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Abstract

Dimensionality reduction methods are routinely employed across scientific dis-
ciplines to make high dimensional data amenable to analysis. Despite their
widespread use, we often lack tools to assess whether their resulting embeddings
are faithful to the underlying manifold structure. Without a rigorous quantitative
assessment of an embedding’s structural properties, it is difficult to quantify their
degree of preservation or distortion of the underlying manifold structure of the
data. We introduce a complementary suite of geometric metrics to quantitatively
audit embedding fidelity across neighborhood sizes: Tangent Space Approximation
(TSA), Local Intrinsic Dimensionality (LID), and Participation Ratio (PR). We com-
pare the dimensionality of each sample before and after embedding, where points
that preserve similar values across transformations are deemed to be geometrically
faithful and thus, representative of true manifold structure in the data.

Across synthetic and biological datasets, we show that these metrics expose dis-
tinct embedding failure modes: TSA is most sensitive to small-scale geometric
distortions, LID captures heterogeneity in mixed-density regions, and PR diagnoses
global variance structure. Finally, we demonstrate that applying Jacobian Frobenius
penalties during autoencoder refinement of intermediate representations contracts
tangent spaces, reduces disagreement between metrics, and improves alignment
with intrinsic manifold geometry, as measured by rank correlations to original
spaces. We motivate moving beyond visual heuristics and making principled,
geometry-based choices to inform method selection, improve representations and
motivate geometry-aware objectives for representation learning.

1 Introduction

Dimensionality reduction is used for visualization, clustering, and downstream learning across
numerous domains ranging from single-cell transcriptomics to population genetics [1H3]. When pro-
jecting high-dimensional data into two or three dimensions, we implicitly assume that the embedding
faithfully represents the underlying manifold [4]. This reliability is rarely questioned. However,
embeddings that appear to be well-separated visually can distort local neighborhoods, collapse
directions of variance, or warp tangent spaces in ways that aren’t reliably visualizable in 2 or 3
dimensions [} 6]. Common quantitative measures, such as explained variance, only provide partial
guarantees. Embeddings can appear similar at a global scale but differ locally. This can lead to
modeling inconsistencies. When dealing with high dimensional data, we assume it is generated from
a lower-dimensional manifold. Modeling with representations that are inconsistent to this manifold
geometrically but are otherwise visually consistent may result in misguided analyses.

Preprint.



In this work, we assess the structural fidelity of embedding spaces by integrating a complementary
set of metrics spanning local and global scales, through neighborhood-based methods. We mea-
sure an embedding space’s Local Intrinsic Dimensionality [7]], Tangent Space Approximation [8]],
Participation Ratio [9]], Trustworthiness and Continuity [10].

We contrast embeddings obtained from Principal Components Analysis (PCA) [L1], which captures
linear variation, against Archetypal Analysis (AA) [12] which emphasizes extreme points on a convex
hull to understand how initial representation spaces influence subsequent embeddings. We then test
whether embeddings can be actively refined to keep local geometry faithful across transformations
via autoencoders, including variants penalizing the Frobenius norm of the Jacobian to smoothen
latent geometry [13]]. This introduces an explicit inductive bias: we trade off some global embedding
fidelity, lost in reconstruction and through subsequent transformations, to obtain locally coherent
latent spaces that better align with the intrinsic manifold structure of the embedding’s source.

2 Methods

Our metric suite is designed to evaluate embedding spaces with a complementary set of geometric
metrics that account for both local and global structure. This enables a comprehensive audit of
embedding fidelity and overall manifold structure. Intrinsic dimensionality reflects the effective
degrees of freedom in local data structure—preserving this indicates whether an embedding maintains
the complexity of local manifold geometry rather than artificially inflating or collapsing it. Point-wise
dimensionality estimates enable spatial diagnosis of where embeddings succeed or fail, unlike global
metrics that can mask local failures.

For local metrics, we estimate the Tangent Space Approximation (TSA) by performing PCA locally
within a point’s neighborhood to infer the local intrinsic dimensionality required to explain a fixed
fraction of variance. Local Intrinsic Dimensionality (LID) measures the effective number of degrees of
freedom that are required to describe local structure, as determined by a maximum likelihood estimate
of a point’s neighbors’ distances. Additionally, we employ Participation Ratio (PR) to estimate the
effective number of variance directions, or eigenvalue spread, for a given local embedding patch.
All of these are computed across neighborhood sizes k € {5,15,25,50,100}. Trustworthiness
and Continuity quantify how well local neighborhoods are preserved globally between the original
ambient space and transformed embedded spaces. To ensure paired comparisons, we fix a random
subset of 500 evaluation points per dataset and reuse it consistently across all methods and seeds.

2.1 Datasets

We evaluate dimensionality reduction methods on two datasets, chosen to highlight distinct manifold
geometries, across synthetic and real world settings. We use the Swiss Roll as a controlled benchmark:
a synthetic 2 dimensional manifold projected into 200 dimensions, with known geodesic distances.
Second, we assess high-dimensional population genomic data from the Human Genome Diversity
Project (HGDP) [[14] and Thousand Genomes Project (1KGP) [15] with mixed-mode distributions,
known population admixture and multi-scale variation, providing a realistic test to assess embedding
fidelity. See appendix [B.I] and for further details about the Swiss Roll and HGDP+1KGP
respectively.

2.2 Experimental Pipeline

Our goal is to evaluate how different initial representations and refinement steps affect the preservation
of manifold structure across datasets. We designed a three-stage pipeline beginning with initial PCA
or AA representations, followed by refined embeddings through both unregularized and regularized
autoencoder reconstructions, and finally downstream embeddings evaluated with our comprehensive
suite of manifold-aware metrics.

Stage 1: Initial representations. For each dataset, we first construct two 50-dimensional baseline
representations:

* PCA;j: captures directions of maximal variance via principal components.
* AA5(: emphasizes extreme points on the convex hull as anchors, representing points as
mixtures of these archetypes.



We use 50 dimensions as an intermediate representation to evaluate preservation at a realistic
dimensionality commonly used in practice before final visualization, provide sufficient capacity for
autoencoder refinement, and separate the effects of initial representation choice from final projection
methods.

Stage 2: Representation refinement with autoencoders. We train two types of autoencoders to
reconstruct the PCAj5q and AAs( representations:

* AE(PCAj5() and AE(AA5() Standard or "Vanilla" autoencoders trained by minimizing
reconstruction error Lyeqon ON the baseline embeddings.

* AEr(PCA5p) and AEr(AA5q). Autoencoders trained with an additional penalty on the
Frobenius norm of the encoder Jacobian [13} [16]]:

L= Erecon + )\JHJf(:U)H%'

where J¢ () is the Jacobian of the encoder mapping f with respect to its inputs, and A ;
controls the strength of regularization.

This Frobenius penalty encourages the encoder to produce locally smooth, low-curvature latent spaces,
making the refined embeddings less sensitive to noise and better aligned with intrinsic manifold
geometry.

Stage 3: Downstream embeddings. We further reduce each of the representations from baseline
and refinement stages into 2-dimensional spaces using two common projection methods: UMAP [[17]]
and PHATE [18]], where we sweep over their respective neighborhood parameters n_neighbors or
knn € {5, 15,25, 50,100} to probe method and metric sensitivity to local or global structure. We
then compute the Spearman’s rank correlation from both the "refined" autoencoder and downstream
embeddings with respect to their original representation spaces, AA or PCA. See appendix |C|for full
architectural details.

3 Results

3.1 Our metric suite reliably estimates known intrinsic dimension on controlled data

We tested if these metrics captured the dimensionality of a dataset that is known to be 2-dimensional.
The Local Intrinsic Dimensionality (LID), Tangent Space Approximation (TSA) and Participation
Ratio (PR) reliably capture the intrinsic dimension of a Swiss Roll in 2 dimensions. The values for
TSA diverge as the number of neighbors gets larger, starting at & = 25 with a more pronounced effect
for the AA than the PCA initial embedding space. Participation Ratio stabilizes at £k = 25 in AA, and
right after in PCA. LID shows largely consistent values with a consistent divergence margin from 2
after k = 5. We found that regularizing the autoencoder with a Frobenius Jacobian penalty produces
embeddings that are locally smoother and consistently lower-dimensional. Full definitions can be
found in Appendix The full tables for PCA and AA baselines can be found in Appendix Table

3.2 Improved local geometry propagates to downstream embeddings

To gauge consistency across embedding spaces, we use the Spearman rank correlation to quantify
how well local neighborhood structure is preserved relative to the baseline embedding. See Figure
for LID, TSA, PR computed at k € {5, 15,25, 50, 100} for all obtained embeddings. Each method’s
n_neighbors or knn parameter included in the figure matches the % value at which it is evaluated.
Frobenius-regularized autoencoders show a higher correlation to the original space for both the Swiss
Roll and heterogenous HGDP+1KGP data. Exceptions are observed for PR and LID in the HGDP
PCA cases, where a UMAP computed on the 50d baseline outperforms it.

4 Discussion

Our results establish two key findings: First, on controlled data (Swiss Roll), our metrics correctly
identify known intrinsic dimensionality and reveal how different initial representations (PCA vs. AA)
affect downstream geometric fidelity. Second, Frobenius regularization during autoencoder refinement



Table 1: Average metric performance of baseline methods on the Swiss Roll dataset across varying
numbers of neighbors (k) for both PCA and AA ambient spaces. For PR, LID, and TSA, values
closer to the intrinsic dimension of the dataset (2) are better.

Number of Neighbors (k)
5 15 25 50 100

Method Metric

Local Intrinsic Dim. (LID) 333 204 182 1.70 1.85
Tangent Space Approx. (TSA) 193 201 206 239 277
PCA Participation Ratio (PR) 1.50 168 176 195 221
Trustworthiness 1.00 1.00 1.00 1.00 1.00
Continuity 0.80 0.84 0.85 0.87 0.90
Local Intrinsic Dim. (LID) 382 240 221 225 254
Tangent Space Approx. (TSA) 2.14 277 3.11 381 4.96
AA Participation Ratio (PR) 1.59 194 212 245 290
Trustworthiness 1.00 1.00 099 099 0.99
Continuity 047 055 060 0.68 0.74
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Figure 1: Correlations of average metric performance of reconstructions and downstream methods on
the Swiss Roll and HGDP+1KGP datasets across varying numbers of neighbors k against both of the
original PCA and AA ambient spaces.

improves preservation of local geometric structure in intermediate representations, as evidenced
by higher rank correlations in Figure[I] The practical implication is that before applying final 2D
projection for visualization, practitioners can use these metrics to select intermediate representations
that preserve more faithful geometry.

TSA excels for small, near-linear neighborhoods, making it well-suited to measure spaces with
near linear variation. LID is strongest at medium values of k in heterogeneous regions, and PR
is informative at high values of k but loses resolution when variance is concentrated along few
directions.



This is especially apparent as noted by a divergence in metric agreement when measuring high
dimensional AA spaces. As AA captures global extremal structure at the expense of local coherence,
methods like TSA fail to capture local neighborhoods while LID and PR remain comparatively
robust in successfully capturing intrinsic dimension. This is the center of our argument: internal
geometrical coherence across embeddings isn’t something that can be reliably seen with global
or isolated metrics. Visual intuition builds on the former, therefore it is insufficient as a measure
of embedding consistency; embeddings must be thoroughly audited before they’re trusted to be
representative of their data.

Embedding spaces can be actively steered via inductive biases like encoder-Jacobian Frobenius
penalties. This geometric regularization contracts tangent spaces, reduces metric disagreement,
and improves alignment between representations. The benefit starts to become apparent when the
neighborhoods grow in heterogeneity, beyond tight local spaces at kK = 25. Systematically quantifying
these trade-offs establishes a foundation for principled, geometry-aware embedding refinement. We
acknowledge an important limitation: methods like UMAP and PHATE project to 2D for visualization
and cannot preserve local dimensionality beyond trivial cases. Our analysis focuses on comparing how
different intermediate representations (PCAs5g, AAsg, and their autoencoder refinements) maintain
relative geometric consistency before final 2D projection. While all stages involve dimensional
reduction, our metrics reveal which approaches better preserve local geometric structure through
successive transformations. Our Frobenius penalty approach builds on contractive autoencoders [16]],
but differs in focus: while contractive autoencoders emphasize local invariance for robust feature
learning, we explicitly audit geometric preservation across multiple scales to diagnose embedding
fidelity.

This work establishes a diagnostic toolkit for auditing embeddings. Future work should develop
clear protocols for using these metrics to guide embedding selection in practice, demonstrate tangible
downstream benefits, extend validation to multiple synthetic manifolds with varying dimensionalities,
and establish whether preserving local dimensionality in intermediate representations improves
downstream tasks. These questions are essential for auditing representations produced by modern
foundation models in a principled, geometry-aware way, allowing us to be intentional about what
type of geometry we propagate through in our representations.
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A Details of Measurements Used

A.1 Common notation and metric definitions.

For each point z;, let Ny (x;) be its k nearest neighbors (excluding x; itself) in the ambient or
embedded space. Form the local data matrix X(?) € R**P by centering those neighbors, then
compute its covariance

o = L xo)Txm.
k
Let )\gi) > )\g’) > > )\g) be the eigenvalues of C' (1), We will build each metric from these {/\El)}

Participation Ratio (PR). The local participation ratio measures the effective number of dimensions
utilized in a neighborhood. It is defined by

(S AWy
S (W)

Tangent Space Approximation (TSA). TSA estimates local intrinsic dimension by asking “How
many eigenvalues are needed to capture at least a fraction g of the total variance?” Concretely:

d ()
D\

drsa(wi; q) = min{d: Z]D_ilzi) > Q}a
SN

PR(SCZ) =

j=1
where in our experiments g = 0.95.

Local Intrinsic Dimensionality (LID). Unlike variance-based measures, LID estimates local
dimensionality via a Maximum Likelihood framework based on neighbor distances. Let d;(x;) be

the distance to the j-th nearest neighbor of x;, and let dy (x;) be the distance to the k-th (i.e., furthest)
neighbor in the set Ny (x;). The LID at point z; is the maximum likelihood estimate, given by:

s — (L3 10g G0}
du(z;) = ( k;l gdk(%‘))

Continuity. Continuity measures the proportion of original high-dimensional neighbors preserved
in the embedding:
Continuity (k) = —
ontinuity (k) - E ? )

i=1

where NJ (z;) is the set of k-nearest neighbors of z; in the embedded space.

Trustworthiness. Trustworthiness penalizes neighbors in the embedding that weren’t true neighbors
in the original space:

. 2 - -
Trustworthiness(k) = 1 — Wk @n =3k = 1) Z Z (r(i,4) — k),

i=1 ]GN{C(Ii)\Nk(zz)

where 7 (4, §) is the rank of j among the original high-dimensional neighbors of .

A.2 Rank-based Comparison

We use Spearman’s rank correlation to assess whether embeddings preserve the relative ordering of
local geometric properties across points. For datasets with heterogeneous structure, different regions
naturally have different local dimensionalities—for example, on the Swiss roll, edge points may
exhibit lower effective dimensionality than interior points due to boundary effects and sampling
density. Rank correlation captures whether embeddings preserve these spatial patterns of geometric
variation: a high correlation indicates the embedding maintains the relative complexity landscape



where regions that were locally more complex remain relatively more complex. This is more robust
than absolute value comparisons, as it tolerates uniform scaling or shifts while detecting reorderings
that indicate structural distortion.

Given corresponding metrics M; and M/ for each point ¢ in the original and embedded spaces
respectively, Spearman’s correlation p is:

63 (s = r)?
nnz2—-1) ’

where r; and r} denote the ranks of metric values M; and M respectively.

p=1 ()

B Dataset details and pre-processing

B.1 Swiss roll

We constructed a synthetic Swiss roll dataset to evaluate the capability of dimensionality reduction
methods. The Swiss roll is designed to represent a two-dimensional plane (y, t) that is smoothly
embedded into a three-dimensional space (z, y, z) through a spiral transformation. By default, the
dataset consists of 100 distributions, each with 50 points, resulting in a total of 5000 samples. For each
distribution, we sample random means for ¢ and y, and add Gaussian noise to introduce variability
around these means. These (y, t) coordinates encode the intrinsic geometry of the data manifold. We
embed the 2D manifold into 3D space using:

x=t-cost, z=1-sint,
while the y coordinate retains its noisy values. This transforms the flat plane into a 3D Swiss

roll. After this transformation, additional Gaussian noise is added to all 3D coordinates to simulate
observation or measurement noise.

To increase the complexity and evaluate robustness to ambient dimensionality, we further embed the
dataset into a 200-dimensional space by applying a random orthogonal transformation. This projection
preserves pairwise distances while eliminating any axis alignment, simulating high-dimensional
real-world scenarios.

B.2 HGDP + 1KGP

We combined HGDP and 1KGP whole-genome sequencing (WGS) 30X release [[15]. To limit
the genetics markers to a set of good quality and informative polymorphisms, we intersected this
dataset positions contained on a largely used genotyping array (Illumina’s GSAMD-24v3). This set
of positions was then extracted from the 1000G dataset and additional filters were applied on this
resulting intersection, including a maximum missing rate of 10% and minor allele frequency (MAF)
5% thresholds. We performed linkage disequilibrium (LD) pruning on the filtered 1000G dataset
(plink v1.9 —indep-pairwise 50 5 0.5 parameters), followed by the exclusion of the human leukocyte
antigen (HLA) region. The remaining missing data was imputed using ShapelT5.

C Model architecture and tuning

C.1 Vanilla Autoencoder (AE) Configuration

For baseline comparison, a standard autoencoder was trained for 150 epochs to reconstruct the
50-dimensional PCA and AA embeddings. The network’s encoder mapped the 50-dimensional input
to a 10-dimensional latent space through hidden layers of 32 and 16 neurons. The decoder then
reconstructed the original 50-dimensional vector from this latent representation. The model was
optimized using a standard Mean Squared Error (MSE) reconstruction loss, without any additional
regularization on the latent space geometry. An early stopping validation loss was set with a patience
of 10 epochs.

C.2 Autoencoder with Frobenius Penalty (AE ) Configuration

To investigate the effect of smoothing regularization, a second autoencoder (A F' ) was trained for 150
epochs on the 50-dimensional PCA embeddings. This model used an identical network architecture,



with an encoder compressing the input to a 10-dimensional bottleneck via hidden layers of 32 and
16 neurons. Its objective function was augmented with a Jacobian penalty. The model was trained
to minimize a composite loss consisting of the MSE reconstruction error and a regularization term
based on the squared Frobenius norm of the encoder’s Jacobian, with the penalty weighted by a factor
of A = 0.01.



Table 2: Comparison of PCA and AA Baselines with Autoencoder Refinement and Frobenius
Regularization. Metrics reported for varying neighborhood sizes (k). Note: values for LID k = 15
for both autoencoder cases were interpolated due to a mathematical error in computation.

Method Metric k Original AE Refined AE Frobenius
5 3.82 3.63 3.75

15 2.20 2.16 2.21

Local Intrinsic Dim. 25 2.20 2.16 2.03
50 2.19 2.16 1.98

100 2.41 2.40 2.15

5 1.52 1.49 1.51

15 1.88 1.85 1.84

Participation Ratio 25 2.10 2.07 2.03
50 2.41 2.36 2.32

100 2.90 2.81 2.75

5 2.08 2.01 2.06

AA 15 2.82 2.70 2.71
Tangent Space Approx. 25 3.23 3.10 3.08
50 4.01 3.82 3.71

100 5.35 5.07 4.77

5 0.99 0.99 0.99

15 0.98 0.97 0.98

Trustworthiness 25 0.97 0.96 0.97
50 0.96 0.95 0.96

100 0.94 0.94 0.94

5 0.47 0.48 0.46

15 0.54 0.55 0.54

Continuity 25 0.58 0.59 0.57
50 0.64 0.64 0.63

100 0.68 0.69 0.67

5 4.87 3.89 3.85

15 2.88 2.41 2.39

Local Intrinsic Dim. 25 2.46 2.13 2.13
50 2.07 1.90 1.88

100 1.81 1.67 1.65

5 1.65 1.57 1.55

15 2.03 1.77 1.76

Participation Ratio 25 2.06 1.78 1.79
50 2.11 1.92 1.88

100 2.53 1.92 1.88

5 2.17 2.07 2.05

PCA 15 2.79 2.29 2.28
Tangent Space Approx. 25 3.04 2.30 2.31
50 3.40 2.49 2.47

100 3.53 2.69 2.58

5 0.98 0.98 0.98

15 0.98 0.98 0.98

Trustworthiness 25 0.98 0.98 0.98
50 0.98 0.97 0.97

100 0.97 0.97 0.97

5 0.50 0.46 0.47

15 0.55 0.51 0.52

Continuity 25 0.58 0.54 0.55
50 0.63 0.60 0.60

100 0.69 0.66 0.67
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