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Abstract

In this paper, we introduce a brand new dataset to promote the study of instance1

segmentation for objects with irregular shapes. Our key observation is that though2

irregularly shaped objects widely exist in daily life and industrial scenarios, they3

received little attention in the instance segmentation field due to the lack of corre-4

sponding datasets. To fill this gap, we propose iShape, an irregular shape dataset5

for instance segmentation. Unlike most existing instance segmentation datasets of6

regular objects, iShape has many characteristics that challenge existing instance7

segmentation algorithms, such as large overlaps between bounding boxes of in-8

stances, extreme aspect ratios, and large numbers of connected components per9

instance. We benchmark popular instance segmentation methods on iShape and10

find their performance drop dramatically. Hence, we propose an affinity-based11

instance segmentation algorithm, called ASIS, as a stronger baseline. ASIS ex-12

plicitly combines perception and reasoning to solve Arbitrary Shape Instance13

Segmentation including irregular objects. Experimental results show that ASIS14

outperforms the state-of-the-art on iShape. Dataset and code are available at15

http://ishape.github.io16

1 Introduction17

(a) iShape-Wire (b) Ground Truth

Figure 1: A typical scene of objects with irregular shape
and similar appearance. It has many characteristics that
challenge instance segmentation algorithms, including
the large overlaps between bounding boxes of objects,
extreme aspect ratios (bounding box of the grey mask),
and large numbers of connected components in one
instance (green and blue masks).

Instance segmentation aims to predict the18

semantic and instance labels of each im-19

age pixel. Compared to object detection20

[1, 2, 3, 4, 5, 6, 7, 8] and semantic segmen-21

tation [9, 10, 11], instance segmentation22

provides more fine-grained information but23

is more challenging and attracts more and24

more research interests of the community.25

Many methods [12, 13, 14, 15] and datasets26

[16, 17, 18] continue to emerge in this field.27

However, most of them focus on regularly28

shaped objects and only a few [19, 18]29

study irregular ones, which are thin, curved,30

or having complex boundary and can not31

be well-represented by regularly rectangu-32

lar boxes. We think the insufficient explo-33
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ration of this direction is caused by the lack34

of corresponding datasets.35

In this work, we present iShape, a new dataset designed for irregular Shape instance segmentation.36

Our dataset consists of six sub-datasets, namely iShape-Antenna, iShape-Branch, iShape-Fence,37

iShape-Log, iShape-Hanger, and iShape-Wire. As shown in Figure 2, each sub-dataset represents38

scenes of a typical irregular shape, for example, strip shape, hollow shape, and mesh shape. iShape39

has many characteristics that reflect the difficulty of instance segmentation for irregularly shaped40

objects. The most prominent one is the large overlaps between bounding boxes of objects, which is41

hard for proposal-based methods[12, 14] due to feature ambiguity and non-maximum suppression42

(NMS [20]). Meanwhile, overlapped objects that share the same center point challenge center-based43

methods[21, 22, 23]. Another characteristic of iShape is a large number of objects with similar44

appearances, which makes embedding-based methods[24, 25] hard to learn discriminative embedding.45

Besides, each sub-dataset has some unique characteristics. For example, iShape-Fence has about 5346

connected components per instance, and iShape-Log has a large object scale variation due to various47

camera locations and perspective transformations. We hope that iShape can serve as a complement of48

existing datasets to promote the study of instance segmentation for irregular shape as well as arbitrary49

shape objects.50

We also benchmark existing instance segmentation algorithms on iShape and find their performance51

degrades significantly. To this end, we introduce a stronger baseline considering irregular shape in52

this paper, which explicitly combines perception and reasoning. Our key insight is to simulate how a53

person identifies an irregular object. Taking the wire shown in Figure 1 for example, one natural way54

is to start from a local point and gradually expand by following the wire contour and figure out the55

entire object. The behavior of such “following the contour” procedure is a process of continuous56

iterative reasoning based on local clues, which is similar to the recent affinity-based approaches57

[26, 27]. Under such observation, we propose a novel affinity-based instance segmentation baseline,58

called ASIS, which includes principles of generating effective and efficient affinity kernel based on59

dataset property to solve Arbitrary Shape Instance Segmentation. Experimental results show that the60

proposed baseline outperforms existing state-of-the-art methods by a large margin on iShape.61

Our contribution is summarized as follows:62

• We propose a brand new dataset, named iShape, which focuses on irregular shape instance63

segmentation and has many characteristics that challenge existing methods. In particular,64

we analyzed the advantages of iShape over other instance segmentation datasets.65

• We benchmark popular instance segmentation algorithms on iShape to reveal the drawbacks66

of existing algorithms on irregularly shaped objects.67

• Inspired by human’s behavior on instance segmentation, we propose ASIS as a stronger68

baseline on iShape, which explicitly combines perception and reasoning to solve Arbitrary69

Shape Instance Segmentation.70

(a) Antenna (b) Branch (c) Fence (d) Hanger (e) Log (f) Wire

Figure 2: The six sub-datasets in iShape.
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2 Related Work71

2.1 Existing Datasets72

There are several benchmark datasets collected to promote the exploration of instance segmentation.73

The COCO [16] and the Cityscapes [17] are the most popular ones among them. However, the74

shapes of target objects in these datasets are too regular. The connected components per instance75

(CCPI) and average MaxIoU are low in the datasets and state-of-the-art algorithms selected from76

them can not generalize to more challenging scenarios. Instead, in the scenario of human detection77

and segmentation, the OC human [19] and the Crowd Human [28] introduce datasets with larger78

MaxIoU. Nevertheless, the OC human dataset only provides a small number of images for testing,79

and the number of instances per image is too small to challenge instance segmentation algorithms.80

While the crowd human dataset only provides annotations of object bounding boxes, limiting their81

application to the instance segmentation field. In the area of photogrammetry, the iSAID [18] dataset82

is proposed to lead algorithms to tackle objects with multi scales. However, shapes of objects in this83

dataset are common, most of which are rectangular, and the lack of instance overlapping reduces84

its challenge to instance segmentation algorithms as well. Under the observation that these existing85

regular datasets are not enough to challenge algorithms for more general scenarios, we propose86

iShape, which contains irregularly shaped objects with large overlaps between bounding boxes of87

objects, extreme aspect ratios, and large numbers of CCPI to promote the capabilities of instance88

segmentation algorithms.89

2.2 Instance Segmentation Algorithms90

Existing instance segmentation algorithms can be divided into two classes, proposal-based and91

proposal-free.92

Proposal-based approaches One line of these approaches [12, 14, 29] solve instance segmentation93

within a two-stage manner, by first propose regions of interests (RoIs) and then regress the semantic94

labels of pixels within them. The drawback of these approaches comes from the loss of objects by95

NMS due to large IoU. Instead, works like [15] tackle the problem within a single-stage manner. For96

example, PolarMask [15] models the contours based on the polar coordinate system and then obtain97

instance segmentation by center classification and dense distance regression. But the convex hull98

setting limits its accuracy.99

Proposal-free approaches To shake off the rely on proposals and avoid the drawback caused by100

them, many bottom-up approaches like [22, 23, 24, 25] are introduced. These works are in various101

frameworks. The recent affinity-based methods obtain instance segmentation via affinity derivation102

[26] and graph partition[30]. This formulation is more similar to the perception and reasoning103

procedure of we human beings and can handle more challenging scenarios. GMIS [26] utilizes both104

region proposals and pixel affinities to segment images and SSAP [27] outputs the affinity pyramid105

and then performs cascaded graph partition. However, The affinity kernels of GMIS and SSAP are106

sparse in angle and distance, leading to missing components of some instances due to loss of affinity107

connection. To this end, we propose ASIS which includes principles of generating effective and108

efficient affinity kernel based on dataset property to solve Arbitrary Shape Instance Segmentation and109

achieve great improvement on iShape.110

3 iShape Dataset111

3.1 Dataset Creation112

iShape consists of six sub-datasets. One of them, iShape-Antenna, is collected from real scenes, which113

are used for antenna counting and grasping in automatic production lines. The other five sub-datasets114

are synthetic datasets that try to simulate five typical irregular shape instance segmentation scenes.115

iShape-Antenna Creation. For the creation of iShape-Antenna, we first prepare a carton with a116

white cushion at the bottom, then randomly and elaborately place antennas in it to generate various117

scenes. Above the box, there is a camera with a light that points to the inside of the box to capture the118

scene images. We collect 370 pictures and annotate 3,036 instance masks then split them equally119

for training and testing. The labeling is done by our supplier. We have checked all the annotations120
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ourselves, and corrected the wrong annotations. Although iShape-Antenna only contains 370 images,121

the number of instances reaches 3,036 which is more than most categories in Cityscapes [17] and122

PASCAL VOC [31].123

Synthetic Sub-datasets Creation There are lots of typical irregular shape instance segmentation124

scenes. Consequently, it is impractical to collect a natural dataset for each typical scene. Since it125

is traditional to study computer vision problems using synthetic data [32, 33], we synthesize five126

sub-datasets of iShape which include iShape-Branch, iShape-Fence, iShape-Log, iShape-Hanger, and127

iShape-Wire, by using CG software Blender. In particular, We build corresponding 3D models and128

placement they appropriate in Blender with optional random background and lighting environment,129

optional physic engine, and random camera position. The creation configs of synthesis sub-datasets130

are listed in the appendix. After setting up the scene, we use a ray tracing render engine to render the131

RGB image. Besides, We build and open source a blender module, bpycv [34], to generate instance132

annotation. We generate 2500 images for each sub-dataset, 2000 for training, 500 for testing.133

3.2 Dataset Characteristics134

In this sub-section, we analyze the characteristics of iShape and compare it with other instance135

segmentation datasets. Since each sub-dataset represents irregularly shaped objects in different136

scenes, we present the statistical results of each sub-dataset separately.137

Dataset basic information. As summarized in Table 1, iShape contains 12,870 images with 175,840138

instances. All images are 1024×1024 pixels and annotated with pixel-level ground truth instance139

masks. Since iShape focus on evaluating the performance of algorithms on the irregular shape, each140

scene consists of multiple instances of one class, which is also common cases in industrial scenarios.141

Instance count per image. A larger instance count is more challenging. Despite iSAID getting142

the highest instance count per image, it is unfair for extremely high-resolution images and normal-143

resolution images to be compared on the indicator. Among iShape, the instance count per image of144

iShape-Log reaches 28.86 that significantly higher than other normal-resolution datasets.145

The large overlap between objects. We introduce a new indicator, Overlap of Sum (OoS), which146

aims to measure the degree of occlusion and crowding in a scene, defined as follows:147

Overlap of Sum =

{
1− |

⋃n
i=1 Ci|∑n
i=1 |Ci| , n > 0

0, n = 0
(1)

where C means bounding boxes(bbox) or convex hulls(convex) of all instances in the image, n means148

number of instances,
⋃

means union operation, and |Ci| means to get the area of Ci. The statistics of149

average OoS for bounding box and convex hull are presented in Table. 1. For bounding box OoS,150

All iShape sub-datasets are higher than other datasets, which reflects the large overlap characteristic151

of iShape. Thanks to the large-area hollow structure, iShape-Fence gets the highest average convex152

hull OoS 0.63. Moreover, The Average MaxIoU [19] of all images also reflects the large overlap153

characteristic of iShape.154

Table 1: Comparison of statistics with different datasets.

Dataset Images Ins. Ins./image OoS AvgMIoU Aspect CCPIbbox convex ratio
Cityscapes 2,975 52,139 17.52 0.14 0.07 0.394 2.29 1.34
COCO 123,287 895,795 7.26 0.15 0.09 0.210 2.59 1.41
CrowdHuman 15,000 339,565 22.64 - - - - -
OC Human 4,731 8,110 1.71 0.25 0.20 0.424 2.28 3.11
iSAID 2,806 655,451 233.58 - - - 2.40 -
Antenna 370 3,036 8.20 0.62 0.23 0.655 9.86 2.45
Branch 2,500 26,046 10.14 0.62 0.52 0.750 2.47 10.88
Fence 2,500 7,870 3.15 0.65 0.63 0.983 1.05 53.65
Hanger 2,500 49,275 19,71 0.53 0.34 0.685 3.28 4.94
Log 2,500 72,144 28.86 0.73 0.06 0.843 34.14 2.64
Wire 2,500 17,469 6.99 0.74 0.60 0.795 3.32 4.76
iShape 12,870 175,840 13.66 0.65 0.42 0.806 15.84 6.99
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The similar appearance between object instances. Instances from the same object class in iShape155

share similar appearance, which is challenging to embedding-based algorithms. In particular, any two156

object instance in iShape-Antenna, iShape-Fence and iShape-Hanger are indistinguishable according157

to their appearance. They are generated from either industrial standard antennas or copies of the same158

mesh models. Meanwhile, the appearance of objects in iShape-Branch, iShape-Log, and iShape-Wire159

are slightly changeable to add some variances, but appearances of different instances are still much160

more similar than those from other existing datasets in Table 1.161

Aspect ratio. Table 1 presents statistics on the average aspect ratio of the object’s minimum bounding162

rectangle for each dataset. Among them, iShape-Log’s aspect ratio reaches 34.14, which is more163

than 10 times of other regularly shaped datasets. Such a gap is caused by two following reasons:164

Firstly, the shape of logs has a large aspect ratio. Secondly, partially occluding logs leads to a higher165

aspect ratio. iShape-Antenna also has a high aspect ratio, 9.86, which exceeds other regularly shaped166

datasets.167

Connected Components Per Instance (CCPI). Larger CCPI poses a larger challenge to instance168

segmentation algorithms. Due to the characteristics of irregular shaped objects and the occlusion of169

scenes, the instance appearance under the mesh shape tends to be divided into many pieces, leading170

to large CCPI of iShape-Fence. As is shown in Table 1, the result on CCPI of iShape-Fence is 53.65,171

about 5 times higher than the second place. iShape-Branch, iShape-Hanger, and iShape-Wire also172

have a large CCPI that exceeds other regularly shaped datasets.173

4 Baseline Approach174

Input Image Backbone

Affinity Ground TruthInstance Ground Truth

Undirected Sparse Graph

Instance 
Segmentation

Affinity Map

Semantic Segmentation

N × H × W

Class 
Assign

N-neighbors Affinity Kernel

OHEM Loss 

Build Graph

Semantic 
Head

Affinity 
Head

Graph Merge

Class-agnostic instance 
segmentation

Train Stage

Inference Stage

Figure 3: Overview of ASIS. In the training stage, the network learns to predict the semantic
segmenation as well as the affinity map where the ground truth of affinity can be generated by affinity
kernel and instance ground truth. In the inference stage, the predicted affinity map will be used
to construct a sparse and undirected graph, with pixel as node and affinity map as edge. The final
instance label then can be generated by applying a class assign module on top of the constructed
graph and semantic segmentation map.
Inspired by how a person identifies a wire shown in Figure 1, We propose an affinity-based instance175

segmentation baseline, called ASIS, to solve Arbitrary Shape Instance Segmentation by explicitly176

combining perception and reasoning. Besides, ASIS includes principles of generating effective and177

efficient affinity kernel based on dataset property. In this section, an overview of the pipeline is178

firstly described in Subsection 4.1, then design principles of the ASIS affinity kernel are explained in179

Subsection 4.2.180
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(a) ASIS (b) GMIS (c) SSAP

Figure 4: Illustration for affinity kernels. (a) ASIS affinity kernel could connect these two segments
with two neighbors (blue points). (b) GMIS affinity kernel cannot reach the right segment. (c)
Examples of failure case for SSAP affinity kernel. For higher resolutions (top), 5× 5 affinity window
cannot reach the segment on the right. For lower resolutions (bottom), the view of thin antennas are
lost in the resized feature maps.

4.1 Overview of ASIS181

As shown in Figure 3, we firstly employ the PSPNet [11] as the backbone and remove its last softmax182

activation function to extract features. The semantic head, which combines a single convolution183

layer and a softmax activation function, will input those features and output a C ×H ×W semantic184

segmentation probability map where C means the total categories number. The affinity head that185

consists of a single convolution layer and a sigmoid activation function will output a N ×H ×W186

affinity map, where N is the neighbor number of affinity kernel. Affinity kernel [26] defines a set of187

neighboring pixels that needs to generate affinity information. Examples of affinity kernels can found188

in Figure 4. Each channel of the affinity map represents a probability of whether the neighbor pixel189

and the current one belong to the same instance.190

During the training stage, we apply the affinity kernel on the instance segmentation ground truth191

to generate the affinity ground truth. Since affinity ground truth is extremely imbalanced, an192

OHEM [35] loss is calculated between the predicted affinity map and the affinity ground truth to193

effectively alleviate the problem. For affinity map with input size S = N × H ×W , we define194

A = {a1, a2, ..., aS} and Y = {y1, y2, ..., yS} the sets of each pixel of the predicted affinity map195

and the corresponding ground truth. The loss of the ith pixel Li is defined as:196

Li = −yi log(ai)− (1− yi) log(1− ai). (2)

Assume that the set L
′

is the Topk value in L = {L1, L2, ..., LS}. K takes the top ten percent. The197

OHEM loss is as follows:198

Laff =
1

|L′ |
∑
l′∈L′

l
′
, (3)

Affinities that connect segments of fragmented instances are important but hard to learn. Thanks199

to the difficulty of learning these affinities, the OHEM loss pays more attention to these important200

affinities. Besides, a standard cross-entropy loss for pixels Lsem is applied to semantic segmentation201

output. The final training loss L is defined as:202

L = λLaff + (1− λ)Lsem (4)

For the inference stage, we firstly take pixels as nodes and affinity map as edges to build an undirected203

sparse graph. The undirected sparse graph in Figure 3 shows an example of how a pixel node on204

the spoon should connect the other pixel nodes. Then, we apply the graph merge algorithm [26] on205

the undirected sparse graph. The algorithm will merge nodes that have a positive affinity to each206

other into one supernode, by contrast, keep nodes independent if their affinity is negative. Pixels that207

merged to the same supernodes are regarded as belonging to the same instance. In this way, we obtain208

a class-agnostic instance map. A class assign module [26] will take the class-agnostic instance map209

and the semantic segmentation result as input, then assign a class label with a confidence value to210

each instance.211
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Table 2: Qualitative results on iShape. We report the mmAP of six sub-datasets and the average of
mmAP.

Method Backbone Antenna Branch Fence Hanger Log Wire Avg
SOLOv2 [21] ResNet-50 6.6 27.5 0.0 28.8 22.2 0.0 14.07

PolarMask [15] ResNet-50 0.0 0.0 0.0 0.0 18.6 0.0 3.10
SE [22] - 38.3 0.0 0.0 49.8 20.9 0.0 18.17

Mask RCNN [12] ResNet-50 16.9 4.2 0.0 22.1 32.6 0.0 12.63
DETR [38] ResNet-50 2.1 2.6 0.0 32.2 46.2 0.0 13.85
ASIS(ours) ResNet-50 77.5 25.1 37.1 53.1 69.3 64.9 54.50

4.2 ASIS Affinity Kernel212

Since instances could be divided into many segments, it is important to design an appropriate affinity213

kernel to connect those segments that belong to the same instance. As shown in Figure 4(b) and214

Figure 4(c), The yellow point is the current pixel. Red points belong to different instances and blue215

points belong to the same instance of the current pixel. The antenna that the current pixel (yellow216

point) belongs to has two segments that need to be connected by affinity neighbor. The previous217

affinity-based approaches [26, 27] don’t take into account such problems and cause some failures.218

Hence, we propose principles of generating effective and efficient affinity kernel based on dataset219

property to solve Arbitrary Shape Instance Segmentation. Our affinity kernel is shown in 4(a).220

Affinity kernels of GMIS and SSAP are centered symmetric, unfortunately, that will cause redundant221

outputs. For example, the affinity of pixel (1, 1) with its right side pixel and the affinity of pixel (1, 2)222

with its left side pixel both mean the probability of these two pixels belonging to one instance. A223

detailed description of redundant affinity can be found in the appendix. To reduce the network’s224

outputs, redundant affinity neighbors are discarded in the ASIS affinity kernel. As shown in 4(a),225

affinity neighbors of ASIS are distributed in an asymmetric semicircle structure. Besides, the area226

covered by asymmetric semicircle affinity kernel is reduced by half, in other words, the demand for227

receptive fields is reduced, which further reduces the difficulty of CNN learning affinity.228

Two main parameters determine the shape of the ASIS affinity kernel. Kernel radius rk controls the229

radius of the kernel and determines how far the farthest of two segments can be reached. Affinity230

neighbor gap g represents the distance between any two nearly affinity neighbors, thus, g controls231

the sparseness of the affinity neighbor. Since each dataset has its optimal affinity kernel, we propose232

another algorithm that could adaptively generate appropriate rk and g based on the dataset property.233

Detailed descriptions of these two algorithms can be found in the appendix.234

5 Experiments235

In this section, we choose representative instance segmentation methods in various paradigms and236

benchmark them on iShape to reveal the drawbacks of existing methods on irregularly shaped objects.237

All the existing methods are trained and tested on six iShape sub-datasets with their defaults setting.238

And we further study the effect of our baseline method, ASIS.239

Evaluation Metrics The evaluation metric is mainly Average Precision (AP), which is calculated by240

averaging the precision under mask IoU (Intersection over Union) thresholds from 0.50 to 0.95 at the241

step of 0.05.242

Implementation Details The input image resolution of our framework is 512× 512. The image data243

augmentation is flipped horizontally or vertically with a probability of 0.5. We use the ResNet-50244

[36] as our backbone network and the weight is initialized with ImageNet [37] pretrained model. All245

experiments are trained in 4 2080Ti GPUs and batch size is set to 8. The stochastic gradient descent246

(SGD) solver is adopted in 50K iterations. The momentum is set to 0.9 and weight decay is set to247

0.0005. The learning rate is initially set to 0.01 and decreases linearly.248
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(a) (b)

Figure 5: Two example false cases of
ASIS on iShape-Antenna. (a) Two anten-
nas merged into one (blue and orange).
(b) ASIS fails to connect the right parts
of an object (red and sky blue).

(a) ASIS (b) GMIS

Figure 6: Results compared with GMIS
kernel. As shown in (b), GMIS fail to
connect segments that belong to one in-
stance.

5.1 Experiment Results249

We evaluate the proposed ASIS and other popular approaches on iShape. The quantitative results are250

shown in Table 2 and some qualitative results are reported in Figure 7.251

As is shown in Table 2, the performance of Mask R-CNN [12] is far from satisfactory on iShape. We252

think the drop in performance mainly comes from three drawbacks of the design. Firstly, the feature253

maps suffer from ambiguity when the IoU is large, which is a common characteristic of crowded254

scenes of irregular shape objects. Also, Mask R-CNN depends on the proposals of RoI, which may255

be abandoned by the NMS algorithm due to large IoU and lead to missing of some target objects.256

Moreover, many thin objects can not be segmented by Mask R-CNN because of its RoI pooling,257

which resizes the feature maps and lost the view of thin objects. The recent proposed end-to-end258

object detection approach, DETR [38], shake of the reliance of NMS and can better deal with objects259

with large IoU and achieve better performance, as shown in the table. However, DETR still suffers260

from the RoI pooling problems and performs badly on thin objects, as shown in Figure 7.261

We also report some qualitative results of SE [22] in Figure 7. As is shown in the figure, one common262

failure case of SE is that when the length of irregular objects is longer than a threshold, the object263

will be split into multi instances, for example, the wire in Figure 7. We think that’s because SE264

will regress a circle of the target instance and then calculate its IoU with the mask for supervision.265

However, for long and thin irregular objects, the radius of the center circle can not reach the length266

of the target object, leading to a multi-split of a long instance. Also, instances that share the same267

center may cause ambiguity to SE, such as hanger and fence in Figure 7. Moreover, many centers of268

irregular objects lie outside the mask, making it hard to match them to the objects themselves.269

We evaluate SOLO v2 [21] on the proposed iShape and find that it failed to segment instances that270

share the same center, for example, fences in Figure 7. Also, since SOLO V2 depends on the center271

point as SE, it also suffers from performance drop caused by object centers that lie outside the mask.272

In Table 2, we report the performance of PolarMask [15] on our dataset. As is shown in the table,273

PolarMask can not solve the instance segmentation of irregular objects. That is because PolarMask274

can only represent a thirty-six-side mask due to its limited number of rays. Hence, it can not handle275

objects with hollow, for example, the fences. Also, they distinguish different instances according to276

center regression, which, however, can not handle instances that share the same center. We also find277

that PolarMask can only tackle some cases of logs in iShape, which looks like circles on the side and278

fit its convex hull mask setting.279

Thanks to the perception and reasoning mechanism as well as the well-designed affinity kernels of280

our ASIS, it obtained the best performance on iShape. In Table 2, ASIS advances other approaches281

by 36% on the mmAP metric. However, there are still some drawbacks to the design of ASIS and282

some failure cases caused by them. For example, in Figure 5(a), two instances are merged into one.283

We think that’s because the graph merge algorithm is a kind of greedy algorithm, while the greedy284

algorithm makes optimal decisions locally instead of looking for a global optimum. Hence, ASIS is285

not robust to false-positive (FP) with high confidence. Also, ASIS fails to connect the two parts of an286

object if they are far away from each other, for example, the antenna on Figure 5(b). We think that’s287

because CNN is not good at learning long-range affinity.288
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Figure 7: Qualitative results of different instance segmentation approaches on iShape.

5.2 Ablation Study289

Effect of ASIS. We study the effect of ASIS in Table 3, where ASIS advances GMIS by 10.9% on290

iShape-Antenna. We think that is because our well designed affinity kernels based on dataset property291

can better discover the connectivity of different parts of an object. While GMIS suffers from its292

sparsity in distance and angle, results are shown in Figure 6(b). We also use ground truth affinity map293

to explore the upper bound of ASIS, where a 98.5% mAP is achieved, showing its great potential.294

Moreover, we find our non-centrosymmetric design of affinity kernels outperform centrosymmetric295

ones in the table. We think such a design cut off the output and calculation redundancy and reduce296

the requirement of large receptive field from CNN, simplifying representation learning.297
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Effect of OHEM. Table 3 shows that OHEM boosts the performance of GMIS and ASIS by a large298

margin. We think that is because OHEM can ease problems caused by imbalance distribution of299

positive and negative affinity.

Table 3: Comparison result of GMIS and ASIS. “SY” and “ASY” indicate a centrosymmetric or
asymmetric affinity kernel respectively.

√
denotes equipped with and ◦ not.

Affinity Kernel Neighbors Affinity GT OHEM mAP

GMIS [26] 56 (SY)
◦ ◦ 44.5
◦

√
69.9√

- 90.2
28 (ASY) ◦

√
72.7

ASIS(ours) 53 (ASY)
◦ ◦ 58.4
◦

√
77.5√

- 98.5

300

6 Conclusion301

In this work, we introduce a new irregular shape instance segmentation dataset (iShape). iShape has302

many characteristics that challenge existing instance segmentation methods, such as large overlaps,303

extreme aspect ratios, and similar appearance between objects. We evaluate popular algorithms304

on iShape to establish the benchmark and analyze their drawbacks to reveal possible improving305

directions. Meanwhile, we propose a stronger baseline, ASIS, to better solve Arbitrary Shape Instance306

Segmentation. Thanks to the combination of perception and reasoning as well as the well-designed307

affinity kernels, ASIS outperforms the state-of-the-art methods on iShape. We believe that iShape and308

ASIS can serve as a complement to existing datasets and methods to promote the study of instance309

segmentation for irregular shape as well as arbitrary shape objects.310
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