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ABSTRACT

Image inpainting aims to fill missing or masked regions of an image in a manner
that blends with the surrounding context. While diffusion models have signifi-
cantly improved the visual fidelity of inpainting, they still suffer from noticeable
stitched seams, including boundary discontinuity and content inconsistency be-
tween the preserved and generated regions. We argue that these issues originate
from a fundamental limitation: the latent blending of the two regions in inference,
which is unaccounted for in training, creates a piece-wise latent manifold. Firstly,
the masked input encoded by the Variational AutoEncoder (VAE) does not per-
fectly align with the resized mask, resulting in boundary discontinuity that persists
in the reconstruction and denoising processes. Second, the piece-wise latent man-
ifold deviates from the assumption of data coherence in diffusion models since
the two regions follow distinct distributions, leading to content inconsistency. In
this work, we propose Blend-Aware Latent Diffusion, a unified framework that
explicitly resolves these issues by aligning the model’s training dynamics with the
blend nature of inference. Our framework consists of two complementary com-
ponents: BlendRecon, a blend-aware VAE that learns to decode blended latents
continuously; and BlendGen, a novel denoising loss that explicitly regularizes the
generated content to harmonize with the surrounding context. Extensive experi-
ments on BrushBench and MISATO demonstrate that Blend-Aware Latent Diffu-
sion effectively mitigates stitched seams and improves perceptual quality across
various scenarios, including inpainting and outpainting.

1 INTRODUCTION
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Figure 1: Stitched seams in diffusion-based inpainting.

Image inpainting Xu et al. (2023), which
involves filling in missing or masked re-
gions of an image, has long been a chal-
lenging problem in computer vision. Re-
cent advancements in deep learning have
led to the development of generative mod-
els capable of producing high-quality in-
painted images Liu et al. (2020); Ntavelis
et al. (2020), where diffusion models Ho
et al. (2020); Song et al. (2021); Rom-
bach et al. (2022) have gained prominence.
Despite the effectiveness of diffusion-
based inpainting methods Avrahami et al.
(2023); Manukyan et al. (2023); Ju et al.
(2024), a critical challenge remains largely
overlooked, yet is crucial in real-world applications, that is, the stitched seams between preserved
and generated regions, as shown in fig. 1.

The core of this problem lies in a structural limitation in existing pipelines. At each denoising step in
inference, diffusion-based inpainting typically involves blending the generated content with the un-
masked regions by copy-pasting in latent space. While this strategy effectively ensure the quality of
unmasked regions, it introduces two critical challenges: (1) the resized mask introduces inaccuracies
in the blending with the masked input encoded by VAE, leading to boundary discontinuity; (2) the
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preserved and generated regions follow distinct statistical distributions, forming a piece-wise latent
manifold with sharp transition across regions. These artifacts are not incidental defects but manifes-
tations of a fundamental misalignment between the blend-style inference and the standard diffusion
training. BrushNet Ju et al. (2024) presents a pixel-space solution for the boundary discontinuity
based on a blurred mask. However, this approach may compromise the accuracy of detail preserva-
tion. BrushNet also designs a dual-branch network, where the features from the branch networks are
injected into the frozen pre-trained main network layer by layer to increase the content consistency.
ASUKA Wang et al. (2025) proposes a post-processing method that incorporates alignment through
an external masked autoencoder and a conditional decoder to enhance content consistency.

Instead of treating stitched seams as superficial or post-generation errors to be corrected, we ar-
gue that a principled solution requires explicitly reconciling the model’s learning process with the
conditions of inference. This approach is both simple and effective, requiring no modifications to
the network architecture or the incorporation of external models. Specifically, we propose to align
the training dynamics of both the VAE and the denoiser with the piece-wise latent manifold that
naturally arises in inpainting tasks.

To this end, we introduce Blend-Aware Latent Diffusion, a unified inpainting framework that mit-
igates the stitched seams through two complementary components: BlendRecon: a blend-aware
VAE that learns to decode blended latents continuously, and BlendGen: a novel denoising loss that
explicitly regularizes the generated content to harmonize with the surrounding context. Together,
these components provide a principled, model-intrinsic solution. Our main contributions are as
follows:

• We formally analyze an inherent limitation in diffusion-based inpainting: the latent blend-
ing introduces a piece-wise latent manifold, resulting in stitched seams including boundary
discontinuity and content inconsistency.

• We propose Blend-Aware Latent Diffusion, a unified framework that explicitly addresses
stitched seams by aligning both reconstruction and denoising processes with the blend con-
ditions in inference.

• Extensive experiments on BrushBench and MISATO demonstrate that our method substan-
tially mitigates stitched seams and outperforms existing inpainting models in both percep-
tual quality and seam visibility.

2 RELATED WORK

Diffusion-based inpainting methods. Blended diffusion Avrahami et al. (2022) and Blended La-
tent Diffusion (BLD) Avrahami et al. (2023) are representative diffusion-based inpainting methods,
which enable inpainting masked regions by replacing unmasked regions with the original image at
each denoising step in the pixel space and latent space, without altering the pre-trained diffusion
model. SmartBrush Xie et al. (2023) improves the shape-guided inpainting by introducing mul-
tiple masks of the same object during training. HD-Painter Manukyan et al. (2023) enhances the
text alignment in the painting region by introducing prompt-aware introverted attention. Power-
Paint Zhuang et al. (2024) integrates multiple inpainting tasks into one model by introducing learn-
able task prompts and targeted fine-tuning strategies. Although these methods have shown promising
results in structural coherence and diversity for content filling, they still display noticeable stitched
seams when blending preserved regions with generated content.

Stitched seams. Stitched seams in diffusion-based inpainting typically manifest in three forms:
color shifts, boundary discontinuity and content inconsistency. Color shifts occur when the origi-
nal image is blended with generated content in the pixel space, which exposes the inherent recon-
struction errors of the VAE. Recent works have explored various strategies to address color shifts.
BLD Avrahami et al. (2023) fine-tunes the decoder to reduce pixel-level color shifts. ASUKA Wang
et al. (2025) introduces a larger decoder to allow more detailed recovery. Asymmetric VQGAN Zhu
et al. (2023) also redesigns the VAE decoder with an asymmetric architecture to better reconstruct
details, while DiffHarmony++ Zhou et al. (2024) introduces conditional zero-convolution layers for
color harmonization. Boundary discontinuity appears when latent blending is applied between the
encoded full inputs and masked inputs in the latent denoising process. Although using the encoded
full inputs alone could reduce seams, this approach risks information leakage and undermines tasks
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like object inapinting and object removal. BrushNet Ju et al. (2024) attempts to alleviate this issue
by applying a blurred mask in pixel space. However, this leads to a loss of structural detail near
the boundary. Content inconsistency refers to the failure of the generated region to align struc-
turally and semantically with the surrounding context. BrushNet designs a dual-branch network
that separates the masked image features and noisy latent vectors into different branches. The fea-
tures from the branch networks are injected into the frozen pre-trained main network layer by layer,
which increases the content consistency. ASUKA introduces alignment based on an external masked
autoencoder and a conditional decoder to improve content consistency. In contrast, boundary dis-
continuity and content inconsistency have received limited attention in prior works, and our method
is designed to explicitly address both.

3 METHOD

In this section, we present Blend-Aware Latent Diffusion, a unified framework designed to explic-
itly address stitched seams in diffusion-based inpainting.

3.1 PRELIMINARIES

Denoising diffusion probabilistic models Ho et al. (2020) aim to transform pure noise xT into a
coherent output image x̂0, guided by the given conditioning prompt. In the forward process, noise
is added to a clean image:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (1)

where xt denotes the noisy image at timestep t, ᾱt are hyper-parameters governing the noise sched-
ule over t ∈ [1, T ]. During training, the network θ is optimized to predict the noise ϵ given the noisy
image xt:

min
θ

Ex0,ϵ∼N (0,I),t∼U(1,T )∥ϵ− ϵθ(xt, t, C)∥22, (2)

where C is the conditioning input. Stable diffusion Rombach et al. (2022) further incorporates a
Variational Auto-Encoder (VAE) to map the input image into a lower-dimensional latent space and
significantly reduce computational cost. In this setting, the latent representation z0 is obtained as
E(x0), where x0 is the input image, and the reconstructed output image is derived as x̂0 = D(ẑ0).
To enhance performance in low-SNR steps, v-prediction Salimans & Ho (2022) is employed and the
targets are formulated as:

v =
√
ᾱtϵ−

√
1− ᾱtz0. (3)

The original latent z0 can then be approximated by:

ẑ0 =
√
ᾱtzt −

√
1− ᾱtvθ(zt) (4)

where zt =
√
ᾱtz0 +

√
1− ᾱtϵ. Our work builds upon the stable diffusion model architecture.

3.2 PROBLEM ANALYSIS

Blended Latent Diffusion (BLD) is a widely used method and often serves as the default inpainting
approach. Given an original image x0 and a binary mask M, where 0 represents the regions to be
inpainted. The masked image is xM

0 = x0 ⊙ M. BLD begins by extracting the latent using VAE:
zM0 = E(xM

0 ). Subsequently, the mask M is resized to m to match the size of zM0 . In denoising,
BLD applies noise to zM0 up to the desired noise level at timestep t, yielding zMt . At the following
denoising steps, the latent is blended:

zblendt−1 = (1−m)⊙ zdenoiset−1 +m⊙ zMt−1 (5)

zdenoiset−1 means the latent is obtained from the denoising process. The blending operation preserves
the unmasked content while allowing for new content generation in the masked regions. How-
ever, it fails to guarantee coherence, as the resized mask m is not precisely match the invisible
latent in zMt , resulting in the boundary discontinuity, i.e., E(x0 ⊙ M) ̸= E(x0) ⊙ m, especially
near the boundary of m. Consequently, the discontinuity persists throughout the denoising process
and the pretrained VAE ultimately reconstructs from the stitched latent. As illustrated in fig. 2,
the reconstructed image shows visible seams, indicating a mismatch between the blended latents
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Figure 2: The reconstruction under blending. The pretrained VAE reconstructs the boundary dis-
continuity, whereas BlendRecon achieves a much smoother reconstruction.

and the original reconstruction objective. Additionally, the blending also impacts content consis-
tency in generation, since the preserved and generated regions follow distinct distributions, that is,
zpreserved ∼ pdata(z), zgenerated ∼ pdenoise(z). Therefore, we argue that the latent blending cre-
ates a piece-wise latent manifold and introduces artifacts in both the reconstruction and denoising,
manifesting as boundary discontinuity and content inconsistency near the mask boundary.

Theoretical insight. We formalize the issues through the following propositions.

Proposition 1 (Boundary Discontinuity). Assume the VAE decoder D is Lipschitz continuous
with constant L, i.e., ∥D(z1)−D(z2)∥ ≤ L · ∥z1 − z2∥. Then the reconstruction discrepancy near
the mask boundary is bounded by ∥D(zblend)−D(z)∥Ω ≤ L · ∥zblend−z∥Ω,, where ∥ · ∥Ω denotes
the masked L2 norm restricted to pixels in the boundary band Ω. Since the VAE reconstruction of
the original image is not exact, we further have ∥D(zblend) − x∥Ω ≤ L · ∥zblend − z∥Ω + ϵVAE,,
with ϵVAE = ∥D(z)− x∥Ω denoting the reconstruction error of D. Therefore, due to the mismatch
E(x ⊙ M) ̸= E(x) ⊙ m, the boundary discontinuity will be reconstructed by the VAE, leading
to visible seams. As latent blending is inevitable, this motivates us to explicitly train the model to
recognize and correct such artifacts.

Proposition 2 (Content Inconsistency). Let fθ denote the denoiser parameterized by θ, which
predicts the velocity v in v-prediction. According to eq. (5), there exists a distributional diver-
gence between preserved and generated regions: pdata(z) ̸= pdenoise(z). Without supervision, the
alignment between the two regions is under-constrained and the denoiser cannot bridge this diver-
gence, which highlights the need to explicitly blend during training. By blending the predicted
result and re-predicting the denoising direction, boundary generation is calibrated and constrained:
fθ(z

blend
t , t)Ω ≈ xΩ. This explicitly connects the denoiser output to the true target and encourages

content alignment and helps the model learn smooth transitions.

3.3 BLEND-AWARE LATENT DIFFUSION FRAMEWORK

To mitigate stitched seams, we propose blend-aware latent diffusion, which introduces blended train-
ing into both reconstruction and denoising.

3.3.1 BLENDRECON: BLEND-AWARE VAE

As discussed above and shown in fig. 2, blending in latent space can lead to boundary discontinuity,
since the VAE trained to reconstruct from full latents is not inherently suited for handling blended
latents. Specifically, standard reconstruction training optimizes:

min
θVAE

Ex

[
∥DθVAE

(E(x))− x∥2
]

(6)
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Figure 3: The illustration of BlendGen. L1 represents the standard diffusion loss, where the model
predicts z0. After obtaining ẑ0, we simulate the blending operation and calculate the latent for the
next timestep, making the model predict the noise to calculate L2. The θ in the figure represents the
same denoiser during training.

This objective fails to account for latent compositions arising from copy-paste blending in inference.
To address this, we fine-tune the VAE with the following objective:

min
θVAE

Ex,m

[∥∥∥DθVAE

(
(1−m)⊙ E(x) +m⊙ E(x⊙M)

)
− x

∥∥∥2] (7)

which enables the decoder to learn seamless reconstructions of blended latents, thereby reducing
boundary discontinuity.

3.3.2 BLENDGEN: BLEND-AWARE DENOISER

In standard diffusion training, the denoiser learns to predict noise from noisy samples drawn from
the data distribution, under the assumption of global data coherence. However, diffusion-based in-
painting deviates from this assumption: at each denoising step, the latent is blended by copy-pasting
preserved regions from the original image, resulting in a distributional divergence unaccounted for
during training. Moreover, vanilla inpainting methods cannot ensure that the generated content will
be confined exactly within the specified mask region, since the only ‘constrain’ is that the gradual
diffusion process masking and blending encourages this behavior. Similarly, they also have no con-
straints to align the generated content with the preserved content, leading to content inconsistency.
To overcome this, we introduce explicit constraints through a regularized loss that aligns the regions.

Algorithm 1: Blend-Aware Denoiser
Input: denoise parameters θ, noises ϵ1, ϵ2, sample

z0, original mask M, resized mask m,
timestep t, conditioning input C

Output: optimized parameters θ

1 zt =
√
ᾱtz0 +

√
1− ᾱtϵ1;

2 v1 =
√
ᾱtϵ1 −

√
1− ᾱtz0;

3 L1 = ∥v1 − vθ(zt, t, C)∥22;
4 ẑ0 =

√
ᾱtzt −

√
1− ᾱtvθ(zt, t, C);

5 Blending ẑ0 = ẑ0 ⊙ (1−m) + zM0 ⊙m;
6 ẑt−1 =

√
ᾱt−1ẑ0 +

√
1− ᾱt−1ϵ2;

7 Calculate the true noise ϵ∗2 =
ẑt−1−

√
ᾱt−1z0√

1−ᾱt−1
;

8 v2 =
√
ᾱt−1ϵ

∗
2 −
√
1− ᾱt−1z0;

9 L2 = ∥v2 − vθ(ẑt−1, t− 1, C)∥22;
10 θ ← θ − η∇θ(L1 + λL2);
11 return θ

In the conventional v-prediction diffusion train-
ing, the objective is to predict the velocity v
from the latent zt. During inference, after the
model predicts the velocity, we compute and
blend ẑt−1 iteratively. For BlendGen in algo-
rithm 1, besides the standard diffusion training,
we further compute ẑ0 using the predicted vθ,
followed by a blending to update ẑ0. It’s impor-
tant to note that, while the blending in inference
is applied to zt, during training, it’s performed
on ẑ0. Since ẑt−1 is calculated by adding noise
to ẑ0, blending ẑ0 is effectively equivalent to
blending ẑt−1. Given that ẑ0 is not a real sam-
ple, we calculate the true noise ϵ∗2 to adjust the
inpainting accordingly. With ϵ∗2, we derive the
target v2 for the blended objective. Finally, the
model parameters θ are updated based on the
combined losses L1 + λL2, where λ serves as
a weight factor to balance the two loss terms.
L2 encourages the model to explicitly learn how to handle blended latents, enabling better content
consistency between the two regions throughout the diffusion process.
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Figure 4: Comparison of boundary continuity between our method and other approaches for inpaint-
ing.(We encourage readers to zoom in to better observe the details.)

4 EXPERIMENTS

In this section, we evaluate the proposed method qualitatively and quantitatively, for inpainting and
outpainting.

Implementation details. In our experiments, unless otherwise specified, all tasks are based on
Stable Diffusion 1.5 (SD-1.5). The VAE is trained using the default training settings, consistent
with those in the SD-1.5 VAE training phase. Apart from splitting the original VAE input into two
parts, the VAE model structure remains unchanged. Specifically, we blended the two input parts
in the latent space and reconstructed the blended latents. For the denoiser, we set the number of
sampling steps to be 50 by using a stride of 20 over 1000 diffusion steps with a guidance scale of
3. The loss weight λ is set to 0.5 by default. For the inpainting, we utilize the saliency detection
model U2Net Qin et al. (2020) to segment out the background, then randomly sample masks within
the background as input during training. For outpainting, we apply a mask around the edges of
the training images, retaining only the central portion. In both tasks, the training objective of the
denoiser is to reconstruct the original images.

Dataset. We filter the publicly available Laion-Aesthetic Schuhmann et al. (2022) dataset, se-
lecting images with a resolution of at least 512x512 as our training set (approximately 3 million
images). Both the VAE and denoiser are fine-tuned based on this dataset.

Evaluation benchmarks. To comprehensively evaluate performance across diverse scenarios, we
employ BrushBench Ju et al. (2024) and MISATO Wang et al. (2025) with a resolution of 512x512.
BrushBench contains 600 images, covering multiple categories (e.g., humans, animals, outdoor).
MISATO offers 2,000 samples selected from representative datasets: Matterport3D Chang et al.
(2017), MegaDepth Li & Snavely (2018), Flickr Lin et al. (2022), and COCO 2014 Lin et al. (2014),
capturing varied domains (e.g., landscape, indoor, building and background) and mask styles. To
reduce the strong priors in BrushBench’s segmentation-based masks, we extract and slightly expand
their convex hulls to generate smoother masks without preserving object shapes. For inpainting
tasks guided by prompts, we use ‘scenery’, which is the best one shown in PowerPaint, as the
default prompt.

Evaluation metrics. Our evaluation focuses on two aspects: image quality and seam visibility.
We utilize Fréchet Inception Distance (FID) Heusel et al. (2017), Aesthetic Score (AS) Schuhmann
et al. (2022) and Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018) to measure

6
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Figure 5: Comparison of content consistency between our method and other approaches for inpaint-
ing.

the quality. In addition, we propose a new metric to measure stitched seams: given an inpainted
image x̂ and the original image x, we define the Seam Visibility (SV) as the average L2 distance of
RGB values between pixels along the mask boundary and their neighboring pixels. It can be defined
as:

SV =
1

|Ω|
∑

(i,j)∈Ω

∥x̂i,j − xi,j∥2 (8)

Where Ω denotes the pixels within a narrow band near the mask boundary, x̂i,j and xi,j means the
RGB values of inpainted images and original images at (i, j) separately. In practice, we set the
band width to 3 pixels on both sides of the mask boundary, which is sufficient to capture visible
discontinuities while avoiding interference from regions far from the seam. We also normalize the
SV by the length of the mask boundary, ensuring that the metric remains comparable across small
and large masked regions. We also conducted sensitivity analysis with varying band widths (e.g.,
3–7 pixels) and observed stable results, further confirming the robustness of this metric.

4.1 QUALITATIVE EVALUATION

We conduct extensive experiments for the qualitative comparison between our method and SOTA
approaches. We keep the recommended hyperparameters for each inpainting method in all images
for fair comparison.

We present the visual results of different methods on the inpainting task, from two perspectives,
boundary continuity and content consistency, as shown in fig. 4 and fig. 5, respectively. In fig. 4,
existing inpainting methods always exhibit boundary discontinuity (zoom in to observe the details),
while our method demonstrates excellent continuity. In inpainting tasks, reasonable semantics and
structure are crucial to create a cohesive, visually complete image. Our method generates images
with more coherent and realistic structures than other methods, as presented in fig. 5.

We also visualize the results of different methods on the outpainting task in fig. 6. In the transi-
tion area between the non-masked and generated regions, the compared methods show noticeable
stitched seams, whereas our results do not suffer from this issue. In terms of content and struc-
ture, BrushNet and HD-painter tend to produce frames around the image. Compared to PowerPaint,
our method demonstrates advantages in boundary continuity and structure coherence, such as the
generation of human body structures in the first column and the moon in the second column. Con-
sequently, for both inpainting and outpainting tasks, our approach demonstrates clear advantages in
both boundary continuity and content consistency.

7
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Masked HD-Painter PowerPaint BrushNet Ours

Figure 6: Comparison of stitched seams between our method and other approaches for outpainting.

BrushBench MISATO
Task Methods FID(↓) AS(↑) LPIPS(↓) SV(↓) FID(↓) AS(↑) LPIPS(↓) SV(↓)

Inpainting

BLD Avrahami et al. (2023) 18.466 5.367 0.083 15.735 16.324 5.396 0.075 17.191
HD-Painter Manukyan et al. (2023) 15.604 5.985 0.061 19.029 13.859 5.410 0.050 16.315
PowerPaint Zhuang et al. (2024) 15.848 5.550 0.029 12.754 14.538 5.714 0.034 12.436
BrushNet Ju et al. (2024) 17.824 5.859 0.037 21.036 14.699 5.663 0.039 15.482
Ours 15.434 5.991 0.024 8.538 13.359 5.879 0.021 11.634

Outpainting

HD-Painter Manukyan et al. (2023) 30.596 5.897 0.503 14.871 25.489 5.691 0.475 12.589
PowerPaint Zhuang et al. (2024) 22.768 5.606 0.419 12.389 18.721 5.880 0.241 11.119
BrushNet Ju et al. (2024) 30.342 5.487 0.485 15.458 27.212 5.462 0.519 13.675
Ours 19.530 6.131 0.361 10.249 15.757 5.963 0.192 10.529

Table 1: Quantitative evaluation of different methods on BrushBench and MISATO.

4.2 QUANTITATIVE EVALUATION

We have also conducted a comprehensive quantitative evaluation. The results, presented in table 1,
clearly demonstrate that our approach significantly outperforms other methods across multiple eval-
uation metrics. Specifically, our method achieves superior results in both image quality and seam
visibility, effectively reducing visible artifacts at the boundary. The outpainting results validate our
method’s ability to handle larger context expansions beyond the masked regions, demonstrating ro-
bustness and flexibility. Given BLD’s relatively limited performance on the outpainting, we exclude
it from comparisons in this setting for a fairer evaluation.

Tasks BLD HD-Painter PowerPaint BrushNet Ours
Inpainting 2% 32% 10% 10% 46%
Outpainting - 4% 14% 0% 82%

Table 2: A user study to compare different methods.

To further evaluate the effectiveness of our
method in producing visually coherent and
seamless results, we conducted a user study.
The study involved 20 participants. We ran-
domly sample test images with all methods
and ask them to choose the most satisfying results per target. Everyone evaluates 100 images, 50
images for inpainting and 50 images for outpainting. The results are shown in table 2. It shows that
our results are consistently preferred in both tasks.

4.3 ABLATION STUDY

In our method, both the BlendRecon and the BlendGen are designed to enhance image quality. The
BlendRecon primarily addresses boundary discontinuity, ensuring that the generated region blends
smoothly with the original image. On the other hand, the BlendGen ensures content consistency,
maintaining structural coherence between the generated and original contents. To validate the effec-
tiveness of these components, we conduct a series of ablation studies, demonstrating the individual
contributions to the overall performance.
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Masked BlendRecon BlendGen Ours

Figure 7: Ablation study for inpainting.

Masked BlendRecon BlendGen Ours

Figure 8: Ablation study for outpainting.

Tasks Methods FID(↓) AS(↑) LPIPS(↓) SV(↓)

Inpainting

Base 18.703 5.537 0.046 17.093
Base+BlendRecon 16.835 5.725 0.031 15.354
Base+BlendGen 17.081 5.576 0.026 16.080
Ours 15.434 5.991 0.024 8.538

Outpainting

Base 22.681 5.549 0.533 14.351
Base+BlendRecon 21.523 5.738 0.451 12.130
Base+BlendGen 20.649 5.894 0.411 11.537
Ours 19.530 6.131 0.361 10.249

Table 3: Ablation study of our methods on BrushBench.

As shown in fig. 7, if only the BlendGen is used, noticeable boundary discontinuity arises, especially
in cases where the mask covers a solid-color background (as seen in rows 1 and 3). On the other
hand, if only the BlendRecon is applied, the generated content achieves boundary continuity but
often appears sparse or lacks coherent integration with the original image in terms of structure and
detail. Our proposed method, which combines both BlendRecon and BlendGen, produces images
of better quality. This combined approach ensures seamless blending, where the inpainted regions
not only match the boundary of the original image but also align with its structural and semantic
requirements. In particular, our method generates reasonable content, including the human body,
reflection, and a bird. table 3 shows the quantitative results of the two components. It can be
observed that each component positively contributes to the final results. We also conduct ablation
studies on the outpainting, as shown in fig. 8. The conclusions are the same as those observed in
inpainting: BlendRecon primarily improves boundary continuity, while the BlendGen enhances the
consistency between the preserved and generated content. It can be seen that our method avoids
generating abnormal objects and correctly extends tree trunks.

5 CONCLUSION

In this work, we dive into the stitched seams in diffusion-based image inpainting/outpainting and
analyze the underlying causes. We argue that latent blending creates a mismatched mask gap and
a piece-wise manifold, resulting in boundary discontinuity and content inconsistency. To address
the above issues, we propose two key solutions: BlendRecon ensures boundary continuity by en-
abling the VAE to correct mismatched mask gaps, while the BlendGen simulates the blending op-
eration during training, leading to smoother generation for image content. Extensive experiments
demonstrate the effectiveness and robustness of our approaches, indicating the potential to be widely
applied in tasks requiring seamless integration.
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