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ABSTRACT

Decoupling from customized parametric templates marks an integral leap towards
creating fully flexible, animatable avatars. In this work, we introduce TAGA
(Template-free Animatable Gaussian Avatars), the first template-free, Gaussian-
based solution for the reconstruction of animatable avatars from monocular videos,
which offers distinct advantages in fast training and real-time rendering. Construct-
ing template-free avatars is challenging due to the lack of predefined shapes and
reliable skinning anchors to ensure consistent geometry and movement. TAGA
addresses this by introducing a self-supervised method which guides both geometry
and skinning learning leveraging the one-to-one correspondence between canon-
ical and observation spaces. During the forward mapping phase, a voxel-based
skinning field is introduced to learn smooth deformations that generalize to unseen
poses. However, without template priors, forward mapping often captures spurious
correlations of adjacent body parts, leading to unrealistic geometric artifacts in the
canonical pose. To alleviate this, we define Gaussians with spurious correlations
as “Ambiguous Gaussians” and then propose a new backward mapping strategy
that integrates anomaly detection to identify and correct Ambiguous Gaussians.
Compared to existing state-of-the-art template-free methods, TAGA achieves supe-
rior visual fidelity for novel views and poses, while being 60 x faster in training
(0.5 hours vs 30 hours) and 560 x faster in rendering (140 FPS vs 0.25 FPS).
Experiments on challenging datasets that possess limited pose diversity further
demonstrate TAGA’s robustness and generality. Code will be released.

1 INTRODUCTION

Parametric templates, such as SMPL [1] and SMAL [2], play a pivotal role in the field of 3D avatar
reconstruction, providing two essential priors, including mesh vertices, which anchor the model’s
geometry with precise prior shape; and vertex skinning weights, which determine how each vertex
moves relative to bone joints. However, creating these templates requires labor-intensive 3D scanning
and manual annotation [1-6], which limits their application in various real-world object categories.

Recent advancements in template-free approaches

have sought to address the limitations of traditional 2

methods by utilizing 3D poses instead of predefined g

templates. Though much progress has been made, §

a fundamental challenge still remains: how to accu- <

rately recover the canonical model (Fig. 1(b)) from

posed observations (Fig. 1(a)). To reverse the observa- g

tions and construct a canonical body model, implicit S o

template-free methods often rely on learning inverse § ?

skinning or complex iterative root-finding algorithms e P

to establish canonical correspondences that fits the Figure 1: Canonical ambiguity: Gaussians
sample points in observation space. However, both render observed poses well (a), but produce
approaches heavily rely on rich pose data as input, significant artifacts in canonical space (b).

which can be impractical due to the high costs asso-

ciated with data collection and annotation. When pose data is sparse, recovering canonical models
presents an ill-posed problem, as multiple canonical models could potentially fit the limited obser-
vations. Thus, although these methods may achieve reasonable reconstructions in the observation
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Figure 2: We propose TAGA, the first template-free Gaussian-based method that generates avatars in 30 minutes,
with real-time rendering up to 140 FPS. Another key advantage of TAGA is its ability to handle low pose
diversity from monocular video inputs. Without relying on templates, TAGA employs self-supervised learning
to resolve ambiguities in the canonical space, resulting in realistic and animatable avatars.

space, they often face spurious correlations between adjacent parts and severe geometric artifacts
in the canonical space (Fig. 1(b)). Furthermore, these methods typically focus only on reproducing
a limited set of 2D observations, which prevents them from recognizing ambiguities in canonical
reconstruction; unless sufficient data is provided, they cannot resolve these ambiguities and, as a
result, cannot optimize an accurate canonical model.

In this work, TAGA utilizes 3D Gaussians as the canonical representation, which has been widely
shown to provide accurate observation space reconstructions through forward mapping2. However,
due to the flexibility of Gaussians, this canonical ambiguity is still pronounced in a template-free
scenario, significantly hindering the ability to animate the avatar. To deal with this challenge, TAGA
exploits the explicit one-to-one correspondence of 3D Gaussians, which, through skinning, maintains
a bijective mapping between the canonical and observation spaces. By using this correspondence
as an anchor, and given that the visible observations can be accurately reconstructed, it follows
naturally that with the correct skinning, we can also achieve an accurate canonical reconstruction.
Building on this insight, we develop a coarse-to-fine self-supervised framework. First, during forward
mapping, we learn a voxel-based skinning field to obtain a suboptimal canonical reconstruction.
Then, we progressively correct the “Ambiguous Gaussians” — those with incorrect skinning—in the
observation space, fixing them point by point. These Ambiguous Gaussians arise from spurious
correlations betweeen adjacent body parts, where the skinning does not align with the semantics of
their positions. In the absence of skinning prior for part assignment, we employ an anomaly detection
algorithm — specifically, a bone-based GMM - to mine spatial and semantic cues in the observation
space, enabling us to identify and correct the ambiguous Gaussians in an unsupervised manner. The
corrected Gaussians are then mapped back to refine the original canonical model.

Compared to traditional implicit representation approaches, TAGA focuses on iteratively refining
the forward mapping via our proposed new backward mapping strategy, fully exploiting the speed
advantage of 3D Gaussian splatting in forward rendering. This design overcomes the generalization
limitations of inverse skinning and eliminates the computational overhead associated with root-finding.
As a result, TAGA enables rapid reconstruction of an animatable avatar from monocular video in just
30 minutes, achieving real-time rendering at over 140+ FPS. To our knowledge, this performance
exceeds that of any other template-free method. Our contributions are threefold:

* We present TAGA, the first Gaussian-based framework for building animatable 3D avatars without
parametric templates, enabling many advantages such as high-quality reconstruction, efficient
training, and real-time rendering.

* We leverage inherent one-to-one-correspondence of 3D Gaussian as an anchor to jointly refine
canonical geometry and skinning in a self-supervised manner.

* We propose a new backward mapping apporach that integrates anomaly detection to handle
canonical ambiguity, addressing spurious correlations in template-free avatar reconstruction.



Method Template Backward Explicit Monocular  Real-time Training

Free Mapping  Representation Input Rendering Time

3DGS-Avatar [10] X X v v v 30m
GART [11] X X v v v 3m
InstantAvatar [12] X v X v X S5m
InstantNVR [13] X v X v X S5m
TAVA [14] v X X X X 72h
HumanNeRF [15] v v X v X 10h
NPC [16] v X v v X 30h

TAGA (Ours) v v v v v 0.5h

Table 1: Differences between TAGA and existing representative methods.

We conduct extensive experiments on the widely-used monocular dataset ZJU-MoCap [7] (§4.2)
and the established, single-pose-dominant dataset PeopleSnapshot [8] (§4.2). Compared to existing
template-free competitors, TAGA achieves state-of-the-art reconstruction quality, improving LPIPS*
by 1.6 over NPC on ZJU-MoCap and by 7.0 LPIPS* over HumanNeRF on PeopleSnapshot. In
addition, we evaluate TAGA on canonical pose and challenging motion sequences from AIST++ [9],
demonstrating its robustness in canonical reconstruction even under extreme single-pose scenarios.
Ablation studies further confirm the effectiveness of our framework design (§4.3).

2 RELATED WORK

Templates-free Reconstruction Methods. To eliminate reliance on parametric templates, various
methods focus on building template-free animatable avatars. One prominent direction [15, 17-24],
exemplified by HumanNeRF [15], compensates for the lack of shape priors by learning inverse
skinning to map observed poses to a canonical space, but struggles with generalization to new
poses. Another mainstream approaches [ 14, 25-30], represented by TAVA [14] and ARAH [30],
perform complex and time-consuming iterative root-finding algorithm to search for correct canonical
correspondences of points in observation space. More recently, NPC [16] uses sparse feature point
clouds as anchors to accelerate the backward mapping of query points. However, since each sampling
point requires querying K-nearest anchors during both forward rendering and backward mapping, it
fails to fully leverage the speed advantages of explicit representations. All the above methods incur
significant computational overhead during the mapping process, as they require extensive querying to
establish correspondences between observation space points and their canonical counterparts. As a
result, both training and rendering speeds are significantly slowed.

The 3D Gaussian representation, which has been widely adopted in SMPL-based human models [1 1,
—41], holds the potential to overcome the aforementioned limtations, with enhanced speed, superior
quality, flexible topology, and natural one-to-one correspondence [31-33]. Despite these advantages,
it is surprising that template-free approaches for animatable avatar reconstruction based on Gaussian
representations remain unexplored. In this work, we extend 3D Gaussian splatting to template-free
avatars, achieving state-of-the-art synthesis quality on both novel view synthesis and unseen pose
synthesis with just minutes of training and real-time rendering at over 140+ FPS. Table 1 provides a
comparison between TAGA and recent representative animatable avatar reconstruction methods.

Template-free Canonical Appearance Modeling. In template-free scenarios, the absence of para-
metric templates requires learning canonical body geometry from scratch. NPC [16] sidesteps the
problem by extracting explicit point clouds from existing part-based body models. Despite that, the
use of fixed point clouds lacks flexibility [42], making it difficult to handle complex deformations and
hindering end-to-end learning. Other traditional methods, whether relying on root-finding [14, 27, 30]
or inverse skinning [15, 43], require rich pose data as input. When pose diversity is limited, these
methods tend to learn spurious correlations in self-contact regions.

TAGA uses self-supervised learning to reconstruct the geometry and skinning of animatable avatars
from a limited set of videos and poses, without relying on predefined templates. A conceptually
related approach is SCANimate [48], which weakly supervises the reconstruction of clothed human
bodies from raw scans by enforcing consistency between forward and inverse skinning. However,
SCANimate requires learning inverse skinning and depends on skinning from SMPL template to
supervise both forward and inverse skinning. In contrast, TAGA learns only forward skinning and
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Figure 3: Overall framework: Given a pose, TAGA transforms canonical 3D Gaussians to the observation space
through the Forward Deformation Module. To resolve ambiguities between adjacent body parts, TAGA detects
and corrects Ambiguous Gaussians in observation space. Finally, TAGA maps these corrected Gaussians back to
the canonical space using the inverse LBS transformation to guide the original canonical Gaussians.

introduces a new backward mapping strategy specifically designed for explicit Gaussians. Thanks
to the explicit nature of Gaussians, our backward mapping strategy fundamentally differs from the
Nerf-based counterparts. Rather than focusing on establishing dense correspondences to achieve a
reconstruction that merely fits the input data, we take it a step further by using these correspondences
as anchors. This allows us to transfer spatial and semantic information from the observation space
back to the canonical space, thereby resolving ambiguities and improving the overall reconstruction.

3 METHODOLOGY

Overview. Given monocular videos and their corresponding poses, TAGA jointly learns the geometry
and skinning field of an animatable avatar, without relying on parametric templates. A overview of
pipeline is shown in Fig. 3. During forward mapping, a voxel-based skinning field is learned to deform
Gaussian representations from the canonical space to the observation space (§3.1). To tackle spurious
correlations between adjacent body parts in the absence of template priors, we detect Ambiguous
Gaussians which are affected by spurious correlations. This is achieved through a bone-based GMM
(§3.2) , which enalbes us to correct the skinning of these Gaussians for proper alignment with body
semantics (§3.3). The corrected Gaussians are then remapped back to the canonical space, with soft
constraints guiding the canonical geometry and skinning field (§3.4). In addition, implementation
details are provided in Appendix §C.

3.1 FORWARD DEFORMATION

Canonical Gaussian Representation. TAGA uses Gaussians G as the basic representation, defining
them in the canonical space to model the avatar’s appearance and shape. Each 3D Gaussian g € G is
characterized by its position p, covariance 3, opacity «, spherical harmonics coefficients ¢, rotation
R and S. In this study, the term “template-free” refers to the exclusion of mesh vertices and skinning
annotations typically provided from parametric templates. Instead, we initialize the 3D Gaussians
by sampling points from a Gaussian distribution centered at the midpoints of each bone, with the
distribution’s standard deviation empirically adjusted based on the head/torso and distal joints.

Voxel-based Skinning Field. In template-free scenarios, the lack of skinning supervision from
parametric templates and geometric priors hampers the direct application of point-to-point supervision
on the skinning weights of Gaussians. A remedy is to sample points from bones and impose rigid
constraints on their skinning. However, traditional MLPs struggle to effectively utilize the limited
supervision provided by these sampled bone points, often overfitting to the few points rather than
generalizing across the entire 3D space. Additionally, the dynamically changing Gaussians during
training exacerbate this challenge. To address these obstacles, we employ a low-resolution fixed voxel
grid to distill the skinning weight field from the MLP, where the MLP predicts skinning weights only
on the grid. The skinning weights for each 3D Gaussian p° in the canonical space are then queried
through trilinear interpolation from the voxel grid:

W = interp(MLP(V),p°) € RNXK, 6]



where interp refers to the trilinear interpolation operation, N denotes the number of Gaussians
and K reprensents the number of bones. The voxel-based skinning field presents key advantages that
enhance its effectiveness. First, the fixed voxel grid stabilizes training by limiting the MLP to prede-
fined points, avoiding the influence of variations in Gaussian positions and numbers. Experiments
show that a resolution of just 64 x 64 x 16 suffices for accurate skinning reconstruction (Table S2,
§E). Second, it enables effective regularization, as skinning constraints can smoothly propagate from
bones to nearby areas, providing a solid initialization. Lastly, the integration of linear interpolation
with MLP enhances smoothness, improving generalization to new poses.

Linear Blend Skinning (LBS) Transformation. With the skinning weights W, the canonical
Gaussians are transformed to the observation space using LBS transformation matrix 7", defined as:

K
T = Zkzl W.By, € RNX4X4, 2)

where B = [By, ..., Bg| € RE>*4x4 denotes the bone transformations. To accurately reposition p°
and reorient J2¢ into the observation space based on the input pose, we apply the full transformation
matrix T to the position, and the upper-left 3 x 3 submatrix 77 .3 1.3 to the rotation, as follows:

po = LBS(W, B,pc) = Tpc, R° = LB51:3,1:3(W, B, RC) = T1;3,1;3RC. 3)

Rendering by Gaussian Splatting. Once the canonical Gaussians are transformed to the observation
space, we render the image using the efficent differentiable rasterizer from 3D-GS [52].

3.2 AMBIGUOUS GAUSSIAN DETECTION

This module aims to accurately identify Ambiguous Gaussians — whose skinning weights do not
align with their expected skinning. Typically, the skinning of Gaussians is primarily influenced by
their spatial relationship with the skeletons [53—57]. A rough estimation of skinning weights can be
achieved by constructing a bone-based GMM. Each bone is associated with a Gaussian distribution
that define its region of influence in 3D space. The skinning weights are then estimated as the
likelihood that a Gaussian in 3D space is influenced by the GMM component centered on a particular
bone, providing a rough yet effective approximation.

GMM for Skinning. For each bone j, a GMM component is defined centered at the bone’s midpoint.
The bone’s orientation determines one axis of the Gaussian ellipsoid, with two orthogonal axes
completing the basis. Semi-axis lengths are estimated using points with skinning weights above
7 = (.2, taking the 85th percentile of their projected distances onto each axis. The skinning weight
of j -th bone for the ¢-th Gaussian position p{ in the observation space is estimated as follows:

F(pf; mis Zj)
K O.
Zk:1 f(pi s Mok Ek)
where F(p; p;, 3;) is the probability density of p? with respect to the j-th GMM component.

Wi, = p(p2lj) =

€ [0,1], “

Ambiguous Gaussian Definition. Ambiguous Gaussians
are detected by comparing the GMM-estimated skinning
weight W with the current skinning weight W. For each
Gaussian g;, a confidence score S is computed using the
Jensen-Shannon divergence (JSD):

@

S =1—JsD(W; | W;) € [0,1]. (5)

B

Gaussians with S; < « are classified as Ambiguous Gaus-

sians, indicating a significant deviation from expected Figure 4: Illustrations of (a) GMM-estimated
skinning weights. The set of Ambiguous Gaussians is de- skinning weights and (b) detected Ambigu-
noted as A = {g; | S; < a}, while the rest are classified ©us Gaussians (marked as black points).

as normal, denoted as A. All detected Ambiguous Gaussians will subsequently receive new skinning
weights through the correction module.

GMM Parameter Optimization and Ambiguous Gaussian Detection. To better detect Ambiguous
Gaussians, we iteratively apply the Expectation-Maximization (EM) algorithm during each backward
step to optimize the GMM parameters. The GMM parameters from the final iteration are used to
identify ambiguous Gaussians, serving as the detection result for this backward step.



» E-Step. Estimate skinning weights wW using current GMM parameters and compute confidence
scores S to identify Ambiguous Gaussians A and normal Gaussians .A.

» M-Step. Update the semi-axis lengths of GMM components using only the normal Gaussians A
detected in the last E-step.

3.3 AMBIGUOUS GAUSSIAN CORRECTION

Given the detected Ambiguous Gaussians, this module aims to assign more appropriate skinning
weights to them. To achieve this, we propose using the KNN algorithm to select the skinning weights
of the K-Nearest normal Gaussians around each Ambiguous Gaussian. We then compare these
weights with the estimated skinning weight of the current Ambiguous Gaussian and choose the
one with the highest confidence. Specifically, for each Ambiguous Gaussian g;, let A/(7) denote its
K -Nearest normal neighbors. We assign a new skinning weight to g; as follows:

W/ =W,., where n*=arg max (1 — JSD(W; || W,,)). (6)

neN (i)

K3

3.4 INVERSE LBS TRANSFORMATION

For implicit representation, there is no direct correspondence between points in the canonical and
observation space, and it is difficult to ensure bijectivity [58—00]. Classical backward mapping
strategy primarily sought to establish correspondences from observation space (x°) to canonical
space (z°), often expressed mathematically as solving for ¢ where LBS(w(x°), ¢, B) =
Since implicit representations do not explicitly store points, we denote positions in 3D space with
x, while w establishes a continuous skinning field in the canonical 3D space. As the relationship
between x° and ¢ remains unknown, it is impossible to obtain an analytical solution for x*
directly [61, 62]. Therefore, existing methods resort to cumbersome and time-consuming iterative
root-finding algorithms, which often require tens of hours of training.

In contrast, the explicit nature of Gaussians gives a one-to-one correspondence [63, 64] between
the canonical Gaussians G¢ and those G° in the observation space. The skinning weights W in
the canonical space are directly associated with the Gaussians themselves. The Gaussians act as
anchors for transferring the skinning weights from the canonical space to the observation space. Thus,
according to Eq. 3, p° can be elegantly obtained as T'~!p°. Given the estimated weights W' derived
from observation space, the positions p“* of the corrected canonical Gaussians are computed by
applying an inverse LBS transformation using the adjusted skinning weights W' as follows:

K
=, WiBy)'p". @

Cycle Consistency Loss. Cycle consistency loss L. is built on the hypothesis that, if Ambiguous
Gaussians are correctly identified and corrected, their mapping back to the canonical space will
perfectly recover the canonical model. Unfortunately, since the detection and correction process is
conducted in an unsupervised manner, the mapped canonical Gaussians G* cannot be used as new
canonical Gaussians directly. Instead, we use them as soft constraints to guide the refinement of
the original canonical Gaussians G¢. The cycle consistency loss L. is composed of a geometry
consistency loss (L4e,) and a skinning consistency loss (Lsxin). Note that cycle consistency loss
Lcyele 18 applied only to the detected Ambiguous Gaussians.

* Geometry Consistency Loss (L,.,): This loss encourages the positions of the original canonical
Gaussians p align with the corrected canonical Gaussians p*, enhancing the geometric consistency
of the model. The loss is defined as:

geo:|A‘ Z”p p||17
gi€A

» Skinning Consistency Loss (Lsyi,): This loss refines the skinning field by ensuring that the
skinning weights at the positions p* of the corrected canonical Gaussians G* align with the
corrected skinning weights W’. The loss is given by:

Lavin = T 20 Ile) = w13,

gi€A



where w(p*) denotes the original skinning weights at position p, and w’(p*) represents the
corrected skinning weights of the detected Ambiguous Gaussians.

Remark: Our backward mapping strategy boasts several attractive qualities. @ Transparency:
Central to our backward mapping strategy is the detection of Ambiguous Gaussians — a process
that is straightforward, intuitive, and readily interpretable by humans. Unlike traditional implicit
methods that operate as black boxes, our approach ensures full transparency in both detection and
correction stages. Whether identifying or correcting Ambiguous Gaussians, or dealing with the
resulting canonical Gaussians, each intermediate steps can be viewed and inspected (See Fig. 4). @
Flexibility: Our anomaly detection framework is not tied to a specific algorithm. Since we focus
solely on using anomaly detection algorithms to perform unsupervised detection of Ambiguous
Gaussians, TAGA can seamlessly integrate other point cloud anomaly detection methods into the
current framework. ® Robustness: By integrating anomaly detection to capture overlooked spatial
and semantic information, TAGA enables template-free reconstruction from limited pose data while
resolving ambiguities and spurious correlations that typically arise from this ill-posed problem in the
canonical space. @ Efficiency: TAGA utilizes the one-to-one correspondence of Gaussian represen-
tations to efficiently refine the canonical space, avoiding unnecessary exploration and focusing on
incremental improvements from a suboptimal reconstruction.

3.5 TRAINING OBJECTIVE

Bone Regularization Loss: To encourage accurate skinning without parametric templates, we impose
a rigid constraint by enforcing one-hot skinning weights at sampled points along each bone. The
loss function is defined as: Lyone = ||Wsampte — Wiyt |3, where Wgmpie represents the predicted
skinning weights at the sampled points, and Wy, denotes the ground truth one-hot vectors.

Loss Function. The complete loss function includes the bone regularization loss Lbone, the cycle
consistency loss Lcycle, and the reconstruction 10ss Lo, The full loss function is expressed as:

L= ﬁrecon + /\boneﬁbone + »Ccycle~ (8)

For detailed definitions and corresponding weights, please refer to the Appendix B.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method using two established benchmarks:

» ZJU-MoCap [7] is a comprehensive dataset that captures a diverse range of human poses. For our
experiments, we employ the monocular setup from InstantNVR[ | 3], utilizing images from “camera
4” are used for training, while the remaining 22 cameras serve for evaluation. Our experiments are
conducted on six specific subjects: 377, 386, 387, 392, 393, and 394.

* PeopleSnapshot [&] offers monocular videos of human subjects performing limited rotations in an
A-pose. We follow the InstantAvatar[ 2] setup and conduct experiments on four sequences.

Evaluation Metrics. Following the widely adopted protocols [65], we evaluate novel view and pose
synthesis using PSNR, SSIM, and LPIPS (scaled by 1000 for clarity).

Competitors. We compare TAGA with recent SOTA template-free and template-based methods. For
ZJU-MoCap [7], we compare TAGA with template-free methods (TAVA [14], HumanNeRF [15],
NPC [16]), as well as template-based methods, including NeRF-based methods (InstantAvatar [12],
InstantNVR [13]) and Gaussian-based method GART [ 1]. For PeopleSnapshot [&], which features
limited pose variations (self-rotating), we conduct experiments with the representative template-free
method HumanNeRF and template-based methods (InstantAvatar and Anim-NeRF [65]).

Reproducibility. TAGA is trained on one RTX 3090 Ti GPU. Testing is conducted on the same
machine. To guarantee reproducibility, our code and model weights will be released.
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Figure 5: Qualitative comparison on ZJU-MoCap [7] (§4.2).

4.2 COMPARISON RESULT

Comparisons on ZJU-Mocap [7]. As described in Table 2, TAGA provides notable perfor-
mances over all template-free methods across all metrics, including PSNR, SSIM, and LPIPS,
as well as state-of-the-art SMPL-based NeRF methods like InstantAvatar [12] and InstantNVR [13].
Compared to the SOTA template-free

competitor NPC [16], TAGA exhibits Table 2: Quantitative results on ZJU-MoCap [7] (§4.2).
substantial gains, achieving a PSNR Method SMPL Novel view

of 31.22 compared to 30.76, an in- GPU| FPS 1 ||PSNRT SSIM? LPIPS*|
crease in SSIM from 0.969 to 0.977, GART [11]] v 0.1h 462 || 3231 0.982 24.91
and a notable reduction in LPIPS* InstantAvatar [12] | v/ 3m 415 || 29.73 0938  68.41
from 30.84 to 29.21. Benefiting from InstantNVR [13]| v/ 5m 220 || 31.01 0971 3845
the efficient 3D Gaussian splatting, TAVA [14] 72h 001 || 3024 0969 35.23
TAGA reduces training time to 0.5 HumanNeRF [15] 10h 030 || 30.66 0969 33.38
hours, which is 20 x faster than Hu- NPC [16] 30h 025 || 30.76 0.960 30.84
manNeRF [15] (10 hours) and 60 x TAGA (Ours) 0.5h 140 || 31.22 0977 29.21

faster than NPC (30 hours). In terms

of inference, TAGA achieves real-time rendering rates at 140 FPS, surpassing the implicit represen-
tation counterpart HumanNeRF (0.3 FPS) by 470 x and being 560 x faster than the explicit point
cloud method NPC (0.25 FPS). Moreover, TAGA achieves comparable performance with the latest
template-based Gaussian method, GART [ 1], without reliance on any template prior.

Qualitative comparisons for novel view synthesis are shown in Fig. 5. Methods like TAVA [14],
InstantNVR [13], and InstantAvatar [12] employ traditional iterative root-finding algorithms for
modeling canonical appearance. However, these methods face challenges in capturing high-frequency
details like loose clothing, resulting in blurry outputs and occasional severe distortions. Human-
NeRF [15] performs well overall, preserving details of loose clothing, but encounters difficulties with
facial and hand details and shows artifacts along edges. The explicit method NPC [16] suffers from
significant artifacts with loose clothing due to its reliance on fixed point clouds, which are unable
to adapt to complex non-rigid deformations. In contrast, TAGA excels at reconstructing realistic
high-frequency details like facial features, clothing, and hands, with fewer artifacts.

Comparisons on PeopleSnapshot [8]. For PeopleSnapshot, characterized by highly repetitive poses,
TAGA demonstrates substantial improvement over the template-free baseline, HumanNeRF [15],
which performs well on the ZJU-Mocap dataset. Quantitative results can be found in Table 3. As
an example, in the male-3-casual sequence, notable enhancements are observed in PSNR (29.12
vs 26.13), SSIM (0.970 vs 0.955), and LPIPS* (21.7 vs 27.7). Futhermore, TAGA significantly
outperforms the SMPL-based method Anim-NeRF [65], while achieving performance on par with
the leading SMPL-based method, InstantAvatar [12].



Table 3: Quantitative results on PeopleSnapshot [8] (§4.2).

Method female3-casual female4-casusal male3-casual male4-casual
GPU/ FPS?1|[PSNR1 SSIM* LPIPS* | |PSNR1 SSIM?1 LPIPS* | |[PSNRT SSIM1 LPIPS*||PSNR1 SSIM T LPIPS* ||
Anim-NeRF [65][| 13h 0.1 || 23.87 0.950 34.6 2437 0945 38.2 2494 0943 326 2471 0947 423
InstantAvatar [12]|| S5m 15 || 2790 0972 249 28.92 0.969 18.0 29.65 0.973 19.2 2797 0965 34.6

HumanNeRF [15]]| 5h 0.1 || 23.82 0.948 37.6 |26.76 0960 23.7 |26.13 0955 27.7 |2446 0936 502
TAGA (Ours)|| 30m 140 || 24.99 0956 32.2 | 28.40 0.967 208 |29.12 0970 21.7 |26.73 0.958 36.5
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Figure 6: Qualitative results on PeopleSnapshot [3] (§4.2). We display reconstructed avatars from various
viewpoints, canonical poses, and novel pose animations.

Fig. 6 presents the qualitative results of HumanNeRF [15] and TAGA for test views and novel poses.
In test views, HumanNeRF faces difficulties in head reconstruction, leading to distorted facial details.
This challenge stems from the ambiguous correspondences introduced by inverse skinning when
attempting to reversing multiple observation. In contrast, TAGA benefits from the inherent one-to-one
correspondence of explicit Gaussians, resulting in more consistent canonical reconstructions.

To further evaluate the animation capabilities of HumanNeRF [15] and TAGA, we animate models
trained on PeopleSnapshot using canonical poses and challenging motion sequences from AIST++ [9].
As shown in Fig. 6, HumanNeRF performs poorly in canonical poses, with clear artifacts at the seam
between the legs and an unrealistic reconstruction of the underarm geometry. This suggests that
HumanNeRF struggles to resolve spurious correlation between body parts in close proximity. In
contrast, TAGA successfully reconstructs accurate geometry, even without ground-truth annotation
of canonical pose. Although minor noise is present, this is likely due to the occlusion of underarms
and the region between the legs in the PeopleSnapshot dataset. Additionally, TAGA demonstrates
significantly better generalization to novel poses, whereas HumanNeRF exhibits prominent artifacts
around the clothing and joint boundaries.

4.3 DIAGNOSTIC EXPERIMENT

As the motions in ZJU-MoCap [7] and PeopleSnapshot [8] are usually repetitive, they lack ground
truth annotations for uncommon poses, such as canonical pose. To evaluate the model’s ability to
animate out-of-distribution poses, we utilize SOTA SMPL-based method GART [ 1], to generate
pseudo-ground truth for a set of representative poses sampled from the AIST++ [9]. Specifically,
we use male-3-casual sequence from PeopleSnapshot to conduct our ablation experiments. The
qualitative and quantitative results are shown in Fig. 7 and Table 4.
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Figure 7: Diagnostic experiment (§4.3). (a) The effect of L4e, and Ly on canonical appearance. (b) Artifacts
w/o soft constraints. (c) Skinned point clouds for the full model and w/o L geo& Lskin. (d) The impact of Lygin
on identifying ambiguous Gaussians (marked as black points).

Backward Strategy. The quantitative results in Table 4 show a significant performance drop when
different backward mapping strategies, such as L0, Lskin, and soft constraints, are removed.
For instance, without £, and L, PSNR decreases to 24.10, SSIM drops 0.9393, and LPIPS*
increases to 48.6, compared to the full model’s PSNR of 28.89, SSIM of 0.9685, and LPIPS* of 23.1.
Similarly, removing Ly leads to a performance drop (PSNR: 26.92, SSIM: 0.9567, LPIPS*: 32.1).
Furthermore, the model without soft constraints also shows degradation across all metrics, indicating
a decline in animation performance.

For qualitative results, Fig. 7(a) highlights noticeable Table 4: Ablative experiments on backward strat-
artifacts at the joint seams, such as those between egy for male-3-casual sequence (§4.3).
the arms and torso and between the legs. For exam- —
le, in the armpit region, artifacts suggest that cer- OUEEL [PIoE
?ain Gaussians I;)houli belong to the togrfo. However, R PSNRT SSIMf LPIPS*|
Fig. 7(c) shows they are incorrectly influenced by the | W/0 Lgeo and Lygin || 24.10 0.9393  48.6
arm. Without backward mapping, these ambiguous w/0 Lkin 259209567 321
Gaussians remain undetected and uncorrected, lead- | /¢ soft constraints || 26.92 0.9567  32.1
ing to severe artifacts in canonical space. As shown TAGA (Ours) 2889 09685 231
in Fig. 7(d), removing L, causes certain ambiguous Gaussians to be detected but not corrected
throughout the entire backward phase. This occurs because L. can optimize their positions in
normalized space but cannot adjust the canonical skinning field. As a result, even though these
Gaussians are correctly positioned, they still appear ambiguous due to the incorrect skinning field.

5 CONCLUSION

In this study, we tackle the challenge of reconstructing a canonical avatar from monocular videos with
limited poses, without relying on parametric templates. We demonstrate that leveraging semantic and
spatial cues from observations can compensate for the limited visual information during canonical
reconstruction. Following this insight, we utilize the inherent bijectivity of Gaussians to design a
coarse-to-fine forward-backward framework named TAGA that self-supervises the optimization of
skinning and geometry in the canonical space. To this end, we propose a new backward mapping
strategy that integrates anomaly detection to capture robust spatial and semantic inductive biases
from the observed space, allowing for transparent correction of erroneous geometric artifacts caused
by Ambiguous Gaussians in the canonical space. Extensive experiments demonstrate the robustness
and efficiency of TAGA. We believe our contributions provide novel insights into template-free
reconstruction, taking an important step towards overcoming the limitations imposed by parametric
templates and observations with low diversity.

10



REFERENCES

[1] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: A skinned multi-
person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp.
851-866 (2023) 1

[2] Zuffi, S., Kanazawa, A., Jacobs, D.W., Black, M.J.: 3d menagerie: Modeling the 3d shape and
pose of animals. In: CVPR (2017) 1

[3] Yang, G., Sun, D., Jampani, V., Vlasic, D., Cole, F,, Liu, C., Ramanan, D.: Viser: Video-specific
surface embeddings for articulated 3d shape reconstruction. In: NeurIPS (2021)

[4] Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Seminal Graphics
Papers: Pushing the Boundaries, Volume 2 (2023)

[5] Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and
expression from 4d scans. ACM TOG 36(6), 194—1 (2017)

[6] Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A., Tzionas, D., Black, M.J.:
Expressive body capture: 3d hands, face, and body from a single image. In: CVPR (2019) 1

[7] Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X.: Neural body: Implicit
neural representations with structured latent codes for novel view synthesis of dynamic humans.
In: CVPR (2021) 3,7,8,9, 17, 18

[8] Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of
3d people models. In: CVPR (2018) 3,7, 8,9, 17, 18, 19

[9] Li, R., Yang, S., Ross, D.A., Kanazawa, A.: Ai choreographer: Music conditioned 3d dance
generation with aist++. In: ICCV (2021) 3,9
[10] Qian, Z., Wang, S., Mihajlovic, M., Geiger, A., Tang, S.: 3dgs-avatar: Animatable avatars via
deformable 3d gaussian splatting. In: CVPR (2024) 3

[11] Lei, J., Wang, Y., Pavlakos, G., Liu, L., Daniilidis, K.: Gart: Gaussian articulated template
models. In: CVPR (2024) 3,7,8,9, 17

[12] Jiang, T., Chen, X., Song, J., Hilliges, O.: Instantavatar: Learning avatars from monocular video
in 60 seconds. In: CVPR (2023) 3,7, 8,9, 16, 17

[13] Geng, C., Peng, S., Xu, Z., Bao, H., Zhou, X.: Learning neural volumetric representations of
dynamic humans in minutes. In: CVPR (2023) 3, 7, 8, 17

[14] Li, R., Tanke, J., Vo, M., Zollhofer, M., Gall, J., Kanazawa, A., Lassner, C.: Tava: Template-free
animatable volumetric actors. In: ECCV (2022) 2, 3,7, 8, 17

[15] Weng, C.Y., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman, I.: Humannerf:
Free-viewpoint rendering of moving people from monocular video. In: CVPR (2022) 2, 3, 7, 8,
9,17

[16] Su, S.Y., Bagautdinov, T., Rhodin, H.: Npc: Neural point characters from video. In: ICCV
(2023) 2,3,7,8, 17

[17] Lin, W., Zheng, C., Yong, J.H., Xu, F.: Relightable and animatable neural avatars from videos.
In: AAAI (2024) 3

[18] Peng, S., Dong, J., Wang, Q., Zhang, S., Shuai, Q., Zhou, X., Bao, H.: Animatable neural
radiance fields for modeling dynamic human bodies. In: ICCV (2021)

[19] Xue, Y., Bhatnagar, B.L., Marin, R., Sarafianos, N., Xu, Y., Pons-Moll, G., Tung, T.: Nsf:
Neural surface fields for human modeling from monocular depth. In: ICCV (2023)

[20] Guo, C., Jiang, T., Chen, X., Song, J., Hilliges, O.: Vid2avatar: 3d avatar reconstruction from
videos in the wild via self-supervised scene decomposition. In: CVPR (2023)

[21] Xiao, J., Zhang, Q., Xu, Z., Zheng, W.S.: Neca: Neural customizable human avatar. In: CVPR
(2024)

[22] Li, Z., Zheng, Z., Liu, Y., Zhou, B., Liu, Y.: Posevocab: Learning joint-structured pose
embeddings for human avatar modeling. In: SIGGRAPH (2023)

[23] Siarohin, A., Menapace, W., Skorokhodov, I., Olszewski, K., Ren, J., Lee, H.Y., Chai, M.,
Tulyakov, S.: Unsupervised volumetric animation. In: CVPR (2023)

11



[24] Hu, S., Hong, F., Pan, L., Mei, H., Yang, L., Liu, Z.: Sherf: Generalizable human nerf from a
single image. In: ICCV (2023) 3

[25] Shen, K., Guo, C., Kaufmann, M., Zarate, J.J., Valentin, J., Song, J., Hilliges, O.: X-avatar:
Expressive human avatars. In: CVPR (2023) 3

[26] Zheng, Y., Abrevaya, V.F.,, Biihler, M.C., Chen, X., Black, M.J., Hilliges, O.: Im avatar: Implicit
morphable head avatars from videos. In: CVPR (2022)

[27] Karthikeyan, A., Ren, R., Kant, Y., Gilitschenski, I.: Avatarone: Monocular 3d human animation.
In: WACV (2024) 3

[28] Dong, Z., Guo, C., Song, J., Chen, X., Geiger, A., Hilliges, O.: Pina: Learning a personalized
implicit neural avatar from a single rgb-d video sequence. In: CVPR (2022)

[29] Yin, Y., Guo, C., Kaufmann, M., Zarate, J.J., Song, J., Hilliges, O.: Hi4d: 4d instance
segmentation of close human interaction. In: CVPR (2023)

[30] Wang, S., Schwarz, K., Geiger, A., Tang, S.: Arah: Animatable volume rendering of articulated
human sdfs. In: ECCV (2022) 3

[31] Abdal, R., Yifan, W., Shi, Z., Xu, Y., Po, R., Kuang, Z., Chen, Q., Yeung, D.Y., Wetzstein, G.:
Gaussian shell maps for efficient 3d human generation. In: CVPR (2024) 3

[32] Zheng, S., Zhou, B., Shao, R., Liu, B., Zhang, S., Nie, L., Liu, Y.: Gps-gaussian: Generalizable
pixel-wise 3d gaussian splatting for real-time human novel view synthesis. In: CVPR (2024)

[33] Chen, G., Wang, W.: A survey on 3d gaussian splatting. arXiv preprint arXiv:2401.03890 (2024)
3

[34] Hu, S., Hu, T., Liu, Z.: Gauhuman: Articulated gaussian splatting from monocular human
videos. In: CVPR (2024) 17

[35] Li, Z., Zheng, Z., Wang, L., Liu, Y.: Animatable gaussians: Learning pose-dependent gaussian
maps for high-fidelity human avatar modeling. In: CVPR (2024)

[36] Kocabas, M., Chang, J.H.R., Gabriel, J., Tuzel, O., Ranjan, A.: Hugs: Human gaussian splats.
In: CVPR (2024)

[37] Pang, H., Zhu, H., Kortylewski, A., Theobalt, C., Habermann, M.: Ash: Animatable gaussian
splats for efficient and photoreal human rendering. In: CVPR (2024)

[38] Shao, Z., Wang, Z., Li, Z., Wang, D., Lin, X., Zhang, Y., Fan, M., Wang, Z.: Splattingavatar:
Realistic real-time human avatars with mesh-embedded gaussian splatting. In: CVPR (2024)

[39] Hu, L., Zhang, H., Zhang, Y., Zhou, B., Liu, B., Zhang, S., Nie, L.: Gaussianavatar: Towards

realistic human avatar modeling from a single video via animatable 3d gaussians. In: CVPR
(2024)

[40] Wen, J., Zhao, X., Ren, Z., Schwing, A.G., Wang, S.: Gomavatar: Efficient animatable human
modeling from monocular video using gaussians-on-mesh. In: CVPR (2024)

[41] Zhang, R., Chen, J.: Mesh-centric gaussian splatting for human avatar modelling with real-time
dynamic mesh reconstruction. In: ACM MM (2024) 3

[42] Su, S.Y., Bagautdinov, T., Rhodin, H.: Danbo: Disentangled articulated neural body representa-
tions via graph neural networks. In: ECCV (2022) 3

[43] Yu, Z., Cheng, W., Liu, X., Wu, W., Lin, K.Y.: Monohuman: Animatable human neural field
from monocular video. In: CVPR (2023) 3

[44] Mohamed, M., Agapito, L.: Gnpm: Geometric-aware neural parametric models. In: 3DV
(2022)

[45] Mihajlovic, M., Zhang, Y., Black, M.J., Tang, S.: Leap: Learning articulated occupancy of
people. In: CVPR (2021)

[46] Kant, Y., Siarohin, A., Guler, R.A., Chai, M., Ren, J., Tulyakov, S., Gilitschenski, I.: Invertible
neural skinning. In: CVPR (2023)

[47] Bhatnagar, B.L., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: Loopreg: Self-supervised
learning of implicit surface correspondences, pose and shape for 3d human mesh registration.
In: NeurIPS (2020)

12



[48] Saito, S., Yang, J., Ma, Q., Black, M.J.: Scanimate: Weakly supervised learning of skinned
clothed avatar networks. In: CVPR (2021) 3

[49] Mihajlovic, M., Bansal, A., Zollhoefer, M., Tang, S., Saito, S.: Keypointnerf: Generalizing
image-based volumetric avatars using relative spatial encoding of keypoints. In: ECCV (2022)

[50] Zheng, Z., Huang, H., Yu, T., Zhang, H., Guo, Y., Liu, Y.: Structured local radiance fields for
human avatar modeling. In: CVPR (2022)

[51] Huang, Z., Chen, Y., Kang, D., Zhang, J., Tu, Z.: Phrit: Parametric hand representation with
implicit template. In: ICCV (2023)

[52] Kerbl, B., Kopanas, G., Leimkiihler, T., Drettakis, G.: 3d gaussian splatting for real-time
radiance field rendering. ACM TOG 42(4), 139-1 (2023) 5

[53] Yang, G., Vo, M., Neverova, N., Ramanan, D., Vedaldi, A., Joo, H.: Banmo: Building animatable
3d neural models from many casual videos. In: CVPR (2022) 5

[54] Yao, C.H., Hung, W.C., Li, Y., Rubinstein, M., Yang, M.H., Jampani, V.: Hi-lassie: High-fidelity
articulated shape and skeleton discovery from sparse image ensemble. In: CVPR (2023)

[55] Zhang, H., Li, F., Rawlekar, S., Ahuja, N.: Learning implicit representation for reconstructing
articulated objects. In: ICLR (2024)

[56] Yang, G., Sun, D., Jampani, V., Vlasic, D., Cole, F., Chang, H., Ramanan, D., Freeman, W.T.,
Liu, C.: Lasr: Learning articulated shape reconstruction from a monocular video. In: CVPR
(2021)

[57] Yang, K., Shang, H., Shi, T., Chen, X., Zhou, J., Sun, Z., Yang, W.: Asm: Adaptive skinning
model for high-quality 3d face modeling. In: ICCV (2023) 5

[58] Lombardi, S., Yang, B., Fan, T., Bao, H., Zhang, G., Pollefeys, M., Cui, Z.: Latenthuman:
Shape-and-pose disentangled latent representation for human bodies. In: 3DV (2021) 6

[59] Guo, X., Sun, J., Dai, Y., Chen, G., Ye, X., Tan, X., Ding, E., Zhang, Y., Wang, J.: Forward flow
for novel view synthesis of dynamic scenes. In: ICCV (2023)

[60] Xu, Y., Wang, L., Zhao, X., Zhang, H., Liu, Y.: Avatarmav: Fast 3d head avatar reconstruction
using motion-aware neural voxels. In: SIGGRAPH (2023) 6

[61] Chen, X., Zheng, Y., Black, M.J., Hilliges, O., Geiger, A.: Snarf: Differentiable forward
skinning for animating non-rigid neural implicit shapes. In: ICCV (2021) 6

[62] Chen, X., Jiang, T., Song, J., Rietmann, M., Geiger, A., Black, M.J., Hilliges, O.: Fast-snarf: A
fast deformer for articulated neural fields. [IEEE TPAMI (2023) 6

[63] Ma, S., Weng, Y., Shao, T., Zhou, K.: 3d gaussian blendshapes for head avatar animation. In:
SIGGRAPH (2024) 6

[64] Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3d gaussians: Tracking by persistent
dynamic view synthesis. In: 3DV (2024) 6

[65] Chen, J., Zhang, Y., Kang, D., Zhe, X., Bao, L., Jia, X., Lu, H.: Animatable neural radiance
fields from monocular rgb videos. arXiv preprint arXiv:2106.13629 (2021) 7, 8,9, 17

[66] Riiegg, N., Tripathi, S., Schindler, K., Black, M.J., Zuffi, S.: Bite: Beyond priors for improved
three-d dog pose estimation. In: CVPR (2023)

13



SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2025 submission, titled TAGA: Template-Free

Animatable Gaussian Avatars With Forward-Backward Consistency. The appendix is organized as
follows:

* §A provides the pseudo code of TAGA.

¢ §B introduces the details of loss function.

* §C introduces the training and inference details of TAGA.

* §D introduces the implementation details of baselines to compare.
* §E reports additional diagnostic experiments.

» §F gathers additional qualitative results on several dataset.

» §G discusses our limitations and directions of future work.
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Algorithm S1 Pseudo code for Ambiguous Gaussian Detection and Correction in a PyTorch-like

style.

e

N: number of Gaussians

K: number of bones

D_i: indicator function for Ambiguous Gaussians

gamma: responsibilities in EM algorithm (N, K)

pi_j: mixture weights in GMM (K, 1)

ambiguous_gaussians: binary mask indicating Ambiguous Gaussians (N, 1)

def detect_ambiguous_gaussians (G, W, threshold):

# Step 1: Initialize GMM parameters
Sigma_j = initialize_covariance(G) # (K, 3, 3)
pi_j = initialize_mixture_weights(G) # (K, 1)

# Step 2: Perform EM algorithm

for iteration in range (max_iterations):
# E-step: Calculate responsibilities
gamma = compute_responsibilities (G, Sigma_j, pi_3Jj) # (N,K)
gamma_prime = refine_responsibilities(gamma, W) # (N,K)

# M-step: Update GMM parameters based on refined
responsibilities

Sigma_j = update_covariance_matrix(gamma_prime, G) # (K, 3, 3)

pi_Jj = update_mixture_weights (gamma_prime) # (K, 1)

# Step 3: Detect Ambiguous Gaussians using confidence scores

S = compute_confidence_scores (gamma_prime, W) # (N, 1)

ambiguous_gaussians = detect_ambiguous (S, threshold) # Binary
mask indicating Ambiguous Gaussians (N, 1)

if convergence_reached (ambiguous_gaussians) :
break

# Output: Binary mask (0 or 1) indicating Ambiguous Gaussians
return ambiguous_gaussians # (N, 1)

def correct_ambiguous_gaussians (G, W, ambiguous_gaussians):

corrected_weights = W.clone () # (N, K)

for g_i in range(len(G)):
if ambiguous_gaussians[g_i] == 1: # Check if the Gaussian is
ambiguous
# Find K-nearest neighbors from non-Ambiguous Gaussians
nearest_neighbors = find_K_nearest_neighbors(G[g_i], GI[
ambiguous_gaussians == 0]

# Select the neighbor with the highest similarity score
best_neighbor = select_best_neighbor(G[g_1i], nearest_neighbors)

# Update the weight for the Ambiguous Gaussian using the best
neighbor’s weight
corrected_weights[g_i] = best_neighbor.wW

return corrected_weights # (N, K)

A  PSEUDO CODE OF DNC AND CODE RELEASE

To facilitate a comprehensive understanding of TAGA, we provide pseudo code for our Ambiguous
Gaussian Detection and Correction module in Algorithm S1.

B DETAILS OF LOSS FUNCTION

Our full loss function can be formulated as follows:

L= »C'r'econ + )\boneﬁbone + ['cycle~ (9)

Reconstruction Loss L,...,,: During each training iteration, we compute the pixel-wise reconstruc-
tion error using L1 loss £;1, while SSIM loss L., is employed to assess the structural similarity
between the predicted and ground truth images. Additionally, we incorporate LPIPS loss Lpips,
leveraging a pre-trained VGG network as the backbone to evaluate perceptual similarity by extracting
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Table S1: Loss functions applied during different optimization phases in the training process (§C).

Loss H Warm-up | Gaussian opt | MLP opt | Backward opt | After Backward ‘

Lbone 4 v v 4
£T'ECOTL / / / /
[:cycle v

high-level features. The overall reconstruction 108s L;.ccop, is then defined as:
Erecon = Lll + )\ssim,ﬁssim + )\lpips‘cl;m'p& (10)

Bone Regularization Loss Ly,,,.: Given the absence of parametric templates for skinning regulariza-
tion, we impose a rigid constraint during the skinning learning process to promote better convergence.
Specifically, we sample K =1 point at the midpoint of each bone. For leaf joints, we introduce a
virtual joint located along the extension of the line connecting the joint and its parent, using this as
the sample point. We then enforce that the skinning weights at these sampled points resemble one-hot
vectors. The loss function is defined as:

»Cbone - ||Wsample - Wgt”% (11)

Here, W 4mpie represents the predicted skinning weights for the sampled points in the canonical
space, and W, denotes the ground truth one-hot skinning weights.

Cycle Consistency Loss L.,.i.: Please refer to §3.4 in the main paper for details. The overall cycle
consistency loss is then defined as:

‘Ccycle = )\geoﬁgeo + A‘s‘kz"n‘cskin- (12)

We set the loss weights as follows: Aggim =0.01, Ajpips = 0.5, Apone =0.5, Ageo = 1000, Agpin =10
for all experiments. The application of these loss terms at different optimization phases is summarized
in Table S1, which details the activation schedule of each loss function.

C IMPLEMENTATION DETAILS

Training. The training of TAGA is organized into several phases aimed at optimizing skinning and
canonical appearance in a template-free environment. We begin with a warm-up phase to learn a rigid
skinning field, during which the skinning weight field is optimized independently. Following this, we
enter the main training phase. For the first 1.5K iterations, all components are frozen except for the
3D Gaussians. These Gaussians, driven by the pre-trained rigid skinning field, autonomously refine
the positions and appearance in canonical space. Subsequently, we commence the optimization of the
voxel-based skinning field, continuing to enforce the skinning weights regularization Lpop.. After
2.5K iterations, the backward mapping stage is activated, utilizing a cycle consistency 1oss Lcycie
to address geometrical errors within the canonical space and further refine the skining field. The
backward mapping phase is introduced only after the forward mapping reconstruction has stabilized,
thereby ensuring that it serves to refine the geometry rather than disrupt it. To mitigate computational
overhead, backward mapping is performed every 150 steps, with the positions and skinning weights
of corrected Gaussians cached as soft constraints to continuously guide the optimization of canonical
Gaussians. This strategy distributes the cost of ambiguity detection and correction across iterations,
minimizing the impact on computational efficiency.

Due to the extremely limited pose in the PeopleSnapshot, some regions such as the armpits are
occluded during training and remain unseen. To mitigate this issue and improve the model’s ability to
reconstruct these occluded areas, we add noise to the pose during the backward phase. Specifically,
throughout the entire backward phase, we perturb the bone transfromation matrix B by adding noise
sampled from a normal distribution A/(0, 0.1) with a probability of p = 0.5.

Moreover, given the sparsity of skinning weights -— where each Gaussian is typically influenced
by at most a few bones —we focus only on the bone with the highest posterior probability and its
immediate neighboring bones when estimating the coarse skinning weights.

Inference. For Inference, we solely employ forward-mapping, leveraging the optimized skinning
weights and the refined geometry. Similar to InstantAvatar [12], test-time pose refinement is also
employed to enhance the results.
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Table S2: Ablative experiments on voxel grid resolution for male-3-casual sequence of PeopleSnapshot (§E).
The adopted hyperparameter is marked in red.

Novel pose
PSNR?T SSIM?T LPIPS*|
16 x 16 x 4 4GB |20min| 24.84 0.9475 349
32 x32x8 6GB |24min| 27.89 0.9664  25.9
64 x 64 x 16 10GB |37min| 28.89 0.9685  23.1

128 x 128 x 16|| 40GB |70min| 28.22 0.9687 25.1

Table S3: Per-scene breakdown in novel view synthesis on ZJU-MoCap dataset (§C).

Resolution Memory | GPU

Method Subject 377 Subject 386 Subject 387
PSNR1 SSIM?T LPIPS*||PSNR{ SSIMfT LPIPS*||PSNRf SSIMft LPIPS*|
HumanNeRF [15]] 31.12 0.977 22.80 | 33.31 0.973 3348 | 2827 0.962 38.89
NPC[16]| 31.80 0974 1631 | 33.01 0965 30.69 | 27.26 0.948 42.85
InstantAvatar [12]| 30.91 0.967 40.89 | 32.63 0.956 5230 | 27.09 0.927 9525
TAVA [14]] 31.16 0979 2425 | 32.89 0977 31.86 | 26.80 0.958 43.40
TAGA (Ours) | 34.31 0.988 18.1 3427 0981 29.22 | 2899 0.969 38.13
Method Subject 392 Subject 393 Subject 394
PSNRT SSIM?t LPIPS*| |PSNRT SSIMt LPIPS*||PSNRT SSIM{ LPIPS*|
HumanNeRF [15]| 31.34 0971 33.57 | 29.19 0964 36.88 | 30.74 0966 34.67
NPC[16]| 32.31 0963 29.76 | 29.08 0953 35.69 | 31.14 0957 29.74
InstantAvatar [12]| 30.98 0.951 6570 | 29.09 0943 6743 | 30.15 0949 5594
TAVA [14]] 31.12 0971 36.78 | 28.78 0.963  40.25 | 30.67 0.968 34.82
TAGA (Ours)| 32.94 0979 3191 | 30.17 0971 3533 | 3221 0976 30.70

D IMPLEMENTATION DETAILS FOR BASELINES

ZJU-Mocap [7]. For baseline methods InstantNVR [13], HumanNeRF [15], and GART [I1],
we utilize their official implementations and adopt the results reported in InstantNVR [13]. For
InstantAvatar [12], we retrieve the ZJU-Mocap implementation from GauHuman and use the reported
performance metrics [34]. For NPC [16], we obtain the official implementation for subject 387 in the
ZJU-Mocap from the authors and apply the same parameter settings to evaluate other subjects within
the dataset. For TAVA [14], which is not trained on the same data split as InstantNVR, we use its
public code to retrain a new model.

PeopleSnapshot [8]. For Anim-NeRF [65] and InstantAvatar [12], we utilize the reported results
from InstantAvatar. For HumanNeRF [15], we retrain the model on the PeopleSnapshot dataset using
the official code.

All reproduced baseline code and corresponding weights will be released to facilitate further research.

E ADDITIONAL DIAGNOSTIC EXPERIMENT

Voxel Resolution. Table S2 shows the impact of voxel grid resolution on novel pose performance.
Generally, higher resolutions lead to higher accuracy but longer training time. A resolution of
64 x 64 x 16 yields a good balance between accuracy and speed, achieving a PSNR of 28.89, SSIM
of 0.9685, and LPIPS* of 23.1, with a reasonable GPU memory usage of 10GB and a training time of
37 minutes. Lower resolutions, such as 16 x 16 x 4, significantly degrade performance (with PSNR
dropping to 24.84 and SSIM to 0.9475) while offering only marginal gains in speed. On the other
hand, higher resolutions like 128 x 128 x 32 require over an hour of training time and more than 4
times the memory usage, yet do not yield improvements in novel pose performance. This may be
because the high resolution of the grid makes the voxel-based skinning field less stable.

F ADDITIONAL RESULTS

Quantitative Results of Per-scene Breakdown on ZJU-Mocap. We show the per-scene PSNR,
SSIM and LPIPS on ZJU-MoCap in Table S3.
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Figure S1: Qualitative comparison of novel view synthesis on zju-MoCap [7] (§F).

Qualitative Results on ZJU-MoCap [7]. In Fig. S1, we present novel view synthesis results for the
remaining three subjects in the ZJU-MoCap dataset. NPC and InstantAvatar methods produce blurry
reconstruction results, failing to capture fine details. HumanNeRF show relatively good visual quality,
but some artifacts are noticeable around the edges. In contrast, TAGA achieves the best overall visual
quality, effectively minimizing artifacts and preserving sharpness and detail throughout the entire
image.

Qualitative Results on PeopleSnapshot [8]. In Fig. S2, we present additional novel view compar-
isons on the PeopleSnapshot dataset. HumanNeRF relies on pose-specific backward skinning to
model canonical appearance. However, the limited variety of poses in the PeopleSnapshot hinders its
performance, leading to incomplete reconstructions of the head and noticeable artifacts along the
edges.

G DISCUSSION

Limitation. While TAGA demonstrates significant advancements in template-free modeling, it is
important to acknowledge certain limitations that could impact its applicability in more complex
scenarios: i) Non-rigid Deformations: TAGA struggles with excessively loose clothing or extreme
non-rigid deformations. Such scenarios can disrupt the learning process for template-free skinning
and pose challenges in generalizing to unseen poses. ii) Unseen Details and Artifacts: Although
TAGA reduces the reliance on precise pose input and effectively addresses geometric artifacts of
self-contact regions, it is still challenging to handle unseen details in the input data. Even when a
Gaussian is placed correctly, issues such as holes or rendering artifacts may persist, especially in
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Figure S2: Additional qualitative results on PeopleSnapshot [8] (§E).

regions not visible in the input data. This limitation is a common challenge faced by other methods
as well, indicating that further improvements are necessary.

Future Work. TAGA lays the groundwork for several promising future directions: i) While TAGA
successfully reduces the dependency on parametric templates, it still relies on coarse pose or skeleton
data. Future efforts could focus on integrating advanced skeleton extraction algoriithms or utilizing
keypoints from existing models to better handle diverse object categories. ii) In this work, the
anomaly detection algorithm we used is relatively basic. Future work could enhance this aspect by
incorporating additional priors, such as category-specific classifiers, general image pretrained models,
or even generative models. These improvements could help in identifying and correcting Ambiguous
Gaussians, thereby addressing artifacts in avatar reconstruction. We believe that our proposed
backward mapping strategy could become an attractive solution for 3D Gaussian representations to
address underconstrained animatable avatar reconstruction scenarios.
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