in light of the prevail-
ing theory that GP performance often deteriorates in higher
input dimensions. This curse of dimensionality for GPs has
been rigorously demonstrated through error estimates for
the kernel estimator (Jin et al., 2022; von Luxburg & Bous-
quet, 2004), showing that test error for most kernels scales
in the number of data points as O(n−α/d) for some α > 0,
where d is the input dimension. This is further supported
by empirical evidence (Spigler et al., 2020). However, it is
well-known that Bayesian methods can perform well in high
dimensions (De Roos et al., 2021), even outperforming their
low-dimensional counterparts when properly tuned (Wilson
& Izmailov, 2020). Developments in the double descent
literature have helped to close this theory-practice gap by
demonstrating that different behavior occurs when n and d
scale proportionally, and performance may actually improve
with larger input dimensions (Liu et al., 2021). Fortunately,
ML datasets often fall into this regime.

Although the theoretical understanding of the predictive
capacity of high-dimensional ML models continues to ad-
vance rapidly, analogous theoretical treatments for measures
of uncertainty have only recently begun to bear fruit (Clarté
et al., 2023a;b). Several common measures of model qual-
ity which incorporate inverse uncertainty quantification are
Bayesian in nature, the most prominent of which are the
marginal likelihood and various forms of cross-validation.
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Marginal likelihood and posterior distributions are often
intractable for arbitrary models (e.g., Bayesian neural net-
works (Goan & Fookes, 2020)), yet their explicit forms are
well known for GPs (Rasmussen & Williams, 2006). It
is generally believed that performance under the marginal
likelihood should not improve with the addition of spuri-
ous covariates (Lotfi et al., 2022). The celebrated work of
Fong & Holmes (2020) relating marginal likelihood to cross-
validation error would suggest that the marginal likelihood
should behave similarly to test error, yet earlier work in
statistical physics (Bruce & Saad, 1994) suggests otherwise.
The situation is further complicated as hyperparameters are
not often fixed in practice, but are tuned relative to data, in
a process known as empirical Bayes.

An adjacent phenomenon is the cold posterior effect (CPE):
Bayesian neural networks exhibit optimal performance
when the posterior is tempered (Wenzel et al., 2020). As
this effect has been observed in GPs as well (Adlam et al.,
2020), we focus our attention onto choices of hyperparam-
eters which induce tempered posteriors. While we only
encounter CPE in a limited capacity, we find that the cold
posterior setting exacerbates more interesting qualitative be-
havior. Our main results (see Theorem 1 and Proposition 1)
are summarized as follows.

• Monotonicity: For two optimally regularized scalar GPs,
both fit to a sufficiently large set of iid normalized and
whitened input-output pairs, the better performing model
under marginal likelihood is the one with larger input
dimension.

• Double Descent: For sufficiently small temperatures, GP
cross-validation metrics exhibit double descent if and
only if the mean squared error for the corresponding ker-
nel regression task exhibits double descent (see Liang &
Rakhlin (2020); Liu et al. (2021) for sufficient conditions).

Along the way, we identify optimal choices of temperature
(which can be interpreted as noise in the data) under a tem-
pered posterior setup — see Table 1 for a summary. In
line with previous work on double descent curves (Belkin
et al., 2019), our objective is to investigate the behavior of
the marginal likelihood with respect to model complexity,
which is often given by the number of parameters in paramet-
ric settings (d’Ascoli et al., 2020; Derezinski et al., 2020b;
Hastie et al., 2022)). GPs are non-parametric, and while
notions of effective dimension do exist (Alaoui & Mahoney,
2015; Zhang, 2005), it is common to instead consider the
input dimension in place of the number of parameters in this
context (Liang & Rakhlin, 2020; Liu et al., 2021). We stress
that the distinction between input dimension and model
complexity should be taken into account when contrasting
our results with existing work.

Our results highlight that the common curse of dimension-
ality heuristic can be bypassed through an empirical Bayes
procedure. Furthermore, the performance of optimally regu-
larized GPs (under several metrics), can be improved with
additional covariates (including synthetic ones). Our the-
ory is supported by experiments performed on real large
datasets. Our results also highlight that marginal likelihood
and cross-validation metrics exhibit fundamentally different
behavior for GPs, and requires separate analyses. Additional
experiments, including the effect of ill-conditioned inputs,
alternative data distributions, and choice of underlying ker-
nel, are conducted in Appendix A. Details of the setup for
each experiment are listed in Appendix B.

2. Background
2.1. Gaussian Processes

A Gaussian process is a stochastic process f on Rd such that
for any set of points x1, . . . , xk ∈ Rd, (f(x1), . . . , f(xk))
is distributed as a multivariate Gaussian random vector
(Rasmussen & Williams, 2006, §2.2). Gaussian processes
are completely determined by their mean and covariance
functions: if for any x, x′ ∈ Rd, Ef(x) = m(x) and
Cov(f(x), f(x′)) = k(x, x′), then we say that f ∼
GP(m, k). Inference for GPs is informed by Bayes’ rule:
letting (Xi, Yi)

n
i=1 denote a collection of iid input-output

pairs, we impose the assumption that Yi = f(Xi) + ϵi
where each ϵi ∼ N (0, γ), yielding a Gaussian likelihood
p(Y |f,X) = (2πγ)−n/2 exp(− 1

2γ ∥Y − f(X)∥2). The pa-
rameter γ is the temperature of the model, and dictates
the perceived accuracy of the labels. For example, taking
γ → 0+ considers a model where the labels are noise-free.

For the prior, we assume that f ∼ GP(0, λ−1k) for a fixed
covariance kernel k and regularization parameter λ > 0.
While other mean functions m can be considered, in the
sequel we will consider the case where m ≡ 0. Indeed, if
m ̸= 0, then one can instead consider Ỹi = Yi −m(Xi),
so that Ỹi = f̃(Xi) + ϵi and the corresponding prior for f̃
is zero-mean. The Gram matrix KX ∈ Rn×n for X has
elements Kij

X = k(Xi, Xj). Let x = (x1, . . . , xm) denote
a collection ofN points in Rd, f(x) = (f(x1), . . . , f(xm))
and denote by Kx ∈ Rm×m and kx ∈ Rn×m the matrices
with elements Kij

x = k(xi, xj) and kijx = k(Xi, xj).

Given this setup, we are interested in several cross-
validation metrics which quantify the uncertainty of the
model. The posterior predictive distribution (PPD) of
f(x) given X,Y is (Rasmussen & Williams, 2006, pg. 16)

f(x)|X,Y ∼ N (f̄(x), λ−1Σ(x)),

where f̄(x) = k⊤x (KX + λγI)−1Y and Σ(x) = Kx −
k⊤x (KX + λγI)−1kx. This defines a posterior predictive
distribution ργ on the GP f givenX,Y (so f |X,Y ∼ ργ).
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Performance Metric Error Curve Optimal γ
Marginal Likelihood / Free Energy (3) Monotone (Thm. 1) eqn. (5)
Posterior Predictive L2 Loss (1) Double Descent (Prop. 1) 0
Posterior Predictive NLL (2) Double Descent (Prop. 1) E∥f̄(x)− y∥2

Table 1: Behavior of UQ performance metrics and optimal posterior temperature γ.

If we let y = (y1, . . . , ym) denote a collection of m as-
sociated test labels corresponding to our test data x, the
posterior predictive L2 loss (PPL2) is the quantity

ℓ(x,y) := Ef∼ργ∥f(x)−y∥2 = ∥f̄(x)−y∥2+ 1
λ tr(Σ(x)).

(1)
Closely related is the posterior predictive negative log-
likelihood (PPNLL), given by

L(x,y|X,Y ) := −Ef∼ργ log p(y|f,x)
= 1

2γ ∥f̄(x)− y∥2 + 1
2λγ tr(Σ(x)) +

m
2 log(2πγ). (2)

2.2. Marginal Likelihood

The fundamental measure of model performance in
Bayesian statistics is the marginal likelihood (also known as
the partition function in statistical mechanics). Integrating
the likelihood over the prior distribution π provides a proba-
bility density of data under the prescribed model. Evaluating
this density at the training data gives an indication of model
suitability before posterior inference. Hence, the marginal
likelihood is Zn = Ef∼πp(Y |f,X). A larger marginal like-
lihood is typically understood as an indication of superior
model quality. The Bayes free energy Fn = − logZn is
interpreted as an analogue of the test error, where smaller
Fn is desired.

The marginal likelihood for a Gaussian process is straight-
forward to compute: since Yi = f(Xi)+ ϵi under the likeli-
hood, and (f(Xi))

n
i=1 ∼ N (0, λ−1KX) under the GP prior

π = GP(0, λ−1k), we have Yi|X ∼ N (0, λ−1KX + γI),
and hence the Bayes free energy is given by (Rasmussen &
Williams, 2006, eqn. (2.30))

Fγ
n = 1

2λY
⊤(KX + λγI)−1Y

+ 1
2 log det(KX + λγI)− n

2 log
(

λ
2π

)
. (3)

In practice, the hyperparameters λ, γ are often tuned to
minimize the Bayes free energy. This is an empirical
Bayes procedure, and typically achieves excellent results
(Krivoruchko & Gribov, 2019).

The relationship between PPNLL and the marginal likeli-
hood is perhaps best shown using cross-validation mea-
sures. Let I be uniform on {1, . . . , k} and let T be a
random choice of k indices from {1, . . . , n} (the test set).
Let T̄ = {1, . . . , n}\T denote the corresponding train-
ing set. The leave-k-out cross-validation score under the
PPNLL is defined by Sρ

k(X,Y ) = EL(XTI
, YTI

|XT̄ , YT̄ ).

Letting Sk(X,Y ) denote the same quantity with the ex-
pectation in (2) over ργ replaced with an expectation over
the prior, the Bayes free energy is the sum of all leave-k-
out cross-validation scores (Fong & Holmes, 2020), that is
Fγ

n =
∑n

k=1 Sk(X,Y ). Therefore, the mean Bayes free
energy (or mean free energy for brevity) n−1Fγ

n can be
interpreted as the average cross-validation score in the prior,
instead of the posterior prediction. Similar connections can
also be formulated in the PAC-Bayes framework (Germain
et al., 2016).

2.3. Bayesian Linear Regression

One of the most important special cases of GP regres-
sion is Bayesian linear regression, obtained by taking
klin(x, x

′) = x⊤x′. As a special case of GPs, our results ap-
ply to Bayesian linear regression, directly extending double
descent analysis into the Bayesian setting. By Mercer’s The-
orem (Rasmussen & Williams, 2006, §4.3.1), a realization
of a GP f has a series expansion in terms of the eigenfunc-
tions of the kernel k. As the eigenfunctions of klin are linear,
f ∼ GP(0, λ−1klin) if and only if

f(x) = w⊤x, w ∼ N (0, λ−1).

More generally, if ϕ : Rd → Rp is a finite-dimensional
feature map, then f(x) = w⊤ϕ(x), w ∼ N (0, λ−1) is a GP
with covariance kernel kϕ(x, y) = ϕ(x)⊤ϕ(y). This is the
weight-space interpretation of Gaussian processes. In this
setting, the posterior distribution over the weights satisfies
ργ(w) = p(w|X,Y ) ∝ exp(− 1

2γ ∥Y −ϕ(X)w∥2−λ
2 ∥w∥

2)
and the marginal likelihood becomes

Zγ
n =

∫
Rp

p(Y |X,w)π(w)dw

=
λd/2

γn/2(2π)
1
2 (n+d)

∫
Rp

e−
1
2γ ∥Y−ϕ(X)w∥2

e−
λ
2 ∥w∥2

dw,

(4)

where ϕ(X) = (ϕ(Xi))
n
i=1 ∈ Rn×p. Under this interpre-

tation, the role of λ as a regularization parameter is clear.
Note also that if λ = µ/γ for some µ > 0, then the posterior
ργ(w) depends on γ as (ρ1(w))1/γ (excluding normalizing
constants). This is called a tempered posterior; if γ < 1,
the posterior is cold, and it is warm whenever γ > 1.
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3. Related Work
Double Descent and Multiple Descent. Double descent
is an observed phenomenon in the error curves of kernel
regression, where the classical (U-shaped) bias-variance
tradeoff in underparameterized regimes is accompanied by
a curious monotone improvement in test error as the ratio
c of the number of datapoints to the ambient data dimen-
sion increases beyond c = 1. The term was popularized
in Belkin et al. (2018b; 2019). However, it had been ob-
served in earlier reports (Dobriban & Wager, 2018; Krogh &
Hertz, 1992; Loog et al., 2020; Opper et al., 1990), and the
existence of such non-monotonic behavior as a function of
system control parameters should not be unexpected, given
general considerations about different phases of learning
that are well-known from the statistical mechanics of learn-
ing (Engel & den Broeck, 2001; Martin & Mahoney, 2017).
An early precursor to double descent analysis came in the
form of the Stein effect, which establishes uniformly reduced
risk when some degree of regularization is added (Strawder-
man, 2021). Stein effects have been established for kernel
regression in Chang et al. (2017); Muandet et al. (2014).
Subsequent theoretical developments proved the existence
of double descent error curves on various forms of linear re-
gression (Bartlett et al., 2020; Hastie et al., 2022; Muthuku-
mar et al., 2020; Tsigler & Bartlett, 2023), random features
models (Gerace et al., 2020; Holzmüller, 2020; Liao et al.,
2020; Mei & Montanari, 2022), kernel regression (Liang
& Rakhlin, 2020; Liu et al., 2021), and classification tasks
(Deng et al., 2022; Frei et al., 2022; Mignacco et al., 2020;
Wang et al., 2021), and other general feature maps (Loureiro
et al., 2021). For non-asymptotic results, subgaussian data
is commonly assumed, yet other data distributions have also
been considered (Derezinski et al., 2020b). Double descent
error curves have also been observed in nearest neighbor
models (Belkin et al., 2018a), decision trees (Belkin et al.,
2019), and state-of-the-art neural networks (Geiger et al.,
2020; Nakkiran et al., 2021; Spigler et al., 2019). More
recent developments have identified a large number of pos-
sible curves in kernel regression (Liu et al., 2021), including
triple descent (Adlam & Pennington, 2020; d’Ascoli et al.,
2020) and multiple descent for related volume-based met-
rics (Derezinski et al., 2020a). Similar to our results, an
optimal choice of regularization parameter can negate the
double descent singularity and result in a monotone error
curve (Krogh & Hertz, 1991; Liu et al., 2021; Nakkiran
et al., 2020; Wu & Xu, 2020). While there does not appear
to be clear consensus on a precise definition of “double
descent,” for our purposes, we say that an error curve E(t)
exhibits double descent if it contains a single global max-
imum away from zero at t∗, and decreases monotonically
thereafter. This encompasses double descent as it appears
in the works above, while excluding some misspecification
settings and forms of multiple descent.

Learning Curves for Gaussian Processes. The study of
error curves for GPs under posterior predictive losses has a
long history (see Rasmussen & Williams (2006, §7.3) and
Viering & Loog (2021)). However, most results focus on
rates of convergence of posterior predictive loss in the large
data regime n → ∞. The resulting error curve is called
a learning curve, as it tracks how fast the model learns
with more data (Le Gratiet & Garnier, 2015; Sollich, 1998;
Sollich & Halees, 2002). Of particular note are classical
upper and lower bounds on posterior predictive loss (Opper
& Vivarelli, 1998; Sollich & Halees, 2002; Williams & Vi-
varelli, 2000), which are similar in form to counterparts in
the double descent literature (Holzmüller, 2020). For exam-
ple, some upper bounds have been obtained with respect to
forms of effective dimension, defined in terms of the Gram
matrix (Alaoui & Mahoney, 2015; Zhang, 2005). Contrac-
tion rates in the posterior have also been examined (Lederer
et al., 2019). In our work, we consider error curves over
dimension rather than data, but we note that our techniques
could also be used to study learning curves.

Cold Posteriors. Among the recently emergent phenom-
ena encountered in Bayesian deep learning is the cold pos-
terior effect (CPE): the performance of Bayesian neural net-
works (BNNs) appears to improve for tempered posteriors
when γ → 0+. This presents a challenge for uncertainty pre-
diction: taking γ → 0+ concentrates the posterior around
the maximum a posteriori (MAP) point estimator, and so
the CPE implies that optimal performance is achieved when
there is little or no predicted uncertainty. Consequences in
the setting of ensembling were discussed in First observed
in Wenzel et al. (2020), several authors have since sought to
explain the phenomenon through data curation (Aitchison,
2020), data augmentation (Fortuin et al., 2022; Izmailov
et al., 2021), and misspecified priors (Wenzel et al., 2020),
although the CPE can still arise in isolation of each of these
factors (Noci et al., 2021). While our setup is too simple to
examine the CPE at large, we find some common forms of
posterior predictive loss are optimized as γ → 0+.

4. Monotonicity in Bayes Free Energy
In this section, we investigate the behavior of the Bayes free
energy using the explicit expression in (3). First, to facilitate
our analysis, we require the following assumption on the
kernel k.

Assumption. The kernel k is formed by a function κ : R →
R that is continuously differentiable on (0,∞) and is one
of the following two types:
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Figure 1: Error curves for mean Bayes free energy n−1Fγ
n for synthetic data under linear (top) and Gaussian (bottom)

kernels, with λ = λ∗ (left; monotone decreasing) and λ = 0.01 (right; increases at higher input dimensions).

(I) Inner product kernel: k(x, x′) = κ(x⊤x′/d) for
x, x′ ∈ Rd, where κ is three-times continuously differ-
entiable in a neighbourhood of zero, with κ′(0) > 0.
Let

α = κ′(0), β = κ(1)− κ(0)− κ′(0).

(II) Radial basis kernel: k(x, x′) = κ(∥x − x′∥2/d) for
x, x′ ∈ Rd, where κ is three-times continuously differ-
entiable on (0,∞), with κ′(2) < 0. Let

α = −2κ′(2), β = κ(0) + 2κ′(2)− κ(2).

This assumption allows for many common covariance
kernels used for GPs, including polynomial kernels
k(x, x′) = (c + x⊤x′/d)p, the exponential kernel
k(x, x′) = exp(x⊤x′/d), the Gaussian kernel k(x, x′) =
exp(−∥x − x′∥2/d), the multiquadric kernel k(x, x′) =
(c + ∥x − x′∥2/d)p, the inverse multiquadric k(x, x′) =
(c+ ∥x− x′∥2/d)−p kernels, and the Matérn kernels

k(x, x′) = (2ν−1Γ(ν))−1∥x − x′∥νKν(∥x− x′∥)

(where Kν is the Bessel-K function). Different bandwidths
can also be incorporated through the choice of κ. Changing
bandwidths between input dimensions can be incorporated
into the variances of the data; to see the effect of this, we

refer to Figure 14 in Appendix A. However, it does exclude
some of the more recent and sophisticated kernel families,
e.g., neural tangent kernels. Due to a result of El Karoui
(2010), the Gram matrices of kernels satisfying this assump-
tion exhibit limiting spectral behavior reminiscent of that for
the linear kernel, k(x, x′) = c+x⊤x′/d. Roughly speaking,
from the perspective of the marginal likelihood, we can treat
GPs as Bayesian linear regression.

For our theory, we first consider the “best-case scenario,”
where the prior is perfectly specified and its mean function
m is used to generate Y : Yi = m(Xi) + ϵi, where each
ϵi is iid with zero mean and unit variance. By a change
of variables, we can assume (without loss of generality)
that m ≡ 0, so that Yi = ϵi, and is therefore indepen-
dent of X . To apply the Marchenko-Pastur law from ran-
dom matrix theory, we consider the large dataset – large
input dimension limit, where n and d scale linearly so that
d/n → c ∈ (0,∞). The inputs are assumed to have been
whitened and to be independent zero-mean random vectors
with unit covariance. Under this limit, the sequence of mean
Bayes entropies n−1Fγ

n , for each n = 1, 2, . . . , converges
in expectation over the training set to a quantity Fγ

∞ which
is more convenient to study. Our main result is presented in
Theorem 1; the proof is delayed to Appendix G.
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Figure 2: Error curves for mean Bayes free energy with γ = 0.1 under a range of datasets; linear kernel with λ = λ∗ (left),
and λ = 0.01 (right); curves for real data match Figure 1 (top).

Theorem 1 (Limiting Bayes Free Energy). Let X1, X2, . . .
be independent and identically distributed zero-mean
random vectors in Rd with unit covariance, satisfying
E∥Xi∥5+δ < +∞ for some δ > 0. For each n = 1, 2, . . . ,
let Fγ

n denote (3) applied to X = (Xi)
n
i=1 and Y =

(Yi)
n
i=1, with each Yi ∼ N (0, 1). If n, d → ∞ such that

d/n→ c ∈ (0,∞), then

Fγ
∞ := lim

n→∞
n−1EFγ

n ,

is well-defined. In this case,

(a) If λ = µ/γ for some µ > 0, there exists an optimal
temperature γ∗ which minimizes Fγ

∞, which is given
by

γ∗ = c−1− c
α (β+µ)+

√
(1 + c

α (β + µ+ α))2 − 4c.

(5)

If the kernel k depends on λ such that α is constant in λ and
β = β0λ for β0 ∈ [0, 1), then

(b) If γ ∈ (0, 1−β0), there exists a unique optimal λ∗ > 0
minimizing Fγ

∞ satisfying

λ∗ =
α[(c+ 1)(γ + β0) +

√
(c− 1)2 + 4c(γ + β0)2]

c(1− (γ + β0)2)
.

(6)
If γ ≥ 1− β0, then no such optimal λ∗ exists.

(c) For any temperature 0 < γ < 1− β0, at λ = λ∗, Fγ
∞

is monotone decreasing in c ∈ (0,∞).

The expression for the asymptotic Bayes free energy Fγ
∞ is

provided in Appendix G. To summarize, first, in the spirit of
empirical Bayes, there exists an optimal λ∗ for the Gaussian
prior which minimizes the asymptotic mean free energy. Un-
der this setup, the choice of λwhich maximizes the marginal

likelihood for a particular realization of X,Y will converge
almost surely to λ∗ as n, d → ∞. Similar to Nakkiran
et al. (2020); Wu & Xu (2020), we find that model perfor-
mance under marginal likelihood improves monotonically
with input dimension when λ = λ∗ for a fixed amount of
data. Indeed, for large n, d, EFγ

n ≈ nFγ
∞ and c ≈ d/n,

so Theorem 1c implies that the expected Bayes free energy
decreases (approximately) monotonically with the input di-
mension, provided n is fixed and the optimal regularizer λ∗

is chosen.

Discussion of assumptions. The assumption that the ker-
nel scales with λ is necessary using our techniques, as λ∗

cannot be computed explicitly otherwise. This trivially
holds for the linear kernel (β0 = 0), but most other choices
of κ can be made to satisfy the conditions of Theorem 1 by
taking κ(x) 7→ η−1κ(ηx), for appropriately chosen band-
width η ≡ η(λ). For example, for the quadratic kernel, this
gives k(x, x′) = (λ−1/2 + λ1/2x⊤x′)2. Effectively, this
causes the regularization parameter to scale non-linearly in
the prior kernel. Even though this is required for our the-
ory, we can empirically demonstrate this monotonicity also
holds under the typical setup where k does not change with
λ. In Figure 1, we plot the mean free energy for synthetic
Gaussian datasets of increasing dimension at both optimal
and fixed values of λ for the linear and Gaussian kernels.
Since n is fixed, in line with Theorem 1c, the curves with
optimally chosen λ decrease monotonically with input di-
mension, while the curves for fixed λ appear to increase
when the dimension is large. Note, however, that the larger
β for the Gaussian kernel induces a significant regularizing
effect. A light CPE appears for the Gaussian kernel when λ
is fixed, but does not seem to occur under λ∗.

While the assumption that m = 0 may appear too restric-
tive, in Appendix C, we show that m is necessarily small
when the data is normalized and whitened. Consequently,
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Figure 3: Error curves for mean Bayes free energy under real data with Gaussian (left); repeated data (center); and zeroed
data (right), under the linear kernel and λ = λ∗. Only adding non-zero iid covariates improves model performance.

under a zero-mean prior, the marginal likelihood behaves
similarly to our assumed scenario. This translates well
in practice: under a similar setup to Figure 1, the error
curves corresponding to the linear kernel under a range of
whitened benchmark datasets exhibit the predicted behavior
(Figure 2).

Synthetic covariates. Since Theorem 1 implies that per-
formance under the marginal likelihood can improve as
covariates are added, it is natural to ask whether an improve-
ment will be seen if the data is augmented with synthetic
covariates. To test this, we considered the first 30 covari-
ates of the whitened CT Slices dataset obtained from
the UCI Machine Learning Repository (Graf et al., 2011),
and we augmented them with synthetic (iid standard nor-
mal) covariates; the first 30 covariates repeated; and zeros
(for more details, see Appendix A). While the first of these
scenarios satisfies the conditions of Theorem 1, the second
two do not, since the new data cannot be whitened such that
its rows have unit covariance. Consequently, the behavior
of the mean free energy reflects whether the assumptions of
Theorem 1 are satisfied: only the data with Gaussian covari-
ates exhibits the same monotone decay. From a practical
point of view, a surprising conclusion is reached: after opti-
mal regularization, performance under marginal likelihood
can be further improved by concatenating Gaussian noise to
the input.

5. Double Descent in Posterior Predictive Loss
In this section, we will demonstrate that, despite the connec-
tions between them, the marginal likelihood and posterior
predictive loss can exhibit different qualitative behavior,
with the posterior predictive losses potentially exhibiting a
double descent phenomenon. Observe that the two forms of
posterior predictive loss defined in (1) and (2) can both be

expressed in the form

L = c1(γ)E∥f̄(x)− y∥2︸ ︷︷ ︸
MSE

+ c2(λ, γ)Etr(Σ(x))︸ ︷︷ ︸
volume

+ c3(γ).

The first term is the mean-squared error (MSE) of the predic-
tor f̄ , and is a well-studied object in the literature. In particu-
lar, the MSE can exhibit double descent, or other types of
multiple descent error curves depending on k, in both ridge-
less (Holzmüller, 2020; Liang & Rakhlin, 2020) and general
(Liu et al., 2021) settings. On the other hand, the volume
term has the uniform bound Etr(Σ(x)) ≤ mEk(x, x), so
provided c2 is sufficiently small, the volume term should
have little qualitative effect. The following is immediate.
Proposition 1. Assume that the MSE E∥f̄(x) − y∥2 for
Gaussian inputs x and labels y converges to an error curve
E(c) that exhibits double descent as n→ ∞ with d ≡ d(n)
satisfying d(n)/n→ c ∈ (0,∞). If there exists a function
λ(γ) such that c2(λ(γ), γ)/c1(γ) → 0 as γ → 0+, then
for any ϵ > 0, there exists an error curve Ē(c) exhibiting
double descent, a positive integer N , and γ0 > 0 such that
for any 0 < γ < γ0 and n > N , |L/c1 − Ē| < ϵ at
d = d(n) and λ = λ(γ).

For posterior predictive L2 loss, in the tempered posterior
scenario where λ = µ/γ, the MSE remains constant in γ,
while c2/c1 = γ/µ. Since the predictor f̄ depends only
on µ, the optimal γ in the tempered posterior scenario is
realised as γ → 0+. In other words, under the posterior
predictive L2 loss, the best prediction of uncertainty is none
at all. This highlights a trivial form of CPE for PPL2 losses,
suggesting it may not be suitable as a UQ metric. Here
we shall empirically examine the linear kernel case; similar
experiments for more general kernels are conducted in Ap-
pendix A. In Figure 4(right), we plot posterior predictive L2

loss under the linear kernel on synthetic Gaussian data by
varying µ while keeping γ fixed. We find that colder pos-
teriors induce double descent on the error curves. Similar
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Figure 4: Posterior predictive L2 loss error curves for synthetic data exhibiting perturbed / tempered double descent under
the linear kernel with λ = λ∗ (left), and λ = 0.01 (right).

Figure 5: PPL2 loss with γ = 0.1 under the linear kernel with λ = λ∗ (left) and λ = 0.01 (right) on a range of datasets;
curves for real data match Figure 4.

plots on a range of datasets are shown in Figure 5(right),
demonstrating that this behavior carries over to real data.
Choosing λ = λ∗ (the optimal λ according to marginal
likelihood) reveals a more typical set of regularized double
descent curves; this is shown in Figure 4(left) for synthetic
data and Figure 5(left) for a range of datasets. This is due
to the monotone relationship between the volume term and
λ, hence the error curve inherits its shape from the behavior
of λ∗ (see Appendix A). This should be contrasted with
the behavior of classification tasks observed by Clarté et al.
(2023a), where the empirical Bayes estimator mitigates dou-
ble descent.

In contrast, this phenomenon is not the case for posterior
predictive negative log-likelihood. Indeed, letting λ =
µ/γ and optimizing the expectation of (2) in γ, the optimal
γ∗ = m−1E∥f̄(x)− y∥2. The expected optimal PPNLL is

therefore

− Ex,yEf∼ργ∗ log p(y|f,x)
= 1

2m[1 + log(2πE∥f̄(x)− y∥2)] + (2µ)−1tr(Σ(x)).
(7)

Otherwise, the PPNLL displays similar behavior to PPL2,
as the two are related linearly.

6. Conclusion
Motivated by understanding the uncertainty properties of
prediction from GP models, we have applied random ma-
trix theory arguments and conducted several experiments to
study the error curves of three UQ metrics for GPs. Contrary
to classical heuristics, model performance under marginal
likelihood/Bayes free energy improves monotonically with
input dimension under appropriate regularization (Theo-
rem 1). However, Bayes free energy does not exhibit double

8
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descent. Instead, cross-validation loss inherits a double de-
scent curve from non-UQ settings when the variance in the
posterior distribution is sufficiently small (Proposition 1).
This was recently pointed out by Lotfi et al. (2022), where
consequences and alternative metrics were proposed. While
our analysis was conducted under the assumption of a per-
fectly chosen prior mean, similar error curves appear to
hold under small perturbations, which always holds for
large whitened datasets.

Although our contributions are predominantly theoretical,
our results also have noteworthy practical consequences:

• Tuning hyperparameters according to marginal likelihood
is essential to ensuring good performance in higher di-
mensions, and it completely negates the curse of dimen-
sionality.

• When using L2 losses as UQ metrics, care should be taken
in view of the CPE. As such, we do not recommend the
use of this metric in lieu of other alternatives.

• In agreement with the conjecture of Wilson & Izmailov
(2020), increasing temperature mitigates the double
descent singularity.

• Our experiments suggest that further improvements be-
yond the optimization of hyperparameters may be pos-
sible with the addition of synthetic covariates, although
further investigation is needed before such a procedure
can be universally recommended.

RMT techniques are finding increasing adoption in machine
learning settings (Couillet & Debbah, 2011; Derezinski
et al., 2021; Liao & Mahoney, 2021). In light of the surpris-
ingly complex behavior on display, the fine-scale behavior
our results demonstrate, and a surprising absence of UQ
metrics in the double descent literature, we encourage in-
creasing adoption of random matrix techniques for studying
UQ / Bayesian metrics in double descent contexts and be-
yond. There are numerous avenues available for future work,
including the incorporation of more general kernels (e.g., us-
ing results from Fan & Wang (2020) to treat neural tangent
kernels, which are commonly used as approximations for
large-width neural networks), and different limiting regimes
(Lu & Yau, 2022).

Acknowledgements. MM would like to acknowledge the
IARPA (contract W911NF20C0035), NSF, and ONR for
providing partial support of this work. This research was
also partially supported by the Australian Research Council
through an Industrial Transformation Training Centre for
Information Resilience (IC200100022) and the Australian
Centre of Excellence for Mathematical and Statistical Fron-
tiers (CE140100049).

References
Adlam, B. and Pennington, J. The neural tangent kernel

in high dimensions: Triple descent and a multi-scale
theory of generalization. In International Conference on
Machine Learning, pp. 74–84. PMLR, 2020.

Adlam, B., Snoek, J., and Smith, S. L. Cold posteriors and
aleatoric uncertainty. arXiv preprint arXiv:2008.00029,
2020.

Aitchison, L. A statistical theory of cold posteriors in deep
neural networks. In International Conference on Learn-
ing Representations, 2020.

Alaoui, A. and Mahoney, M. W. Fast randomized kernel
ridge regression with statistical guarantees. Advances in
Neural Information Processing Systems, 28, 2015.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070,
2020.

Belkin, M., Hsu, D. J., and Mitra, P. Overfitting or perfect
fitting? Risk bounds for classification and regression
rules that interpolate. Advances in neural information
processing systems, 31, 2018a.

Belkin, M., Ma, S., and Mandal, S. To understand deep
learning we need to understand kernel learning. In Inter-
national Conference on Machine Learning, pp. 541–549.
PMLR, 2018b.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine-learning practice and the classical bias–
variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Bhatia, R. Matrix analysis, volume 169. Springer Science
& Business Media, 2013.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning, volume 4. Springer, 2006.

Bruce, A. D. and Saad, D. Statistical mechanics of hypothe-
sis evaluation. Journal of Physics A: Mathematical and
General, 27(10):3355, 1994.

Cacoullos, T. On upper and lower bounds for the variance
of a function of a random variable. The Annals of Proba-
bility, 10(3):799–809, 1982.

Chang, W.-C., Li, C.-L., Yang, Y., and Póczos, B. Data-
driven random Fourier features using Stein effect. In
Proceedings of the 26th International Joint Conference
on Artificial Intelligence, pp. 1497–1503, 2017.

9



Monotonicity and Double Descent in GPs

Clarté, L., Loureiro, B., Krzakala, F., and Zdeborova, L.
On double-descent in uncertainty quantification in over-
parametrized models. In Proceedings of The 26th Inter-
national Conference on Artificial Intelligence and Statis-
tics, volume 206 of Proceedings of Machine Learning
Research, pp. 7089–7125. PMLR, 25–27 Apr 2023a.

Clarté, L., Loureiro, B., Krzakala, F., and Zdeborova,
L. Theoretical characterization of uncertainty in high-
dimensional linear classification. Machine Learning: Sci-
ence and Technology, 2023b.

Couillet, R. and Debbah, M. Random matrix methods for
wireless communications. Cambridge University Press,
2011.

d’Ascoli, S., Sagun, L., and Biroli, G. Triple descent and the
two kinds of overfitting: Where & why do they appear?
Advances in Neural Information Processing Systems, 33:
3058–3069, 2020.

De Roos, F., Gessner, A., and Hennig, P. High-dimensional
Gaussian process inference with derivatives. In Interna-
tional Conference on Machine Learning, pp. 2535–2545.
PMLR, 2021.

Deng, Z., Kammoun, A., and Thrampoulidis, C. A model
of double descent for high-dimensional binary linear clas-
sification. Information and Inference: A Journal of the
IMA, 11(2):435–495, 2022.

Derezinski, M., Khanna, R., and Mahoney, M. W. Im-
proved guarantees and a multiple-descent curve for Col-
umn Subset Selection and the Nystrom method. In An-
nual Advances in Neural Information Processing Systems
33: Proceedings of the 2020 Conference, pp. 4953–4964,
2020a.

Derezinski, M., Liang, F. T., and Mahoney, M. W. Exact
expressions for double descent and implicit regulariza-
tion via surrogate random design. Advances in Neural
Information Processing Systems, 33:5152–5164, 2020b.

Derezinski, M., Liao, Z., Dobriban, E., and Mahoney, M.
Sparse sketches with small inversion bias. In Conference
on Learning Theory, pp. 1467–1510. PMLR, 2021.

Dobriban, E. and Wager, S. High-dimensional asymptotics
of prediction: Ridge regression and classification. The
Annals of Statistics, 46(1):247–279, 2018.

El Karoui, N. The spectrum of kernel random matrices. The
Annals of Statistics, 38(1):1 – 50, 2010.

Engel, A. and den Broeck, C. P. L. V. Statistical mechanics
of learning. Cambridge University Press, New York, NY,
USA, 2001.

Fan, Z. and Wang, Z. Spectra of the conjugate kernel and
neural tangent kernel for linear-width neural networks.
Advances in Neural Information Processing Systems, 33:
7710–7721, 2020.

Fong, E. and Holmes, C. C. On the marginal likelihood and
cross-validation. Biometrika, 107(2):489–496, 2020.

Fortuin, V., Garriga-Alonso, A., Ober, S. W., Wenzel, F.,
Rätsch, G., Turner, R. E., van der Wilk, M., and Aitchi-
son, L. Bayesian neural network priors revisited. In
The Tenth International Conference on Learning Repre-
sentations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

Frei, S., Chatterji, N. S., and Bartlett, P. Benign overfitting
without linearity: Neural network classifiers trained by
gradient descent for noisy linear data. In Proceedings
of Thirty Fifth Conference on Learning Theory, volume
178 of Proceedings of Machine Learning Research, pp.
2668–2703. PMLR, 02–05 Jul 2022.

Geiger, M., Jacot, A., Spigler, S., Gabriel, F., Sagun, L.,
d’Ascoli, S., Biroli, G., Hongler, C., and Wyart, M. Scal-
ing description of generalization with number of param-
eters in deep learning. Journal of Statistical Mechanics:
Theory and Experiment, 2020(2):023401, 2020.

Gerace, F., Loureiro, B., Krzakala, F., Mézard, M., and
Zdeborová, L. Generalisation error in learning with ran-
dom features and the hidden manifold model. In Interna-
tional Conference on Machine Learning, pp. 3452–3462.
PMLR, 2020.

Germain, P., Bach, F., Lacoste, A., and Lacoste-Julien, S.
PAC-Bayesian theory meets Bayesian inference. In Ad-
vances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016.

Goan, E. and Fookes, C. Bayesian neural networks: An
introduction and survey. In Case Studies in Applied
Bayesian Data Science, pp. 45–87. Springer, 2020.

Graf, F., Kriegel, H.-P., Schubert, M., Pölsterl, S., and Cav-
allaro, A. 2D image registration in CT images using
radial image descriptors. In International Conference
on Medical Image Computing and Computer-Assisted
Intervention, pp. 607–614. Springer, 2011.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J.
Surprises in high-dimensional ridgeless least squares in-
terpolation. The Annals of Statistics, 50(2):949–986,
2022.

Holzmüller, D. On the universality of the double descent
peak in ridgeless regression. In International Conference
on Learning Representations, 2020.

10



Monotonicity and Double Descent in GPs

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A.
G. G. What are Bayesian neural network posteriors really
like? In International Conference on Machine Learning,
pp. 4629–4640. PMLR, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Jin, H., Banerjee, P. K., and Montúfar, G. Learning curves
for Gaussian process regression with power-law priors
and targets. To appear in International Conference on
Learning Representations (ICLR 2022), 2022.

Krivoruchko, K. and Gribov, A. Evaluation of empirical
Bayesian kriging. Spatial Statistics, 32:100368, 2019.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

Krogh, A. and Hertz, J. A simple weight decay can im-
prove generalization. In Advances in Neural Information
Processing Systems, volume 4. Morgan-Kaufmann, 1991.

Krogh, A. and Hertz, J. A. Generalization in a linear per-
ceptron in the presence of noise. Journal of Physics A:
Mathematical and General, 25(5):1135, 1992.

Le Gratiet, L. and Garnier, J. Asymptotic analysis of the
learning curve for Gaussian process regression. Machine
learning, 98(3):407–433, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lederer, A., Umlauft, J., and Hirche, S. Posterior variance
analysis of Gaussian processes with application to aver-
age learning curves. arXiv preprint arXiv:1906.01404,
2019.

Liang, T. and Rakhlin, A. Just interpolate: Kernel “ridge-
less” regression can generalize. The Annals of Statistics,
48(3):1329–1347, 2020.

Liao, Z. and Mahoney, M. W. Hessian eigenspectra of
more realistic nonlinear models. Advances in Neural
Information Processing Systems, 34:20104–20117, 2021.

Liao, Z., Couillet, R., and Mahoney, M. W. A random matrix
analysis of random Fourier features: beyond the Gaussian
kernel, a precise phase transition, and the corresponding
double descent. Advances in Neural Information Process-
ing Systems, 33:13939–13950, 2020.

Liu, F., Liao, Z., and Suykens, J. Kernel regression in high
dimensions: Refined analysis beyond double descent. In
International Conference on Artificial Intelligence and
Statistics, pp. 649–657. PMLR, 2021.

Loog, M., Viering, T., Mey, A., Krijthe, J. H., and Tax, D. M.
A brief prehistory of double descent. Proceedings of the
National Academy of Sciences, 117(20):10625–10626,
2020.

Lotfi, S., Izmailov, P., Benton, G., Goldblum, M., and Wil-
son, A. G. Bayesian model selection, the marginal like-
lihood, and generalization. In Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp.
14223–14247. PMLR, 17–23 Jul 2022.

Loureiro, B., Gerbelot, C., Cui, H., Goldt, S., Krzakala,
F., Mezard, M., and Zdeborová, L. Learning curves of
generic features maps for realistic datasets with a teacher-
student model. Advances in Neural Information Process-
ing Systems, 34:18137–18151, 2021.

Lu, Y. M. and Yau, H.-T. An equivalence principle for the
spectrum of random inner-product kernel matrices. arXiv
preprint arXiv:2205.06308, 2022.

Mahoney, M. and Martin, C. Traditional and heavy tailed
self regularization in neural network models. In Interna-
tional Conference on Machine Learning, pp. 4284–4293.
PMLR, 2019.

Martin, C. H. and Mahoney, M. W. Rethinking generaliza-
tion requires revisiting old ideas: statistical mechanics
approaches and complex learning behavior. Technical
Report Preprint: arXiv:1710.09553, 2017.

Martin, C. H. and Mahoney, M. W. Heavy-tailed universality
predicts trends in test accuracies for very large pre-trained
deep neural networks. In Proceedings of the 2020 SIAM
International Conference on Data Mining, pp. 505–513.
SIAM, 2020.

Mei, S. and Montanari, A. The generalization error of
random features regression: Precise asymptotics and the
double descent curve. Communications on Pure and
Applied Mathematics, 75(4):667–766, 2022.

Mignacco, F., Krzakala, F., Lu, Y., Urbani, P., and Zde-
borova, L. The role of regularization in classification of
high-dimensional noisy Gaussian mixture. In Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 6874–6883. PMLR, 13–18 Jul 2020.

Muandet, K., Fukumizu, K., Sriperumbudur, B., Gretton,
A., and Schölkopf, B. Kernel mean estimation and Stein
effect. In International Conference on Machine Learning,
pp. 10–18. PMLR, 2014.

Muthukumar, V., Vodrahalli, K., Subramanian, V., and Sa-
hai, A. Harmless interpolation of noisy data in regression.
IEEE Journal on Selected Areas in Information Theory, 1
(1):67–83, 2020.

11



Monotonicity and Double Descent in GPs

Nakkiran, P., Venkat, P., Kakade, S. M., and Ma, T. Optimal
regularization can mitigate double descent. In Interna-
tional Conference on Learning Representations, 2020.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: Where bigger
models and more data hurt. Journal of Statistical Mechan-
ics: Theory and Experiment, 2021(12):124003, 2021.

Neal, R. M. Bayesian Learning for Neural Networks.
Springer-Verlag, Berlin, Heidelberg, 1996. ISBN
0387947248.

Noci, L., Roth, K., Bachmann, G., Nowozin, S., and Hof-
mann, T. Disentangling the roles of curation, data-
augmentation and the prior in the cold posterior effect.
Advances in Neural Information Processing Systems, 34,
2021.

Opper, M. and Vivarelli, F. General bounds on Bayes errors
for regression with Gaussian processes. Advances in
Neural Information Processing Systems, 11, 1998.

Opper, M., Kinzel, W., Kleinz, J., and Nehl, R. On the
ability of the optimal perceptron to generalise. Journal
of Physics A: Mathematical and General, 23(11):L581,
1990.

Pozrikidis, C. An introduction to grids, graphs, and net-
works. Oxford University Press, 2014.

Rasmussen, C. E. and Williams, C. K. I. Gaussian processes
for machine learning, volume 2. MIT Press Cambridge,
2006.

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N.,
and Aigrain, S. Gaussian processes for time-series mod-
elling. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 371
(1984):20110550, 2013.

Sollich, P. Learning curves for Gaussian processes. Ad-
vances in neural information processing systems, 11,
1998.

Sollich, P. and Halees, A. Learning curves for Gaussian
process regression: approximations and bounds. Neural
Computation, 14(6):1393–1428, 2002.

Spigler, S., Geiger, M., d’Ascoli, S., Sagun, L., Biroli, G.,
and Wyart, M. A jamming transition from under-to over-
parametrization affects generalization in deep learning.
Journal of Physics A: Mathematical and Theoretical, 52
(47):474001, 2019.

Spigler, S., Geiger, M., and Wyart, M. Asymptotic learning
curves of kernel methods: empirical data versus teacher–
student paradigm. Journal of Statistical Mechanics: The-
ory and Experiment, 2020(12):124001, 2020.

Strawderman, W. E. On Charles Stein’s contributions to (in)
admissibility. The Annals of Statistics, 49(4):1823–1835,
2021.

Tsigler, A. and Bartlett, P. L. Benign overfitting in ridge
regression. Journal of Machine Learning Research, 24
(123):1–76, 2023.

Viering, T. J. and Loog, M. The shape of learning curves:
A review. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45:7799–7819, 2021.

von Luxburg, U. and Bousquet, O. Distance-based classifi-
cation with lipschitz functions. J. Mach. Learn. Res., 5
(Jun):669–695, 2004.

Wang, K., Muthukumar, V., and Thrampoulidis, C. Benign
overfitting in multiclass classification: All roads lead to
interpolation. Advances in Neural Information Processing
Systems, 34, 2021.

Wenzel, F., Roth, K., Veeling, B., Swiatkowski, J., Tran,
L., Mandt, S., Snoek, J., Salimans, T., Jenatton, R., and
Nowozin, S. How good is the Bayes posterior in deep
neural networks really? In Proceedings of the 37th In-
ternational Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
10248–10259. PMLR, 13–18 Jul 2020.

Williams, C. K. I. and Barber, D. Bayesian classification
with Gaussian processes. IEEE Transactions on pattern
analysis and machine intelligence, 20(12):1342–1351,
1998.

Williams, C. K. I. and Vivarelli, F. Upper and lower bounds
on the learning curve for Gaussian processes. Machine
Learning, 40(1):77–102, 2000.

Wilson, A. G. and Izmailov, P. Bayesian deep learning and
a probabilistic perspective of generalization. Advances
in neural information processing systems, 33:4697–4708,
2020.

Wu, D. and Xu, J. On the optimal weighted ℓ2 regularization
in overparameterized linear regression. Advances in Neu-
ral Information Processing Systems, 33:10112–10123,
2020.

Zhang, J. Modern Monte Carlo methods for efficient un-
certainty quantification and propagation: a survey. Wiley
Interdisciplinary Reviews: Computational Statistics, 13
(5):e1539, 2021.

Zhang, T. Learning bounds for kernel regression using
effective data dimensionality. Neural Computation, 17
(9):2077–2098, 2005.

12



Monotonicity and Double Descent in GPs

Monotonicity and Double Descent in Uncertainty Quantification with Gaussian
Processes

SUPPLEMENTARY DOCUMENT

A. Additional Empirical Results
In this section, we consider other factors not covered by our analysis in the main body of the paper. Full experimental details
are given in Appendix G.

CT Slices dataset. To demonstrate our procedure for working with real data, we first consider the CT Slices dataset
obtained from the UCI Machine Learning Repository (Graf et al., 2011), comprised of n = 53500 images X1, . . . , Xn ∈ Rd

with d = 385 features, and corresponding scalar-valued labels Y1, . . . , Yn ∈ R. This dataset is also used in Figure 3. The
data was preprocessed in the following way: first, 17 features were observed to be linearly dependent on the others, and were
removed to reveal d = 368 features. The sample mean µX and sample covariance matrix ΣX ofX1, . . . , Xn were computed,
and the input normalized by Xi 7→ Σ

−1/2
X (Xi − µX). The labels were similarly normalized as Yi 7→ (Yi − µY )/σY , where

µY and σY are the sample mean and standard deviation of the labels, respectively. Under this preprocessing, X and Y are
assumed to satisfy the conditions of Theorem 1.

Figure 6 examines the mean Bayes free energy for the linear and Gaussian kernels, under the optimal choice of λ∗ from
Theorem 1. This figure should be compared to the synthetic data examples shown in Figure 1 (upper left and bottom left).
Similarly, Figure 7 is the corresponding version of Figure 4. Notably, the characteristic behavior of all four plots is still
prominent in the real data example.

Image classification datasets We conducted parallel experiments on two larger benchmark datasets that are ubiquitous
in the literature — MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky & Hinton, 2009). To this end, the MNIST
and CIFAR10 datasets were preprocessed in the same manner as the CT Slices dataset. Both datasets correspond to
classification problems with 10 class labels, however, for our purposes we consider the analogous regression problems over
the class labels.

The MNIST training set is comprised of 60, 000 different 28× 28 grayscale images of handwritten digits from 0-9. After
preprocessing, d = 706 of the 768 features were retained, and n = 175 images were randomly sampled for use as the dataset.
The mean free energy curves under the linear and Gaussian kernel under the optimal λ = λ∗, as well as the PPL2 curves for
the optimal λ and fixed µ are shown in Figures 8 and 9, respectively. Similarly, the CIFAR10 training dataset contains
50, 000 different 32× 32 color images, each with 3 channels. This corresponds to 3072 features, of which d = 3003 were
retained after preprocessing, and n = 900 images were randomly sampled as the for use as the dataset. Analogous images
are presented in Figures 2 and 5.

Figure 6: Error curves for mean Bayes free energy under the CT Slices dataset; linear (left) and Gaussian (right) kernels;
λ = λ∗
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Figure 7: PPL2 loss under the linear kernel with λ = 0.01/γ (left) and λ = λ∗ (right) on the CT Slices dataset.

It may seem surprising that the behavior of these models is so close to those of well-specified models, since there is no a
priori reason to assume the mean of the data-generating process is zero. However, in Appendix B we demonstrate that this is
merely a consequence of normalization of the response variables, and that such normalization forces tight control over the
gradients of the mean function under expectation.

Figure 8: Error curves for mean Bayes free energy under the MNIST dataset; linear (left) and Gaussian (right) kernels;
λ = λ∗

Synthetic covariates. From Theorem 1, one can conclude that performance under the marginal likelihood can increase as
covariates are added. This begs the question: if the data is augmented with synthetic covariates, will this still result in a
higher marginal likelihood? We have considered adding three different forms of synthetic covariates to the first 30 covariates
of the whitened CT Slices dataset:

(i) Gaussian white noise: each Xij for j > 30 is drawn as an iid standard normal random variable;

(ii) Copied data: the first 30 covariates are repeated, that is, for j > 30, each Xij = Xi,(j−1) mod 30+1, where mod denotes
the modulus operator; and

(iii) Padded data: each Xij = 0 for j > 30.

While case (i) satisfies the conditions of Theorem 1, cases (ii) and (iii) do not, as neither case can be whitened such that the
rows of X have unit covariance. In Figure 3, we repeat the experiment in the top left of Figure 1 using these augmented
datasets. The behavior of the mean Bayes free energy reflects whether the assumptions of Theorem 1 are satisfied: while
case (i) exhibits the same monotone decay, cases (ii) and (iii) do not.

14



Monotonicity and Double Descent in GPs

Figure 9: PPL2 loss under the linear kernel with λ = 0.01/γ (left) and λ = λ∗ (right) on the MNIST dataset.

Monotonicity in posterior predictive metrics. In these experiments, we consider posterior predictive metrics for synthetic
data under optimal parameter choices. First, in Figure 10, the posterior predictive L2 loss is optimized in λ, revealing a
monotone decay in the dimension, analogous to Nakkiran et al. (2020); Wu & Xu (2020). In Figure 11, we plot error curves
for the optimally tempered PPNLL metric (7) under the linear kernel, revealing a monotonically increasing curve with input
dimension when µ is fixed, and highlighting the need for appropriate regularization. If PPNLL is optimized in both γ and µ
simultaneously, the error curve becomes flat.

Prior misspecification. In our analysis, we have considered a practically optimal scenario where the prior is centered
on the mean function of the labels (in other words, our prior concentrates on the correct solution). For more complex
setups, where the prior is implicit and data-dependent, this may be possible, but is unlikely in general. For example, if
the prior dictates a priori knowledge, then a perfectly specified prior implies the underlying generative model for the
labels is known in advance. Here, we assume that the mean function of the labels is nonzero, emulating a more realistic
scenario. We restrict ourselves to the linear setting here, and we consider Yi = θ0Xi + ϵi, ensuring that the correct mean
function lies in the RKHS of the kernel. Figure 12 illustrates the effect on Bayes free energy (with optimal λ∗). From left
to right, small θ0 = d−1/21, large θ0 = nd−1/21, and growing θ0 = 1 perturbations are considered. For small values of
the perturbation, the monotonicity of the error curve is not affected in a meaningful way. While the zero-mean assumption
may seem restrictive, we demonstrate that this scenario will always hold asymptotically, provided the data is normalized
and whitened (see Appendix B). For larger perturbations, however, we see a horizontal “double-ascent” (or reverse double
descent) error curve. A growing perturbation also results in a double-ascent curve, but with increasing Bayes free energy
once the input dimension is sufficiently large.

Figure 10: PPL2 optimized in λ; varying γ. Figure 11: PPNLL optimized in γ with λ = µ/γ; varying
µ.
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Figure 12: Optimal mean Bayes free energy with low (left), increasing (center) and high (right) levels of prior misspecification
under the linear kernel.

Figure 13: Effect of varying the regularity parameter ν in
the Matérn kernel

Figure 14: Effect of irregular spectra in X under the linear
kernel

Regularity of the kernel. The regularity of the kernel plays a key role in the regularity, and consequently, the quality of
the predictor. In particular, less regular predictors tend to revert to the prior more quickly away from the training data. The
Matérn kernel family is noteworthy for its capacity to adjust the regularity of predictors through the parameter ν, whereby
realizations of a Gaussian process with Matérn covariance are at most [ν]-times differentiable (see page 85 of (Rasmussen
& Williams, 2006)). In Figure 13, we plot the Bayes free energy for fixed n = 300 and γ = 0.01 with optimal λ∗ over
input dimensions d ∈ [100, 1000] and ν ∈ [0.5, 100]. As ν decreases, the curves become flatter, suggesting the effect of
dimension is reduced.

Ill-conditioned data. Our theoretical analysis considers only the case where the data has been whitened, that is, where
each row of X has unit covariance. It is known that more interesting behavior can occur depending on the spectrum of
eigenvalues of the covariance matrix, including multiple descent (Hastie et al., 2022; Nakkiran et al., 2020), and this appears
to be robust to other volume-based objectives (Derezinski et al., 2020a). Recent work has also tied model performance
to particular classes of spectral distributions, including power laws (Liao & Mahoney, 2021; Mahoney & Martin, 2019;
Martin & Mahoney, 2020). In Figure 14, we consider an isotropic ill-conditioned covariance matrix Cov(Xi) = Σ where
Σ = diag((10)d/2i=1, (1/10)

d/2
i=1). Under the linear kernel, for fixed λ, the error curve is similar to the isotropic setting.

However, at λ = λ∗, we find that the mean Bayes free energy can exhibit non-monotonic behavior at low temperatures.

Scaling dimension nonlinearly with data. An interesting consequence of the monotonic error curve in the Bayes free
energy is that the inclusion of additional data may be harmful if the input dimension is increased at a slower rate d = O(nξ)
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Figure 15: Error curves for mean Bayes free energy n−1Fγ
n under linear (left) and Gaussian (right) kernels and λ = λ∗, for

dimension scaling with data as O(nξ)

for ξ < 1 (or beneficial if ξ > 1). This effect is illustrated in Figure 15, where the normalized Bayes free energy n−1Fγ
n is

plotted for the linear and Gaussian kernels at the optimal λ∗ over n ∈ [300, 3000] with d = 210(1−ξ)nξ.

Effect of noise distribution Each experiment has also assumed that the labels are standard normal. If this is not the case,
but the labels are still assumed to be iid, have zero mean and are uncorrelated with the inputs (correctly specified prior), then
the expected mean Bayes free energy satisfies

n−1EFγ
n =

λ

2n

n∑
i,j=1

E[YiYjQij ] +
1

2n
E log det(KX + λγI)− 1

2
log

(
λ

2π

)
,

=
λ

2n
σ2Etr(Q) +

1

2n
E log det(KX + λγI)− 1

2
log

(
λ

2π

)
,

where Q = (KX + λγI)−1 and σ2 = E[Y 2
i ]. Therefore, only the variance in the labels contributes to n−1EFγ

n (other
features of the distribution of the noise contribute to the higher order moments of Fγ

n ). In Figure 16, we examine the effect
that different variances in the label noise have on the mean Bayes free energy. Normally distributed Yi were considered,
with variances ranging from 0.1 to 10.

Figure 16: Error curves for mean Bayes free energy under linear kernel with λ = λ∗, γ = 0.1 (left) / γ = 0.01 (right) and
different variances in the label data.

Posterior predictive loss with Gaussian kernel Figures 17 and 18 examine the effect of varying γ on the posterior
predictive L2 loss varying over d, under the Gaussian kernel. These figures should be contrasted with the linear kernel case
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presented as Figure 4 (left and right, respectively). Note that the significant regularizing effect when β > 0 prohibits the
double descent behavior found in the linear kernel case.

Figure 17: Posterior predictive L2 loss under the Gaussian
kernel with λ = 0.01/γ

Figure 18: Posterior predictive L2 loss under the Gaussian
kernel with λ = λ∗

Visualizing λ∗ Figures 19 and 20 plot the values of λ∗ versus c over different values of γ, for the linear and Gaussian
kernels, respectively. Once again, the sharp trough formed at d = n in Figure 20 is significantly dampened by the regularizing
effect of β > 0.

Figure 19: Values of λ∗ versus c varying γ for the linear
kernel

Figure 20: Values of λ∗ versus c varying γ for the Gaussian
kernel

Real data without whitening. To examine the effect that whitening has on the error curves, we reconsider the experiments
producing Figures 3 (left; MNIST) and 9 (left; CIFAR10) where X and Y are only normalised, that is, we subtract the
sample means and divide by the sample deviation. The results are reported in Figure 21. As expected from Couillet &
Debbah (2011) and the results of Figure 14, the curves resemble their whitened counterparts with some spurious “bumps”.

B. Details of Experiments
In each figure shown throughout this work, a performance metric has been calculated for varying dataset size n, input
dimension d, and hyperparameters γ, λ. For experiments involving synthetic data, X ∈ Rn×d has iid rows drawn from
N (0,Σ), and Y = (Yi)

n
i=1 is comprised of iid samples from N (0, σ2) (where Σ = I and σ = 1 unless specified otherwise).

For PPL2 and PPNLL, the expectation is computed over iid scalar test points x, y ∼ N (0, 1). Runs are averaged over a
number of iterations, and 95% confidence intervals (under the central limit theorem) are highlighted. In Table 2 we present
the parameters used for each figure.
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Figure 21: Error curves for mean Bayes free energy for the MNIST (left) and CIFAR10 (right) datasets, with linear kernels;
λ = λ∗.

C. Normalized Data implies Small Prior Mispecification
In Figure 12, we explored the effect of changing the mean of the data-generating process from that of the prior. It was found
that provided the mean of the data-generating process did not differ too significantly from that of the prior, the monotonicity
of the error curves in Bayes free energy appeared unaffected. Here we show that when the data is normalized and whitened,
and a zero-mean prior is chosen, the mean of the data-generating process will never differ too significantly from the prior.

As above, assume that the labels satisfy Yi = f(Xi) + ϵi for some f : Rd → R and zero-mean iid ϵi. Now, we also
assume that Y has been normalized so that Var(Y ) = 1. Similarly, we assume that X has been normalized and whitened,
so that it has zero mean and unit covariance. For simplicity of argument, assume further that Xi are normal, that is,
Xi

iid∼ Z ∼ N (0, I). In the linear case where f(x) = θ · x, since

1 = Var(Y ) ≥ Varf(Z) = ∥θ∥2,

this implies that the magnitude of the components of θ are bounded on average by d−1/2. This is the scenario seen in
Figure 12(left). Indeed, the scenarios in Figure 12(center) and 12(right), which exhibit different error curves, satisfy
Var(Y ) = n and Var(Y ) = d respectively, both of which are considerably larger than 1.

The same principle holds for more general f . By a reverse Gaussian Poincaré inequality (Cacoullos, 1982, Proposition 3.5),

1 = Var(Y ) ≥ Varf(Z) ≥ 1

d

(
d∑

i=1

E∂if(Z)

)2

,

where ∂i denotes the i-th partial derivative. Therefore, the average coordinate-wise gradient of f , E∂If(X) (where I is
uniform over {1, . . . , d}), is bounded above and below by

−
√

1

d
≤ E∂If(X) =

1

d

d∑
i=1

E∂if(X) ≤
√

1

d
.

D. Digamma Function
Before treating the random matrix theory, we will need some auxiliary results concerning the digamma function. Let Γ(z)
be the Gamma function, defined for z > 0 by Γ(z) =

∫∞
0
tz−1e−tdt. The digamma function ψ(z) is the derivative of the

logarithm of the Gamma function, that is ψ(z) = d
dz log Γ(z). The digamma function satisfies the following properties:

• ψ(z + 1) = ψ(z) + z−1 for any z > 0;
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• as z → ∞, ψ(z)/ log z → 1;

• letting γEM = ψ(1) denote the Euler-Mascheroni constant,

ψ(z + 1) = −γEM +

∫ 1

0

(
1− tz

1− t

)
dt.

The digamma function behaves well under summation. In particular, we have the following lemma.

Lemma 1. For any positive integer n and any real number z > −1,

n∑
i=1

ψ(z + i) = (n+ z)ψ(n+ z)− zψ(z)− n.

Proof. From the integral representation for the digamma function:

ψ(z) = −γEM +

∫ 1

0

(
1− tz−1

1− t

)
dt,

since
∑n

i=1 t
z+i−1 = tz

∑n−1
i=0 t

i = tz 1−tn

1−t for 0 ≤ t < 1,

n∑
i=1

ψ(z + i) = −nγEM +

∫ 1

0

n(1− t)− tz(1− tn)

(1− t)2
dt.

Focusing on the integral term, note that by letting f(t) = n(1−t)−tz(1−tn) and g(t) = (1−t)−1, since g′(t) = (1−t)−2,∫ 1

0

n(1− t)− tz(1− tn)

(1− t)2
dt =

∫ 1

0

f(t)g′(t)dt

= lim
t→1−

f(t)g(t)− f(0)g(0)−
∫ 1

0

f ′(t)g(t)dt.

Since limt→1−(1− tn)/(1− t) = n, limt→1− f(t)g(t) = 0, and so∫ 1

0

n(1− t)− tz(1− tn)

(1− t)2
dt = −n−

∫ 1

0

−n− ztz−1 + (n+ z)tn+z−1

1− t
dt

= −n−
∫ 1

0

(n+ z)(tn+z−1 − 1)− z(tz−1 − 1)

1− t
dt

= −n+ (n+ z)

∫ 1

0

1− tn+z−1

1− t
dt− z

∫ 1

0

1− tz−1

1− t
dt

= −n+ (n+ z) [ψ(n+ z) + γEM]− z [ψ(z) + γEM]

= −n+ nγEM + (n+ z)ψ(n+ z)− zψ(z).

The result immediately follows

Using this lemma, we can obtain an explicit expression for the sum of digamma functions with increment 1
2 . This will be

particularly useful for computing determinants of Wishart matrices.

Lemma 2. For any positive integers n and d with n > d,

d∑
i=1

ψ

(
n− i+ 1

2

)
=
n

2
ψ
(n
2

)
−
(
n− d

2

)
ψ

(
n− d

2

)
− d

+

(
n− 1

2

)
ψ

(
n− 1

2

)
−
(
n− d− 1

2

)
ψ

(
n− d− 1

2

)
.
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Proof. First, note that
d∑

i=1

ψ

(
n− i+ 1

2

)
=

d∑
i=1

ψ

(
n− d+ i

2

)
.

We consider the cases where d is even and odd separately. When d is even,

d∑
i=1

ψ

(
n− d

2
+
i

2

)
=

d/2∑
i=1

ψ

(
n− d

2
+ i

)
+ ψ

(
n− d

2
+ i− 1

2

)
=
n

2
ψ
(n
2

)
−
(
n− d

2

)
ψ

(
n− d

2

)
− d

+

(
n− 1

2

)
ψ

(
n− 1

2

)
−
(
n− d− 1

2

)
ψ

(
n− d− 1

2

)
.

Now assume that d is odd. Then

d∑
i=1

ψ

(
n− d

2
+
i

2

)
= ψ

(n
2

)
+

d−1∑
i=1

ψ

(
(n− 1)− (d− 1)

2
+
i

2

)
= ψ

(n
2

)
+
n− 1

2
ψ

(
n− 1

2

)
−
(
n− d

2

)
ψ

(
n− d

2

)
− d+ 1

+
(n
2
− 1
)
ψ
(n
2
− 1
)
−
(
n− d− 1

2

)
ψ

(
n− d− 1

2

)
.

But now, since zψ(z + 1) = zψ(z) + 1, (n2 − 1)ψ(n2 − 1) = (n2 − 1)ψ(n2 )− 1, and so

ψ
(n
2

)
+
(n
2
− 1
)
ψ
(n
2
− 1
)
=
n

2
ψ
(n
2

)
− 1.

The result now follows.

E. Marchenko-Pastur Theory
In this section, we prove several lemmas concerning limiting traces and log-determinants of Wishart matrices that will prove
foundational for proving our main results. The fundamental theorem in this section is the Marchenko-Pastur Theorem,
which describes the limiting spectral distribution of Wishart matrices. The following can be obtained from pg. 51 of Couillet
& Debbah (2011).

Theorem 2 (Marchenko-Pastur Theorem). For each n = 1, 2, . . . , let Xn ∈ Rn×d be a matrix of iid random variables with
zero mean and unit variance. If n, d→ ∞ with d/n→ c ∈ (0,∞), then for every z ∈ C\{0},

d−1Etr((n−1X⊤
n Xn − zI)−1) → m(z) :=

1− c− z −
√
(z − c− 1)2 − 4c

2cz
,

noting that m(z) satisfies m = 1/(1− c− z − czm).

For the remainder of this section, we assume the conditions of Theorem 2, that is, for each n = 1, 2, . . . , we let Xn ∈ Rn×d

be a matrix of iid random variables with zero mean and unit variance.

Lemma 3 (Trace of Inverse Matrix). Let n, d → ∞ with d/n → c ∈ (0, 1] and assume that µn is a sequence of real
numbers such that µn → µ ∈ (0,∞) as n→ ∞. Then

n−1Etr((d−1X⊤
n Xn + µnI)

−1) → T (µ, c) :=
c− 1− cµ+

√
(cµ+ c+ 1)2 − 4c

2µ
,
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and T (µ, c) satisfies T = c2/(1− c+ cµ+ µT ). Similarly, if d/n→ c ∈ (1,∞), then

n−1Etr((d−1XnX
⊤
n + µnI)

−1) → T̃ (µ, c) :=
1− c− cµ+

√
(cµ+ c+ 1)2 − 4c

2µ
,

and T̃ (µ, c) satisfies T̃ = c/(c− 1 + cµ+ µT̃ ) and T̃ (µ, c) = c2T (cµ, c−1).

Proof. By the Neumann series, (A+ ϵI)−1 = A−1 +O(ϵ) as ϵ→ 0+. Therefore,

n−1Etr
(
(d−1X⊤

n Xn + µnI)
−1
)
= n−1Etr

((
d−1X⊤

n Xn + µI
)−1
)
+ o(1)

= n−1Etr
((n

d
n−1X⊤

n Xn + µI
)−1

)
+ o(1)

=
d

n
n−1Etr

((
n−1X⊤

n Xn +
d

n
µI

)−1
)

+ o(1).

By the Marchenko-Pastur Theorem, letting z = −cµ,

d

n
n−1Etr

(
(n−1X⊤

n Xn + cµI)−1
)
=
d2

n2
d−1Etr

(
(n−1X⊤

n Xn + cµI)−1
)

=
d2

n2
d−1Etr

(
(n−1X⊤

n Xn − zI)−1
)

→ c2 ·
1− c− z −

√
(z − c− 1)2 − 4c

2cz

=
c− 1− cµ+

√
(cµ+ c+ 1)2 − 4c

2µ
.

On the other hand, when c > 1, letting X̃n = X⊤
n ∈ Rd×n, the Marchenko-Pastur Theorem immediately implies

n−1Etr
(
(d−1XnX

⊤
n + µnI)

−1
)
= n−1Etr((d−1X̃⊤

n X̃n + µI)−1) + o(1)

→
c−1 − 1− µ+

√
(µ+ c−1 + 1)2 − 4c−1

2c−1µ
= T̃ (µ, c).

Now we turn our attention to the log-determinant, which also depends exclusively on the spectrum. Our method of proof
relies on Jacobi’s formula, which relates the log-determinant to the trace of the matrix inverse.

Lemma 4 (Log-Determinant). Let n, d→ ∞ such that d/n→ c ∈ (0, 1] and assume that µn is a sequence of real numbers
such that µn → µ ∈ (0,∞) as n→ ∞. Then

1

n
E log det(d−1X⊤

n Xn + µnI) → D(µ, c),

where

D(µ, c) := (c− 1) log(1− c)− c log c− c+

∫ µ

0

T (t, c)dt

= log

(
1 +

T (µ, c)

c

)
− T (µ, c)

c+ T (µ, c)
− c log

(
T (µ, c)

c

)
.

Similarly, if d/n→ c ∈ (1,∞), then

1

n
E log det(d−1XnX

⊤
n + µnI) → D̃(µ, c),
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where

D̃(µ, c) := (1− c) log(c− 1) + (c− 1) log c− 1 +

∫ µ

0

T̃ (t, c)dt,

= c log

(
1 +

T̃ (µ, c)

c

)
− cT̃ (µ, c)

c+ T̃ (µ, c)
− log T̃ (µ, c).

Proof. By Jacobi’s formula and Taylor’s theorem, log det(A+ ϵI) = log detA+O(ϵ) as ϵ→ 0+, and so

n−1E log det(d−1X⊤
n Xn + µnI) = n−1E log det(d−1X⊤

n Xn + µI) + o(1).

Furthermore,

1

n
E log det(d−1X⊤

n Xn + µI) =
1

n
E log det(d−1X⊤

n Xn) +
1

n

∫ µ

0

Etr
(
(d−1X⊤

n Xn + tI)−1
)
dt,

=
1

n
E log det(d−1X⊤

n Xn) +

∫ µ

0

T (t, c)dt+ o(1),

and so it suffices to consider the case µ = 0. Since the log-determinant depends only on the spectrum of Xn, and the
spectrum of n−1X⊤

n Xn is asymptotically equivalent to that of n−1W⊤
n Wn, where Wn is a Wishart-distributed matrix, it

will suffice to consider the limit of n−1E log det(d−1W⊤
n Wn). First, recall that (Bishop & Nasrabadi, 2006, B.81)

E log det(W⊤
n Wn) = d log 2 +

d∑
i=1

ψ

(
n− i+ 1

2

)
= d log 2 + nψ

(n
2

)
− (n− d)ψ

(
n− d

2

)
+O(n−1) +O(d−1).

Since ψ(x) = log x+O(x−1), letting d = [cn], there is

E log det
(
W⊤

n Wn

)
∼ d log 2 + n log

(n
2

)
− (n− d) log

(
n− d

2

)
− d

∼ n log n− (n− cn) log (n− cn)− cn

∼ n log n− (1− c)n log n− (1− c)n log(1− c)− cn

∼ cn log n− (1− c)n log(1− c)− cn.

Therefore,

n−1E log det(d−1W⊤
n Wn) ∼

cn log n− (1− c)n log(1− c)− cn− cn log cn

n
→ (c− 1) log(1− c)− c− c log c,

and so
1

n
E log det(d−1X⊤

n Xn + µnI) → D(µ, c) := (c− 1) log(1− c)− c log c− c+

∫ µ

0

T (t, c)dt.

To obtain the second equality, we will need to compute the integral term. First, observe that by a change of variables,∫ µ

0
T (t, c)dt =

∫ cµ

0
τ(t, c)dt, where

τ(t, c) =
c− 1− t+

√
(t+ c+ 1)2 − 4c

2t
,

and T (t, c) = cτ(cµ, c). Observe that we can rewrite τ as

τ(t, c) =
(c+ 1 + t)2 − 4c− (t+ 1− c)2

2t
[√

(c+ 1 + t)2 − 4c+ (t+ 1− c)
]

=
2c√

(c+ 1 + t)2 − 4c+ (t+ 1− c)
.
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Now, let

v = v(t) =
c+ 1 + t+

√
(c+ 1 + t)2 − 4c

2
,

so that τ(t, c) = 2c/(2v − 2c) = c/(v − c). Note that v2 − (c+ t+ 1)v + c = 0. Differentiating this relation in t, we find

2vv′ − v − (c+ t+ 1)v′ = 0,

where v′ = dv/dt, and hence
v′ =

v

2v − (c+ t+ 1)
.

But since v2 + c = (c+ t+ 1)v,

v′ =
v

2v − v2+c
v

=
v2

v2 − c
.

Altogether, ∫
τ(t, c)dt =

∫
c(v2 − c)

(v − c)v2
dv.

From a partial fraction expansion,
c(v2 − c)

(v − c)v2
=
A

v2
+
B

v
+

C

v − c
,

we find that c(v2− c) = A(v− c)+Bv2− cBv+Cv2, implying that B+C = c, A− cB = 0 and −Ac = −c2. Therefore,
A = c, B = 1, and C = c− 1, so

c(v2 − c)

(v − c)v2
=

c

v2
+

1

v
+
c− 1

v − c
.

Hence, an antiderivative of τ is given by

− c

v
+ log v + (c− 1) log(v − c).

Since v → 1 as t→ 0,∫ cµ

0

τ(t, c)dt = − c

v
+ log v + (c− 1) log(v − c) + c− (c− 1) log(1− c).

Finally, since v = c(1 + τ(cµ, c))/τ(cµ, c) = c(c+ T (µ, c))/T (µ, c), the result for n > d follows.

Now we consider the d > n case. Then we have

n−1E log det
(
d−1XnX

⊤
n + µnI

)
= n−1E log det

(
d−1XnX

⊤
n + µI

)
+ o(1)

=
d

n
d−1E log det

(n
d
n−1XnX

⊤
n + µI

)
+ o(1)

=
d

n
d−1E log det

(
n−1XnX

⊤
n +

d

n
µI

)
+ log

(n
d

)
+ o(1)

= cd−1E log det
(
n−1XnX

⊤
n + cµI

)
− log c+ o(1)

→ cD(cµ, c−1)− log c.

From the first expression for D(µ, c), there is

cD(cµ, c−1) = c(c−1 − 1) log(1− c−1)− log c−1 − 1 +

∫ cµ

0

cT (t, c−1)dt

= (1− c) log(c− 1) + c log c− 1 +

∫ µ

0

c2T (ct, c−1)dt

= (1− c) log(c− 1) + c log c− 1 +

∫ µ

0

T̃ (t, c)dt.
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Finally, from the second expression for D(µ, c),

cD(cµ, c−1) = c log

(
1 +

T (cµ, c−1)

c−1

)
− cT (cµ, c−1)

c−1 + T (cµ, c−1)
− log

(
T (cµ, c−1)

c−1

)
,

= c log

(
1 +

T̃ (µ, c)

c

)
− cT̃ (µ, c)

c+ T̃ (µ, c)
− log

(
T̃ (µ, c)

c

)
,

from which the result follows.

F. Kernels and Gram Matrices
To extend the results of the previous section to Gram matrices, we rely on the approximation theory developed in El Karoui
(2010). For a continuous function κ : R → R that is continuously differentiable on (0,∞), two types of kernels are
considered:

(I) Inner product kernels: k(x, y) = κ(x⊤y/d) for x, y ∈ Rd, and κ is three-times continuously differentiable in a
neighbourhood of zero with κ′(0) > 0.

(II) Radial basis kernels: k(x, y) = κ(∥x − y∥2/d) for x, y ∈ Rd, and κ is three-times continuously differentiable on
(0,∞) with κ′ < 0.

Let ∥A∥2 denote the spectral norm of a matrix A. The following theorem combines Theorems 2.1 and 2.2 in El Karoui
(2010).
Theorem 3. For each n = 1, 2, . . . , let X1

n, . . . , X
n
n be independent and identically distributed zero-mean random vectors

in Rd with Cov(Xi
k) = σ2I and E∥Xi

k∥5+δ < ∞ for some δ > 0. For a kernel k of type (I) or (II), consider the Gram
matrices Kn

X ∈ Rn×n with entries (Kn
X)ij = k(Xi

n, X
j
n). If n, d→ ∞ such that d/n→ c ∈ (0,∞), then there exists an

integer k and a bounded sequence of rank k matrices C1, C2, . . . such that

∥Kn
X − (αd−1XX⊤ + βI + Cn)∥2 → 0,

where the constants α, β for cases (I) and (II) are, respectively,

(I) Inner product kernels: α = κ′(0), β = κ(σ2)− κ(0)− κ′(0)σ2;

(II) Radial basis kernels: α = −2κ′(2σ2), β = κ(0) + 2σ2κ′(2σ2)− κ(2σ2).

For the remainder of this section, we assume the hypotheses of Theorem 3, so that ∥Kn
X − (αd−1XX⊤ + βI)∥2 → 0 for

some appropriate α > 0 and β ∈ R. To apply Theorem 3 with the results of the previous section, we require the following
basic lemma.
Lemma 5. For any symmetric positive-definite matrices A,B ∈ Rn×n and v > 0,

1

n
|tr((A+ vI)−1)− tr((B + vI)−1)| ≤ ∥A−B∥2

v2

1

n
| log det(A+ vI)− log det(B + vI)| ≤ ∥A−B∥2

v
.

Proof. Let λ1(A) ≥ · · · ≥ λn(A) and λ1(B) ≥ · · · ≥ λn(B) denote the eigenvalues ofA andB, respectively, in decreasing
order. Recall from Weyl’s perturbation theorem (see Corollary III.2.6 of Bhatia (2013)) that maxi=1,...,n |λi(A)−λi(B)| ≤
∥A−B∥2. By the Mean Value Theorem, for any x, y > 0, |(x+ v)−1 − (y + v)−1| ≤ v−2|x− y|. Therefore,

1

n
|tr((A+ vI)−1)− tr((B + vI)−1)| = 1

n

∣∣∣∣∣
n∑

i=1

1

λi(A) + v
− 1

λi(B) + v

∣∣∣∣∣
≤ 1

v2
max

i=1,...,n
|λi(A)− λi(B)|

≤ 1

v2
∥A−B∥2.
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Similarly, the Mean Value Theorem implies that for any x, y > 0, | log(x+ v)− log(y + v)| ≤ v−1|x− y|, and so

1

n
| log det(A+ vI)− log det(B + vI)| = 1

n

∣∣∣∣∣
n∑

i=1

log(λi(A) + v)− log(λi(B) + v)

∣∣∣∣∣
≤ 1

v
max

i=1,...,n
|λi(A)− λi(B)|

≤ 1

v
∥A−B∥2.

Combining Theorem 3 and Lemma 5 with Lemmas 3 and 4 yields the following corollary.

Corollary 1. Under the assumptions of Theorem 3, if µn is a sequence of positive real numbers such that µn → µ ∈ (0,∞)
as n→ ∞, then

1

n
Etr((Kn

X + µnI)
−1) →


1−c
β+µ + 1

αT
(

β+µ
α , c

)
if c < 1

1
α T̃
(

β+µ
α , c

)
if c > 1,

1

n
E log det(Kn

X + µnI) →

D
(

β+µ
α , c

)
+ (1− c) log

(
β+µ
α

)
+ logα if c < 1

D̃
(

β+µ
α , c

)
+ logα if c > 1.

Proof. First consider the c > 1 case. Combining Theorem 3 and Lemma 5, and noting that finite rank perturbations do not
affect the limiting spectrum (El Karoui, 2010, Lemma 2.1), we find that

1

n
Etr (Kn

X + µnI)
−1

=
1

n
Etr
(
αd−1XX⊤ + βI + µnI

)−1
+ o(1)

=
1

αn
Etr
(
d−1XX⊤ +

β + µ

α
I

)−1

+ o(1)

→ 1

α
T̃

(
β + µ

α
, c

)
.

Similarly, since XX⊤ ∈ Rn×n,

1

n
E log det (Kn

X + µnI) =
1

n
E log det

(
αd−1XX⊤ + βI + µI

)
+ o(1)

=
1

n
E log det

(
d−1XX⊤ +

β + µ

α
I

)
+ logα+ o(1)

→ D̃

(
β + µ

α
, c

)
+ logα.

For the c < 1 case, from the Woodbury matrix identity (Pozrikidis, 2014, B.1.2),

tr
(
(η1XX

⊤ + η2I)
−1
)
=

n

η2
− tr

(
η1
η2
X
(
η2I + η1X

⊤X
)−1

X⊤
)

=
n

η2
− 1

η2
tr
((
η2I + η1X

⊤X
)−1

η1X
⊤X

)
=

n

η2
− 1

η2
tr
(
I − η2

(
η2I + η1X

⊤X
)−1
)

=
n− d

η2
+ tr

(
(η1X

⊤X + η2I)
−1
)
.
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Therefore,

1

n
Etr (Kn

X + µnI)
−1

=
1

αn
Etr
(
d−1XX⊤ +

β + µ

α
I

)−1

+ o(1)

=
1− d

n

β + µ
+

1

αn
Etr
(
d−1X⊤X +

β + µ

α
I

)−1

+ o(1)

→ 1− c

β + µ
+

1

α
T

(
β + µ

α
, c

)
.

Finally, from Sylvester’s determinant theorem (Pozrikidis, 2014, B.1.15),

log det(η1XX
⊤ + η2I) = log det

(
η1
η2
XX⊤ + I

)
+ n log η2

= log det

(
η1
η2
X⊤X + I

)
+ n log η2

= log det
(
η1X

⊤X + η2I
)
+ (n− d) log η2.

Therefore,

1

n
E log det (Kn

X + µnI) =
1

n
E log det

(
d−1XX⊤ +

β + µ

α
I

)
+ logα+ o(1)

=
1

n
E log det

(
d−1X⊤X +

β + µ

α
I

)
+

(
1− d

n

)
log

(
β + µ

α

)
+ logα+ o(1)

→ D

(
β + µ

α
, c

)
+ (1− c) log

(
β + µ

α

)
+ logα.

G. Proofs of Main Results
With the underlying random matrix theory in place, we can begin to prove our main result in Theorem 1. Throughout this
section, we assume the conditions of Theorem 1, that is, we let X1, X2, . . . be independent and identically distributed
zero-mean random vectors in Rd with unit covariance, satisfying E∥Xi∥5+δ < +∞ for some δ > 0. For each n = 1, 2, . . . ,
let

Fγ
n = 1

2λY
⊤(KX + λγI)−1Y + 1

2 log det(KX + λγI)− n
2 log

(
λ
2π

)
.

where KX ∈ Rn×n satisfies Kij
X = k(Xi, Xj) and Y = (Yi)

n
i=1, with each Yi ∼ N (0, 1).

Proposition 2 (El Karoui-Marchenko-Pastur Limit of the Bayes Free Energy). Assuming that n, d → ∞ such that
d/n→ c ∈ (0,∞), there is n−1EFγ

n → Fγ
∞ where for c < 1,

Fγ
∞ =

λ

2

(
1− c

β + γλ
+

1

α
T

(
β + γλ

α
, c

))
− 1

2
log

(
λ

2πα

)
+

1

2
D

(
β + γλ

α
, c

)
+

1

2
(1− c) log

(
β + γλ

α

)
,

and for c > 1,

Fγ
∞ =

λ

2α
T̃

(
β + γλ

α
, c

)
− 1

2
log

(
λ

2πα

)
+

1

2
D̃

(
β + γλ

α
, c

)
.

Proof. Recalling that E[Y ⊤AY ] = tr(A) for any A ∈ Rn×n, since KX is independent of Y ,

1

n
EFγ

n =
λ

2n
Etr((KX + λγI)−1) +

1

2n
E log det(KX + λγI)− 1

2
log

(
λ

2π

)
.

The result follows by a direct application of Corollary 1.
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Proposition 3 (Optimal Temperature in the Bayes Free Energy). Assume that λ = µ/γ for some fixed µ > 0. The limiting
Bayes free energy Fγ

∞ is minimized in γ at

γ∗ =
µ

2(β + µ)
[1− c− c(β+µ

α ) +
√
(c(β+µ

α ) + c+ 1)2 − 4c].

Proof. First consider the case c < 1. If λ = µ/γ, then

Fγ
∞ =

µ

2γ

(
1− c

β + µ
+

1

α
T

(
β + µ

α
, c

))
− 1

2
log

(
µ

2πγα

)
+

1

2
D

(
β + µ

α
, c

)
+

1

2
(1− c) log

(
β + µ

α

)
.

Note that as γ → 0+ or γ → ∞, Fγ
∞, so if there exists only one point γ∗ where that ∂Fγ

∞/∂γ = 0, then by Fermat’s
Theorem, γ∗ is the unique global minimizer of Fγ

∞. For µ fixed, we may differentiate in γ to find that

∂Fγ
∞

∂γ
= − µ

2γ2

(
1− c

β + µ
+

1

α
T

(
β + µ

α
, c

))
+

1

2γ
.

Solving ∂Fγ
∞/∂γ = 0 for γ, the optimal

γ∗ = µ

(
1− c

β + µ
+

1

α
T

(
β + µ

α
, c

))
.

Simplifying,

1− c

β + µ
+

1

α

c− 1− c(β+µ
α ) +

√
(c(β+µ

α ) + c+ 1)2 − 4c

2(β+µ
α )

=
1− c− c(β+µ

α ) +
√
(c(β+µ

α ) + c+ 1)2 − 4c

2(β + µ)
,

which implies the result for c < 1. On the other hand, for c > 1,

Fγ
∞ =

µ

2γα
T̃

(
β + µ

α
, c

)
− 1

2
log

(
µ

2παγ

)
+

1

2
D̃

(
β + µ

α
, c

)
,

and once again, as γ → 0+ or γ → ∞, Fγ
∞ → ∞, so a unique critical point is the unique global minimizer of Fγ

∞. For µ
fixed, we differentiate in γ to find

∂Fγ
∞

∂γ
= − µ

2γ2α
T̃

(
β + µ

α
, c

)
+

1

2γ
.

Solving ∂Fγ
∞/∂γ = 0 for γ, the optimal

γ∗ =
µ

α
T̃

(
β + µ

α
, c

)
.

Simplifying,

1

α
T̃

(
β + µ

α
, c

)
=

1− c− c(β+µ
α ) +

√
(c(β+µ

α ) + c+ 1)2 − 4c

2(β + µ)
,

which implies the result for c > 1.

In the sequel, we assume that the kernel itself depends on λ in such a way that β = β0λ for some 0 < β0 < 1. Let
γ0 = γ + β0 and µ = λγ0/α. For c < 1, the limiting Bayes free energy satisfies

Fγ
∞ =

1

2γ0
(1− c+ µT (µ, c))− 1

2
log

(
µ

2πγ0

)
+

1

2
D(µ, c) +

1

2
(1− c) logµ,

=
1

2γ0
(1− c+ µT (µ, c))− 1

2
log

(
1

2πγ0

)
+

1

2
D(µ, c)− c

2
logµ.

and for c > 1,

Fγ
∞ =

µ

2γ0
T̃ (µ, c)− 1

2
log

(
µ

2πγ0

)
+

1

2
D̃(µ, c).
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Proposition 4 (Optimal Regularization in the Bayes Free Energy). The limiting Bayes free energy Fγ
∞ is minimized in λ at

λ∗ =
α[(c+ 1)γ0 +

√
(c− 1)2 + 4cγ20 ]

c(1− γ20)
.

Proof. Since Fγ
∞ is smooth for λ ∈ (0,∞) (and therefore µ ∈ (0,∞)), Fermat’s theorem implies that any optimal

temperature λ∗ must be a critical point of Fγ
∞ in (0,∞). First, consider the case where c < 1. Differentiating Fγ

∞ with
respect to µ,

∂Fγ
∞

∂µ
=

1

2γ0

∂

∂µ
(µT (µ, c))− c

2µ
+

1

2
T (µ, c).

Letting U(µ, c) = µT (µ, c) and U ′ = ∂U
∂µ ,

∂Fγ
∞

∂µ
=

1

2µ

(
µ

γ0
U ′ + U − c

)
. (8)

Noting that

U(µ, c) =
c− 1− cµ+

√
(cµ+ c+ 1)2 − 4c

2
,

and

U ′ = − c
2
+

c(cµ+ c+ 1)

2
√
(cµ+ c+ 1)2 − 4c

= c ·
cµ+ c+ 1−

√
(cµ+ c+ 1)2 − 4c

2
√
(cµ+ c+ 1)2 − 4c

,

and so U ′
√
(cµ+ c+ 1)2 − 4c = c · (c− U). Therefore, substituting into (8) reveals

∂Fγ
∞

∂µ
=

1

2cµ

(
cµ

γ0
−
√

(cµ+ c+ 1)2 − 4c

)
U ′.

Since U ′ > 0, ∂Fγ
∞/∂µ = 0 if and only if

cµ

γ0
=
√

(cµ+ c+ 1)2 − 4c. (9)

This occurs when
c2(1− γ20)µ

2 − 2cµ(c+ 1)γ20 − (c− 1)2γ20 = 0. (10)

If γ0 ≥ 1, then no positive solutions exist for µ. On the other hand, if γ < 1, then only one positive solution exists, and is
given by

µ∗ =
2c(c+ 1)γ20 +

√
4c2(c+ 1)2γ40 + 4c2(1− γ20)(c− 1)2γ20

2c2(1− γ20)

=
2c(c+ 1)γ20 + 2cγ0

√
[(c+ 1)2 − (c− 1)2]γ20 + (c− 1)2

2c2(1− γ20)

=
(c+ 1)γ20 + γ0

√
(c− 1)2 + 4cγ20

c(1− γ20)
.

Next, consider the case c > 1. Differentiating Fγ
∞ with respect to µ, we seek

∂Fγ
∞

∂µ
=

1

2γ

∂

∂µ
(µT̃ (µ, c)) +

1

2
T̃ (µ, c)− 1

2µ
= 0,

or, equivalently,
µ

γ

∂

∂µ
(µT̃ (µ, c)) + µT̃ (µ, c)− 1 = 0. (11)

Letting Ũ = µT̃ and Ũ ′ = ∂Ũ
∂µ , we require µ

γU
′ + U − 1 = 0. But since

Ũ =
1− c− cµ+

√
(cµ+ c+ 1)2 − 4c

2
,
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and

Ũ ′ =
∂Ũ

∂µ
=
c(c+ cµ+ 1−

√
(cµ+ c+ 1)2 − 4c)

2
√
(cµ+ c+ 1)2 − 4c

,

we find that Ũ ′
√

(cµ+ c+ 1)2 − 4c = c(1− Ũ). Substituting this relation into (9), we obtain

∂Fγ
∞

∂µ
=

1

2µc

(
cµ

γ
−
√

(cµ+ c+ 1)2 − 4c

)
Ũ ′ = 0,

and since U ′ > 0, an optimal µ∗ occurs if and only if (9) holds. The rest of the proof proceeds as in the c < 1 case.

Proposition 5 (Monotonicity in the Bayes Free Energy). The limiting Bayes free energy Fγ
∞ at λ = λ∗ decreases

monotonically in c ∈ (0,∞).

Proof. First, we treat the c < 1 case. Using the closed form expression for D(µ, c) in Lemma 4,

Fγ
∞ =

1

2γ0
(1− c+ µT ) +

1

2
log(2πγ0)−

c

2
logµ+

1

2

[
log

(
1 +

T

c

)
− T

c+ T
− c log

(
T

c

)]
.

Note that, at the optimal µ∗, d
dcF

γ
∞ = ∂

∂cF
γ
∞ + ∂

∂µF
γ
∞ · ∂µ∗

∂c = ∂
∂cF

γ
∞. Therefore,

2
dFγ

∞
dc

=

(
T

(T + c)2
+
µ

γ0
− c

T

)
∂T

∂c
+ 1− 1

γ0
− T 2

c(T + c)2
+ log

(
c

µT

)
.

Differentiating T in c, we find that

∂T

∂c
=

1− µ

2µ
+

1

2µ

(
(cµ+ c+ 1)(µ+ 1)− 2√

(cµ+ c+ 1)2 − 4c

)

=
(cµ+ c+ 1)(µ+ 1)− (µ− 1)

√
(cµ+ c+ 1)2 − 4c− 2

2µ
√
(cµ+ c+ 1)2 − 4c

=
2c− (µ− 1)T√
(cµ+ c+ 1)2 − 4c

.

Since cµ∗/γ0 =
√
(cµ∗ + c+ 1)2 − 4c, at the optimal µ∗,

∂T

∂c
= γ0 ·

2c− µT + T

cµ
.

Note that for any c > 0,

µT =
c− 1− cµ+

√
(cµ+ c+ 1)2 − 4c

2
<
c− 1− cµ+ cµ+ c+ 1

2
= c.

Recalling that log x < x− 1 for any x > 1, log(c/(µT )) < c/(µT )− 1. Therefore, 2dFγ
∞

dc < M , where

M =

(
T

(T + c)2
+
µ

γ0
− c

T

)
γ0(2c− µT + T )

cµ
− 1

γ0
− T 2

c(T + c)2
+

c

µT
.

Since T = (c− 1− cµ∗ + cµ∗/γ0)/(2µ
∗) at the optimal µ∗, after several calculations, we find that

M = Q(µ∗, c, γ0)
c2(1− γ20)(µ

∗)2 − 2cµ∗(c+ 1)γ20 − (c− 1)2γ20
2cγ0µ∗(cγ0µ∗ − cγ0 + cµ∗ + γ0)(cγ0µ∗ + cγ0 − cµ∗ − γ0)

,

where

Q(µ, c, γ) = (2(c− 1)γ + cµ)(cµ2 + 2cµ+ c+ µ− 1)γ2 + cµ(cµ+ c+ µ− 1)γ2 − (µ+ 1)(cµ+ (c− 1)γ)2.
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In particular, by (10), at µ = µ∗, M = 0, and hence, d
dcF

γ
∞ < 0.

Next, we treat the c > 1 case. Using the closed form expression in Lemma 4,

Fγ
∞ =

µ

2γ0
T̃ − 1

2
log

(
µ

2πγ0

)
+

1

2
c log(c+ T̃ )− 1

2
c log c− 1

2

cT̃

c+ T̃
− 1

2
log T̃ .

Differentiating in c at the optimal µ∗,

2
dFγ

∞
dc

= 2
∂Fγ

∞
∂c

=

(
µ

γ0
− 1

T̃
+

cT̃

(c+ T̃ )2

)
∂T̃

∂c

+ log(c+ T̃ )− log c− 1 +
cT̃

(c+ T̃ )2
+

c2

(c+ T̃ )2
− T̃ 2

(c+ T̃ )2
.

Differentiating T̃ in c, we find that

∂T̃

∂c
=

−1− µ+ (cµ+c+1)(µ+1)−2√
(cµ+c+1)2−4c

2µ

=
− (µ+ 1)

√
(cµ+ c+ 1)2 − 4c+ (cµ+ c+ 1)(µ+ 1)− 2

2µ
√
(cµ+ c+ 1)2 − 4c

=
1√

(cµ+ c+ 1)2 − 4c
·

[
(µ+ 1)

cµ+ c+ 1−
√
(cµ+ c+ 1)2 − 4c

2µ
− 1

µ

]

=
1√

(cµ+ c+ 1)2 − 4c
·
[
(µ+ 1)

(
1

µ
− T̃

)
− 1

µ

]
=

1− µT̃ − T̃√
(cµ+ c+ 1)2 − 4c

.

Since cµ∗/γ0 =
√

(cµ∗ + c+ 1)2 − 4c, it follows that

∂T̃

∂c
= γ · 1− µT − T

cµ
.

Note that for any c > 0, T̃ < c, and so log(1 + T̃ /c) < T̃/c. Therefore, 2dFγ
∞

dc < M where

M =
γ0
cµ

(
µ

γ0
− 1

T̃
+

cT̃

(c+ T̃ )2

)
+
T̃

c
− 1 +

cT̃

(c+ T̃ )2
+

c2

(c+ T̃ )2
− T̃ 2

(c+ T̃ )2
.

Since T̃ = (1− c− cµ∗ + cµ∗/γ0)/(2µ
∗) at the optimal µ∗, after several calculations, we find that

M = −Q(µ∗, c, γ0)
c2(1− γ20)(µ

∗)2 − 2cµ∗(c+ 1)γ20 − (c− 1)2γ20
2cγ0µ∗(cγ0µ∗ − cγ0 + cµ∗ + γ0)(cγ0µ∗ + cγ0 − cµ∗ − γ0)

,

where

Q(µ, c, γ) = µ(cµ+ γ)2 + 2c(µ+ 1)2(c− 1)γ3 + 2(c− 1)(µ− 1)γ3

− 2c2γ2µ(µ+ 1)− µc2γ2(µ+ 1)2 − 2cγ2µ(µ− 1).

In particular, since the numerator for M is always zero, it follows that dFγ
∞

dc < 0.

Theorem 1 follows immediately from Propositions 2, 3, 4, and 5.
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Proof of Proposition 1. Under the stated hypotheses, let δ(λ, γ) = c2(λ, γ)/c1(γ) and Ē(c) = E(c) + c3(γ)/c1(γ). Then

|L/c1 − Ē| ≤ |E∥f̄(x)− y∥2 − E|+ δ(λ(γ), γ)Etr(Σ(x))
≤ |E∥f̄(x)− y∥2 − E|+ δ(λ(γ), γ)mEk(x, x).

For an arbitrary ϵ > 0, let N be sufficiently large so that for any n > N and d = d(n), |E∥f̄(x) − y∥2 − E| ≤ ϵ/2.
Similarly, let γ0 be sufficiently small so that for any 0 < γ < γ0, δ(λ(γ), γ) < ϵ/(2mEk(x, x)). Then |L/c1 − Ē| < ϵ,
and the result follows.
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