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Abstract

Multilingual pre-trained models are known to001
suffer from the curse of multilinguality, which002
causes per-language performance to drop as003
they cover more languages. We address this004
issue by introducing language-specific mod-005
ules, which allows us to grow the total capac-006
ity of the model without any additional cost007
in training and inference FLOPs. In contrast008
to prior work which learns language-specific009
components post-hoc, we pre-train the mod-010
ules of our Cross-lingual Modular (X-MOD)011
models from the start. Our experiments on nat-012
ural language inference, named entity recogni-013
tion and question answering show that our ap-014
proach not only mitigates the negative interfer-015
ence between languages, but also enables pos-016
itive transfer, resulting in improved monolin-017
gual and cross-lingual performance. Further-018
more, our approach enables adding languages019
post-hoc with no measurable drop in perfor-020
mance, no longer limiting the model usage to021
the set of pre-trained languages.022

1 Introduction023

Recent work on multilingual NLP has focused on024

pre-training transformer-based models (Vaswani025

et al., 2017) on concatenated corpora of a large026

number of languages (Devlin et al., 2019; Conneau027

et al., 2020). These multilingual models have been028

shown to work surprisingly well in cross-lingual029

settings, despite the fact that they do not rely on030

direct cross-lingual supervision (e.g., parallel data031

or translation dictionaries; Pires et al., 2019; Wu032

and Dredze, 2019; Artetxe et al., 2020; Hu et al.,033

2020; K et al., 2020; Rust et al., 2021).034

However, recent work has uncovered fundamen-035

tal limitations of multilingual transformers. Con-036

neau et al. (2020) observe that pre-training a model037

with a fixed capacity on an increasing amount of038

languages only improves its cross-lingual perfor-039

mance up to a certain point, after which perfor-040

mance drops can be measured—a phenomenon041
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Figure 1: A transformer layer of our proposed modular
architecture. The dark blue and green components il-
lustrate the modular layers which are language specific.
The Multi-Head Attention and Feed-Forward compo-
nents are shared between all languages.

known as the curse of multilinguality (Figure 2). 042

As such, prior work on had to find a trade-off be- 043

tween supporting more languages and obtaining 044

better performance on a smaller set of languages. 045

In this work, we address this problem by in- 046

troducing language-specific, modular components 047

during pre-training (Figure 1). Our Cross-lingual, 048

Modular (X-MOD) language model shares the ma- 049

jority of the transformer parameters between all pre- 050

training languages, while providing each language 051

with individual capacity to learn idiosyncratic infor- 052

mation without any increased cost in training and 053

inference FLOPs. While previous adapter-based 054

approaches (Figure 3a) extend pre-trained multilin- 055

gual language models (LMs) with modular com- 056

ponents after pre-training, we add modular com- 057

ponents during pre-training, thereby preparing the 058

model to be extended to new languages post-hoc. 059
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Figure 2: Average (a) perplexity and (b) transfer performance on XNLI and NER, across pre-trained language
when training on an increasing amount of languages. Each model has seen the same amount of examples in
each language. Lower perplexity and higher mean downstream score indicate better performance. For a per-task
performance please refer to Figure 4. For per-language performance please refer to Appendix Tables 9, and 10.

Our experiments on natural language inference060

(NLI), named entity recognition (NER), and ques-061

tion answering (QA) demonstrate that our modular062

architecture not only is effective at mitigating in-063

terference between languages, but also achieves064

positive transfer, resulting in improved monolin-065

gual and cross-lingual performance. In addition,066

we show that X-MOD can be extended to new lan-067

guages after pre-training, with no measurable drop068

in performance, by learning its corresponding mod-069

ules and leaving the shared parameters frozen. All070

in all, we propose the first multilingual architec-071

ture that can scale to a large number of languages072

without any loss in performance, and can be further073

extended to new languages after pre-training.1074

2 Background and Related Work075

We provide a background on modular and multi-076

lingual language modelling, as well as approaches077

that extend LMs to new languages.078

2.1 Multilingual Transformers079

Recent LMs (Devlin et al., 2019; Conneau et al.,080

2020), based on transformer architectures (Vaswani081

et al., 2017) and pre-trained on massive amounts082

of multilingual data, have surpassed (static) cross-083

lingual word embedding spaces (Ruder et al., 2019;084

Glavas et al., 2019) for cross-lingual transfer in085

NLP (Pires et al., 2019; Wu and Dredze, 2019;086

Wu et al., 2020; Hu et al., 2020; K et al., 2020).087

Transformer-based models are 1) pre-trained on088

textual corpora using Masked Language Modelling089

(MLM). They are then 2) fine-tuned on labelled090

data of a downstream task in a source language and091

3) directly applied to perform inference in a target092

language (Hu et al., 2020).093

1We will release pre-trained weights and code.
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Figure 3: Our proposed architecture in comparison
to adapter-based approaches. (a) Previous approaches
¬ utilize non-modular pre-trained transformer models
and ­ extend them with modular adapter components.
(b) We ¬ pre-train the transformer with modular units
from the get-go, preparing the model to be ­ extended
with additional modular units later on. Yellow and
light blue components indicate standard Multi-Head
Attention and Feed-Forward layers. The remaining
(non-gray) components are bottle-neck (modular) units.
Grayed-out components are frozen.

2.2 Modular Language Models 094

Modular approaches have a long standing history 095

in NLP, preceding pre-trained models (Andreas 096

et al., 2016). They have recently re-gained in- 097

terest for transformer-based models, where mix- 098

ture of experts (MoE; Shazeer et al., 2017) ap- 099

proaches have enabled training trillion parame- 100

ters models in a distributed fashion (Fedus et al., 101

2021). More recently modular MoE approaches 102

have been shown to improve domain-specific pre- 103

training of LMs (Gururangan et al., 2021). In a 104

similar trend, ‘expert’ modules have been added 105

to (non-modular) pre-trained LMs post-hoc, pre- 106
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dominantly referred to as adapters (Rebuffi et al.,107

2017, 2018; Houlsby et al., 2019). Next to being ex-108

tremely parameter (Houlsby et al., 2019; Mahabadi109

et al., 2021a; He et al., 2021) and training efficient110

(Pfeiffer et al., 2020a; Rücklé et al., 2021), these111

modular approaches allow models to be extended112

to new data settings (Chen et al., 2019; Rücklé113

et al., 2020), where newly learned knowledge can114

be combined (Stickland and Murray, 2019; Wang115

et al., 2021a; Pfeiffer et al., 2021a; Lauscher et al.,116

2020a; Mahabadi et al., 2021b; Poth et al., 2021),117

or stacked for combinatory cross-lingual (Pfeiffer118

et al., 2020b, 2021b; Üstün et al., 2020; Vidoni119

et al., 2020; Ansell et al., 2021b,a; Wang et al.,120

2021b) as well as NMT scenarios (Bapna and Firat,121

2019; Philip et al., 2020; Le et al., 2021; Üstün122

et al., 2021; Stickland et al., 2021).123

2.3 Weaknesses, Improvements, and124

Extensions of Language Models125

Next to the curse of multilinguality, recent works126

have shown substantially reduced cross-lingual and127

monolingual abilities of models for low-resource128

languages with smaller pre-training data (Wu and129

Dredze, 2020; Hu et al., 2020; Lauscher et al.,130

2020b; Artetxe et al., 2020; Pfeiffer et al., 2020b,131

2021b; Chau et al., 2020b; Ponti et al., 2020).132

K et al. (2020); Artetxe et al. (2020) show that a133

shared vocabulary is not necessary for cross-lingual134

transfer. Chung et al. (2021) demonstrate that de-135

coupling the input embeddings from the predic-136

tion head improves the performance on a number137

of downstream tasks. Dufter and Schütze (2020)138

show that the number of parameters and training139

duration is interlinked with the models multilin-140

gual capability. Chung et al. (2020); Rust et al.141

(2021) show that the tokenizer plays an important142

role in the per-language downstream task perfor-143

mance, which Clark et al. (2021); Xue et al. (2021);144

Tay et al. (2021) take to the extreme by proposing145

tokenizer-free approaches.146

To extend a monolingual LM to other languages,147

Artetxe et al. (2020) train a new embedding layer148

with a corresponding target-language tokenizer,149

while freezing the pre-trained transformer weights.150

Wang et al. (2020); Chau et al. (2020a) extend the151

vocabulary of multilingual models with a small152

number of target-language tokens, to improve the153

performance in the target language. Muller et al.154

(2021) propose a transliteration based approach155

Vernikos and Popescu-Belis (2021) propose sub-156

word mappings and Pfeiffer et al. (2020b, 2021b); 157

Vidoni et al. (2020); Ansell et al. (2021b) propose 158

adapter-based approaches to extend multilingual 159

models to unseen languages. 160

While these approaches achieve considerable 161

performance gains over unseen languages, they are 162

outperformed by standard full fine-tuning methods 163

for seen languages. One can further argue, that as 164

the pre-trained models have already been cursed by 165

multilinguality, the adapter-based approaches build 166

upon sub-optimal parameter initializations. In our 167

work, we consequently aim to 1) modularize the 168

model from the start to prepare the model to be 2) 169

extendable to new languages post-hoc. 170

3 Proposed approach 171

We propose X-MOD, a modular multilingual archi- 172

tecture that combines shared and language-specific 173

parameters. In contrast to prior work, we pre- 174

train modular models from the get-go. Our mod- 175

els can be extended to new languages after pre- 176

training, and used for cross-lingual transfer learn- 177

ing in downstream tasks. 178

Architecture. As illustrated in Figure 1, we 179

extend the transformer-based architecture from 180

mBERT (Devlin et al., 2019) and XLM-R (Con- 181

neau et al., 2020) by incorporating language- 182

specific modules—bottleneck feed-forward layers— 183

at every transformer layer. We learn a separate 184

module for each language, whereas the attention 185

and feed-forward components are shared. While 186

the capacity of the model grows linearly with the 187

number of languages, the training and inference 188

cost does not increase (as measured in FLOPs), as 189

only the module in the relevant language is used for 190

each input. Inspired by the adapter2 architecture of 191

Pfeiffer et al. (2021a) we place our ‘modules’ af- 192

ter the LayerNorm of the feed-forward transformer 193

block, and the residual connection is placed after 194

the LayerNorm;3 the LayerNorm before and after 195

the modular component is shared.4 196

2The term ‘adapter’ refers to newly introduced layers
within a pre-trained (frozen) model. These layers adapt the
representations of the pre-trained mode; we train these mod-
ular components together with the transformer weights, and
therefore refer to them as modules.

3We find that the residual connection proposed by Pfeiffer
et al. (2021a) results in training instabilities when trained
together with the transformer weights.

4Preliminary results showed that sharing the LayerNorm
results in better cross-lingual transfer performance.
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Pre-training procedure. Similar to Conneau197

et al. (2020), we pre-train our model on MLM198

on combined monolingual corpora in multiple lan-199

guages. Examples of each language are passed200

through the shared embedding matrix as well as201

the multi-head attention and feed-forward com-202

ponents at each layer. As each layer contains a203

language-specific modular component, the exam-204

ples are routed through the respective designated205

modular bottle-neck layer. Each example only re-206

quires access to a single module, in distributed207

training modules can therefore be efficiently stored208

on only a subset of GPUs.209

Extending to new languages. The modular de-210

sign of our model allows us to extend it to new211

languages after pre-training. To that end, we learn212

new embeddings and adapter modules for the tar-213

get language through MLM, while the rest of the214

components are frozen.5 Consequently, we are able215

to extend the model to a new language by learning216

a small number of new parameters, without affect-217

ing performance in the set of pre-trained languages.218

Following Pfeiffer et al. (2021b), we learn a new219

subword vocabulary for the added languages, and220

initialize the embeddings of lexically overlapping221

tokens from the original embedding matrix.222

Fine-tuning on downstream tasks. To transfer223

the models to cross-lingual downstream tasks, we224

fine-tune only the shared weights on the data in225

the source language, while keeping the modular226

components, as well as embedding layer frozen.227

We follow the standard fine-tuning procedure of228

adding a prediction head on top of the CLS token.229

We then replace the source language modules (as230

well as embedding layer for added languages) with231

the target language parameters, passing the text of232

the target language through the model.6233

4 Experimental design234

We next detail the baseline and model variants we235

explore (§4.1), their training details (§4.2), and our236

evaluation settings (§4.3).237

5Following Artetxe et al. (2020) we train pos embeddings.
6We initially also experiment with stacking adapters on

top of the language modules similar to Pfeiffer et al. (2020b,
2021b). While this approach is considerably more parameter
efficient, we find that fine-tuning all shared weights slightly
outperformed the adapter-based approach.

4.1 Model variants 238

We pre-train separate models for all combinations 239

along the following axes: 240

X-MOD vs. SHARED. To evaluate the effective- 241

ness of our X-MOD model, we aim to compare our- 242

selves to a conventional non-modular architectures. 243

However, simply removing the modular compo- 244

nent would be unfair, as the total number of FLOPs 245

would not be the same. Consequently, for our base- 246

line model—where all parameters should be fully 247

shared between all languages—we include a single 248

bottleneck layer right after the Feed-Forward com- 249

ponent. Effectively, this is the same architecture as 250

our X-MOD model, just with a single (shared) mod- 251

ule. We refer to this as the SHARED model through- 252

out this paper. To extend the SHARED model to 253

unseen languages, we follow Artetxe et al. (2020) 254

and only learn a new embedding layer, freezing the 255

transformer parameters. To fine-tune the SHARED 256

model on a downstream task, we freeze the embed- 257

ding layer, as well as the (single) module, thereby 258

fine-tuning an equal amount of parameters on the 259

downstream task as the X-MOD model.7 260

13 vs. 30 vs. 60 vs. 75 languages. So as to 261

understand how each approach is affected by the 262

curse of multilinguality, we pre-train the X-MOD 263

and SHARED models on 4 increasing sets of lan- 264

guages. We start with an initial set of 13 typolog- 265

ically diverse languages that we evaluate on, and 266

add additional languages for larger sets of 30, 60, 267

and 75 languages. In addition, we keep a set of 7 268

held-out languages that we extend the pre-trained 269

models to. Table 1 lists the specific languages in 270

each group. The selection and split of initial as well 271

as added languages is motivated by typological and 272

geographical diversity, as well as the availability of 273

downstream task evaluation data. 274

Controlling for total vs. per-language updates. 275

Conneau et al. (2020) have investigated the effect of 276

adding more languages during pre-training, while 277

training on an equal number of update steps. How- 278

ever, when increasing the set of languages, this 279

ultimately has the effect that if trained for the same 280

number of update steps, the model sees less exam- 281

ples in each individual language. Consequently, it 282

7An alternative would be to compare X-MOD to an adapter-
based approach such as MAD-X (Pfeiffer et al., 2020b). How-
ever, this would require training on languages twice—once
during pre-training, and once when adding adapters—which
is not directly comparable to X-MOD.

4



pre-trained
languages

13-LANGS en, ar, fr, hi, ko, ru, th, vi, ta, id, fi, sw, ka

30-LANGS 13-LANGS + cs, eu, hr, hu, hy, it, lt, ml, mn, ms, pl, ro, si, sk, sq, sv, tl

60-LANGS 30-LANGS + af, am, be, bn, ca, cy, da, eo, et, fa, ga, gl, gu, ha, is, ku, la, lv, mk, ne, nl, no, ps,
pt, sa, sd, sl, so, sr, te

75-LANGS 60-LANGS + as, br, bs, fy, gd, jv, kn, mg, mr, om, or, pa, su, xh, yi,

Added languages bg, de, el, es, tr, ur, zh,

Table 1: Selection of languages. We pre-train different models on 4 sets of languages, and further extend them to
a set of held-out languages post-hoc. We evaluate on XNLI (languages in bold), NER (underlined languages) and
XQuAD/MLQA (languages in italic). For more details about the language selection, see Table 9 in the Appendix.

remains unclear if the curse of multilinguality hap-283

pens because of negative interference, or simply284

because the number of updates for each specific lan-285

guage is smaller. We aim to disentangle the effect286

of (1) training on an equal number of update steps287

from (2) training on an equal number of seen exam-288

ples per language, as both factors can potentially289

play an important role on the cross-lingual trans-290

fer performance. We therefore start with the set291

of 13 languages (Table 1) and train the respective292

models for 125k update steps. When adding more293

languages we follow the two axes of (1) training294

models on each set of languages for 125k update295

steps, and (2) increasing the number of update steps296

such that the models are trained on the same num-297

ber of examples in each of the initial 13 languages.298

For the latter this amounts to training for 195k,299

265k and 269k update steps respectively.300

4.2 Training details301

Data and hyperparameters. Following Con-302

neau et al. (2020) we sample languages with an303

α = 0.7 and train our models with a batch size of304

2048 across 64 V100 GPUs on the CC100 (Con-305

neau et al., 2020) dataset. For efficiency reasons306

we only distribute examples of a single language307

to each GPU. All our models extend the base trans-308

former architecture, with 12 layers and a hidden309

size of 768. Modules are implemented with a bottle-310

neck size of 384. We train our models with a linear311

learning rate decay peaking at 7e−4 during pre-312

training and 1e−4 when adding languages.313

Vocabulary. As we aim to identify the impact314

of modularity on the curse of multilinguality, we315

control for consistent tokenization across the differ-316

ent axes. We therefore tokenize using the XLM-R317

vocabulary for all our pre-training experiments.8318

8Rust et al. (2021) have previously demonstrated the im-
pact of the multilingual tokenizer on the downstream task
performance: languages underrepresented in the sub-word

However, for languages added post-hoc, we learn a 319

new SentencePiece tokenizer for each of the target 320

language,9 as the languages potentially use scripts 321

unseen by the original tokenizer. 322

4.3 Evaluation 323

We conduct experiments on three tasks: NLI, NER, 324

and QA. In all cases, we fine-tune the model in 325

English and measure the zero-shot transfer perfor- 326

mance in other languages. For NLI we train on 327

MultiNLI (Williams et al., 2018) and evaluate on 328

XNLI (Conneau et al., 2018). For QA, we train on 329

SQuAD (Rajpurkar et al., 2016) and evaluate on 330

XQuAD (Artetxe et al., 2020) and MLQA (Lewis 331

et al., 2020). For NER, we use the WikiANN (Pan 332

et al., 2017) dataset following the partitions of 333

Rahimi et al. (2019). We perform a grid search 334

for all datasets, experimenting with learning rates 335

1e−4, 3e−4, and 5e−4 and 3 or 5 epochs for QA 336

and 5 or 10 epochs for NER and NLI. For NER and 337

NLI we take the hyperparameter setting performing 338

best on the development sets, averaged across the 339

pre-trained languages (Table 1). For SQuAD we 340

take the best performing checkpoint evaluated on 341

the English development set, and report the cross- 342

lingual test set results.10 We report the average test 343

performance across 5 random seed runs. 344

5 Results and Discussion 345

We present results for pre-trained languages in §5.1 346

and added languages in §5.2. 347

vocabulary exhibit considerable performance drops when com-
pared to vocabularies dedicated to the respective language.

9We train the new tokenizers for a vocabulary size of 30k.
10In contrast to NER and NLI, the cross-lingual evaluation

benchmarks of SQuAD do not provide a development set for
each target language on the basis of which the best checkpoint
can be selected. Consequently, we select the checkpoint based
on the best performance on the English development set.
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(a) All models are trained for 125k update steps. Models trained on more languages have seen less examples in each language.
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(b) Models trained on more languages are trained longer. All models have seen the same amount of examples in each language.

Figure 4: Test set results on XNLI (top) and NER (bottom) for models trained on different numbers of languages.
Source Language (English) only includes scores of the source language. Average Pre-Trained Languages includes
all evaluation languages that the model was pre-trained on. Average Added Languages includes all languages that
were added to the model after pre-training. Scores are averaged across all languages and random seeds.

en ar fr hi ko ru th vi ta id fi sw ka avg

NER X-MOD 81.4 78.9 77.2 70.1 53.0 59.1 2.8 66.2 51.1 50.5 78.6 73.4 67.3 62.8
SHARED 81.5 74.1 74.7 64.4 46.0 58.3 4.0 63.7 52.5 51.5 74.4 57.2 61.5 58.8

XNLI X-MOD 84.4 71.2 77.6 68.3 - 74.1 71.7 73.4 - - - 66.9 - 73.5
SHARED 82.8 69.2 75.6 66.6 - 73.2 68.5 72.5 - - - 62.1 - 72.5

XQuAD X-MOD 85.1 68.1 - 67.5 - 75.0 66.3 74.9 - - - - - 72.8
SHARED 83.8 64.6 - 65.8 - 72.7 63.0 72.6 - - - - - 70.4

MLQA X-MOD 80.1 58.6 - 60.7 - - - 67.5 - - - - - 66.7
SHARED 79.6 53.6 - 58.7 - - - 64.9 - - - - - 64.2

Table 2: Pre-trained language results for the modular and shared model variants, pre-trained on the set of 60
languages. For NER and MLQA we report F1, for XNLI accuracy scores. Scores are averaged across all 5 random
seeds of the best hyperparameter setting, evaluated on the development set.

5.1 Pre-trained languages348

In Figure 4 we plot downstream task results of349

models pre-trained on different amounts of lan-350

guages. Table 2 reports the individual language per-351

formance for the models trained on 60 languages.352

The Curse of Multilinguality. Conneau et al.353

(2020) showed that multilingual LMs trained on in-354

creasing amounts of languages, while maintaining355

the number of update steps, exhibit drops in down-356

stream task XNLI performance. We reproduce 357

these results, both in terms of language modelling 358

perplexity (Figure 2a),11 as well as downstream 359

task performance on XNLI and NER (Figure 4a). 360

We further find that the curse of multilinguality 361

does not only happen because the total number of 362

update steps per language decreases, but also when 363

all SHARED models are trained on the same num- 364

11For per-language perplexity see Appendix Figure 8.
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bg de el es tr ur zh avg

NER X-MOD 77.6 75.1 75.2 71.9 72.6 54.7 21.6 64.1
SHARED 74.9 66.3 69.6 49.1 64.8 50.4 9.2 54.9

XNLI X-MOD 77.4 75.4 76.2 78.5 72.4 64.9 73.8 74.1
SHARED 76.3 74.1 74.9 77.3 71.0 64.3 71.4 72.8

MLQA X-MOD - 63.8 - 68.6 - - 61.7 64.8
SHARED - 58.9 - 66.7 - - 56.5 60.7

Table 3: Results for added language, pre-trained on the
set of 60 languages. We report F1 and accuracy scores
which are averaged across all 5 random seeds of the
best hyperparameter setting on the development set.

ber of examples per language (Figure 4b). This365

confirms that fully shared architectures suffer from366

negative interference.367

Lifting the Curse. While for the SHARED model368

we witness negative interference between lan-369

guages in terms of perplexity, the X-MOD model is370

able to maintain performance, and even improves371

for a subset of languages. We observe similar372

patterns in the downstream task performance: In373

both our experimental setups—(1) we control for374

the number of update steps (Figure 4a); (2) we375

control for the number of per-language seen ex-376

amples (Figure 4b)—our X-MOD model—in con-377

trast to the SHARED model—is able to maintain, or378

even outperform model variants trained on less lan-379

guages. These results demonstrate that the added380

per-language capacity is sufficient for the model to381

adequately represent all languages.382

Surprisingly, X-MOD not only maintains per-383

formance, but actually slightly improves while we384

increase the number of languages we pre-train on.385

This is even the case for settings where the model386

sees less examples in the target language. This387

indicates that instead of negative interference be-388

tween languages, increasing the language diversity389

actually has a positive influence on the model’s390

cross-lingual representation capability.391

X-MOD vs SHARED. Overall, the X-MOD392

model pre-trained on 60 languages achieves the393

best cross-lingual performance.12 Our results on394

XNLI, NER, MLQA, and XQuAD in Table 2395

demonstrate consistent performance gains over the396

SHARED model for every task and across (almost)397

all high- as well as low-resource language.398

12We find that the X-MOD model trained on 75 languages
is less stable than the versions trained on less languages. We
think that this can be attributed to the 15 added languages
being extremely low resource—we only train for an additional
4k update steps—resulting in the respective randomly initial-
ized modules being updated very infrequently. This variance
could potentially be mitigated by training for longer.

Model 1 pre-trained Model 2 pre-trained

Figure 5: XNLI test set accuracy of X-MOD mod-
els pre-trained on different languages in comparison to
those added post-hoc (Table 4).

5.2 Extending to unseen languages. 399

We further evaluate the cross-lingual performance 400

of languages added in the second step; (1) on the 401

architectural side—comparing the SHARED with 402

the X-MOD modelling variant—and (2) by com- 403

paring the performance when pre-training on the 404

language, vs. when adding the language post-hoc. 405

Modular vs Shared. We evaluate if the addi- 406

tional per-language capacity improves the extend- 407

ability of the X-MOD model. On the right in Fig- 408

ure 4a we plot the results for added languages on 409

XNLI (top) and NER (bottom). Similarly we plot 410

the results for the models where we control for the 411

number of seen examples per target language in 412

Figure 4b. We find that the X-MOD model consis- 413

tently outperforms the SHARED model, demonstrat- 414

ing that the language specific capacity is beneficial 415

for adding new languages post-hoc. 416

We find (again) that the X-MOD model consis- 417

tently outperforms the SHARED model, with a peak 418

performance when pre-training on 60 languages. 419

We report results for these versions on XNLI and 420

NER in Table 3, demonstrating the consistent ad- 421

vantage of the X-MOD over the SHARED model. 422

Pre-training vs Adding Languages. As data for 423

pre-training is (currently) not available for all lan- 424

guages, our aim was to design an architecture 425

which can easily be extended to unseen languages. 426

To evaluate if there is a measurable downstream 427

task performance difference for languages that we 428

pre-train on vs. those we add post-hoc, we train 2 429

models on different initial sets of languages, adding 430

the respectively missing ones in the second step. 431

In order to identify if the typological similarity 432

of languages has impact on the downstream task 433

performance, we split the initial and added lan- 434

guages (Table 1) of our previous experiments into 435
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Language iso Family Script Model 1 Model 2

English en IE: Germanic Latin pre-train add
German de IE: Germanic Latin add pre-train
French fr IE: Romance Latin pre-train add
Spanish es IE: Romance Latin add pre-train
Russian ru IE: Slavic Cyrillic pre-train add
Ukranian uk IE: Slavic Cyrillic add pre-train
Hindi hi IE: Iranian Devanagari pre-train add
Urdu ur IE: Iranian Arabic add pre-train
Arabic ar Afro-Asiatic Arabic pre-train add
Hebrew he Afro-Asiatic Hebrew add pre-train

Vietnamese vi Austro-Asiatic Latin pre-train add
Thai th Kra-Dai Thai pre-train add
Korean ko Koreanic Korean pre-train add
Japanese ja Japonic Japanese add pre-train
Greek el IE: Hellenic Greek add pre-train
Turkish tr Turkic Latin add pre-train

Table 4: Selection of 2 sets of languages that we either
pre-train on, or add post-hoc. The last 6 languages in
the list are part of language families which are unique
in the total list of languages we pre-train on (Table 1),
i.e. none of our models was pre-trained on a language
of the same family.

two parts. The first split consists of languages436

where the model was pre-trained on at least one lan-437

guage of the same language family (e.g. English vs.438

German). The second split consists of languages439

that are part of a unique language family, i.e. the440

model was not pre-trained on a language of the441

same family (Table 4). Consequently, we pre-train442

two models on two sets of languages, adding the443

respective other set post-hoc.13444

Our results on XNLI (Figure 5) demonstrate that445

the per-language performance is on par when pre-446

training vs. when adding the language post-hoc.14447

We also find that the language family does not448

have a measurable effect on the performance of449

the language. Our resulst therefore suggest, that it450

is sufficient to train X-MOD on only a subset of451

languages for which sufficient pre-training data ex-452

ists. Essentially, X-MOD has the potential to cover453

all languages of the world, as the model has the454

capability to be adapted to new languages post-hoc.455

6 Further Analysis456

In Figure 4 we have witnessed a slight edge of457

the SHARED model over the X-MOD model, when458

training on only 13 languages and only training459

for 125k update steps. Dufter and Schütze (2020)460

13In previous experiments the modular model trained on
60 languages achieved the best performance, therefore the
models in these experiments are also trained on 60 languages.
Both models are trained on the same additional languages, i.e.
the 60-LANGS of Table 1, where only the 13-LANGS differ.

14The models have seen an equal amount of examples in
the respective languages in each case.

125k 250k
83

84

85

Ac
cu

ra
cy

English
X-Mod shared

125k 250k
72.0

72.5

73.0

73.5
Pre-Trained Langs

Figure 6: Results on XNLI when when pre-training on
13 languages for 125k and 250k update steps.

have identified that it requires a large number of 461

update steps for a model pre-trained on multiple 462

languages to become multilingual; with the added 463

per-language capacity we hypothesize that update 464

steps also play an important role for modular mod- 465

els. We compare the downstream task performance 466

of models pre-trained on 13 languages, when train- 467

ing for 125k with 250k update steps in Figure 6. 468

When training for longer we find that the X-MOD 469

model begins to outperforms the SHARED model 470

in the source language, while almost closing the 471

gap in the cross-lingual setting. This supports the 472

hypothesis that the X-MOD model requires more 473

update steps when training only on a small number 474

of languages, in order for modularity to “kick-in”. 475

7 Conclusions 476

In this paper we have evaluated the effectiveness 477

of modular multilingual language modelling across 478

multiple axes. We have demonstrated that by 479

providing additional per-language capacity, while 480

maintaining FLOPs, we are not only able to miti- 481

gate negative interference between languages, but 482

additionally achieve positive transfer. Our results 483

suggest that it is sufficient to train our proposed 484

X-MOD model only on a subset of languages for 485

which sufficient amounts of textual data is avail- 486

able. Lower resource languages can be added post- 487

hoc, with no measurable drop in performance. By 488

pre-training the model in a modular fashion, we 489

thus mitigate negative interference of idiosyncratic 490

information, while simultaneously preparing the 491

model to be extendable to unseen languages. 492

While in this work we have simulated language 493

adding scenarios with a held out set of languages, in 494

future work we aim to evaluate the performance on 495

truly low-resource languages such as MasakhaNER 496

(Adelani et al., 2021) and AmericasNLI (Ebrahimi 497

et al., 2021). We further aim to evaluate the cross- 498

lingual transfer performance from typologically 499

more diverse source languages, besides English. 500
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Korhonen. 2021b. MAD-G: Multilingual adapter543
generation for efficient cross-lingual transfer. In544
Findings of the Association for Computational Lin-545
guistics: EMNLP 2021, pages 4762–4781, Punta546
Cana, Dominican Republic. Association for Compu-547
tational Linguistics.548

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.549
2020. On the cross-lingual transferability of mono-550
lingual representations. In Proceedings of the 58th551
Annual Meeting of the Association for Computa-552
tional Linguistics, pages 4623–4637, Online. Asso-553
ciation for Computational Linguistics.554

Ankur Bapna and Orhan Firat. 2019. Simple, scal-555
able adaptation for neural machine translation. In556
Proceedings of the 2019 Conference on Empirical557
Methods in Natural Language Processing and the558

9th International Joint Conference on Natural Lan- 559
guage Processing, EMNLP-IJCNLP 2019, Hong 560
Kong, China, November 3-7, 2019, pages 1538– 561
1548. Association for Computational Linguistics. 562

Ethan C. Chau, Lucy H. Lin, and Noah A. Smith. 563
2020a. Parsing with multilingual BERT, a small cor- 564
pus, and a small treebank. In Findings of the Associ- 565
ation for Computational Linguistics: EMNLP 2020, 566
pages 1324–1334, Online. Association for Computa- 567
tional Linguistics. 568

Ethan C. Chau, Lucy H. Lin, and Noah A. Smith. 569
2020b. Parsing with multilingual bert, a small tree- 570
bank, and a small corpus. In Proceedings of the 571
2020 Conference on Empirical Methods in Natu- 572
ral Language Processing: Findings, EMNLP 2020, 573
Online Event, 16-20 November 2020, pages 1324– 574
1334. 575

Vincent S. Chen, Sen Wu, Alexander J. Ratner, Jen 576
Weng, and Christopher Ré. 2019. Slice-based learn- 577
ing: A programming model for residual learning in 578
critical data slices. In Advances in Neural Infor- 579
mation Processing Systems 32: Annual Conference 580
on Neural Information Processing Systems 2019, 581
NeurIPS 2019, December 8-14, 2019, Vancouver, 582
BC, Canada, pages 9392–9402. 583

Hyung Won Chung, Thibault Févry, Henry Tsai, 584
Melvin Johnson, and Sebastian Ruder. 2021. Re- 585
thinking embedding coupling in pre-trained lan- 586
guage models. In 9th International Conference on 587
Learning Representations, ICLR 2021, Virtual Event, 588
Austria, May 3-7, 2021. OpenReview.net. 589

Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, and 590
Jason Riesa. 2020. Improving multilingual models 591
with language-clustered vocabularies. In Proceed- 592
ings of the 2020 Conference on Empirical Methods 593
in Natural Language Processing, EMNLP 2020, On- 594
line, November 16-20, 2020, pages 4536–4546. As- 595
sociation for Computational Linguistics. 596

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John 597
Wieting. 2021. CANINE: pre-training an efficient 598
tokenization-free encoder for language representa- 599
tion. arXiv preprint. 600

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 601
Vishrav Chaudhary, Guillaume Wenzek, Francisco 602
Guzmán, Edouard Grave, Myle Ott, Luke Zettle- 603
moyer, and Veselin Stoyanov. 2020. Unsupervised 604
cross-lingual representation learning at scale. In 605
Proceedings of the 58th Conference of the Associ- 606
ation for Computational Linguistics, ACL 2020, Vir- 607
tual Conference, July 6-8, 2020, pages 8440–8451. 608

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad- 609
ina Williams, Samuel Bowman, Holger Schwenk, 610
and Veselin Stoyanov. 2018. XNLI: Evaluating 611
cross-lingual sentence representations. In Proceed- 612
ings of the 2018 Conference on Empirical Methods 613
in Natural Language Processing, pages 2475–2485, 614
Brussels, Belgium. Association for Computational 615
Linguistics. 616

9

http://arxiv.org/abs/2103.11811
http://arxiv.org/abs/2103.11811
http://arxiv.org/abs/2103.11811
https://doi.org/10.18653/v1/n16-1181
https://doi.org/10.18653/v1/n16-1181
https://doi.org/10.18653/v1/n16-1181
http://arxiv.org/abs/2110.07560
http://arxiv.org/abs/2110.07560
http://arxiv.org/abs/2110.07560
https://aclanthology.org/2021.findings-emnlp.410
https://aclanthology.org/2021.findings-emnlp.410
https://aclanthology.org/2021.findings-emnlp.410
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://www.aclweb.org/anthology/2020.findings-emnlp.118/
https://www.aclweb.org/anthology/2020.findings-emnlp.118/
https://www.aclweb.org/anthology/2020.findings-emnlp.118/
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=xpFFI_NtgpW
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/2020.emnlp-main.367
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and617
Kristina Toutanova. 2019. BERT: pre-training of618
deep bidirectional transformers for language under-619
standing. In Proceedings of the 2019 Conference620
of the North American Chapter of the Association621
for Computational Linguistics: Human Language622
Technologies, NAACL-HLT 2019, Minneapolis, MN,623
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-624
pers), pages 4171–4186.625

Philipp Dufter and Hinrich Schütze. 2020. Identifying626
elements essential for BERT’s multilinguality. In627
Proceedings of the 2020 Conference on Empirical628
Methods in Natural Language Processing (EMNLP),629
pages 4423–4437, Online. Association for Computa-630
tional Linguistics.631

Abteen Ebrahimi, Manuel Mager, Arturo Oncevay,632
Vishrav Chaudhary, Luis Chiruzzo, Angela Fan,633
John Ortega, Ricardo Ramos, Annette Rios, Ivan634
Vladimir, Gustavo A. Giménez-Lugo, Elisabeth635
Mager, Graham Neubig, Alexis Palmer, Rolando636
A. Coto Solano, Ngoc Thang Vu, and Katharina637
Kann. 2021. AmericasNLI: Evaluating Zero-shot638
Natural Language Understanding of Pretrained Mul-639
tilingual Models in Truly Low-resource Languages.640
arXiv preprint.641

William Fedus, Barret Zoph, and Noam Shazeer. 2021.642
Switch Transformers: Scaling to Trillion Parameter643
Models with Simple and Efficient Sparsity. arXiv644
preprint.645

Goran Glavas, Robert Litschko, Sebastian Ruder, and646
Ivan Vulic. 2019. How to (properly) evaluate cross-647
lingual word embeddings: On strong baselines, com-648
parative analyses, and some misconceptions. In Pro-649
ceedings of the 57th Conference of the Association650
for Computational Linguistics, ACL 2019, Florence,651
Italy, July 28- August 2, 2019, Volume 1: Long Pa-652
pers, pages 710–721.653

Suchin Gururangan, Mike Lewis, Ari Holtzman,654
Noah A. Smith, and Luke Zettlemoyer. 2021. Demix655
layers: Disentangling domains for modular lan-656
guage modeling. arXiv preprint.657

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-658
Kirkpatrick, and Graham Neubig. 2021. Towards a659
unified view of parameter-efficient transfer learning.660
arXiv preprint.661

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzkeb-662
ski, Bruna Morrone, Quentin de Laroussilhe, An-663
drea Gesmundo, Mona Attariyan, and Sylvain Gelly.664
2019. Parameter-efficient transfer learning for NLP.665
In Proceedings of the 36th International Conference666
on Machine Learning, ICML 2019, 9-15 June 2019,667
Long Beach, California, USA, pages 2790–2799.668

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-669
ham Neubig, Orhan Firat, and Melvin Johnson.670
2020. XTREME: A massively multilingual multi-671
task benchmark for evaluating cross-lingual gener-672
alization. In Proceedings of the 37th International673

Conference on Machine Learning, ICML 2020, 12- 674
18 July 2020, Virtual Conference. 675

Karthikeyan K, Zihan Wang, Stephen Mayhew, and 676
Dan Roth. 2020. Cross-lingual ability of multi- 677
lingual BERT: an empirical study. In 8th Inter- 678
national Conference on Learning Representations, 679
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 680
2020. 681

Anne Lauscher, Olga Majewska, Leonardo F. R. 682
Ribeiro, Iryna Gurevych, Nikolai Rozanov, and 683
Goran Glavaš. 2020a. Common sense or world 684
knowledge? investigating adapter-based knowledge 685
injection into pretrained transformers. In Proceed- 686
ings of Deep Learning Inside Out (DeeLIO): The 687
First Workshop on Knowledge Extraction and Inte- 688
gration for Deep Learning Architectures, pages 43– 689
49, Online. Association for Computational Linguis- 690
tics. 691

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and 692
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2019. A survey of cross-lingual embedding models.848
Journal of Artificial Intelligence Research, 65:569–849
631.850

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian851
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A Appendix971

A.1 Additional Evaluations972

We present F1 and Exact Match (EM) scores for973

MLQA and XQuAD on pre-trained languages in974

Tables 5 and 6 respectively.975

We present F1 and Exact Match (EM) scores for976

MLQA on added languages in Tables 7.977

We present results for more languages on NER978

in Table 8.979

A.2 Language Level Evaluation980

We plot the per-language language modelling per-981

plexity of pre-trained languages in Figure 8.982

We plot results on XNLI in Figure 9 and for983

NER in Figure 10 on a more granular, language984

level for models pre-trained on increasing amounts985

of languages, while controlling for seen examples986

per language.987

A.3 Intermediate Pre-Training Checkpoints988

We evaluate if modularity "kicking-in" can be mea-989

sured for models trained on more languages. We990

evaluate checkpoints of the models pre-trained on991

60 languages, on XNLI as a downstream task (Fig-992

ure 7). Here we find that the X-MOD model con-993

tinuously outperforms the SHARED model. This994

suggests that the SHARED model immediately suf-995

fers from negative interference between languages,996

while the added, language specific components of997

the X-MOD model are able to mitigate the curse998

of multilinguality, resulting in considerable perfor-999

mance gains at all evaluated checkpoints.1000

A.4 Language Selection1001

We provide more details about our selection of1002

languages in Table 9.1003

en ar hi vi avg
F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 80.1 / 66.9 58.6 / 38.9 60.7 / 42.4 67.5 / 46.1 66.7 / 48.6
SHARED 79.6 / 66.5 53.6 / 33.9 58.7 / 40.4 64.9 / 43.8 64.2 / 46.2

Table 5: Average F1 and Exact Match results for pre-
trained languages, on the test set of MLQA for the
X-MOD and SHARED model variants, pre-trained on
the set of 60 languages. Bold numbers indicate better
performance for the respective language.
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Figure 7: Results on XNLI using intermediate check-
points of the models trained on 60 languages.

en ar hi ru th vi avg
F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 85.1 / 73.4 68.1 / 52.4 67.5 / 50.3 75.0 / 57.8 66.3 / 52.6 74.9 / 54.6 72.8 / 56.9
SHARED 83.8 / 72.1 64.6 / 48.5 65.8 / 48.3 72.7 / 54.5 63.0 / 48.0 72.6 / 52.1 70.4 / 53.9

Table 6: Average F1 and Exact Match results for pre-
trained languages, on the test set of XQuAD for the
X-MOD and SHARED model variants, pre-trained on
the set of 60 languages. Bold numbers indicate better
performance for the respective language.

de es zh avg
F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 63.8 / 48.9 68.8 / 50.3 61.7 / 36.4 64.8 / 45.2
SHARED 58.9 / 44.1 66.7 / 48.3 56.5 / 32.2 60.7 / 41.5

Table 7: Average F1 and Exact Match results for added
languages, on the test set of MLQA for the X-MOD
and SHARED model variants, pre-trained on the set of
60 languages. Bold numbers indicate better perfor-
mance for the respective language.
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en af ar bn et eu fa fi fr hi hu id it ka ko ru sw ta th vi avg

X-MOD 81.4 78.9 43.5 63.2 76.2 62.2 44.3 78.6 77.2 70.1 78.3 50.5 78.7 67.3 53.0 59.1 73.4 51.1 2.8 66.2 62.8
SHARED 81.5 74.1 44.2 62.4 70.7 58.1 40.3 74.4 74.7 64.4 74.2 51.5 75.5 61.5 46.0 58.3 57.2 52.5 4.0 63.7 59.5

Table 8: Average F1 results for pre-trained languages, on the test set of NER for the X-MOD and SHARED model
variants, pre-trained on the set of 60 languages. Bold numbers indicate better performance for the respective
language.
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Figure 8: Perplexity when training on more languages. Each model has seen the same amount of examples in
each language. Lower perplexity indicates better performance.
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Figure 9: Testset results on XNLI of pre-trained (top) and added (bottom) languages trained on different numbers
of languages. Models trained on more languages are trained for longer→ all models have seen the same amount
of examples in each individual language. Scores are averaged across all random seeds.
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Figure 10: Testset results on NER of pre-trained (top) and added (bottom) languages trained on different numbers
of languages. Models trained on more languages are trained for longer→ all models have seen the same amount
of examples in each individual language. Scores are averaged across all random seeds.
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Language iso Family Script 13 30 60 75

Afrikaans af IE:Germanic Latin X X
Albanian sq IE:Albanian Latin X X X
Amharic am Afro-Asiatic Amharic X X
Arabic ar Afro-Asiatic Arabic X,(+) X,(+) X,(+) X,(+)
Armenian hy IE:Armenian Armenian X X X
Assamese as IE:Iranian Assamese X
Basque eu Isolate Latin X X X
Belarusian be IE:Slavic Cyrillic X X
Bengali bn IE:Iranian Bengali X X
Bosnian bs IE:Slavic Latin X
Breton br IE:Celtic Latin X
Bulgarian bg IE:Slavic Cyrillic + + + +
Catalan ca IE:Romance Latin X X
Chinese zh Sino-Tibetan Chinese + + + +
Croatian hr IE:Slavic Latin X X X
Czech cs IE:Slavic Latin X X X
Danish da IE:Germanic Latin X X
Dutch nl IE:Germanic Latin X X
English en IE:Germanic Latin X,(+) X,(+) X,(+) X,(+)
Estonian et Uralic Latin X X
Esperanto eo Constructed Latin X X
Finnish fi Uralic Latin X X X X
French fr IE:Romance Latin X,(+) X,(+) X,(+) X,(+)
Frisian fy IE:Germanic Latin X
Galician gl IE:Romance Latin X X
Georgian ka Kartvelian Georgian X X X X
German de IE:Germanic Latin +,(X) +,(X) +,(X) +,(X)
Greek el IE:Hellenic Greek +,(X) +,(X) +,(X) +,(X)
Gujarati gu IE:Iranian Gujarati X X
Hausa ha Afro-Asiatic Latin X X
Hebrew he Afro-Asiatic Hebrew +,(X) +,(X) +,(X) +,(X)
Hindi hi IE:Iranian Devanagari X,(+) X,(+) X,(+) X,(+)
Hungarian hu Uralic Latin X X X
Icelandic is IE:Germanic Latin X X
Indonesian id Austronesian Latin X X X X
Irish ga IE:Celtic Latin X X
Italian it IE:Romance Latin X X X
Japanese ja Japonic Japanese +,(X) +,(X) +,(X) +,(X)
Javanese jv Austronesian Latin X
Kannada kn Dravidian Kannada X
Korean ko Koreanic Korean X,(+) X,(+) X,(+) X,(+)
Kurdish ku IE:Iranian Latin X X
Latin la IE:Romance Latin X X

Language iso Family Script 13 30 60 75

Latvian lv IE:Slavic Latin X X
Lithuanian lt IE:Slavic Latin X X X
Macedonian mk IE:Slavic Cyrillic X X
Malagasy mg Austronesian Latin X
Malay ms Austronesian Latin X X X
Malayalam ml Dravidian Malayalam X X X
Marathi mr IE:Iranian Devanagari X
Mongolian mn Mongolian Cyrillic X X X
Nepali ne IE:Iranian Devanagari X X
Norwegian no IE:Germanic Latin X X
Oriya or IE:Iranian Odia X
Oromo om Afro-Asiatic Ge’ez X
Pashto ps IE:Iranian Arabic X X
Persian fa IE:Iranian Arabic X X
Polish pl IE:Slavic Latin X X X
Portuguese pt IE:Romance Latin X X
Punjabi pa IE:Iranian Gurmukhi X
Romanian ro IE:Romance Latin X X X
Russian ru IE:Slavic Cyrillic X,(+) X,(+) X,(+) X,(+)
Sanskrit sa IE:Iranian Devanagari X X
Scottish Gaelic gd IE:Germanic Latin X
Serbian sr IE:Slavic Cyrillic X X
Sindhi sd IE:Iranian Arabic X X
Sinhala si IE:Iranian Sinhala X X X
Slovak sk IE:Slavic Latin X X X
Slovenian sl IE:Slavic Latin X X
Somali so Afro-Asiatic Latin X X
Spanish es IE:Romance Latin +,(X) +,(X) +,(X) +,(X)
Sundanese su Austronesian Latin X
Swahili sw Niger-Congo Latin X X X X
Swedish sv IE:Germanic Latin X X X
Tagalog tl Austronesian Latin X X X
Tamil ta Dravidian Tamil X X X X
Telugu te Dravidian Telugu X X
Thai th Kra-Dai Thai X,(+) X,(+) X,(+) X,(+)
Turkish tr Turkic Latin +,(X) +,(X) +,(X) +,(X)
Ukrainian uk IE:Slavic Cyrillic +,(X) +,(X) +,(X) +,(X)
Urdu ur IE:Iranian Arabic +,(X) +,(X) +,(X) +,(X)
Vietnamese vi Austroasiatic Latin X,(+) X,(+) X,(+) X,(+)
Welsh cy IE:Celtic Latin X X
Xhosa xh Niger-Congo Latin X
Yiddish yi IE:Germanic Hebrew X

Table 9: List of languages we pre-train Xon or add + in the different sets (13, 30, 60, 75). (·) indicates the
respectively different pre-training/added languages of models 1 and 2 as described in § 5.2 and Table 4. IE stands
for Indo-European.
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