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Abstract. High-performance deep learning methods typically rely on
large annotated training datasets, which are difficult to obtain in many
clinical applications due to the high cost of medical image labeling. Ex-
isting data assessment methods commonly require knowing the labels in
advance, which are not feasible to achieve our goal of ‘knowing which
data to label.’ To this end, we formulate and propose a novel and effi-
cient data assessment strategy, EXponentiAl Marginal sINgular valuE
(EXAMINE) score, to rank the quality of unlabeled medical image data
based on their useful latent representations extracted via Self-supervised
Learning (SSL) networks. Motivated by theoretical implication of SSL
embedding space, we leverage a Masked Autoencoder [8] for feature ex-
traction. Furthermore, we evaluate data quality based on the marginal
change of the largest singular value after excluding the data point in the
dataset. We conduct extensive experiments on a pathology dataset. Our
results indicate the effectiveness and efficiency of our proposed methods
for selecting the most valuable data to label.

1 Introduction

Artificial intelligence (AI) such as deep learning has became a powerful tool
for medical image analysis. Its success relies on the availability of abundant high
quality dataset. However, medical images collected from different sources vary in
their quality due to the various imaging devices, protocols and techniques. When
trained with low-quality data, AI models can be compromised. Furthermore,
labeling medical images for AI training requires domain experts and is usually
costly and time consuming. Therefore, it is demanding to have an automated
framework to effectively assess and screen data quality before data labeling and
model training.

There are numerous definitions of data quality. Data is generally considered
to be of high quality if “fit for [its] intended uses in operations, decision making
and planning.” [4,5,16]. In the context of training an AI predictive model, good
data are the fuel of AI. Namely, data with better quality can help obtain higher
prediction accuracy. However, how to quantitatively assess data’s quality for AI
tasks is under-explored. Previous works [6, 10] mainly propose to estimate data
values in the context of supervised machine learning, which requires knowledge
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of labels and repeated training of a target utility. Such setting lacks practical
value as data labels are typically not available at the data preparation stage for
data privacy, labeling cost, and computational efficiency concerns. Differently,
we aim to develop a cost-effective scheme for data assessment in the context of
unsupervised learning to tackle the limitations of the existing methods, in which
no labeling is required during assessment.

A trending and powerful unsupervised representation learning strategy is self-
supervised learning (SSL). SSL solves auxiliary pretext tasks without requiring
labeled data to learn useful semantic representations. These pretext tasks are cre-
ated solely using the input features, such as predicting a missing image patch [8],
recovering the color channels of an image from context [19], predicting missing
words in texts [12], forcing the similarity of the different views of images [1, 7],
etc. Motivated by the recent discovery that SSL could embed data into linearly
separable representations under proper data assumptions [13, 17], we show that
‘good’ and ‘bad’ data can be distinguished by examining the change of the data
representation matrices’ singular value by removing a certain data point.

In this work, we tackle a practically demanding yet challenging problem —
medical image assessment (also referred as data assessment in this work). To
this end, we develop a novel and efficient pipeline for medical image assess-
ment without knowing data labels. As shown in Fig 1, we propose a new metric,
EXponentiAl Marginal sINular valuE (EXAMINE) score to evaluate the value
(or referred as quality) of individual data by first using SSL to extract the
features, and then calculate the value of the data using Singular Value Decom-
position (SVD). EXAMINE scores are useful in indicating the essential data to be
annotated, which can not only abundantly reduce the effort in manual labeling
but also mitigate the negative effect of mislabeled data, and further improve the
target model. Our chief contributions are summarized as follows:
- We are the first to show the feasibility of using an unsupervised learning frame-
work to assess medical data by utilizing SSL and SVD, which is a more cost-
efficient and practical method to evaluate data compared to previous work.
- EXAMINE can assess data without knowing the label, which reduces annotation
efforts and the chance of mislabeling.
- We conduct experiments on the simulated medical dataset to demonstrate the
feasibility of using EXAMINE scores to distinguish data with different qualities
and show comparable performance to previous supervised learning based works.

2 Preliminaries

2.1 Supervised-learning-based Data Assessment

The goal of data assessment is using a valuation function to map an input data
to a single value that indicate its quality. Supervised-learning-based data assess-
ments assume knowing a labeled dataset N l = {(xi, yi)|i ∈ [N ], xi ∈ X , yi ∈ Y}
where N is the number of the labeled data, an utility model f : N l 7→ Y, a
held-out labeled testing set N t = {(x′i, y′i)|i ∈ [M ], x′i ∈ X , y′i ∈ Y} where M
is the number of the testing data, and a value function V : (f,N l,N t) 7→ R
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(e.g., the accuracy of N t evaluated by f that is trained on N l ). The simplest
assessment metric is by performing leave-one-out (LOO) on the training set and
calculating the performance differences on the testing set. The i-th data samples
value is defined as:

ϕLOO
i = Vf (N l)− Vf (N l\{i}). (1)

A more advanced but computational costly approach is Data Shapley [6].
Shapley value for data valuation resembles a game where training data points
are the players and the payoff is defined by the goodness of fit achieved by a
model on the testing data. Given a subset S, let fS(·) be a model trained on S.
Then Shapley value of a data point (xi, yi) ∈ N is defined as:

ϕSHAP
i =

∑
S⊆N\{xi}

Vf (S ∪ {xi})− Vf (S)(∣∣N l
∣∣− 1
|S|

) , (2)

where Vf (S) is the performance of the utility model f trained on subset S of the
data. Suppose each training of f takes time T , the computational complexity of
Eq (1) and Eq (2) is O(TN) and O(T2N )3, respectively. Also, training a deep
utility function (e.g., neural networks) leads to a large T .

2.2 Formulation of Unsupervised-learning-based Data Assessment

Motivation story Labeling is costly and time consuming in many medical imaging
tasks. AI developers may want to pay for labeling some data points to train
a particular machine learning model. In such a scenario, supervised-learning-
based methods (Sec 2.1) cannot fulfill the aim. Therefore, algorithms that can
automatically identify low quality data before labeling data are highly desired.

To address computational issue and demand for task/label-agnostic data
quality, we propose to conduct quantitative data quality assessment via unsu-
pervised learning. Different from the formulations of LOO (Eq. (1)) and Shapley
value (Eq. (2)), here we propose a new problem formulation to infer i-th data’s
quality by assigning it a value ϕi : (X , i) 7→ R using unlabeled data only.

3 Our Method

3.1 Theoretical Implication

Our proposed EXAMINE is well motivated by representation theory of SSL. We
start by restating Theorem 1 proved in [13] that under proper assumptions,
the embedded space obtained by the reconstruction-based SSL strategy forms
a linearly separable space of the embedded feature and a related task. Then,
Remark 1 presents how we use Theorem 1 to guide the design of EXAMINE.
3 In practice, there are approximation methods for calculating Shapley value, but the

it still requires around O(Tpoly(N)) [11].
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Fig. 1: Proposed pipeline for EXAMINE data assessment. (a) Using the state-of-
the art reconstruction-based SSL strategy, MAE [8] architecture for pre-training
an representation extractor (encoder). (b) EXAMINE first utilizes the pre-trained
encoder to extract semantic features fS and fS\{i} from input data DS and
DS\{i}, where DS\{i} denotes input data DS without data point i. The features
then pass the SVD module to find the largest singular values λS and λS\{i}. The
EXAMINE score of data point i is defined as Eq. (3).

Theorem 1 (informal [13]). For two views of a data X1, X2 ∈ X and their
classification label Y ∈ Rk. Under the class conditional independence assump-
tion, i.e., X1 ⊥ X2|Y , for some w ∈ Rm×k the representation ψ∗ : X 7→ Rm that
minimizes a reconstruction loss L(ψ) = E(X1,X2)

[
∥X1 − ψ(X2)∥2

]
satisfies

w⊤ψ∗(X1) = E[Y |X1].

Remark 1. Theorem 1 indicates two desired properties with ‘good’ data that
(approximately) satisfy class-conditional independence. First, the data will have
a good geometric property in the learned representation space, namely they be-
come clusters that are (almost) linearly separable (by w). Second, the learned
representation has variance (top singular value of its covariance matrix) con-
trolled by that of E[Y |X1], which is very small (since the label is almost deter-
mined entirely by the image itself). Such properties on the reconstruction-based
SSL embedding space are not satisfied for ‘bad’ data. Therefore when observing
data X1 is noisy or with low quality, ψ∗(X1) tends to have higher variance.

3.2 Data Assessment on Singular Value

As shown in the Fig.1(b), to assess data from a dataset DS ∈ RN×C , where N is
the number of data and C is the dimension of data, we denote the dataset without
i-th data point as DS\{i} ∈ R(N−1)×C . To begin with, we employ SSL and the
unlabeled data to train an encoder that is able to extract the low-dimensional
semantic information. We denote the representation of the SSL embedding space
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of DS and DS\{i} as fS and fS\{i}, respectively. Lastly, we perform SVD on both
feature representations, and use the largest singular values (λS and λS\{i}) as
the assessment indicator, that is, removing a ‘good’ data point i results in small
change in the top singular value of embedded data representation f (explained
in Sec. 3.1). Thus, the EXAMINE score is defined as

ϕEXAMINE
i = exp

(
−(λS − λS\{i})

)
, (3)

where ϕEXAMINE
i ∈ (0, 1) and a larger ϕEXAMINE

i indicates better data quality4.
Note that EXAMINE is also a leave-one-out strategy but evalated on the change
of the largest singular value.

We claim two advantages of using SVD for data assessment. First, by per-
forming the SVD-based evaluation, we do not need any knowledge about the cor-
responding labels. This is not only the primary difference from previous methods,
but also a perfect fit to our problem set up - finding good data to be labeled.
Second, unlike previous methods (i.e., LOO and Data Shapely, see Sec. 2.1)
that rely on extensively training a new model for different data combinations,
our proposed method is efficient by performing SVD once for each data point
without additional model training after the SSL encoder has been trained offline.

3.3 Forming Embedding Space using Masked Auto-encoding

As the raw medical images are high-dimensional and have spurious features
(e.g., density, light, dose) that are irrelevant to their labels, directly apply-
ing SVD to them cannot capture task-related variance. Based on our theory
developed on reconstruction-based SSL (Sec. 3.1), we utilize a state-of-the-art
reconstructed-based strategy, Masked Auto-Encoder (MAE) [8] to learn lower-
dimensional semantic feature embedding. As shown in Fig. 1(a), MAE utilizes
state-of-the-art image classification framework, Vision Transformer (ViT) [3], as
the encoder for semantic feature extraction, and uses a lighter version of ViT as
decoder. It first divides an input image into patches, randomly blocks a certain
percentage of image patches, and then feeds them into the autoencoder archi-
tecture. By blocking out a large amount of image patches, the model is forced
to learn a more complete representation. With the aim of positional embedding
and transformer architecture, MAE is able to generalize the relationship between
each image patch and obtain the semantic information among the whole image,
which achieves the state-of-the-art performance in self-supervised image repre-
sentation training. This also reduces the correlation between spurious features
and labels, compared to the traditional dimension reduction methods [2].

4 Experiment

4.1 Experiment setup and dataset

We evaluate EXAMINE on a binary classification task for PCam [18], a micro-
scopic dataset (image size 96×96) for identifying metastatic tissue in histopatho-
4 λS > λS\{i} is for sure given the properties of singular value.
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Fig. 2: Proof of concept and comparison with baseline embedding methods. Ob-
serve that EXAMINE scores (ϕEXAMINE

i ) get lower when noise level increases (a),
and the EXAMINE scores (ϕEXAMINE

i ) in (b) shows that reconstrucion-based SSL
methods perform better in separating different noise levels.

logic scans of lymph node sections. Since noise is usually the main corruption in
medical images, we add non-zero mean Gaussian noise to a portion of the data
to simulate real world scenario.

We split the dataset into four disjoint sets following the scale of [6]:
- SSL Pre-Training Set and Assessed Set: 160,000 and 500 unlabeled data
points randomly sampled from PCam, respectively. We add 4 different level
(N (δ, δ ×m), where m is the mean of the dataset and δ = {0.1, 0.3, 0.5, 1}) of
noise to 60000 data points of SSL Pre-Training Set and 400 data points in
Assessed Set.

- Clean Train Set and Validation Set: 100 and 20,000 labeled data points
randomly sampled from PCam. They are used to validate the data selection in
an example downstream task after obtaining EXAMINE scores (ϕEXAMINE

i ).

The experiments are run on NVIDIA GeForce RTX 3090 Graphics card with
PyTorch. For MAE training, we select Cosine Annealing LR scheduler [14] and
AdamW LR optimizer [15] with weight decay 0.05 and momentum {0.9, 0.95}.
We train MAE for 200 epochs using batch size 256 ,and set image size 72, patch
size 8, masking ratio 40%. As indicated in [1, 7, 8] that SSL training requires a
large amount of data, we begin with training a MAE on SSL Pre-Training Set.
To ensure the training stability, we first train MAE without any noisy data, and
finetune it afterward. This step is to distinguish our setting from detection out
of distribution samples. After pretraining the MAE encoder, we use the frozen
encoder layers as our backbone to extract the low dimensional representations.
All of our experiments are repeated five times with different random seeds and
we report the mean value of the five trials.
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4.2 Proof of Concept with ‘Ground-truth’

To validate the correctness of ranking the samples in Assessed Set, we plot
the distributions of EXAMINE scores (ϕEXAMINE

i ) at different data corruption
levels of noisy setting in Fig 2a Note that ϕEXAMINE

i ∈ (0, 1) and data point i
with larger ϕEXAMINE

i indicates that it is considered a good data. Specifically,
EXAMINE score (ϕEXAMINE

i ) approaching 1 indicates the difference between the
top singular values are small, thus it will be considered good data. The EXAMINE
scores (ϕEXAMINE

i ) for the high-quality data (δ = 0) are close to 1 and signifi-
cantly higher than the corrupted data. The EXAMINE scores (ϕEXAMINE

i ) of data
with low-level corruption (δ = 0.5) are also separable from those with high-level
corruption(δ = 1).

4.3 Comparison with Alternative Embedding Methods

We investigate the alternative feature encoders and compare their performance
with MAE. Specifically, we replace MAE with SimCLR [1] and BYOL [7], two
alternative SSL algorithms, and Autoencoder (AE) [9], a naïve reconstruction-
based embedding strategy. SimCLR learns embedding by enforcing the closeness
of an image and its augmented views while enlarging the distance from other
images in the dataset (or batch). BYOL regularizes the multi-views of an image
without sampling negative samples by training two similar networks (the online
network and the target network) simultaneously. We use the same strategy as
training MAE for these alternative encoders. Fig. 2b shows that using MAE
embedding to calculate EXAMINE scores (ϕEXAMINE

i ) provides the best separa-
bility for the clean data from the corrupted data. The reason is that MAE best
satisfies the theoretical conditions that support our proposal (Theorem 1). AE
is second to MAE, but separation boundaries are less clear.

4.4 Comparison with Baseline Data Valuation Methods

We compare EXAMINE with supervised data valuation methods, LOO (Eq. 1
and Truncated Monte Carlo (TMC) version of Data Shapley (Eq. 2) [6], as
well as a baseline method that randomly assigns data values. All these methods
are applied on Assessed Set’s features extracted by the pre-trained MAE. We
design four experiments to evaluate how selecting data using the different data
assessment methods can affect the classification accuracy. We report the averaged
test accuracy on Validation Set using logistic regression models (LRM).

Fig. 3a and Fig. 3b show the results of adding data for training. We start
with a LRM trained on the small Clean Training Set, and then add good/bad
data from Assessed Set following the descending/ascending orders of their data
values. Our results show that adding data with high EXAMINE score (ϕEXAMINE

i )
achieves comparable accuracy curve as Data Shapley, while adding data with
low EXAMINE scores (ϕEXAMINE

i ) results in similar curve as Data Shapley in
the beginning and overall lies in between Data Shapley and LOO. This indicates
that EXAMINE score (ϕEXAMINE

i ) is able to identify what data to be labeled and
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Fig. 3: Comparison with baseline data valuation methods. Adding good data(a)
and removing bad data(d) should increase accuracy. Adding bad data(b) and re-
moving good data(c) should result in accuracy drop. We conclude that EXAMINE
can help model training by identifying good and bad data.

added to training set. Fig. 3c and Fig. 3d show the results of removing data for
training. We first train LRM on Assessed Set, and then remove good/bad data
following the descending/ascending orders of their data values. Our result shows
that removing high/low EXAMINE score (ϕEXAMINE

i ) data results in accuracy
curve that is slightly worse than Data Shapley. We would like to emphasize Data
Shapley uses utility function which requires labels to determine the data value,
while EXAMINE score (ϕEXAMINE

i ) is calculated only on data itself, which is more
efficient in real-world scenario. Overall, EXAMINE shows comparable(or at best
slightly worser) data assessment performance to Data Shapley without knowing
the labels of the data.

In addition to successfully providing correct inspection on data quality, our
method significantly reduces the computational cost without requiring training
utility functions. The running time to obtain the data values using EXAMINE,
LOO, and TMC Data Shapley for the whole Assessed Set under our experiment
setting are 23 seconds, 10 minutes, and 460 minutes, respectively5.

5 The running time for LOO and Data Shapley can significantly increase if we use a
deep neural network as the utility model.
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5 Discussion and Conclusion

We present a new and efficient unsupervised data evaluation method, EXAMINE
scores ϕEXAMINE

i , to assess data quality. With the help of MAE encoder, we
can map data to the provable low-dimensional embedding space. The marginal
differences on the largest singular value of data representation matrices can ef-
fectively separate data at different quality levels and achieve comparable perfor-
mance with supervised data valuation methods when considering a specific task.
This work takes a novel approach to promote AI in healthcare by identifying
low quality data. We plan to test on larger scale medical datasets and collect
domain experts’ evaluations in the future.
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