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Abstract

Abrupt shifts in the Earth system such as Amazon forest dieback, Arctic ice loss, or monsoon collapse
arise from complex teleconnections [Beamish, 1995], where variability in one region drives ecological
responses elsewhere. Standard causal discovery methods, including Granger causality and PCMCI+,
represent dependencies with pairwise graphs . While effective for low-dimensional signals, they cannot
capture the higher-order interactions that often trigger regime shifts, for example when both tropical
Atlantic warming and Pacific circulation anomalies jointly cause Amazon drought [Marengo et al., 2008].

We introduce a framework that models causal structure as a hypergraph [Ma et al., 2022] H = (V, E),
where E ⊆ 2V \ {∅} encodes group-level edges linking subsets of variables to outcomes. For any subset
S ⊆ V , we define the set-wise causal effect

τ(S→Y ;xS , x
′
S) = E[Y | do(XS = xS)]− E[Y | do(XS = x′

S)],

which generalizes pairwise interventions to multi-variable causes. This representation allows us to test
whether sets of factors rather than individual variables drive critical transitions.

Our method extends constraint-based and score-based discovery by lifting conditional independence
tests and sparsity penalties from pairwise to set-wise relations. Candidate hyper-edges are screened via
conditional mutual information I(Y ;XS | Z) over spatio-temporal contexts, and group-sparse penalties
control combinatorial growth. We implement this directly on multi-scale latent features from a recent
Earth-system foundation models, enabling discovery under non-stationarity and across spatial scales.

To address data-poor regions such as the Arctic, polar oceans, or tropical rainforests, we integrate
hypergraph discovery with causal transportability [Pearl, 2010]. By constructing selection diagrams
that encode cross-domain differences, we identify conditions under which causal relations transfer from
data-rich basins (e.g., the Pacific Ocean) to under-observed ecosystems. This extends counterfactual
reasoning [Pearl, 2010] to regions where direct observations are limited, enabling forecasts of coral reef
collapse, Arctic ice decline, or rainforest tipping points.

Preliminary results show that hypergraph discovery (i) recovers known teleconnections such as
ENSO–East Africa rainfall and Arctic –midlatitude winter links , (ii) reveals higher-order interactions
(triplets and quartets) that outperform pairwise models in explaining regime shifts, and (iii) enables
counterfactual experiments that assess scenarios such as reduced Arctic warming trajectories.

By moving beyond pairwise causality, this work demonstrates that hypergraph-based causal discov-
ery in foundation models yields more interpretable and actionable forecasts of cascading climate risks,
offering a new pathway to earlier warnings and more targeted adaptation strategies.
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