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Abstract

The standard game-theoretic solution concept, Nash equilibrium, assumes that1

all players behave rationally. If we follow a Nash equilibrium and opponents2

are irrational (or follow strategies from a different Nash equilibrium), then we3

may obtain an extremely low payoff. On the other hand, a maximin strategy4

assumes that all opposing agents are playing to minimize our payoff (even if it is5

not in their best interest), and ensures the maximal possible worst-case payoff, but6

results in exceedingly conservative play. We propose a new solution concept called7

safe equilibrium that models opponents as behaving rationally with a specified8

probability and behaving potentially arbitrarily with the remaining probability. We9

prove that a safe equilibrium exists in all strategic-form games (for all possible10

values of the rationality parameters), and prove that its computation is PPAD-hard.11

1 Introduction12

In designing a strategy for a multiagent interaction an agent must balance between the assumption13

that opponents are behaving rationally with the risks that may occur if opponents behave irrationally.14

Most classic game-theoretic solution concepts, such as Nash equilibrium (NE), assume that all players15

are behaving rationally (and that this fact is common knowledge). On the other hand, a maximin16

strategy plays a strategy that has the largest worst-case guaranteed expected payoff; this limits the17

potential downside against a worst-case and potentially irrational opponent, but can also cause us to18

achieve significantly lower payoff against rational opponents. In two-player zero-sum games, Nash19

equilibrium and maximin strategies are equivalent (by the minimax theorem), and these two goals20

are completely aligned. But in non-zero-sum games and games with more than two players, this is21

not the case. In these games we can potentially obtain arbitrarily low payoff by following a Nash22

equilibrium strategy, but if we follow a maximin strategy will likely be playing far too conservatively.23

While the assumption that opponents are exhibiting a degree of rationality, as well as the desire to24

limit worst-case performance in the case of irrational opponents, are both desirable, neither the Nash25

equilibrium nor maximin solution concept is definitively compelling on its own.26

We propose a new solution concept that balances between these two extremes. In a two-player27

general-sum game, we define an ϵ-safe equilibrium (ϵ-SE) as a strategy profile where each player i is28

playing a strategy that minimizes performance of the opponent with probability ϵi, and is playing a29

best response to the opponent’s strategy with probability 1− ϵi, where ϵ = (ϵ1, ϵ2). As a special case,30

if we are interested in constructing a strategy for player 1, we can set ϵ1 = 0, assuming irrationality31

just for player 2. We can generalize this to an n-player game by assuming that all players i ̸= 1 are32

playing a strategy that minimizes player 1’s expected payoff with probability ϵi, and are playing33

a best response to all other players’ strategies with probability 1 − ϵi, while player 1 plays a best34

response to all other players’ strategies. This concept balances explicitly between the assumption of35

players’ rationality and the desire to ensure safety in the worst case through the ϵi parameters.36

Several other game-theoretic solution concepts have been previously proposed to account for degrees37

of opponents’ rationality. The most prominent is trembling-hand perfect equilibrium (THPE), which38
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is a refinement of Nash equilibrium that is robust to the possibility that players “tremble” and39

play each pure strategy with arbitrarily small probability [4]. The concept of ϵ-safe equilibrium40

differs from THPE in several key ways. First, it allows a player to specify an arbitrary belief on the41

probability that each other player is irrational, rather than assume that it is an extremely small value.42

In domains like national security or driving we risk losing lives in the event that we fail to properly43

account for opponents’ irrationality, and may elect to use larger values for ϵi than in situations where44

safety is less of a concern. In an ϵ-SE a player can specify the values for ϵi based on prior beliefs45

about the opponent or any relevant domain-specific knowledge, and is still free to use values that are46

extremely close to 0 as in THPE. Furthermore, a THPE is a refinement of NE, while ϵ-SE and NE47

are incomparable (an ϵ-SE may not be an NE and vice versa). Another related concept is that of a48

safe strategy and ϵ-safe strategy [3]. A strategy for a player in a two-player zero-sum game is called49

safe if it guarantees an expected payoff of at least v∗—the value of the game to the player—in the50

worse case. Note that this also coincides with the set of minimax, maximin, and Nash equilibrium51

strategies. A strategy is ϵ-safe if it obtains a worst-case expected payoff of at least v∗ − ϵ. The52

concepts of safe and ϵ-safe strategies are defined just for two-player zero-sum games, while safe and53

ϵ-safe equilibrium also apply to non-zero-sum and multiplayer games.54

We note that a belief of opponents’ “irrationality” does not necessarily indicate that we believe them55

to be “stupid” or “crazy.” It may simply correspond to a belief that the opponent may have a different56

model of the game than we do. For example, our analysis may indicate that a successful attack on a57

location would result in a certain payoff for the opponent, while their analysis indicates a different58

payoff. In addition to potentially constructing different assessments of their own or other players’59

payoffs, opponents may also be “irrational” because they are using an algorithm for computing a60

Nash equilibrium that is only able to yield an approximation, or just a different Nash equilibrium61

from what other players have calculated (in fact, these cases do not actually seem to be irrational62

at all, since computing a Nash equilibrium is computationally challenging and many games have63

multiple Nash equilibria). If any of these situations arise, then simply following an arbitrary Nash64

equilibrium strategy runs a risk of an extremely low payoff, and there is potential for significant65

benefit by ensuring a degree of safety.66

An alternative approach for modeling potentially irrational opponents is to incorporate an opponent67

modeling algorithm. An approach called a restricted Nash response was developed for two-player68

zero-sum games where the opponent is restricted to play a fixed strategy σfix determined by an69

opponent model with probability p and plays a best response to us with probability 1− p while we70

best respond to the opponent (it is shown that this approach is equivalent to playing an ϵ-safe best71

response to σfix (a best response to σfix out of strategies that are ϵ-safe) for some ϵ) [2]. It was72

shown that for certain values of p this approach can result in a significant reduction in the level of73

exploitability of our own strategy while only a slight reduction in our degree of exploitation of the74

opponent’s strategy. It has also been shown that approaches that compute an ϵ-safe best response75

to a model of the opponent’s strategy for dynamically changing values of ϵ in repeated two-player76

zero-sum games can guarantee safety [1]. An ϵ-safe equilibrium strategy can be used in non-zero-sum77

and multiplayer games where models are available for the opponents’ strategies by assuming each78

opponent i follows their opponent model with probability ϵi instead of playing a worst-case strategy79

for us, while also playing a best response with probability 1− ϵi. Thus, in the event that an opponent80

model is available we can view safe equilibrium as a generalization of restricted Nash response to81

achieve robust opponent exploitation in the settings of non-zero-sum and multiplayer games.82

2 Safe Equilibrium83

A strategic-form game consists of a finite set of players N = {1, . . . , n}, a finite set of pure84

strategies Si for each player i ∈ N , and a real-valued utility for each player for each strategy85

vector (aka strategy profile), ui : ×iSi → R. A mixed strategy σi for player i is a probability86

distribution over pure strategies, where σi(si′) is the probability that player i plays pure strategy87

si′ ∈ Si under σi. Let Σi denote the full set of mixed strategies for player i. A strategy profile88

σ∗ = (σ∗
1 , . . . , σ

∗
n) is a Nash equilibrium if ui(σ

∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i) for all σi ∈ Σi for all i ∈ N ,89

where σ∗
−i ∈ Σ−i denotes the vector of the components of strategy σ∗ for all players excluding90

player i. Here ui denotes the expected utility for player i, and Σ−i denotes the set of strategy91

profiles for all players excluding player i. A mixed strategy σ∗
i for player i is a maximin strategy if92

σ∗
i ∈ argmaxσi∈Σi

minσ−i∈Σ−i ui(σi, σ−i).93
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Definition 1. Let G be a two-player strategic-form game. Let ϵ = (ϵ1, ϵ2), where ϵi ∈ [0, 1] for94

i = 1, 2. A strategy profile σ∗ is an ϵ-safe equilibrium if there exist mixed strategies τ∗i , ρ
∗
i ∈ Σi95

where σ∗
i = ϵiτ

∗
i + (1 − ϵi)ρ

∗
i for i = 1, 2 such that ρ∗i ∈ argmaxσi∈Σi

ui(σi, σ
∗
−i), τ

∗
i ∈96

argminσi∈Σi
u−i(σ

∗
−i, σi).97

In practice player i would likely want to set ϵi = 0 and ϵj > 0 for j ̸= i when determining their own98

strategy, though Definition 1 allows an arbitrary value of ϵi ∈ [0, 1] as well. It may make sense for99

player i to set ϵi > 0 if they believe both that the opponent is irrational with some probability ϵ−i,100

and if they also believe that the opponent believes that player i is irrational with some probability ϵi.101

Theorem 1. Let G = (N, (Si)i∈N , (ui)i∈N ) be a two-player strategic-form game, and let ϵ =102

(ϵ1, ϵ2), where ϵ1, ϵ2 ∈ [0, 1]. Then G contains an ϵ-safe equilibrium.103

Proof. Define G′ = (N ′, (S′
i)i∈N , (u′

i)i∈N ) to be the following game. N ′ = {1, 2, 3, 4}, S′
1 =

S′
2 = S1, S′

3 = S′
4 = S2. For s′i ∈ S′

i, define u′
i as follows for i ∈ N :

u′
1(s

′
1, s

′
2, s

′
3, s

′
4) = −ϵ2u2(s

′
1, s

′
3)− (1− ϵ2)u2(s

′
1, s

′
4)

u′
2(s

′
1, s

′
2, s

′
3, s

′
4) = ϵ2u1(s

′
2, s

′
3) + (1− ϵ2)u1(s

′
2, s

′
4)

u′
3(s

′
1, s

′
2, s

′
3, s

′
4) = −ϵ1u1(s

′
1, s

′
3)− (1− ϵ1)u1(s

′
2, s

′
3)

u′
4(s

′
1, s

′
2, s

′
3, s

′
4) = ϵ1u2(s

′
1, s

′
4) + (1− ϵ1)u2(s

′
2, s

′
4)

Player 1’s strategy corresponds to τ∗1 , player 2’s strategy corresponds to ρ∗1, player 3’s strategy104

corresponds to τ∗2 , and player 4’s strategy corresponds to ρ∗2. By Nash’s existence theorem, the game105

G′ has a Nash equilibrium, which corresponds to an ϵ-safe equilibrium of G.106

Theorem 2. The problem of computing an ϵ-safe equilibrium in two-player games is PPAD-hard.107

Proof. Let G = (N, (Si)i∈N , (ui)i∈N ) be a two-player strategic-form game. Suppose that k is
the smallest possible payoff for any player in G, and let k′ = k − 1. Define the game G′ =
(N ′, (S′

i)i∈N , (u′
i)i∈N ) as follows. N ′ = {1, 2}, S′

1 = S1 ∪ t, S′
2 = S2 ∪ t. For s′i ∈ S′

i, define u′
i

as follows for i ∈ N :
u′
i(s

′
1, s

′
2) = ui(s

′
1, s

′
2) for s1 ∈ S1, s2 ∈ S2.

u′
i(t, s

′
2) = k′ for s′2 ∈ S2.

u′
i(s

′
1, t) = k′ for s′1 ∈ S1.

u′
i(t, t) = k′.

Suppose we can efficiently compute an ϵ-safe equilibrium of G′, denoted by σG′
. Then we

have σG′

i = ϵiτ
∗
i + (1 − ϵi)ρ

∗
i for i = 1, 2, where ρ∗i ∈ argmaxσ′

i∈Σ′
i
ui(σ

′
i, σ

G′

−i), τ
∗
i ∈

argminσ′
i∈Σ′

i
u−i(σ

G′

−i, σ
′
i). I claim that ρ∗ is a Nash equilibrium of G. First note that ρ∗i must

put probability 0 on t for all players, since t is strictly dominated. So it is a valid strategy profile of G.
Also note that τ∗i must put probability 1 on t for all i. Suppose that player i can improve performance
in G by deviating to ηi. Then

ui(ηi, ρ
∗
−i) > ui(ρ

∗
i , ρ

∗
−i)

(1− ϵi)ui(ηi, ρ
∗
−i) + ϵik

′ > (1− ϵi)ui(ρ
∗
i , ρ

∗
−i) + ϵik

′

(1− ϵi)ui(ηi, ρ
∗
−i) + ϵiui(ηi, t) > (1− ϵi)ui(ρ

∗
i , ρ

∗
−i) + ϵiui(ηi, t)

(1− ϵi)ui(ηi, ρ
∗
−i) + ϵiui(ηi, t) > (1− ϵi)ui(ρ

∗
i , ρ

∗
−i) + ϵiui(ρ

∗
i , t)

(1− ϵi)ui(ηi, ρ
∗
−i) + ϵiui(ηi, τ

∗
−i) > (1− ϵi)ui(ρ

∗
i , ρ

∗
−i) + ϵiui(ρ

∗
i , τ

∗
−i)

ui(ηi, σ
G′

−i) > ui(ρ
∗
i , σ

G′

−i).

This contradicts the fact that ρ∗i ∈ argmaxσ′
i∈Σ′

i
ui(σ

′
i, σ

G′

−i). So we have a contradiction, and108

conclude that no player can improve performance in G by deviating from ρ∗. So ρ∗ is a Nash109

equilibrium of G. Since the problem of computing a Nash equilibrium is PPAD-hard and we110

have reduced it to the problem of computing an ϵ-safe equilibrium, this shows that the problem of111

computing an ϵ-safe equilibrium is PPAD-hard.112
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[
(0, 0) (−1,+1)

(+1,−1) (−10,−10)

]

Figure 1: Payoff matrix for game of Chicken.[
(4,−3) (−1, 1) (−7, 2)
(−5, 5) (2,−1) (−1, 4)
(−9, 1) (−1, 8) (9,−4)

]

Figure 2: Security game payoff matrix.

For n > 2 players, we designate one of the players as being a special player, say player 1. We113

can view player 1 as representing “ourselves” as a decision-making agent, and the other players as114

unpredictable opponents. Player 1 then best responds to the strategy profile of all other players, while115

each opposing player i mixes between playing a strategy that minimizes player 1’s payoff and a116

strategy that maximizes player i’s payoff in response to the strategy profile of the other players.117

Definition 2. Let G be an n-player strategic-form game. Let ϵ = (ϵ2, . . . , ϵn), where ϵi ∈ [0, 1].118

A strategy profile σ∗ is an ϵ-safe equilibrium if there exists a mixed strategy σ∗
1 for player 1 and119

mixed strategies τ∗i , ρ
∗
i ∈ Σi where σ∗

i = ϵiτ
∗
i + (1 − ϵi)ρ

∗
i for i = 2, . . . , n such that ρ∗i ∈120

argmaxσi∈Σi
ui(σi, σ

∗
−i), τ

∗
i ∈ argminσi∈Σi

u1(σ
∗
1 , σ

′), σ∗
1 ∈ argmaxσ1∈Σ1

u1(σ1, σ
∗
−1), where121

σ′ is the strategy profile for players 2–n where player i plays σi and the other players j ̸= i play σ∗
j .122

The proof of Theorem 1 extends naturally to n > 2 players as well by creating a 2(n−1)+1 = 2n−1123

player game with 2 new players corresponding to each original player for i > 1, plus player 1.124

Theorem 3. For all ϵ, every n-player strategic-form game contains an ϵ-safe equilibrium.125

Theorem 4. The problem of computing an ϵ-safe equilibrium in n-player games is PPAD-hard.126

As an example, consider the classic game of Chicken, with payoffs given by Figure 1. The first action127

for each player corresponds to the “swerve” action, while the second corresponds to the “straight”128

action. The unique mixed-strategy Nash equilibrium σNE in the Chicken game is for each player to129

swerve with probability 0.9 (there are also two pure-strategy equilibria where one player swerves and130

the other player doesn’t), and the unique maximin strategy σM is to swerve with probability 1. If we131

set ϵ1 = 0, then it turns out that σNE
1 is an ϵ-safe equilibrium strategy for player 1 for 0 ≤ ϵ2 ≤ 0.1,132

and σM
1 is an ϵ-safe equilibrium strategy for player 1 for 0.1 ≤ ϵ2 ≤ 1. It is not necessary that133

an ϵ-safe equilibrium strategy always corresponds to a Nash equilibrium or maximin strategy. For134

example, with ϵ1 = 0.05 and ϵ2 = 0.15, an ϵ-safe equilibrium strategy profile is for player 1 to135

swerve with probability 0.95 and player 2 to swerve with probability 0.136

As another example, consider the security game depicted in Figure 2, where the row player selects137

one of three targets to defend while the column player selects a target to attack. A Nash equilibrium138

for player 1 (row player) σNE
1 is to defend the targets with probabilities (0.3136, 0.4661, 0.2203),139

and a maximin strategy σM
1 is to defend the targets with probabilities (0.6144, 0.0131, 0.3725).140

Again using ϵ1 = 0, for ϵ2 ∈ [0, 0.314] it turns out that σNE
1 is an ϵ-safe equilibrium strategy for141

player 1, and for ϵ2 ∈ [0.569, 1] σM
1 is an ϵ-safe equilibrium strategy for player 1. But for the region142

ϵ2 ∈ [0.314, 0.569] it turns out that the strategy (0.4437, 0.3666, 0.1897) is an ϵ-safe equilibrium143

strategy for player 1, which is neither a Nash equilibrium strategy nor a maximin strategy.144

3 Conclusion145

While Nash equilibrium has emerged as the central game-theoretic solution concept, its assumption146

that all players behave rationally may be too strict when modeling real human decision makers. As147

game theory is being increasingly applied to high-stakes situations, such as self-driving cars and148

national security, it is essential that strategies are able to accommodate the possibility of opponents’149

irrationality, which may be unpredictable. At the other end of the spectrum, a maximin strategy150

assumes that all opponents are trying to minimize our payoff, resulting in exceedingly conservative151

play with low payoffs. Safe equilibrium effectively bridges the gap between these two extremes,152

enabling us to construct strategies that are robust to arbitrary degrees of opponents’ irrationality.153
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