
Under review as a conference paper at ICLR 2023

GRAFTING VISION TRANSFORMERS

Anonymous authors
Paper under double-blind review

Tr
an

sf
or

m
er M

SA
FF

N

Multi-scale tokens

(a)

+1.4%

+0.6%

6 8 10 12 14

GFLOPs

81.0

81.5

82.0

82.5

83.0

83.5

Im
ag

eN
et

to
p
-1

(%
)

Swin + GrafT

Swin

Region-ViT

PoolFormer

PvT

TNT

T2T

ViL

(b)

Figure 1: We introduce GrafT, an add-on component which makes use of global and multi-scale dependencies
at arbitrary depths of a network. (a) An overview of how GrafT modules are branched-out (or grafted) from
a backbone Transformer. Each GrafT may consider multiple scales of features (i.e., token representations),
widening a network efficiently while relying on the backbone to perform most of the computations. It can be
adopted to both homogeneous (e.g., ViT (Dosovitskiy et al., 2020)) and pyramid (e.g., Swin (Liu et al., 2021))
architectures. (b) Performance-complexity trade-off of our Swin+GrafT, in comparison with previous related
methods. GrafT shows a considerable performance gains with a minimal increment in complexity.

ABSTRACT

Vision Transformers (ViTs) have recently become the state-of-the-art across many
computer vision tasks. In contrast to convolutional networks (CNNs), ViTs en-
able global information sharing even within shallow layers of a network, i.e.,
among high-resolution features. However, this perk was later overlooked with the
success of pyramid architectures such as Swin Transformer, which show better
performance-complexity trade-offs. In this paper, we present a simple and effi-
cient add-on component (termed GrafT) that considers global dependencies and
multi-scale information throughout the network, in both high- and low-resolution
features alike. GrafT can be easily adopted in both homogeneous and pyramid
Transformers while showing consistent gains. It has the flexibility of branching-
out at arbitrary depths, widening a network with multiple scales. This grafting
operation enables us to share most of the parameters and computations of the
backbone, adding only minimal complexity, but with a higher yield. In fact, the
process of progressively compounding multi-scale receptive fields in GrafT en-
ables communications between local regions. We show the benefits of the pro-
posed method on multiple benchmarks, including image classification (ImageNet-
1K), semantic segmentation (ADE20K), object detection and instance segmenta-
tion (COCO2017). Our code and models will be made available.

1 INTRODUCTION

Self-attention mechanism in Transformers (Bello et al., 2019) has been widely-adopted in language
domain for some time now. It can look into pairwise correlations between input sequences, learn-
ing long-range dependencies. More recently, following the seminal work in Vision Transformers
(ViT) (Dosovitskiy et al., 2020), the vision community has also started exploiting this property,
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showing state-of-the-art results on various tasks including classification, segmentation and detec-
tion, outperforming convolutional networks (CNNs) (He et al., 2016; Tan & Le, 2019; Howard
et al., 2017; Sandler et al., 2018; Howard et al., 2019; Brock et al., 2021). Motivated by this suc-
cess, many variants of vision transformers (e.g., DeiT (Touvron et al., 2021), CrossViT (Chen et al.,
2021), TNT (Han et al., 2021)) emerged, inheriting the same homogeneous structure of ViT (i.e.,
a structure w/o downsampling). However, due to the quadratic complexity of attention, such a
structure becomes expensive, especially for high-resolution inputs and does not benefit from the
semantically-rich information present in multi-scale representations.

To address these shortcomings, Transformers with pyramid structures (i.e., structures w/ down-
sampling) such as Swin (Liu et al., 2021) were introduced with hierarchical downsampling and
window-based attention, which can learn multi-scale representations at a computational complex-
ity linear with input resolution. As a result, pyramid structures become more suited for tasks such
as segmentation and detection. However, still, multiple scales arise deep in to the network due to
stage-wise downsampling, meaning that only the latter stages of the model may benefit from them.
Thus, we poise the question: what if we can introduce multi-scale information even at early stages
of a Transformer, without incurring a heavy computational burden?

Previous work has also looked into the direction above, both in CNNs (Szegedy et al., 2015a) and
in Transformers (Chen et al., 2021; 2022). However, models such as CrossViT requires carefully
tuning the spatial ratio of two feature maps in two branches and RegionViT needs considerable
modifications to handle multi-scale training. To mitigate these issues, in this paper, we propose a
simple and efficient add-on component called GrafT (see Figure 1-(a)). It can be easily adopted in
existing homogeneous or pyramid architectures, enabling multi-scale features throughout a network
(even in shallow layers) and showing consistent performance gains, while being computationally
lightweight. GrafT is applicable at any arbitrary layer of a network. It consists of three main com-
ponents: (1) a left-right pathway for downsampling, (2) a right-left pathway for upsampling, and (3)
a bottom-up connection for information sharing at each scale. The left-right pathway uses a series
of average pooling operations to create a set of multi-scale representations. For instance, if GrafT is
attached to a layer with (56×56) resolution, it can create scales of (28×28), (14×14) and (7×7).
We then process information at each scale with a L-MSA block, a local self-attention mechanism
(e.g., window-attention)— which becomes global-attention in the coarsest scale, as window-size
becomes the same as the resolution. Next, the right-left pathway uses a series of learnable and
window-based bi-linear interpolation (W-Bilinear) operations to generate high-resolution features
by upsampling the low-resolution outputs of L-MSA— which contains global (or high-level) se-
mantics extracted efficiently, at a lower resolution. Such upsampled features are merged with high-
resolution features of the branch-to-the-left, which contain lower-level semantics, as also done in
Feature Pyramid Networks (Lin et al., 2017). Refer to Figure 2-(b) for a detailed view.

GrafT is unique in the sense that it can extract multi-scale information at any given layer of a Trans-
former, while also being efficient. It relies on the backbone to do the heavy-lifting, by using a
minimal computation overhead within grafted branches, in contrast to having completely-separate
branches as in CrossViT (Chen et al., 2021). In our evaluations, we show the benefits of GrafT
in both homogeneous (ViT) and pyramid (Swin) architectures, across multiple benchmarks: on
ImageNet-1K (Deng et al., 2009), +3.9% with ViT-T+GrafT, +1.4% with Swin-T+GrafT, and +0.5%
with , on COCO2017 (Lin et al., 2014), +1.1 APb for object detection and +0.8 APm for instance
segmentation with Swin-T+GrafT, and on ADE20K (Zhou et al., 2017) semantic segmentation, +1.0
mIOUss, +1.3 mIOUms with Swin-T+GrafT. Figure 1-(b) shows the performance-complexity trade-
off Swin-T+GrafT on ImageNet-1K.

2 GRAFTING VISION TRANSFORMERS

Our goal is to provide multi-scale global information to the backbone transformer from the bottom
layer so that high-level semantics from GrafT can help the transformer to construct more efficient
features. Since Graft is modular, it can be applied to various transformer architectures. We select
two representative transformers, ViT (Dosovitskiy et al., 2020) based on a homogeneous structure
and Swin (Liu et al., 2021) based on a pyramid structure, to show that GrafT is a general purpose
module.
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Figure 2: Detailed view of GrafT. (a): Here, we show the receptive field of attention mechanisms in each
scale and how it changes by merging with information from the corresponding lower-resolution scale (i.e.,
from branch-to-the-right). Multiple scale are created with downsampling, processed with local attention (in L-
MSA)— which becomes global attention in coarsest scale (GrafTd

B), and merged back with upsampling. When
a lower-resolution representation is upsampled and merged, the effective receptive field increases, essentially
giving access to efficiently-extracted global (or larger-local) information. (b): We present all the components
and grafting/ merging points in GrafT. We graft prior to self-attention block in the backbone, and merge prior
to FFN so that we can reuse the heavy computations. Downsampling (left-right pathway) uses light-weight
average pooling to create a lower-resolution features, whereas upsampling (right-left pathway) uses learnable
window-based bi-linear interpolation (W-Bilinear) to upscale. The processing unit within a GrafT module is
a L-MSA block, which performs local-attention. When merging features to higher-resolution, we use element-
wise addition.

2.1 OVERALL ARCHITECTURE

The overall architecture of GrafT is illustrated in Figure 2-(a). We start with a backbone transformer
(i.e., ViT or Swin) and simply attach GrafT to some vertical layers of the backbone transformer. For
an input image with size of H ×W × 3, the patch tokens to the first vertical layer is H

4 × W
4 × C

after the patch embedding.

GrafT is a horizontal pyramid structure which consists of left-right pathway (series of GrafT down-
sampling), right-left pathway (series of GrafT upsampling), and bottom-up connection (multiple
GrafT L-MSA) as shown in Figure 2-(b). The input feature to GrafT goes through left-right pathway
(downsampling), right-left pathway (upsampling), bottom-up connection (L-MSA) and becomes a
feature having strong high-level semantics at multiple scales which then gets fused into the back-
bone transformer. Specifically, for the GrafT attached to the vertical layer at Sth stage, the input
feature to the GrafT has the size of H

4rS−1 × W
4rS−1 ×C where r = 2 for pyramid structure and r = 1

for homogeneous structure. Then, we fuse the feature from GrafT to the original backbone, which
will be described in the later section.

2.2 TRANSFORMER+GRAFT BLOCKS

In this section, we describe each operation in Figure 2-(b). Let Xd,b as an input tensor at vertical
layer d and horizontal downsampling level b in GrafT with the shape: Xd,b ∈ RHb×W b×C . Hb,
W b, C is the height, width, channels of the feature map Xd,b at a horizontal level b respectively.

Left-right pathway (downsampling): The left-right pathway creates serial feature maps at sev-
eral scales with the downsampling rate r which follows the vertical pyramid downsampling rate.
For example, in the first stage of Swin+GrafT, GrafT creates three downsampled feature maps
{X1, X2, X3} by downsampling the input feature map X0 from the backbone with downsampling
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rate 2. In left-right pathway, we use adaptive average pooling for downsampling:

Xd,b+1 = A(Xd,b) = ρ(GELU(LN(Xd,b))) (1)

A is a lightweight downsampling function which consists of LayerNorm (LN ), GELU , and adap-
tive average pooling (ρ) , which is more cost-efficient than other downsampling methods such as
cross attention and linear projection (see Table 5). It maps the input Xd,b to downsampled feature
Xd,b+1: RHb×W b 7→ RHb+1×W b+1

where Hb+1 < Hb,W b+1 < W b. Xb+1 is the input at the
horizontal downsampling level b+1. Downsampling happens sequentially over horizontal layers to
progressively abstract the fine information in coarse features.

Right-left pathway (upsampling): The right-left pathway hallucinate serial higher resolution fea-
ture maps by upsampling low resolution feature maps. These upsampled feature maps are enhanced
by feature maps from bottom-up connection that retain spatially more accurate activations and lower-
level semantics. This enhancement process is similar to FPN (Lin et al., 2017). In right-left path-
way, GrafT upsampling uses learnable W-Bilinear (window-base bilinear) interpolation which is
more cost-efficient than other upsampling methods such as cross attention and nearest neighbor in-
terpolation as shown in Table 5. Learnable W-Bilinear interpolation solves the aliasing problem
by embedding anti-aliasing weights, the sigmoid of positional embeddings, in the feature maps.
Anti-aliasing weights learns perturbations for each grid in the feature map that can prevent alias-
ing effect. W-Bilinear interpolation is adopted to address the semantics discontinuity between local
regions. Finally, our upsampling is defined as:

Z̄d,b+1 = Φ(Z̃d,b+1) = Φ(Eaa ⊙ α(Zd,b+1)) = T (Zd,b+1), Z̄d,b+1
um,vn

= Φ(Z̃d,b+1
im,jn

) (2)

T is a lightweight upsampling function mapping the representation back to the spatial resolution in
the previous horizontal level. This function is designed to upsample output features from L-MSA.
First, given the tensor Zd,b+1, the output from L-MSA, channel mixing (α) is applied to align chan-
nels before interpolation. α consists of LayerNorm (LN ), GELU , and a linear layer. Next, anti-
aliasing embeddings (Eaa) are multiplied to resolve the aliasing problem. The proposed anti-aliasing
embeddings are the output of sigmoid function on position embeddings Zj+1

pos ∈ RHj+1×W j+1×C .
It learns to provide perturbations in the spatial dimension that prevents interpolation from suffering
the aliasing problem. It is a simpler and lighter method compared to 3x3 convolutions (Lin et al.,
2017). Lastly, W-Bilinear interpolation (Φ) maps Z̃d,b+1 ∈ RHb+1×W b+1

to Z̄d,b+1 ∈ RHb×W b

.
It can be described as mapping the low resolution feature in each (m, n)th window Z̃d,b+1

im,jn
into

high resolution feature in (m, n)th window Z̄d,b+1
um,vn

. (im, jn) is a spatial position (i, j) in (m, n)th
window where i ∈ I, j ∈ J, m ∈ M, n ∈ N . (um, vn) is a spatial position (u, v) in (m, n)th
window where u ∈ rhI, v ∈ rwJ . rh, rw are the height and width ratio between feature resolutions
in two consecutive horizontal levels. Upsampling happens sequentially over horizontal layers to
progressively upscale spatial resolution of coarse features.

L-MSA in GrafT: The local self-attention method from the backbone transformer, limits the self-
attention in a local region which causes the discrepancy of semantics at the boundary of local re-
gions. Therefore, bilinear interpolation is applied in each local region multiple times instead of the
entire feature map at once. The bottom-up connection merges lower-level feature maps enhanced
by L-MSA and higher-level feature maps upsampled by W-Bilinear interpolation by element-wise
addition. The merging process iterates until it generates the high-level feature map that has the same
spatial size as the input feature map X0 from the backbone. In the example above, the coarsest
feature map X3 goes through L-MSA and becomes Z̄3, a feature map having the highest-level se-
mantics. Z̄2 is generated by merging upsampled Z̄3 with output feature from L-MSA which applies
local self-attention on X2. This process iterates until the finest feature map Z̄0 which has the same
spatial size of the X0 is produced. Z̄0 is then fused into the output feature map from L-MSA in the
backbone transformer and proceed to FFN block.

Zd,b+1 = Xd,b+1 + [L-MSA(LN(Xd,b+1)) + Z̄d,b+2] (3)

It is a simple and light block that fuses multi-scale features. It uses a standard window-based MSA
from Swin (Liu et al., 2021) to encode fine features Xd,b+1. It uses simple element-wise addition to
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fuse this fine feature and coarse feature Z̄d,b+2 ∈ RHb+1×W b+1

coming from one deeper horizontal
level. Lastly, Skip connection is added to produce output Zd,b+1 ∈ RHb+1×W b+1

Bottom-up connection with multiple high-level semantics: In GrafT, L-MSA uses local self-
attention to enhance downsampled feature maps but it limits receptive field within each local region.
It is important to exchange information among local regions so that feature can embed not only
local structure but also global structure. In the left side of Figure 2, the features at the bottom are
the output of GrafT L-MSA where receptive field is limited to each local region. The feature map at
b+2 level Z̃b+2 has a receptive field, a blue color line, that covers the entire feature map. The feature
map at b + 1 level, Z̃b+1, originally suffers the information discrepancy between local regions due
to local receptive field. When Z̃b+2 is merged into Z̃b+1, Z̃b+1 inherits a receptive field from Z̃b+2

and this newly added global receptive field provides higher-level semantics that can understand the
relation between local regions. Z̃b, the feature map at b level, also originally suffers the information
discrepancy between local regions. When Z̃b+1 is merged into Z̃b, Z̃b inherits receptive fields from
both Z̃b+1 Z̃b+2 and this newly added receptive fields provides multi-scale high-level semantics
that can understand the relation between local regions in multiple aspects. Multi-scale receptive
fields which are progressively generated from multi-scale features resolve the drawback of local
receptive field formed by L-MSA in the backbone transformer. The L-MSAin the original backbone
transformer is defined as:

Y d,0 = Xd,0 + [L-MSA(Xd,0) + Z̄d,1] (4)

L-MSA is the local multi-self attention that the transformer in the main branch is using to encode fine
feature Xd,0 ∈ RH0×W 0×C . The encoded fine feature is element-wise added with coarse feature
Z̄d,1 from the GrafT. Lastly, skip connection is added to produce output Y d,0 ∈ RH0×W 0×C . It is
interesting that a simple element-wise addition successfully fuse the fine feature in the main branch
and the coarse feature from GrafT. Thanks to the power of GrafT upsampling method for the robust
fusion of the multi-scale features encoded by various MSA. Then, we use the same FFN in the
backbone transfomers:

Xd+1,0 = Y d,0 + MLP(LN((Y d,0))) (5)

It is a standard transformer block performing channel mixing via LayerNorm (LN ) and MLP on
the output of L-MSA block and adds the skip connection to generate output Xd+1,0 which is the
input to the next vertical layer.

Computation complexity: Average pooling and bilinear interpolation runs in Θ(HW ) and L-
MSA in GrafT follows the complexity of L-MSA in the backbone transformer. Since L-MSA is
more complex than Θ(HW ), the complexity of transformer+GrafT is equal to the complexity of the
pure backbone transformer. For example,

Ω(Swin) = Ω(Swin+GrafT) = 12HWC2 + 2M2HWC (6)

where H,W is the width and height of feature map and M is the size of window.

3 EXPERIMENTS

3.1 IMAGENET-1K CLASSIFICATION

Dataset and Settings: ImageNet-1K (Deng et al., 2009) is a classification benchmark with anno-
tations of 1000 categories. It contains 1.2M training images and 50K validation images. In our
evaluation, we report Top-1 accuracy (%) on a single-crop setting along with complexity metrics
(measured in Parameters and FLOPs). We train our models with the standard settings: for 300
epochs with 224×224 resolution inputs. We use timm (Wightman, 2019) library for our implemen-
tation. We use the original hyperparameter settings for each of the backbone. We use increasing
stochastic depth with ratio of 0.25, 0.4 for Swin-T+GrafT and Swin-S+GrafT respectively.
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Table 1: Comparison of GrafT with pyramid architectures on ImageNet-1K.

Model Params FLOPs Acc. Model Params FLOPs Acc.
(M) (G) (%) (M) (G) (%)

PVT-M (Wang et al., 2021) 44 6.7 81.2 PVT-L 61 9.8 81.7
PoolFormer-S36 (Yu et al., 2022) 31 5.2 81.4 PoolFormer-M36 56 9.1 82.1
T2Tt-14 (Yuan et al., 2021) 22 6.1 81.7 T2Tt-19 39 9.8 82.2
TNT-S (Han et al., 2021) 24 5.2 81.5 TNT-B 66 14.1 82.9
Swin-T (Liu et al., 2021) 29 4.5 81.3 Swin-S 50 8.7 83
ViL-S-RPB (Zhang et al., 2021) 25 4.9 82.4 ViL-M 40 8.7 83.5
RegionViT-S (Chen et al., 2022) 31 5.3 82.6 RegionViT-M 41 7.4 83.1
Swin-T+GrafT (ours) 34 5.1 (+1.4) 82.7 Swin-S+GrafT 64 9.7 (+0.6) 83.6
CSWin-T 23 4.3 82.7 - - - -
CSWin-T+GrafT (ours) 29 4.7 (+0.5) 83.2 - - - -

Table 2: Comparison of GrafT with homogeneous architectures
on ImageNet-1K.

Model Params (M ) FLOPs (G) Acc. (%)

DeiT-T (Touvron et al., 2021) 5.7 1.3 72.2
CrossViT-9 (Chen et al., 2021) 8.6 1.8 73.9
PVT-T (Wang et al., 2021) 13.2 1.9 75.1
DeiT-T + GrafT (ours) 7.9 1.2 (+3.9) 76.1

Results on ImageNet-1K: Table 1
and Table 2 shows the results of
the GrafT applied on three well-
known Transformers that have ho-
mogeneous structure and pyramid
structure: DeiT, Swin, and CSWin.
In the Table ??, Swin-T+GrafT
achieves 82.7% top-1 accuracy which
is 1.4% better than Swin-T. Swin-
S+GrafT achieves 83.6% Top-1 accu-
racy which is 0.6% better than Swin-S. The Figure 1-(b) shows that RegionViT outperforms Swin
but Swin+GrafT outperforms RegionViT due to the support from GrafT. The gain by the GrafT is
drawn by gray arrows. Secondly, CSWin-T+GrafT achieves 83.2% top-1 accuracy, a new SOTA
result and it is 0.5% better than CSWin-T. Table 2 shows that DeiT-T+GrafT achieves 76.1% top-1
accuracy which is 3.9% better than DeiT-T. CrossViT outperforms DeiT but DeiT-T+GrafT further
outperforms CrossViT due to the support from GrafT. In addition, even though DeiT-T+GrafT does
not take advantage of the vertical pyramid structure, it outperforms PVT, a vision Transformer with
the vertical pyramid structure. In DeiT-T+GrafT, the full attention in the backbone Transformer
is replaced by the window-based local attention without window shifting to follow the suggested
architecture in Figure 2-(b). We confirm that DeiT with the window-based local attention under-
performs the one with the full attention by 2%. Therefore, GrafT delivers 5.9% performance gain
(from 70.2% to 76.1%) by providing multi-scale high-level information and global receptive fields
to the revised DeiT.
3.2 OBJECT DETECTION AND SEMANTIC SEGMENTATION

Dataset and Settings for COCO2017: COCO2017 (Lin et al., 2014) consists of 118K images. for
training, 5K for validation and 20K for testing. We adopt Mask R-CNN(He et al., 2017) framework
to evaluate Swin-T+GrafT which is pretrained on the ImageNet-1K dataset. We use the stochastic
depth with ratio of 0.1 and 0.2 for the 1 × (SS) schedule training and 3 × (MS) schedule training
and follow the original hyperparameter settings as Swin. Here, 1 × (SS) means 12 training epochs
with single scale, 3× (MS) means 36 training epochs with multi-scale.

Table 3: Performance of GrafT on object detection and instance segmentation on COCO2017.

Model Params FLOPs 1x (SS) 3x (MS)
APb APm APb APm

ResNet50 (He et al., 2016) 44 260 38.0 34.4 41.0 37.1
PVT-S (Wang et al., 2021) 44 245 40.4 37.8 43.0 39.9
VIL-S-RPB (Zhang et al., 2021) 45 277 – – 47.1 42.7
RegionViT-S (Chen et al., 2022) 50 171 42.5 39.5 46.3 42.3
Swin-T (Liu et al., 2021) 48 264 42.2 39.1 46.0 41.6
Swin-T+GrafT (ours) 53 275 (+1.1) 43.3 (+0.8) 39.9 (+1.0) 47.0 (+0.9) 42.5
VIL-S-RPB (Zhang et al., 2021) 60 352 – – 48.9 44.2
RegionViT-B (Chen et al., 2022) 92 288 43.5 40.1 47.2 43.0
Swin-S (Liu et al., 2021) 69 354 44.8 40.9 48.5 43.3
Swin-S+GrafT (ours) 84 373 (+0.2) 45.0 (+0.3) 41.2 – –
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Results on Object Detection and Instance Segmentation: Table 3 shows that Swin-T+GrafT
outperforms other models in both object detection and instance segmentation while being trained
with 1× schedule and 3× schedule. RegionViT-S outperforms Swin-T but Swin-T+GrafT fights
back and outperform RegionViT-S again due to the support from GrafT. The multi-level semantics
from GrafT plays an important role to improve both object detection and instance segmentation.

Dataset and Settings for ADE20K: ADE20K (Zhou et al., 2017) annotates 150 categories for
semantic segmentation. It contains 20K training, 2K validation and 3K testing images. In our eval-
uations, we use multi-scale mIoU as the metric (using scales of [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]×
the training resolution) and follow a training procedure similar to Swin (Liu et al., 2021). We also
report model complexity metrics such as parameters, FLOPs (for an input size of 512×2048) and
frame-rate. We use GrafT backbones pretrained on ImageNet-1K (Deng et al., 2009) for 300 epochs
at a 224×224 resolution, and finetune it with the decoder at a 512×512 resolution. We choose
UperNet (Xiao et al., 2018) as our decoder, and implement within the mmsegmentation (Con-
tributors, 2020) framework. We use the original hyperparameter settings as Swin.

Table 4: Performance of GrafT on semantic segmentation on
ADE20K.

Models Param FLOPs mIOU mIOU
(M) (G) SS MS

Swin-T (Liu et al., 2021) 59 945 44.5 45.8
Swin-T + Graft 66 955 (+1.0) 45.5 (+1.3) 47.1

Results on Semantic Segmentation:
Table 4 shows that Swin+GrafT out-
perform Swin in both single scale
(+1.0) and multi-scale (+1.3) training
settings. The multi-level semantics
from GrafT is beneficial to segment
various sizes of objects.

3.3 ABLATIONS ON IMAGENET

We conducted the following experiments to better understand GrafT. Swin-T and Deit-T are used in
the experiments.

Table 5: Different downsampling and upsampling approaches in GrafT. When ablating downsampling meth-
ods, we always consider Learnable W-Bilinear interpolation as upsampling, and when ablating upsampling
methods, we use linear projection as downsampling.

Downsampling Params FLOPs Through. Acc. Upsampling Params FLOPs Through. Acc.
(M) (G) (im/s) (%) (M) (G) (im/s) (%)

Linear projection 8.5 1.3 2260 75.2 Nearest neighbor 8.4 1.3 2890 74.8

Cross attention 7.9 1.2 2834 75.4 Cross attention 8.7 1.3 2392 74.4

Average pooling 7.9 1.2 3143 76.1 Learnable bilinear 8.5 1.3 2260 75.2

Downsampling & Upsampling in GrafT:. Table 5 shows the performance of DeiT-T+GrafT on dif-
ferent horizontal downsampling and horizontal upsampling approaches. GrafT keeps learnable W-
Bilinear interpolation as an upsampling method while applying various downsampling approaches.
The linear projection approach concatenates spatially neighboring tokens into channels and applies
linear projection to them to reduce the channels. The cross attention approach creates spatially
coraser feature by average pooling the input feature. It then uses a coarser feature as a query and
the input feature in the backbone transformer as key and value to perform cross attention. The av-
erage pooling approach creates a spatially coarser features by average pooling spatially neighboring
tokens in the input feature. The result shows that the average pooling approach is the most efficient
downsampling method in terms of memory and computation complexities and speed. GrafT keeps
linear projection as a downsampling method while applying various upsampling approaches. Cross
attention uses the fine feature in the backbone transformer as query and spatially coarser feature in
GrafT as key and value to exchange global and local information. We also tried Nearest neighbor
interpolation as the simplest upsampling method. Learnable W-Bilinear interpolation applies anti-
aliasing weights to prevent the aliasing effect and applies bilinear interpolation in each local region
separately. The result shows that learnable W-Bilinear interpolation achieves the highest accuracy
with reasonable complexities and speed. Therefore, we adopt average pooling as a downsampling
method and learnable W-Bilinear interpolation as an upsample method for GrafT.
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Table 6: Considering different (a) number of scales within a GrafT, and (b) number of GrafTs in a model.

(a)

Model # scales Params FLOPs Acc. (%)
(M) (G) (%)

Swin-T (Liu et al., 2021) 0 29 4.5 81.3

1 33.5 5.0 (+1.0) 82.3Swin-T + GrafT 3 34.0 5.1 (+1.4) 82.7

(b)

Model # GrafTs Params FLOPs Acc. (%)
(M) (G) (%)

DeiT-T (Touvron et al., 2021) 0 5.7 1.3 72.2

4 6.5 1.2 (+2.2) 74.4
8 7.3 1.2 (+3.4) 75.6DeiT-T + GrafT

11 7.9 1.2 (+3.9) 76.1

The number of multi-scale features in GrafT: GrafT exploits a horizontal pyramid structure where
multi-scale low-resolution features are created. It is important to understand whether creating fea-
tures having multiple high-level semantics is more beneficial than creating a single-scale feature.
Table 6-(a) shows that exploiting features with three different scales achieves +1.4% better accuracy
with a small computation increase than exploiting a single-scale feature. For example, at the first
stage in Swin where the resolution of the input feature is 56× 56, GrafT should create features with
the size of 28× 28, 14× 14, 7× 7 to deliver multi-scale global information.

Performance over the number of GrafT: Table 6-(b) shows the performance over the number of
GrafTs in DeiT. The accuracy consistently increases as the number of GrafT increases. Therefore,
we attach GrafT to all the vertical layers above the first layer in DeiT, Swin, and CSWin to achieve
the best performance. GrafT is not attached to the first layer in the backbone Transformer because
the feature needs to be encoded enough before being used to create coarse features in GrafT.

Table 7: Sharing the parameters of backbone-FFN

Shared FFN Params (M) FLOPs (G) Acc. (%)

8.2 1.2 74.8

✓ 7.9 1.2 (+1.3) 76.1

Sharing FFN: Table 7 compares the design of
shared FFN vs. separate FFN between GrafT
and the backbone transformer. DeiT is used
as the backbone transformer in this experiment.
In the first row, DeiT and GrafT have separate
FFN, so the low-level feature in the DeiT and
the high-level feature in GrafT are fused after
FFN blocks. In the second row, DeiT and GrafT
have a shared FFN, so the low-level feature in the DeiT and the high-level feature in GrafT are fused
before the shared FFN block. The design of shared FFN achieves +1.3% higher accuracy with
fewer parameters than having a separate FFN. Therefore, we adopt the shared FFN in the GrafT
architecture.

4 RELATED WORK

Vision transformers: Convolution neural networks (CNNs) have been widely adopted as it have
shown promising performance (Krizhevsky et al., 2012; He et al., 2016; Chen et al., 2017; Howard
et al., 2017; Sandler et al., 2018; Hu et al., 2018; Huang et al., 2017; Simonyan & Zisserman, 2014;
Szegedy et al., 2015b; Tan & Le, 2019) on small-scale dataset such as ImageNet-1K (Deng et al.,
2009). Inductive biases such as translation invariance and locality from CNNs are the key reasons to
be trained well from scratch in small-scale dataset. Recently, Transformers (e.g., ViT (Dosovitskiy
et al., 2020) or DeiT (Touvron et al., 2021)) achieved comparable results to CNNs. First type is
the transformer with homogeneous structure like ViT where the number of tokens and channels
do not change over the vertical layers. T2T (Yuan et al., 2021) proposes progressive tokenization
method where spatial structures are preserved. CrossViT (Chen et al., 2021) creates two branches
to formulate both local and global information and exchange information. PiT (Heo et al., 2021)
and PVT (Wang et al., 2021) successfully applied pyramid structure into transformer by dividing the
vertical layers into multiple stages and progressively decrease the number of tokens and increase the
channels over stages. Swin (Liu et al., 2021) introduces window self-attention where self-attention is
performed in each window and shifting window mechanism exchanges information among windows
with pyramid structure. RegionViT (Chen et al., 2022) creates two branches to formulate local
tokens and global tokens like CrossViT and assign each global token to local tokens in the same
region to exchange information. CSWin (Dong et al., 2022) introduces cross-shaped window self-
attention where half of the channels is used to create vertical stripes as local regions and the other
half is used to create horizontal stripes as local regions. In this paper, we propose GrafT, a simple
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and cost-efficient add-on that provides rich global information to backbone transformers where there
is a lack of communication between local regions because of local self-attention.

Table 8: Approaches to deliver high-level semantics in terms of their structure or multiple scales.

Model Vertical structure # MS per layer Fusion method per layer

ViT-T (DeiT-T) (Touvron et al., 2021) Homogeneous None None
CrossViT-9 (Chen et al., 2021) Homogeneous 2 Cross attention

DeiT-T + GrafT Homogeneous 2 Learnable W-Bilinear
+ E-Wise add.

PVT-T (Wang et al., 2021) Pyramid None None
T2Tt(Yuan et al., 2021) Homogeneous None None
PoolFormer-S12 (Yu et al., 2022) Pyramid None None
TNT-S (Han et al., 2021) Homogeneous 2 LL + E-Wise add.
Swin-T (Liu et al., 2021) Pyramid None None
RegionViT-S (Chen et al., 2022) Pyramid 2 Cross attention

Swin-T + GrafT Pyramid 4 Learnable W-Bilinear
+ E-Wise add.

Exploiting multi-scale global tokens: While pyramid structure transformers (e.g., Swin) learns
multi-scale features in a hierachical way, high-level semantics is introduced at the last layers and
transformer cannot receive early guidance on how to efficiently encode low-level semantics by un-
derstanding the high-level semantics. Some transformers such as CrossViT (Chen et al., 2021),
TNT (Han et al., 2021), RegionViT (Chen et al., 2022) keep two branches to encode low-level se-
mantics and high-level semantics from the early stage. However, having two separate branches
are detrimental to throughput and requires careful design of choosing which layers to exchange lo-
cal and global information and choosing the right size ratio of low-resolution and high-resolution
features as mentioned in CrossViT (Chen et al., 2021) or the divisibility between local and global
tokens. ViL (Zhang et al., 2021) creates global tokens through random initialization in each layer
and use them to exchange information between local regions. However, this global token does not
contain good inductive bias of local tokens and does not incorporate multiple high-level semantics.
Table 8 summarizes the difference between GrafT and previous works on how to deliver high-level
semantics. GrafT is unique in the sense that it delivers multiple high-level semantics by exploit-
ing horizontal pyramid structure and uses simple element-wise addition to fuse global information
to the backbone transformer. It is applicable to transformers with both homogeneous structure and
pyramid structure and improves the performance of transformers without increasing the computation
complexity due to the light-weight components as described in 2.2.

5 CONCLUSION

In this paper, we introduced GrafT: an add-on component which can easily be adopted in both ho-
mogeneous and pyramid vision transformers, enabling multi-scale feature fusion in arbitrary depths
of a model. The proposed GrafT branches are designed to be efficient, relying on the backbone to
perform heavy computations. In fact, it gives consistent gains at a minimal computation burden. We
also validated its effectiveness across multiple backbones and benchmarks including classification,
detection and segmentation. In the current work, GrafT is applied to three well-known Transformers:
DeiT, Swin, and CSWin. Going forward, we hope that GrafT becomes a generally used component
for introducing multi-scale features, which particularly benefits tasks with high-resolution inputs.
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A APPENDIX

Table A: Grafting towards left (upscale from backbone) or towards right (downscale from backbobe).

Model left levels right levels Params (M) FLOPs (G) Top-1 (%)

DeiT-T (Touvron et al., 2021) 0 0 5.7 1.3 72.2

DeiT-T + GrafT
1 1 8.0 1.6 75.1
0 2 10.0 1.3 75.6
0 1 7.3 1.2 75.6

GrafT should be used to generate higher-level semantics rather than lower-level semantics:
Table A shows the performance over graphting directions. In the experiment, downsampling uses
the average pooling and upsampling uses learnable W-Bilinear interpolation for both left and right
grapftings. In DeiT-T + GrafT, 1 level of right grafting per layer provides the best accuracy with
the least memory and computation complexity. Left grafting is not helpful because the hallucinated
higher-resolution feature map in the GrafT may not contain additional local information. It is not
helpful to perform 2 levels of right grafting in DeiT because 2nd level of Graft has a feature map
with the size of 2× 2 and it is too low-resolution feature map that it does not provide any additional
global information.
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