
Learning from Crowds with Dual-View K-Nearest Neighbor

Jiao Li1 Liangxiao Jiang*1 Xue Wu1 Wenjun Zhang1

1School of Computer Science, China University of Geosciences, Wuhan 430074, China.

Abstract

In crowdsourcing scenarios, we can obtain multi-
ple noisy labels from different crowd workers for
each instance and then infer its integrated label via
label integration. To achieve better performance,
some recently published label integration methods
have attempted to exploit the multiple noisy labels
of inferred instances’ nearest neighbors via the K-
nearest neighbor (KNN) algorithm. However, the
used KNN algorithm searches inferred instances’
nearest neighbors only relying on the defined dis-
tance functions in the original attribute view and
totally ignoring the valuable information hidden
in the multiple noisy labels, which limits their per-
formance. Motivated by multi-view learning, we
define the multiple noisy labels as another label
view of instances and propose to search inferred in-
stances’ nearest neighbors using the joint informa-
tion from both the original attribute view and the
multiple noisy label view. To this end, we propose
a novel label integration method called dual-view
K-nearest neighbor (DVKNN). In DVKNN, we
first define a new distance function to search the K-
nearest neighbors of an inferred instance. Then, we
define a fine-grained weight for each noisy label
from each neighbor. Finally, we perform weighted
majority voting (WMV) on all these noisy labels to
obtain the integrated label of the inferred instance.
Extensive experiments validate the effectiveness
and rationality of DVKNN.

1 INTRODUCTION

Due to the capacity to learn from labeled data, supervised
learning has been demonstrated its remarkable power in
various fields [Jiang et al., 2019, Zhang et al., 2023a]. How-
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ever, the success of supervised learning heavily relies on a
substantial amount of high-quality labeled data for effective
model training [Wang and Wu, 2021, Chen et al., 2022b,
Hu et al., 2023]. Although the traditional approach to label
collection by experts in the field or well-trained workers can
receive the high reliability of the labels, it entails consider-
able investment in time and economy [Li et al., 2016, Xu
et al., 2021, Zhu et al., 2023].

Fortunately, the advent of crowdsourcing platforms
[Buhrmester et al., 2011] like Crowdflower, Clickworker,
and Amazon Mechanical Turk has presented an economical
and convenient alternative for collecting large-scale labels
[Li et al., 2019, Dizaji et al., 2020, Zhang, 2022]. On these
crowdsourcing platforms, labeling tasks can be published
to a broad range of non-expert crowd workers at a low cost
[Chen et al., 2022a, Tong et al., 2020]. However, because
of the lack of professional experience and specific training,
the labels provided by an individual worker are hard to meet
the same quality standards as those from experts [Rodrigues
and Pereira, 2018, Chen et al., 2020]. To mitigate this issue,
repeated labeling [Sheng et al., 2008] has been proposed,
which requires different crowd workers to provide multiple
noisy labels for each instance and then infers its integrated
label via label integration [Ma et al., 2015].

In the past few years, a large number of label integration
methods have been proposed from various perspectives.
Among these methods, majority voting (MV) is the sim-
plest but often effective one. MV assumes that each crowd
worker has the same labeling quality and regards the label
with the highest votes as the integrated label. Obviously, the
assumption of MV is not possible in real-world scenarios.
That’s why the performance of MV is suboptimal, and more
sophisticated label integration methods have been proposed
one after another. Representative works include: Dawid-
Skene (DS) [Dawid and Skene, 1979], generative model of
labels, abilities, and difficulties (GLAD) [Whitehill et al.,
2009], ZenCrowd (ZC) [Demartini et al., 2012], Karger, Oh,
and Shah (KOS) [Karger et al., 2014], iterative weighted
majority voting (IWMV) [Li and Yu, 2014], ground truth



inference using clustering (GTIC) [Zhang et al., 2016], label
similarity-based weighted soft majority voting (LSWSMV)
[Tao et al., 2020], differential evolution-based weighted
soft majority voting (DEWSMV) [Tao et al., 2021], at-
tribute augmentation-based label integration (AALI) [Zhang
et al., 2023b], instance redistribution-based label integra-
tion (IRLI) [Zhang et al., 2024], etc. Although these label
integration methods are proposed from various perspectives,
they usually achieve the inference only based on the limited
information of the inferred instance itself. In recent years,
some scholars have noticed this limitation and attempted
to exploit the multiple noisy labels of inferred instances’
nearest neighbors to achieve better performance. The rep-
resentative works include: multiple noisy label distribution
propagation (MNLDP) [Jiang et al., 2022] and label aug-
mented and weighted majority voting (LAWMV) [Chen
et al., 2022c], etc.

As far as we know, the K-nearest neighbor (KNN) algorithm
[Cover and Hart, 1967] has been widely used to search the
nearest neighbors by these label integration methods due
to its popularity and robustness. However, the used KNN
algorithm only considers the original attribute view and to-
tally ignores the valuable information hidden in the multiple
noisy labels, which limits the performance of these label
integration methods. In recent years, multi-view learning
[Sun, 2013, Zhao et al., 2017] develops rapidly and has
achieved great success. Due to the complementary and con-
sensus principle, multi-view learning is more effective than
traditional single-view learning. Motivated by multi-view
learning, we define the multiple noisy labels as another label
view of instances and propose to search neighbors using the
joint information from both the original attribute view and
the multiple noisy label view.

To this end, we propose a novel label integration
method called dual-view K-nearest neighbor (DVKNN). In
DVKNN, we first define a new distance function to search
the K-nearest neighbors of an inferred instance. Then, we
define a fine-grained weight for each noisy label from each
neighbor. Finally, we perform weighted majority voting
(WMV) on all these noisy labels to obtain the integrated
label of the inferred instance. In general, the contributions
of this work can be summarized as follows:

1. We define the multiple noisy labels as another label
view of instances and propose to search the nearest
neighbors for an inferred instance using the joint infor-
mation from both the original attribute view and the
multiple noisy label view. On this basis, a new distance
function is defined for crowdsourcing.

2. We propose a novel label integration method called
dual-view K-nearest neighbor (DVKNN). In DVKNN,
we use the new defined distance function to search the
K-nearest neighbors for inferred instances and then
define a fine-grained weight for each noisy label from

each neighbor, which enhances the effect of WMV and
thus improves the performance of label integration.

3. We conduct extensive experiments to evaluate the pro-
posed DVKNN on a large number of crowdsourced
datasets. The experimental results show that DVKNN
significantly outperforms all of its competitors.

The rest of this paper is organized as follows. Section 2
describes the related works. Section 3 introduces the pro-
posed DVKNN in detail. Section 4 reports the experiments
and results. Section 5 concludes this paper and outlines the
research directions of future work.

2 RELATED WORK

In recent years, label integration has attracted a great deal of
attention from scholars. A variety of label integration meth-
ods have been proposed from different perspectives [Sheng
and Zhang, 2019]. MV [Sheng et al., 2008] is the simplest
label integration method. In addition to MV, more com-
plex label integration methods have been proposed one after
another for better performance. For example, DS [Dawid
and Skene, 1979] first introduces the EM algorithm [Singh,
2006] to deal with label integration, which uses the EM algo-
rithm to jointly estimate the confusion matrix of each worker
and the integrated label of each instance. KOS [Karger et al.,
2014] estimates the integrated label of each instance and
the labeling quality of each worker by belief propagation
and low-rank matrix approximation. GTIC [Zhang et al.,
2016] uses the K-means algorithm to infer the integrated
labels, which first clusters all instances into distinct clusters
and subsequently assigns the same class label to instances
within the same cluster. DEWSMV [Tao et al., 2021] defines
three objective functions to optimize the labeling qualities of
workers by a differential evolution (DE) algorithm, which
provides a novel perspective to handle label integration.
AALI [Zhang et al., 2023b] designs an attribute augmenta-
tion method to enrich the original attribute space and builds
multiple component classifiers on reliable instances to pre-
dict the integrated label for each instance.

In recent years, some scholars have noticed that existing
label integration methods usually achieve the inference only
based on the limited information of the inferred instance
itself, so it is hard for them to achieve breakthrough perfor-
mance improvements. Therefore, some recently published
label integration methods have attempted to exploit the mul-
tiple noisy labels of inferred instances’ nearest neighbors
via the KNN algorithm. For example, Jiang et al. [2022]
propose MNLDP. MNLDP first uses multiple noisy labels
to calculate the multiple noisy label distribution for each
instance. Then, MNLDP searches the nearest neighbors for
the inferred instance in the attribute space and optimizes the
weights of the nearest neighbors by the locally linear embed-
ding. Finally, MNLDP uses label distribution propagation to



combine the multiple noisy label distributions of the inferred
instance and its nearest neighbors to infer the integrated la-
bel. Chen et al. [2022c] propose LAWMV. LAWMV first
searches neighbors in the attribute space to augment each in-
stance’s multiple noisy labels via the KNN algorithm. Then,
LAWMV uses the distance and label similarity to weight
the labels from different neighbors. Finally, LAWMV uses
weighted majority voting to obtain the integrated label.

These label integration methods, which exploit the multiple
noisy labels of inferred instances’ nearest neighbors, have
indeed improved the performance of label integration. How-
ever, the used KNN algorithm only considers the original
attribute view and totally ignores the valuable information
hidden in the multiple noisy labels, which limits their per-
formance. Therefore, motivated by multi-view learning, we
define the multiple noisy labels as another label view of in-
stances and propose a novel label integration method called
dual-view K-nearest neighbor (DVKNN). We will describe
DVKNN in detail in Section 3.

3 DUAL-VIEW K-NEAREST NEIGHBOR

3.1 MOTIVATION

A crowdsourced dataset is typically denoted by D =
{(xi,Li)}Ni=1, where N denotes the total number of in-
stances. Each instance, denoted as xi, consists of M at-
tribute values {xim}Mm=1 and is associated with a multiple
noisy label set Li = {lir}Rr=1, where R denotes the total
number of crowd workers, and lir denotes the label assigned
to xi by the r-th worker ur. Each label takes the value from
a fixed set {c1, c2, · · · , cQ,−1}, where Q denotes the num-
ber of all classes and -1 denotes that ur does not annotate
xi. To infer the unknown true label yi for xi, label integra-
tion is usually used to infer an integrated label ŷi, which is
expected to be as consistent as possible with yi.

To the best of our knowledge, to achieve better performance,
some recently published label integration methods have
attempted to exploit the multiple noisy labels of inferred in-
stances’ nearest neighbors via the KNN algorithm. However,
as mentioned above, the used KNN algorithm only relies on
the defined distance functions in the original attribute view
and totally ignores the valuable information hidden in the
multiple noisy labels. In crowdsourcing scenarios, multiple
noisy labels contain a lot of valuable information, which
can also describe the characteristics of instances. Therefore,
totally ignoring the information from multiple noisy labels
may have limited the performance of these label integration
methods. So in this paper, we aim to make full use of the
information from not only the original attribute view but
also the multiple noisy labels to search the nearest neighbors
for the inferred instance more accurately.

We have noticed that, in recent years, multi-view learning
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Figure 1: Difference between KNN and DVKNN.

develops rapidly and has achieved great success. Multi-view
learning is an important learning framework in machine
learning [Sun, 2013, Zhao et al., 2017]. It aims to model
the information that can be obtained from multiple views.
Due to the complementary and consensus principle, multi-
view learning is more effective than traditional single-view
learning. Here, the complementary principle emphasizes
that the information provided by different views is comple-
mentary to each other. This means that each view may focus
on a different aspect, which together constitutes a complete
description of the dataset. And the consensus principle em-
phasizes that although the information from different views
may differ, they should reflect the essential consistency of
the same dataset at a high level. Motivated by multi-view
learning, we define the multiple noisy labels as another la-
bel view of instances and then search inferred instances’
nearest neighbors using the joint information from both the
original attribute view and the multiple noisy label view. To
this end, we propose a novel label integration method called
dual-view K-nearest neighbor (DVKNN).

Figure 1 graphically shows the difference between KNN
and DVKNN in searching neighbors, which roughly illus-
trates the effectiveness of DVKNN. In Figure 1, each circle
represents an instance from a binary dataset with two at-
tributes A1 and A2. The proportion of blue and orange in
each circle represents the distribution of two classes, c1 and
c2, in this instance’s multiple noisy label set. We describe
the difference between two instances in the original attribute
view by the positional relationship on the axis, and in the
multiple noisy label view by the proportion of color in the
circle. We assume that the inferred instance is x1, and we
search its five nearest neighbors (including itself) via KNN
and DVKNN, respectively. As KNN only considers the orig-
inal attribute view, the neighbors searched via KNN are x1,
x2, x3, x4 and x5. In addition to the original attribute view,
DVKNN also considers the multiple noisy label view, so
the neighbors searched via DVKNN are x1, x5, x6, x7 and
x8. We can see that the multiple noisy label distributions of
the neighbors searched via KNN are confusing. On the con-
trary, the multiple noisy label distributions of the neighbors
searched via DVKNN show high consensus. In this case,
the neighbors searched via DVKNN are more reliable for



inferring the integrated label of x1.

3.2 THE PROPOSED DVKNN

Figure 2 graphically shows the overall framework of
DVKNN. From it, we can see that DVKNN mainly includes
two parts: distance measure and fine-grained weighting.

3.2.1 Distance Measure

Distance measure is the crucial step of DVKNN. Therefore,
the core problem we have to solve first is how to measure the
distance between instances from both the original attribute
view and the multiple noisy label view.

Firstly, we focus on the original attribute view. How to mea-
sure the distance from the original attribute view has actually
been widely studied, and many distance functions have been
proposed in the past few years. Here, we take advantage
of the widely used heterogeneous Euclidean-overlap metric
(HEOM) [Wilson and Martinez, 1997] to measure the dis-
tance d1(xi,xj) between two instance xi and xj from the
original attribute view, which can be calculated by:

d1(xi,xj) =

√√√√ M∑
m=1

dm(xi,xj)2, (1)

where dm(xi,xj) denotes the distance between the m-th
attribute values, which can be calculated as follows:

dm(xi,xj) =

 1, xim or xjm is unknown
overlap(xim, xjm), xim is nominal
rn−diff(xim, xjm), otherwise

,

(2)

where overlap(xim, xjm) and rn−diff(xim, xjm) are the
differences between two nominal and numerical attribute
values, respectively. They can be calculated by:

overlap(xim, xjm) =

{
0, if xim = xjm

1, otherwise , (3)

rn_diff(xim, xjm) =
|xim − xjm|

maxm −minm
, (4)

where maxm and minm are the maximum and minimum
values of the m-th attribute observed in data, respectively.

Then, let’s focus on the multiple noisy label view. In crowd-
sourcing scenarios, since crowd workers do not provide
labels to all instances, there are usually too many missing
labels from crowd workers in the multiple noisy label sets.

This makes it challenging for us to measure the distance be-
tween instances in the multiple noisy label view accurately.
To address this issue, we convert the multiple noisy labels
of each instance into a multiple noisy label distribution. In
this way, the nominal labels are converted into numerical
values, and the problem of missing labels can be solved
without loss of information. Specifically, we can calculate
the multiple noisy label distribution Pi = {piq}Qq=1 of xi

by estimating its class membership probabilities using its
multiple noisy labels as follows:

piq =

∑R
r=1 I(lir = cq)∑R
r=1 I(lir ̸= −1)

, (5)

where I(·) is an indicator function that outputs 1 when the
condition in parentheses is true, and 0 otherwise. Now, we
can use the distance functions defined for numerical values
to measure the distance between the multiple noisy label dis-
tributions of each pair of instances. To be consistent with the
distance function used in the original attribute view, we use
Euclidean distance to measure the distance d2(xi,xj) be-
tween xi and xj from the multiple noisy label view, which
can be calculated as follows:

d2(xi,xj) =

√√√√ Q∑
q=1

(piq − pjq)2. (6)

Now we can obtain the distances between two instances
from the original attribute view and the multiple noisy label
view, respectively. According to the complementary and
consensus principle of multi-view learning, we believe that
the information fused from two views is more useful than
any single view. So we fuse these two distances to define
the ultimate distance d(xi,xj) between xi and xj as:

d(xi,xj) = α · d1(xi,xj) + (1− α) · d2(xi,xj), (7)

where α is a controlling factor that adjusts the proportion of
d1(xi,xj) and d2(xi,xj). When α is greater than 0.5, the
distance between instances is more inclined to be influenced
by the original attribute view and otherwise inclined to the
multiple noisy label view.

Based on the new defined distance function, we can search
xi’s K-nearest neighbors {xik}Kk=1 (including itself) by
sorting the distances {d(xi,xj)}Nj=1. In this paper, we set
the number of the nearest neighbors K as β · N

Q , where N
Q

roughly estimates the number of instances per class and β
is a predefined scaling factor.

3.2.2 Fine-grained Weighting

After searching K-nearest neighbors, how to make full use
of the noisy labels from these neighbors is the next core
problem we need to solve. On the one hand, the noisy la-
bels from different neighbors should have different degrees
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Figure 2: Overall framework of DVKNN.

of influence in inferring the integrated label. Specifically,
the noisy labels from closer neighbors should have higher
weights. On the other hand, the noisy labels from the same
neighbor but different workers should also have different
degrees of influence in inferring the integrated label. Specifi-
cally, the noisy labels from the workers with higher labeling
qualities should have higher weights. Therefore, we define a
fine-grained weight for each noisy label from each neighbor
from the perspective of both instance and worker. For the
label likr annotated by ur on the k-th neighbor of xi, its
weight wikr can be calculated as follows:

wikr = (1− d(xi,xik)

d(xi,xiK)
) ·

∑R
r′=1 I(likr′ = likr)∑R
r′=1 I(likr′ ̸= −1)

, (8)

where d(xi,xik) is the distance between xi and its k-th
neighbor xik and d(xi,xiK) is the distance between xi

and its K-th neighbor xiK with the maximum distance.∑R
r′=1 I(likr′ = likr) calculates the number of the labels on

xik which are consistent with likr and
∑R

r′=1 I(likr′ ̸= −1)
calculates the number of all labels on xik.

From Equation (8), we can see that the former half, i.e.
1− d(xi,xik)

d(xi,xiK) , is from the perspective of instance; the smaller
the distance d(xi,xik), the greater the weight wikr. And

the latter half, i.e.
∑R

r′=1
I(likr′=likr)∑R

r′=1
I(likr′ ̸=−1)

, is from the perspec-
tive of worker; the higher the label consistency between
the worker ur and other workers, the higher the worker’s
labeling quality, and thus the greater the weight wikr.

After calculating a fine-grained weight for each noisy label
from each neighbor, we finally perform WMV to infer the
integrated label as follows:

ŷi = argmax
cq∈{c1,c2,··· ,cQ}

K∑
k=1

R∑
r=1

I(likr = cq) · wikr. (9)

Algorithm 1 DVKNN

Input: D = {(xi,Li)}Ni=1 -a crowdsourced dataset;
α, β -the predefined parameters

Output: {ŷi}Ni=1 -the integrated labels
1: for i = 1 to N do
2: for j = 1 to N do
3: Calculate the distance d1(xi,xj) from the original

attribute view by Equations (1)-(4)
4: Calculate the distance d2(xi,xj) from the multi-

ple noisy label view by Equations (5)-(6)
5: Calculate the distance d(xi,xj) by Equation (7)
6: end for
7: Search xi’s K-nearest neighbors {xik}Kk=1 by sorting

the distances {d(xi,xj)}Nj=1

8: for k = 1 to K do
9: for r = 1 to R do

10: Calculate wikr by Equation (8)
11: end for
12: end for
13: Infer the integrated label ŷi of xi by Equation (9)
14: end for
15: return {ŷi}Ni=1

3.3 TIME COMPLEXITY ANALYSIS

Algorithm 1 describes the whole learning process of
DVKNN. As shown in Algorithm 1, for each inferred in-
stance, the time complexity of DVKNN can be divided
into two parts: distance measure in lines 2-7, fine-grained
weighting in lines 8-13.

In the first part, there includes: 1) Calculating the distances
from the original attribute view; the time complexity is
O(NM). 2) Calculating the distances from the multiple
noisy label view; the time complexity is O(N(RQ+Q)).



3) Fusing the distances from two views to define the ultimate
distance; the time complexity is O(N). 4) Searching neigh-
bors; the time complexity is O(NlogN). So the time com-
plexity of the first part is O(N(M +RQ+Q+1+ logN)).

In the second part, there includes : 1) Calculating a weight
for each noisy label from each neighbor; the time complex-
ity is O(KR2). 2) Performing weighted majority voting on
all the noisy labels from K-nearest neighbors; the time com-
plexity is O(KR). So the time complexity of the second
part is O(KR2 +KR).

To sum up, for each inferred instance, the time complexity of
DVKNN is O(N(M+RQ+Q+1+logN)+KR2+KR).
Therefore, the whole time complexity is O(N2(M +RQ+
Q + 1 + logN) + N(KR2 + KR)). If we only take the
highest order terms, the time complexity of DVKNN is
O(N2(M +RQ+Q+ logN)).

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In this section, we evaluate the performance of DVKNN on
the crowd environment and its knowledge analysis (CEKA)
[Zhang et al., 2015] platform. In our experiments, we use
integration accuracy as the evaluation metric. Here, inte-
gration accuracy is the proportion of instances whose inte-
grated labels are consistent with the ground true labels. We
compare DVKNN with MV, GTIC, KOS, DEWSMV, AALI,
MNLDP and LAWMV. We use the existing implementations
of MV, GTIC and KOS on the CEKA platform and the im-
plementations of DEWSMV, AALI, MNLDP and LAWMV
provided by the original authors. All the parameter settings
of these competitors are based on the corresponding papers.
We also implement DVKNN on the CEKA platform and
set the parameters α and β to 0.7 and 0.6, respectively. To
alleviate the fluctuation caused by the randomness, each ex-
periment is repeated 10 times independently, and we report
the averages as the final results.

4.2 EXPERIMENTS ON SIMULATED DATASETS

To evaluate the effectiveness of DVKNN, we conduct our ex-
periments on the whole 34 simulated crowdsourced datasets
published on the CEKA platform. Since some datasets have
missing values and some competitors like MNLDP used in
our experiments cannot handle missing values, we use the
mean of numeric attribute values or the mode of nominal
attribute values from the available data to replace all missing
attribute values. After that, we simulate crowd workers to
provide labels for instances. We first hide the ground true
labels of all instances. Then, we simulate the labeling be-
havior of each crowd worker using two parameters: labeling
ratio p and labeling quality q, where p denotes the probabil-

ity that this worker annotates each instance, and q denotes
the probability that the labels provided by this worker are
consistent with the ground true labels. In our simulated ex-
periments, we set the number of crowd workers to 10. For
each crowd worker, we randomly generate p from a uniform
distribution in the interval [0, 1] and randomly generate q
from a uniform distribution in the interval [0.55, 0.75].

Table 1 shows the detailed comparison results on the 34
simulated datasets. The highest accuracy corresponding to
each dataset is highlighted in bold. The average accuracy of
each method across 34 simulated datasets is also reported
on the last row. Based on these results in Table 1, we then
compare each pair of methods using the Wilcoxon signed-
rank test [Demsar, 2006] and summarize the Wilcoxon test
results in Table 2. In Table 2, the symbol • indicates that the
method in the row significantly outperforms the method in
the corresponding column with the significance level 0.05,
and the symbol ◦ indicates that the method in the column
significantly outperforms the method in the corresponding
row with the significance level 0.1. These comparison results
powerfully demonstrate the effectiveness of DVKNN. We
can summarize the following highlights:

1. The average integration accuracies of MNLDP
(89.47%), LAWMV (87.90%) and DVKNN (90.75%)
on 34 datasets are much higher than those of MV
(84.69%), GTIC (80.78%), KOS (82.91%), DEWSMV
(84.29%), AALI (87.48%). These results prove that ex-
ploiting the multiple noisy labels of inferred instances’
nearest neighbors is effective for improving the perfor-
mance of label integration methods.

2. The average integration accuracy of DVKNN on 34
datasets is 90.75%, which is considerably higher than
those of MNLDP (89.47%) and LAWMV (87.90%).
These results prove that searching inferred instances’
nearest neighbors using the joint information from both
the original attribute view and the multiple noisy la-
bel view is more effective than only considering the
original attribute view.

3. Based on the Wilcoxon test results, DVKNN sig-
nificantly outperforms all of its competitors, which
strongly validates the effectiveness of DVKNN.

Besides, we also conduct another group of experiments
to verify the effectiveness of DVKNN for different label-
ing quality distributions, in which we randomly generate
the labeling quality q from a Gaussian distribution with
N(0.65, 0.12). The experiment results are shown in Tables
3 and 4. From these experimental results, we can draw to
the conclusion that whether the simulated labeling quality
of crowd worker belongs to a uniform or Gaussian distri-
bution, DVKNN can notably outperform all the other label
integration methods.



Table 1: Integration accuracy (%) comparisons on the uniform distribution.

Dataset MV GTIC KOS DEWSMV AALI MNLDP LAWMV DVKNN

anneal 92.83 62.45 94.25 92.97 94.34 94.21 84.52 89.19
audiology 77.57 75.88 69.12 76.81 80.44 75.58 76.64 79.91
autos 92.63 84.88 84.54 92.63 92.29 89.85 91.56 93.66
balance-scale 84.86 85.38 84.05 85.30 87.17 91.58 90.78 89.34
biodeg 81.37 83.23 82.49 81.46 85.95 87.18 87.78 87.65
breast-cancer 81.19 82.34 81.64 81.43 83.18 80.31 76.82 83.04
breast-w 83.22 84.45 84.35 83.05 92.60 95.34 95.54 95.99
car 87.63 86.28 89.06 87.27 88.47 88.58 80.88 90.05
credit-a 81.67 80.93 82.93 81.29 85.35 87.03 90.58 91.16
credit-g 81.13 82.95 82.13 80.76 83.48 79.96 76.60 85.31
heart-c 82.24 49.90 82.74 82.21 84.16 87.19 87.76 89.54
heart-h 84.18 48.47 84.86 84.12 84.80 88.20 88.06 90.78
heart-statlog 81.96 82.19 81.81 81.67 86.85 84.59 86.44 88.63
hepatitis 78.84 75.61 77.29 78.58 75.87 85.42 86.77 88.58
horse-colic 81.58 79.78 82.09 81.66 80.90 84.29 88.21 89.18
hypothyroid 89.93 63.39 93.45 89.74 90.51 95.56 92.29 92.29
ionosphere 81.51 79.89 81.77 80.83 84.84 89.23 78.03 87.29
diabetes 82.43 84.36 83.78 82.15 84.83 83.80 80.25 86.55
iris 90.40 90.93 84.60 90.87 96.07 98.47 98.40 99.00
kr-vs-kp 80.37 80.66 81.88 80.39 85.23 92.41 89.49 90.23
labor 76.14 73.68 55.09 76.14 82.11 86.32 88.60 88.07
letter 94.33 96.08 96.78 96.22 97.35 99.69 98.72 99.46
lymph 84.39 83.51 83.31 83.72 85.74 87.50 88.31 89.53
mushroom 83.14 83.39 84.37 83.22 85.88 98.95 91.70 98.19
segment 98.35 98.33 90.74 98.27 99.12 99.35 97.01 99.51
sick 79.37 71.83 81.24 79.40 86.26 92.83 93.88 93.85
sonar 79.13 79.90 79.04 78.80 77.93 86.39 80.48 84.95
spambase 80.49 82.14 82.12 80.60 87.21 89.37 84.63 85.19
tic-tac-toe 81.93 83.46 83.08 81.86 83.92 74.46 78.80 88.54
vehicle 93.45 93.46 90.05 93.42 94.33 93.18 90.41 95.96
vote 80.32 82.07 81.36 80.16 87.13 91.77 91.63 93.70
vowel 97.29 97.76 81.54 97.19 98.48 99.92 90.94 96.98
waveform 91.14 91.13 90.48 91.07 94.20 95.06 96.87 96.36
zoo 82.38 85.84 70.79 82.67 87.43 88.51 89.21 87.72

Average 84.69 80.78 82.91 84.65 87.48 89.47 87.90 90.75

Table 2: Integration accuracy (%) comparisons on the uniform distribution using the Wilcoxon test.

MV GTIC KOS DEWSMV AALI MNLDP LAWMV DVKNN

MV - � � � �

GTIC - � � � �

KOS - � � � �

DEWSMV - � � � �

AALI • • • • - � �

MNLDP • • • • • - �

LAWMV • • • • - �

DVKNN • • • • • • • -



Table 3: Integration accuracy (%) comparisons on the Gaussian distribution.

Dataset MV GTIC KOS DEWSMV AALI MNLDP LAWMV DVKNN

anneal 92.62 60.01 93.93 92.55 93.84 93.84 84.42 88.89
audiology 74.03 76.11 63.72 74.51 78.76 73.01 72.92 76.90
autos 91.90 86.10 82.44 92.00 93.02 88.78 91.27 92.34
balance-scale 87.42 87.49 86.06 86.98 90.05 91.90 90.51 89.68
biodeg 81.02 83.68 82.24 81.31 87.58 87.74 88.46 88.21
breast-cancer 83.71 84.76 84.62 83.60 84.83 83.04 78.29 85.38
breast-w 81.19 82.86 82.37 81.39 91.75 95.02 95.36 95.59
car 87.12 85.93 88.58 87.11 88.13 87.93 80.82 89.37
credit-a 79.91 78.67 80.99 79.68 83.09 85.28 89.84 90.33
credit-g 81.80 83.73 82.62 81.54 84.04 81.35 78.20 86.10
heart-c 82.44 48.84 82.38 81.82 84.26 86.47 87.33 89.04
heart-h 79.76 45.48 80.48 80.14 81.67 85.75 86.12 88.23
heart-statlog 77.44 78.37 70.74 77.07 83.15 83.37 85.26 87.07
hepatitis 78.65 73.87 73.94 78.00 73.16 85.81 86.52 88.00
horse-colic 81.17 79.35 81.77 81.09 79.21 84.32 86.85 88.70
hypothyroid 91.18 65.77 94.81 91.14 91.77 95.94 92.29 92.30
ionosphere 78.18 76.15 79.09 78.69 82.22 86.13 76.64 87.24
diabetes 82.25 84.05 83.80 82.20 84.60 83.67 79.74 86.39
iris 90.00 90.00 86.20 90.27 95.67 98.27 98.80 98.47
kr-vs-kp 80.29 80.71 81.58 80.42 86.12 92.14 88.86 89.74
labor 73.51 70.35 54.91 72.63 79.47 85.61 85.96 86.14
letter 94.23 96.23 96.99 97.02 97.56 99.60 98.67 99.54
lymph 80.41 80.34 79.19 80.88 83.04 86.76 85.68 87.23
mushroom 82.56 83.23 84.12 85.23 83.32 98.56 91.34 98.34
segment 96.66 96.60 87.57 96.65 97.82 99.10 97.02 99.30
sick 81.35 72.73 82.76 81.24 87.89 94.03 93.92 93.93
sonar 79.42 79.28 78.94 80.05 81.92 85.77 81.35 85.19
spambase 80.17 81.74 81.67 80.08 85.76 88.93 84.09 85.02
tic-tac-toe 79.06 80.75 79.70 78.53 81.54 74.59 78.33 85.94
vehicle 94.28 94.31 90.33 94.33 95.08 93.39 89.67 96.09
vote 82.87 84.48 83.66 82.99 87.49 92.99 92.23 94.16
vowel 96.20 96.93 81.90 96.18 97.83 99.71 86.38 95.17
waveform 91.40 91.35 90.95 91.18 94.14 95.07 97.02 96.44
zoo 80.50 86.04 68.22 80.40 85.54 88.61 88.61 87.33

Average 83.96 80.19 81.86 84.09 86.92 89.19 87.32 90.23

Table 4: Integration accuracy (%) comparisons on the Gaussian distribution using the Wilcoxon test.

MV GTIC KOS DEWSMV AALI MNLDP LAWMV DVKNN

MV - � � � �

GTIC - � � � �

KOS - � � � �

DEWSMV - � � � �

AALI • • • • - � �

MNLDP • • • • • - • �

LAWMV • • • • � - �

DVKNN • • • • • • • -
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Figure 3: Integration accuracy (%) comparisons on the
real-world dataset “LabelMe".

4.3 EXPERIMENTS ON REAL-WORLD
DATASETS

To further evaluate the effectiveness of DVKNN, we also
conduct our experiments on the real-world crowdsourced
dataset “LabelMe" [Rodrigues et al., 2017], which is col-
lected from Amazon Mechanical Turk (AMT) platform. The
“LabelMe" dataset is a multi-class dataset used for classi-
fication, which contains 1000 instances described by 512
attributes. The AMT platform collects 2547 labels for this
dataset from 59 different crowd workers. Figure 3 shows
the detailed comparison results. The integration accuracy of
DVKNN on the dataset “LabelMe" is 82.90%, which is sig-
nificantly higher than that of MV (76.50%), GTIC (76.40%),
KOS (76.70%), DEWSMV (76.61%), AALI (78.70%),
MNLDP (82.20%) and LAWMV (82.90%). Based on these
comparison results, we can draw the same conclusions as
those on the simulated datasets, which further verifies the
effectiveness of DVKNN.

4.4 PARAMETER SENSITIVITY ANALYSIS OF
DVKNN

DVKNN has only two parameters: α and β. The parameter
α adjusts the proportion of information from the original
attribute view and the multiple noisy label view. As α in-
creases, the influence of the original attribute view increases.
The parameter β adjusts the number of neighbors K. As
β increases, the number of neighbors K increases. In this
subsection, we conduct a group of experiments on the real-
world dataset “LabelMe" to observe the integration accuracy
of DVKNN when the parameters α and β increase from 0.1
to 0.9. Figure 4 shows the detailed comparison results.

Firstly, we analyze the influence of the parameter α on
the performance of DVKNN. From Figure 4, we can see
that when α is higher than 0.5, DVKNN performs much
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Figure 4: Integration accuracy (%) comparisons for
DVKNN when α and β vary from 0.1 to 0.9.

better than when α is lower than 0.5. When α is almost in
the range [0.6, 0.7], the integration accuracy of DVKNN
reaches the highest. Then, when α increases from 0.7 to
0.9, the performance of DVKNN gradually deteriorates.
These illustrate that the sightly more consideration on the
original attribute view than the multiple noisy label view is
more beneficial for DVKNN, and relying too much on the
original attribute view is also detrimental to the performance
of DVKNN. This is the reason why we set the parameter α
to 0.7 in all of our previous experiments.

Then, we analyze the influence of the parameter β on the
performance of DVKNN. Theoretically, too small or too
large β are both detrimental to the performance of DVKNN.
When β is set too small, the information exploited from
the neighbors is also too little. On the contrary, when β is
set too large, some irrelevant instances may be searched as
neighbors. However, thanks to the fine-grained weighting
for each noisy label from each neighbor, the negative impact
carried by a large number of neighbors can be alleviated, so
the performance degradation of DVKNN is not very obvious
when the value of β is large. As we can see in Figure 4, the
performance of DVKNN is not very sensitive to the value
of β as long as it is not too small. Therefore, for simplicity,
the value of β can actually be directly set to 1 and thus be
eliminated. In this case, the number of neighbors is directly
set as N

Q . In this paper, we reserve the parameter β and set
its value to 0.6 in all of our previous experiments.

4.5 ABLATION EXPERIMENTS

To verify the effectiveness of each part of DVKNN, we com-
pare DVKNN with its three variants in terms of integration
accuracy. We denote its three variants DVKNN-a, DVKNN-
l and DVKNN-w, which removes the original attribute view,
the multiple noisy label view and the fine-grained weighting
from DVKNN, respactively. Figure 5 shows the compari-
son results for DVKNN versus DVKNN-a, DVKNN-l and
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Figure 5: Integration accuracy (%) comparisons for
DVKNN versus DVKNN-a, DVKNN-l and DVKNN-w.

DVKNN-w. As we can see, the integration accuracy of
DVKNN (82.90%) is much higher than those of DVKNN-a
(36.60%) and DVKNN-l (77.50%). Therefore, we can con-
clude that both the original attribute view and the multiple
noisy label view are indispensable for DVKNN. In addition,
the integration accuracy of DVKNN (82.90%) is also much
higher than that of DVKNN-w (80.20%), which demon-
strates that the fine-grained weighting for each noisy label
from each neighbor is also effective for DVKNN. These
results powerfully validate the effectiveness and rationality
of each part of DVKNN.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we find that the KNN algorithm used by some
recently published label integration methods only consider
the original attribute view and totally ignores the valuable
information hidden in the multiple noisy labels, which limits
the performance of these label integration methods. Moti-
vated by multi-view learning, we define the multiple noisy
labels as another label view of instances and propose a
novel label integration method called dual-view K-nearest
neighbor (DVKNN). In DVKNN, we define a new distance
function using the joint information from both the original
attribute view and the multiple noisy label view to search
neighbors. Then, we define a fine-grained weight for each
noisy label from each neighbor, which enhances the effec-
tiveness of WMV and thus improve the performance of label
integration. The extensive experimental results on a large
number of crowdsourced datasets show that DVKNN signif-
icantly outperforms all of its state-of-the-art competitors.

In the current version of DVKNN, we artificially set the
value of the controlling factor α based on the experimental
experience, which is a little rough. Different datasets have
different data characteristics, so the optimal value of α for
different datasets may fluctuate within a suitable range. We
believe that finding a better way to adaptively learn the

value of α based on the data characteristics of the datasets
can further improve DVKNN. This is an important research
direction for our future work.
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