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Abstract

The goal of domain generalization is to train models that generalize well to unseen
domains. To this end, the typical strategy is two-stage: first pre-training the
network on a large corpus, then fine-tuning on the task’s training domains. If the
pre-training dataset is large enough, this pre-training is efficient because it will
contain samples related to the unseen domains. Yet, large pre-training is costly and
possible only for a few large companies. Rather than trying to cover all kinds of
test distributions during pre-training, we propose to add a third stage: editing the
featurizer after fine-tuning. To this end, we interpolate the featurizer with auxiliary
featurizers trained on auxiliary datasets. This merging via weight averaging edits
the main featurizer by including the features mechanisms learned on the auxiliary
datasets. Empirically, we show that this editing strategy improves the performance
of existing state-of-the-art models on the DomainBed benchmark by adapting the
featurizer to the test domain. We hope to encourage updatable approaches beyond
the direct transfer learning strategy.

1 Introduction: the art of fine-tuning

Distribution shifts between train and test data can reduce the performance of deep neural networks
[1, 2]. Thus, learning models that generalize well to unseen domains is critical as those models
are now vastly deployed for real-world applications in many different contexts [3, 4]. The current
paradigm for domain generalization is transfer learning [5, 6]: we pre-train a model on a large
dataset and then fine-tune it on the available domains for the task.

The goal of the pre-training is to obtain the best possible featurizer. Though different learning
objectives generalize differently [7, 8, 9, 10, 11], recent works suggest that the main differences lie
in the pre-training data distribution [12, 13, 14, 15] and the learnt features diversity [16, 17, 18]. To
mitigate distribution shifts, this dataset should ideally contain diverse images with diverse concepts; it
would transfer diverse features that can match domains [19], facilitate the optimization [20, 21], and
overall generalize well on all kinds of distributions. Yet, under a limited pre-training budget, the ideal
pre-training is task-dependent [22, 13, 23]. Amortizing the computational cost is at the cornerstone
of the “foundation models” paradigm [24]. Yet, only a few companies are capable of collecting
the necessary huge-and-diverse data and deploying the hardwares. This is a major limitation to the
community with risks of centralization, monetization, privacy issues and lack of transparency [25]. To
reduce the reliance on proprietary models, there is a need of alternative strategies involving individual
stakeholders leveraging only open-source datasets such as ImageNet [26].

A promising lead is inter-training: recent works [27, 28, 29, 30, 31, 32] leveraged auxiliary datasets
to enrich the featurizer. They fine-tune the model on a task, “intermediate” between the pre-training
and the target tasks. We show the benefits but also the main limitation of inter-training: the auxiliary
task should be adapted to the test domain, yet unavailable at initialization in domain generalization.
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Figure 1: Different learning strategies.

In this paper, we propose a novel editing strat-
egy to enrich the features; we edit the featur-
izer after fine-tuning, as illustrated in Figure 1.
Our featurizer is interpolated towards featuriz-
ers trained on auxiliary datasets. Operating after
training enables us to choose the adequate in-
terpolating coefficients at test time, and thus to
cheaply adapt the featurizer in function of the
test domain. This is a radical departure from
existing transfer learning strategies, that tried
to anticipate all kind of distributions at initial-
ization. Applied on the reference DomainBed
benchmark [33] in Section 4, editing after train-
ing improves the performance of state-of-the-art
domain generalization strategies.

Our main contributions are the following:

1. We highlight a key limitation of the inter-training strategy in Section 2.
2. We show that we can enrich the featurizer after fine-tuning and propose in Section 3 a three-

stage strategy to improve domain generalization; pre-training on a large corpus, fine-tuning
on the available training domains and then editing with auxiliary datasets.

Related work. Our strategy follows the “updatable machine learning” [34] literature, further
discussed in Section 5. Notably, we are inspired by the recent success of weight averaging (WA) to
merge models trained independently [35, 36], even when trained on different tasks [37, 38, 39]. Our
work is also related to the editing literature [40, 41, 42] which tries to correct mistakes as they appear:
none tackled domain generalization nor leveraged weight averaging.

2 Inter-training before fine-tuning

Figure 2: Domain accuracy on OfficeHome af-
ter inter-training on DomainNet. Our networks
are initialized from (1−λ)θImageNet +λθDN where
θImageNet are ResNet50 ImageNet weights and θDN
those specialized on DomainNet. From each ini-
tialization, we train 20 networks on the “Clipart”,
“Product” and “Photo” domains, leaving apart the
OOD domain “Art”. Finally, we either average all
weights (DiWA [36]) or select the best one based
on the train-domain validation accuracy (ERM).

A promising strategy to enrich features. As
illustrated in Figure 1, inter-training adds an in-
termediate learning task on an auxiliary dataset
between pre-training and fine-tuning on the tar-
get task. The idea is to leverage similar datasets
to enrich and specialize the features. Indeed, in
the vicinity of the target task there are similar
auxiliary tasks that would facilitate the learn-
ing of the adequate features. With ImageNet
[26] as the pre-training dataset, we experiment
inter-training on DomainNet [28] for domain
generalization on OfficeHome [43] in Figure 2.
The initialization is thus (1−λ)θImageNet+λθDN
where θImageNet are the ImageNet weights and
θDN are those weights specialized on Domain-
Net. We observe that full inter-training (λ = 1)
improves the accuracy on the out-of-distribution
(OOD) domain “Art” compared to the direct
transfer learning from ImageNet (λ = 0).

Inter-training requires a priori knowledge from the test domain. Yet, inter-training suffers from
catastrophic forgetting [44] of the features previously learnt on ImageNet: learning new features
does not fully preserve those from initialization. This explains why the inter-training on DomainNet
is detrimental on the domain “Product”: λ ≈ 0 performs best for DiWA. Thus, a more “robust
initialization” can usually be found for 0 < λ < 1 in a similar fashion to “robust fine-tuning” [45]; by
interpolating between the two extremes, we can find a better trade-off between pre-trained features
and auxiliary features. Critically, the best value for λ is domain-dependant, and cannot be detected
using the other domains; this finding contrasts with recent works [46] observing “a clear linear
relationship between IID accuracy and OOD accuracy”. In conclusion, inter-training helps only when
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the auxiliary task is selected with some prior knowledge of the future test domains; DomainNet helps
for OfficeHome and PACS [47] but will be detrimental for TerraIncognita [48] in Section 4.

3 Editing after fine-tuning

Figure 3: Domain accuracy on OfficeHome af-
ter editing towards DomainNet. Our networks
are initialized from the ImageNet weights θImageNet.
We then train 20 networks on the “Clipart”, “Prod-
uct” and “Photo” domains, leaving apart the OOD
domain “Art”. To obtain θHOME, we either aver-
age all weights (DiWA [36]) or select the best
one based on the train-domain validation accuracy
(ERM). At test time, we use (1−λ)θHOME +λθDN
where θDN are specialized on DomainNet.

We argued in the previous section that we need
some knowledge of the future test domains to
best enrich the features with auxiliary tasks.
This motivates a more flexible strategy that
would be applied after fine-tuning, when some
test samples could be available. To this end, we
propose our editing strategy, illustrated in Fig-
ure 1; we leverage features from the auxiliary
tasks not at initialization, but at inference time,
without requiring a retraining step. In brief, we
merge the featurizers fine-tuned on the target
task with those fine-tuned on auxiliary tasks. To
do so, we leverage weights averaging [35, 49],
which enriches features (see Appendix B) and
empirically succeeds to merge networks even
when trained on different tasks [37, 38, 39] de-
spite the non-linearities [50, 51]. Thus we pre-
dict using (1−λ)θtarget +λθaux as the featurizer;
the classifier (on top of the featurizer) remains
the one fine-tuned on the target task as the aux-
iliary tasks may not have the same classes.

We validate the benefits of editing for OfficeHome in Figure 3 and Appendix D, and on PACS in
Appendix E. We note that editing consistently helps. We also remark similarities with the curve
obtained via inter-training in Figure 2; the main advantage is that the editing operation is done after
fine-tuning, and thus can be adapted cheaply to the test domain.

4 Experimental results on the DomainBed benchmark

Setup. We evaluate our strategy on the DomainBed [33] benchmark, which imposes the code, the
training procedures and the ResNet50 [52] architecture. Each domain is successively considered as
the test while others are for training: domains are split into 80% (used as training and evaluation) and
20% (used as validation). The featurizer is pre-trained on ImageNet, and the classifier is initialized
with linear probing [53] to prevent features distortion: from this shared initialization, we fine-tune the
whole network with 20 hyperparameter configurations sampled from Table 5. For ERM, θtarget is the
one with highest validation accuracy. DiWA [36] uniformly averages the weights from all training
runs, removing the need for model selection. We apply DiWA on DomainNet [28] to obtain θaux by
averaging the 20 networks trained on DomainNet. At inference time, we use (1− λ)θtarget + λθaux.
λ is either arbitrarily set to 0.5, or optimized on the validation dataset of the test domain: in the
latter case, we select the λ with the highest validation accuracy among 20 sampled from the uniform
distribution U(0, 1). Thus, for fair comparison, scores are reported with DomainBed’s test-domain
model selection. This experimental setup is further described in Appendix C.

Results. In OfficeHome [43] in Table 1 and PACS [47] in Table 2, editing and inter-training
consistently improve ERM and DiWA. The gains are larger for domains where DomainNet brings
useful information, e.g., on the “Clipart” domain from OfficeHome, and smaller on others, e.g., on the
“Product” domain. λ = 0.5 works well because DomainNet was selected with some human’s prior as
the auxiliary task for OfficeHome and PACS; yet, λ = 0.5 fails for TerraIncognita [48] in Table 3
because this dataset is not related to DomainNet’s domains. In contrast, editing on TerraIncognita
with oracle-domain validation for λ ∼ U(0, 1) does not harm accuracies as λ ≈ 0 are selected (see
Appendix F). This test-time adaptation after fine-tuning is not possible with inter-training, which
therefore performs badly. This highlights the main advantage of editing w.r.t. inter-training; when the
auxiliary dataset is not relevant, the editing strategy can ignore the auxiliary weights at no cost.
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Table 1: Accuracy (%, ↑) on OfficeHome (best in bold and second best underlined).
Algorithm Transfer strategy Art Clipart Product Photo Avg

ERM

Direct transfer learning 65.6 55.0 78.1 79.3 69.5
Inter-training 67.9 66.6 79.2 81.3 73.8
Editing: λ = 0.5 70.1 64.7 79.7 82.1 74.2
Editing: λ best from U(0, 1) 69.9 67.2 79.6 81.7 74.6

DiWA

Direct transfer learning 68.1 58.8 80.0 82.1 72.2
Inter-training 69.4 68.6 81.3 82.1 75.4
Editing: λ = 0.5 71.5 65.6 80.2 82.6 75.0
Editing: λ best from U(0, 1) 71.4 67.7 80.4 82.9 75.6

Table 2: Accuracy (%, ↑) on PACS (best in bold and second best underlined).
Algorithm Transfer strategy Art Cartoon Photo Sketch Avg

ERM

Direct transfer learning 90.3 82.4 98.8 83.0 88.6
Inter-training 91.4 89.8 98.8 87.4 91.9
Editing: λ = 0.5 92.5 85.3 99.2 87.2 91.0
Editing: λ best from U(0, 1) 92.6 85.3 99.2 87.2 91.1

DiWA

Direct transfer learning 90.4 82.7 98.7 82.5 88.6
Inter-training 93.5 90.2 98.5 88.2 92.6
Editing: λ = 0.5 91.7 84.8 99.1 86.1 90.4
Editing: λ best from U(0, 1) 91.2 84.0 99.1 86.2 90.1

Table 3: Accuracy (%, ↑) on TerraIncognita (best in bold and second best underlined).
Algorithm Transfer strategy L100 L38 L43 L46 Avg

ERM

Direct transfer learning 58.7 51.2 60.8 42.0 53.2
Inter-training 57.9 47.2 56.6 39.9 50.4
Editing: λ = 0.5 50.6 43.8 50.0 38.9 45.8
Editing: λ best from U(0, 1) 58.7 51.0 60.8 42.0 53.1

DiWA

Direct transfer learning 57.7 49.4 60.5 39.5 51.8
Inter-training 56.7 45.2 59.1 37.1 49.5
Editing: λ = 0.5 47.8 37.7 52.5 37.9 44.0
Editing: λ best from U(0, 1) 57.7 49.4 60.5 39.2 51.7

Limitations and future work. We will investigate the impact of other auxiliary tasks, e.g., iNaturalist
[54] to improve performance on TerraIncognita. We will also report scores with standard deviation
for different pre-training strategies [55] and architectures [56], and open-source our code. Finally, we
will analyze the arithmetic properties of fine-tuning and weights averaging [57].

5 Updatable machine learning for domain generalization

The DomainBed benchmark [33] showed that no invariance-based approaches [58, 59, 60] outper-
formed ERM for domain generalization. Recently, weight averaging [49, 61] (WA) strategies
did by averaging weights obtained along a training run [62, 63] or from multiple independent runs
[35, 36] to increase diversity in predictions: similarly, editing with auxiliary tasks increases diversity
in features. WA relies on the linear mode connectivity across networks [64, 65], which notably holds
when networks are trained from a shared pre-trained initialization on a shared task [66]. Yet, recent
findings suggest that WA may succeed even with different initializations [67, 68] — modulo a simple
weights permutation — and on different tasks [37, 38, 39]. The latter works are the most similar to
us. [37] motivates a Fisher-averaging in NLP; in contrast, we show that basic interpolation is efficient
and discuss the selection of the interpolating coefficient. [38] proposed an “embarrassingly simple
parralelization”. [39] is specialized for zero-shot CLIP [55] models. Interestingly, our approach is
also similar to “Robust fine tuning” [45]; while they rely on the initialization to generalize well, we
learn appropriate auxiliary weights to edit the fine-tuned weights. These works complement each
other and all highlight the potential of the updatable machine learning [34] paradigm.

Conclusion. We proposed a strategy for domain generalization: we edit the featurizer after fine-
tuning by interpolating towards weights trained on auxiliary tasks. We validate this approach on
the DomainBed benchmark. In contrast with centralized foundation models, we could leverage
a repository of averageable specialized networks trained in a decentralized way, akin to a github
repository for softwares [34]. We hope to pave the way towards deep models training in collaboration.
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Appendices
This supplementary material is organized as follows:

• Appendix A describes the different learning strategies with pseudo-equations.
• Appendix B presents preliminary experiments suggesting that weight averaging enriches

features.
• Appendix C further describes our experimental setup on DomainBed [33].
• Appendix D complements our experiments on OfficeHome [43].
• Appendix E complements our experiments on PACS [47].
• Appendix F complements our experiments on TerraIncognita [48].

A Learning strategies as pseudo-equations

In Figure 1, we illustrated the different learning strategies. In Equation (1), we now provide an
analytical formulation of these strategies with pseudo-equations, where θ represents the featurizer’s
weights and D the datasets.

θ = Train(θpre-train,Dtarget), [Direct transfer learning]
θ = Train((1− λ)θpre-train + λTrain(θpre-train,Daux),Dtarget), [Inter-training]
θ = (1− λ)Train(θpre-train,Dtarget) + λTrain(θpre-train,Daux). [Editing]

(1)

B Similarity between weight averaging and representation averaging

Our editing strategy relies on the intuition that averaging weights enriches features: in this section,
we present a preliminary experiment strengthening this intuition.

We consider two weights θ1 and θ2 obtained from two independent fine-tunings on OfficeHome from
ImageNet weights. We are interested in their feature representation in the penultimate layer, just before
the classifier, noted Φθ1 and Φθ2 when extracted over the validation dataset. The representation (Φθ1+
Φθ2)/2 averages the features extracted from both featurizers. We also consider the features extracted
by their WA, i.e., Φ(θ1+θ2)/2. Table 4 shows the L2 norm of the representation differences. The two
closest representations are the averaged representation (Φθ1 + Φθ2)/2 ad the one from the weight
averaged network Φ(θ1+θ2)/2. It suggests that WA successfully encodes the two representations to
construct a richer one. In conclusion, while [35, 36, 49] argue that WA approximates predictions
ensembling [69], this experiment suggests that WA also approximates features averaging.

Table 4: L2 norm of the representation differences ||a− b||2.
Φ(θ1+θ2)/2 (Φθ1 +Φθ2)/2 Φθ1 Φθ2

Φ(θ1+θ2)/2 0 2.4 5.7 5.5
(Φθ1 +Φθ2)/2 0 5.0 5.0

Φθ1 0 10.0
Φθ2 0

C DomainBed

We further detail our experiments on the DomainBed benchmark [33].

Training protocol. OfficeHome [43], PACS [47], and TerraIncognita [48] are divided into four
domains. Each domain is successively considered as the test domain while other domains are used in
training. We follow the training protocol from https://github.com/alexrame/diwa, which is
itself adapted from https://github.com/facebookresearch/DomainBed. For each dataset and
domain, we perform a random search of 20 trials on the mild hyperparameter distributions described
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in Table 5. We use a ResNet50 [52] pre-trained on ImageNet, with a dropout layer before the newly
added dense layer and fine-tuned with frozen batch normalization layers. The optimizer is Adam
[70]. Our classifiers are initialized with linear probing [53]; we first learn only the classifier (with
the featurizer frozen) with the default hyperparameters defined in Table 5; the classifier’s weights
are then used to initialize all subsequent runs. Following [36, 62, 63], for OfficeHome, PACS, and
TerraIncognita, all runs are trained for 5k steps with validation accuracy computed every 100 steps;
for DomainNet, all runs are trained for 15k steps with validation accuracy computed every 500 steps.

Table 5: Hyperparameters, their default values and distributions for random search.

Hyperparameter Default value
Random distribution

Extreme Mild
(DomainBed) (Ours, DiWA and SWAD)

Learning rate 5 · 10−5 10U(−5,−3.5) [1, 3, 5] · 10−5

Batch size 32 2U(3,5.5) 32
ResNet dropout 0 [0, 0.1, 0.5] [0, 0.1, 0.5]
Weight decay 0 10U(−6,−2) [10−6, 10−4]

Interpolating coefficient λ 0 U(0.1)

Baselines. ERM is the standard Empirical Risk Minimization. Mixup is the classical data augmenta-
tion [71] applied across domains (Interdomain Mixup [72]). SWAD [62] average weights along the
trajectory of an ERM run. DiWA [36] uniformly averages the weights obtained from different ERM
runs and removes the need of model selection.

Editing. A inference time, our featurizer is (1−λ)θtarget+λθDN, where θDN is a featurizer specialized
on DomainNet [28] and λ the interpolating hyperparameter. Specifically, θDN is obtained by applying
DiWA’s protocol on DomainBed for DomainNet, but with all domains available for training: thus
θDN is the weights average of 20 networks fine-tuned on all six domains from DomainNet. Setting
arbitrarily λ = 0.5 performs well on OfficeHome and PACS only because DomainNet was selected
with some human prior information for these datasets; yet, it fails for TerraIncognita that contains
images very different from DomainNet’s.

Test-domain model selection. For more adaptive editing, needed notably for TerraIncognita, we can
use a more principled approach based on test-domain model selection, i.e., when validation samples
belong to the test domain. To do so, we sampled 20 values for λ from the uniform distribution
U(0, 1) and select the best one based on the test-domain validation accuracy. That’s why, for fair
comparison, the scores reported for baselines are those with test-domain model selection. In contrast
with train-domain model selection, the test-domain model selection is arguably more realistic for
real applications: indeed, after deployment of their models, the practitioners would validate that the
performances are correct, and thus would label some samples. We will ablate the importance of the
validation dataset’s size in future revision.
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D Editing on OfficeHome

D.1 Results on OfficeHome from DomainBed

Table 6: Accuracy (%, ↑) on OfficeHome (best in bold and second best underlined).
Algorithm Art Clipart Product Photo Avg
ERM 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4 ± 0.5
Mixup [72] 63.5 ± 0.2 54.6 ± 0.4 76.0 ± 0.3 78.0 ± 0.7 68.0 ± 0.2
SWAD [62] 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6 ± 0.2
DiWA [36] 68.4 ± 0.2 58.2 ± 0.5 80.0 ± 0.1 81.7 ± 0.3 72.1 ± 0.2

O
ur

ru
ns

ERM 65.6 55.0 78.1 79.3 69.5
ERM + Inter-training 67.9 66.6 79.2 81.3 73.8
ERM + Editing: λ = 0.5 70.1 64.7 79.7 82.1 74.2
ERM + Editing: λ best from U(0, 1) 69.9 67.2 79.6 81.7 74.6

DiWA 68.1 58.8 80.0 82.1 72.2
DiWA + Inter-training 69.4 68.6 81.3 82.1 75.4
DiWA + Editing: λ = 0.5 71.5 65.6 80.2 82.6 75.0
DiWA + Editing: λ best from U(0, 1) 71.4 67.7 80.4 82.9 75.6

D.2 Editing curves w.r.t. λ

Figure 4: Domain accuracy on OfficeHome with “Clipart” as OOD domain after editing towards
DomainNet. At test time, we use (1− λ)θHOME + λθDN.

Figure 5: Domain accuracy on OfficeHome with “Product” as OOD domain after editing
towards DomainNet. At test time, we use (1− λ)θHOME + λθDN.
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Figure 6: Domain accuracy on OfficeHome with “Photo” as OOD domain after editing towards
DomainNet. At test time, we use (1− λ)θHOME + λθDN.

E Editing on PACS

E.1 Results on PACS from DomainBed

Table 7: Accuracy (%, ↑) on PACS (best in bold and second best underlined).
Algorithm Art Cartoon Photo Sketch Avg
ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7 ± 0.3
Mixup [72] 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8 ± 0.3
SWAD [62] 89.3 ± 0.5 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.8 88.1 ± 0.1
DiWA [36] 90.1 ± 0.2 82.8 ± 0.6 98.3 ± 0.1 83.3 ± 0.4 88.7 ± 0.2

O
ur

ru
ns

ERM 90.3 82.4 98.8 83.0 88.6
ERM + Inter-training 91.4 89.8 98.8 87.4 91.9
ERM + Editing: λ = 0.5 92.5 85.3 99.2 87.2 91.0
ERM + Editing: λ best from U(0, 1) 92.6 85.3 99.2 87.2 91.1

DiWA 90.4 82.7 98.7 82.5 88.6
DiWA + Inter-training 93.5 90.2 98.5 88.2 92.6
DiWA + Editing: λ = 0.5 91.7 84.8 99.1 86.1 90.4
DiWA + Editing: λ best from U(0, 1) 91.2 84.0 99.1 86.2 90.1

E.2 Editing curves w.r.t. λ

Figure 7: Domain accuracy on PACS with “Art” as OOD domain after editing towards Domain-
Net. At test time, we use (1− λ)θPACS + λθDN.
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Figure 8: Domain accuracy on PACS with “Cartoon” as OOD domain after editing towards
DomainNet. At test time, we use (1− λ)θPACS + λθDN.

Figure 9: Domain accuracy on PACS with “Photo” as OOD domain after editing towards
DomainNet. At test time, we use (1− λ)θPACS + λθDN.

Figure 10: Domain accuracy on PACS with “Sketch” as OOD domain after editing towards
DomainNet. At test time, we use (1− λ)θPACS + λθDN.
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F Editing on TerraIncognita

F.1 Results on TerraIncognita from DomainBed

Table 8: Accuracy (%, ↑) on TerraIncognita (best in bold and second best underlined).
Algorithm L100 L38 L43 L46 Avg
ERM 59.4 ± 0.9 49.3 ± 0.6 60.1 ± 1.1 43.2 ± 0.5 53.0 ± 0.3
Mixup [72] 67.6 ± 1.8 51.0 ± 1.3 59.0 ± 0.0 40.0 ± 1.1 54.4 ± 0.3
SWAD [62] 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0 ± 0.3
DiWA 56.0 ± 2.5 48.9 ± 0.8 58.4 ± 0.2 40.6 ± 0.8 51.0 ± 0.7

O
ur

ru
ns

ERM 58.7 51.2 60.8 42.0 53.2
ERM + Inter-training 57.9 47.2 56.6 39.9 50.4
ERM + Editing: λ = 0.5 50.6 43.8 50.0 38.9 45.8
ERM + Editing: λ best from U(0, 1) 58.7 51.0 60.8 42.0 53.1

DiWA 57.7 49.4 60.5 39.5 51.8
DiWA + Inter-training 56.7 45.2 59.1 37.1 49.5
DiWA + Editing: λ = 0.5 47.8 37.7 52.5 37.9 44.0
DiWA + Editing: λ best from U(0, 1) 57.7 49.4 60.5 39.2 51.7

F.2 Editing curves w.r.t. λ

Figure 11: Domain accuracy on TerraIncognita with “L100” as OOD domain after editing
towards DomainNet. At test time, we use (1− λ)θTERRA + λθDN.

Figure 12: Domain accuracy on TerraIncognita with “L38” as OOD domain after editing
towards DomainNet. At test time, we use (1− λ)θTERRA + λθDN.

14



Figure 13: Domain accuracy on TerraIncognita with “L43” as OOD domain after editing
towards DomainNet. At test time, we use (1− λ)θTERRA + λθDN.

Figure 14: Domain accuracy on TerraIncognita with “L46” as OOD domain after editing
towards DomainNet. At test time, we use (1− λ)θTERRA + λθDN.
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