Semi-Supervised Granular Classification Framework for
Resource Constrained Short-texts

Towards Retrieving Situational Information During Disaster Events

Samujjwal Ghosh*
csléresch01001@iith.ac.in
Indian Institute of Technology Hyderabad
Hyderabad, Telangana

ABSTRACT

During the time of disasters, lots of short-texts are generated con-
taining crucial situational information. Proper extraction and iden-
tification of situational information might be useful for various
rescue and relief operations. Few specific types of infrequent sit-
uational information might be critical. However, obtaining labels
for those resource-constrained classes is challenging as well as
expensive. Supervised methods pose limited usability in such sce-
narios. To overcome this challenge, we propose a semi-supervised
learning framework which utilizes abundantly available unlabelled
data by self-learning. The proposed framework improves the per-
formance of the classifier for resource-constrained classes by selec-
tively incorporating highly confident samples from unlabelled data
for self-learning. Incremental incorporation of unlabelled data, as
and when they become available, is suitable for ongoing disaster
mitigation. Experiments on three disaster-related datasets show
that such improvement results in overall performance increase over
standard supervised approach.

CCS CONCEPTS

« Information systems — Information extraction; Clustering
and classification; Incomplete data; Data mining; Social networks;
Human-centered computing — Social network analysis; « Com-
puting methodologies — Supervised learning by classification.

KEYWORDS

Semi-supervised Learning, Social Media, Short-text Classification,
Crisis Management

ACM Reference Format:

Samujjwal Ghosh and Maunendra Sankar Desarkar. 2020. Semi-Supervised
Granular Classification Framework for Resource Constrained Short-texts :
Towards Retrieving Situational Information During Disaster Events. In 12th
ACM Conference on Web Science (WebSci °20), July 6-10, 2020, Southampton,
United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3394231.3397892

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
WebSci 20, July 6-10, 2020, Southampton, United Kingdom

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7989-2/20/07...$15.00
https://doi.org/10.1145/3394231.3397892

29

Maunendra Sankar Desarkar
maunendra@iith.ac.in
Indian Institute of Technology Hyderabad
Hyderabad, Telangana

1 INTRODUCTION

At the time of disasters, micro-blogging platforms like Twitter work
as a real-time source of situational information [7, 10, 12] because
of it’s easy accessibility and vast outreach [17]. Short-texts gener-
ated during disasters contains important actionable information
such as infrastructure damage, availability and requirements of
various resources (medicines, medical tool-kits, food, water, tent),
etc. A portion of these short-texts may be called situation-aware
information as they represent factual and actionable information
related to the disaster. Proper identification and categorization of
different types of situation-aware information can help NGOs and
various agencies to plan and deploy disaster response effectively.

There have been several efforts in the past to effectively ex-
tract and classify short-texts with situational information posted
during disasters. We categorize them into two separate classes
based on the type of data they use. Most commonly used and ef-
fective approach has been supervised learning, using only labelled
data, by feature boosting [4], incorporation of disaster specific
lexicons [13], curated features [1], convolutional neural networks
[2]. Supervised approaches, although useful, are very data-hungry.
Obtaining sufficient labelled data during an ongoing disaster is
expensive. Even when labelled data is available, distribution of
types of information in the data might be heavily skewed towards
a few classes, which results in class-imbalanced data. Few par-
ticular classes might have very less representation due to their
inherent nature of less occurrence in the world. We identify such
classes as resource-constrained classes. Generally, the performance
of supervised models for resource-constrained classes is poor. How-
ever, with proper use of unlabelled data, classifier performance for
resource-constraint classes as well as overall performance could be
improved.

The second class of approach, Semi-Supervised Learning (SSL)
comes to the rescue as it can exploit the abundantly available unla-
belled data along with the help of a small amount of labelled data.
By incorporating latent information in the form of newly selected
samples from a large amount of unlabelled data, self-learning semi-
supervised learning can efficiently handle resource-constrained
classes. Self-learning refers to feeding in predictions of the trained
model on the unlabelled data as new target values for re-training.
It has been observed that self-learning often outperform it’s super-
vised counterpart. The study [11] by authors Mobahi et al. argue
that self-distillation, a form of self-learning technique, may reduce
over-fitting by amplifying regularization. However, the authors also
warn that performance may deteriorate after a few iterations due
to incorporation of misclassified data.

https://doi.org/10.1145/3394231.3397892
https://doi.org/10.1145/3394231.3397892
https://doi.org/10.1145/3394231.3397892

WebSci "20, July 6-10, 2020, Southampton, United Kingdom

In this work, we utilize abundantly available unlabelled data
to improve the performance of a supervised multi-label classi-
fier by self-learning. We propose a novel adaptive self-learning
based framework which improves the performance of the super-
vised model. The framework is designed to easily incorporate the
unlabelled data in an incremental setting, which can also handle
imbalanced resource-constrained classes. Effective utilization of
unlabelled data outperforms classifiers trained with only labelled
data. This performance gap increases as the number of labelled
samples decrease for resource-constrained classes.

2 RELATED WORK

There have been several studies of binary short-text classification
using semi-supervised learning. In [21], the authors Zhang et al.
used brown clustering on the unlabelled data to cluster words. They
used these clusters as dense features to decide if a tweet is relevant
to the disaster in consideration or not. Clustering similar words
help in utilizing words that rarely occur in the labelled data. How-
ever, word clusters limit the incremental capability of the approach
as the inclusion of newer sample requires a large amount of re-
work. Moreover adding many new words may change the clusters
significantly, thereby resulting in entirely new feature representa-
tions for the existing samples. Also, this study mostly concentrates
on different clustering choices for effective retrieval of relevant
samples and does not focus on any granular classification. Authors
in [9] proposed a domain adaptation approach between a source
and a target disaster with the help of unlabeled data. The approach
utilizes the labelled data from a source disaster along with unla-
belled data generated during an emerging target disaster to classify
short-texts generated during target disaster to either relevant or
irrelevant categories. The domain adaptation was achieved between
the labelled source disaster and an unlabelled target disaster by
Expectation-Maximization with the help of Naive Bayes Classifier.
However, the proposed approach assumes the same class labels
between source and target datasets. Granular class labels might
not be aligned in different disasters. To the best of our knowledge,
our work is first to employ semi-supervised learning on granular
multi-label short-text classification for disaster management.
Several semi-supervised algorithms have been proposed in the
literature for various scenarios. In [6], authors Go et al. used smileys
present in the unlabeled tweets as distant supervision for sentiment
classification of short-texts. However, to filter situational informa-
tion in disasters, we need to avoid short-texts with sentiments as
they usually do not contain any actionable information. Also, dis-
tant supervision is useful when some form of latent relationship
is present between indicator and class labels. Distant supervision
might be possible for a few granular classes but not be feasible
for all disaster scenarios. Co-training is a form of semi-supervised
learning where most confident samples of one classifier are fed into
the other classifier(s). In [15], Pekar et al. applied co-training to
filter disaster-related short-texts by using two different classifiers.
They used the text of the tweet as a feature set for one classifier
and the image associated with the tweet on the second classifier
to improve their overall model accuracy. Though this approach
is beneficial, for co-training to work efficiently, disjoint feature
sets are required so that one classifier can learn from each other.

30

S. Ghosh, et al.

Without sufficiently disjoint feature set, a single classifier trained
with all features might work better. For an ongoing disaster, the
proportion of generated short-texts associated with an image are
scarce.

Semi-supervised learning based on self-learning was first pro-
posed by Yarowsky et al. [20] for word sense disambiguation. Au-
thors in [14], used self-learning semi-supervised learning to identify
relevant tweets related to 2015 Chennai, India floods and used the
relevant tweets to annotate the affected areas in Google map for
people to use. They selected all tweets for re-training, which was
marked relevant by the initial supervised classifier. Authors Edo
et al. [3] proposed a semi-supervised approach for relevance fil-
tering in syndromic surveillance. They selected all samples with a
confidence score above a specific threshold ¢ to retrain the initial
classifier. Lee et al. [8] proposed a semi-supervised approach for
sentiment classification based on self-learning. They re-trained a
neural network by randomly selecting samples from unlabelled data
along with their classes predicted by the neural network. Different
sampling rates (0.4, 0.6, 0.8, 1.0) were experimented to show the
effect in the performance. The sampling of unlabelled data in [8]
was performed after deciding the class labels, which means that
sampling was done on the samples for which confidence was higher
than the threshold of that class. As a result, when the sampling rate
is 1.0 in [8] it becomes equivalent to [3] and [14].

3 FRAMEWORK

We propose a self-learning semi-supervised learning framework
which utilizes the readily available unlabelled data to improve clas-
sifier performance over a classifier trained only with labelled data.
We explicitly tune the framework in a way such that our frame-
work can handle classes with deficient representation in the data.
The proposed framework works in two phases. In the first phase,
we train an initial supervised classifier f;, i = 0 on the available
labelled data L. The second phase is an iterative approach to use the
unlabelled data U to improve the performance of the initial classifier
fo. In iteration i (i > 0) of the second phase, we randomly sample
a batch of unlabelled data U; C U and predict possible class confi-
dence scores using the classifier trained on the previous iteration
fi-1. A small set of confident samples I'Y (UC If=r;I U
for each class from this unlabelled batch U; is then selected to be
assimilated to the training set for iteration (i + 1). Sections 3.1.1
and 3.1.2 elaborate on how the size and the confidence scores are
decided.

Any remaining samples (U; — I';), from that batch, are discarded
and not reintroduced in future. We discard such samples based on
the assumption that these tweets do not contain any situational
information. Then, we label the selected samples with a class c if the
confidence score for that class is higher than threshold T{ (Section
3.1.2 describe how the threshold T{ is calculated) of that class. This
technique of labelling samples to re-train a model is called self-label
learning [19]. This new set of samples with their labelled classes are
then combined with the existing training set and used to re-train
the classifier f; to get an improved classifier fj+1. This iterative
approach of prediction and assimilation is applied batch-wise until
any of the stopping criteria (Described in Section 3.2) are met.

Semi-Supervised Granular Classification Framework for Resource Constrained Short-texts

To handle resource-constrained classes, we crafted our frame-
work to take special care for imbalanced classes. The framework
achieves this by explicitly improving the representation of those
classes in each iteration by exploiting the behaviour of classifiers
for resource-constrained classes. Next, we’ll look into the criteria
used to increase the representation of resource-constrained classes.

3.1 Sample Selection Criteria

Here, we describe the criteria used to select the samples I'; from
unlabelled batch U;. We restrict the selection of samples using two
different criteria. We decide on the maximum number of samples
added per class based on the distribution of classes in the training
set in that iteration. Along with the restriction on the number of
samples per class, we also restrict the assignment of a sample to a
class based on the class-specific threshold. Below we describe the
exact procedure we used for class assignment and selection of a
sample.

3.1.1 Capacity Criterion. This criterion sets an upper limit on the
number of samples to be selected per class. This criterion has two
effects; it minimizes the class imbalance in the new train set and also
works as a deterrent for the selection of low confidence samples. It
specifically helps in enforcing a more significant presence for the
resource-constrained classes during re-training. The capacity of a
class depends on the number of short-texts present in the training
set during the current iteration. Let n¢ be the number of short-texts
from class c present in the train set and n; is the total number of
samples in training set for iteration i. We decide the maximum
capacity for class ¢ as,

kf:(l

Note that the value of n; and n{ changes in each iteration. log was
used to handle heavily skewed (positive or negative) data. It should
be noted that the lesser number of samples a class has in the training
set, higher will be the capacity k¢ for that class. However, our other
criterion (explained later in Section 3.1.2) mitigates the pitfall of
incorporating mislabelled samples for resource-constrained classes.

Analysis of Capacity criterion: Equation 1 ensures a higher
capacity for resource-constrained classes. As n{ decreases, log n?

. log n¢
decreases, and hence the quantity (1 ~ Togn;

However, maximum capacity is capped at the number of samples
in the training set of that class in the current iteration.

log n¢
_8h x n¢ 1)
log n; g

) reaches close to 1.

3.1.2 Confidence Criterion. The confidence criterion has dual pur-
poses; initially, it limits the incorporation of low confidence, pos-
sibly erroneous, short-texts to the new train set. Later, we use the
same threshold to convert confidence scores to class labels. A sam-
ple is assigned to a class only if the confidence score of that sample
for that class is higher than the threshold of the class. We observed
during our experiments that Recall is usually considerably lower
than Precision for resource-constrained classes as demonstrated for
class 4 and 5 in Figure 2. A possible reason for this behaviour is due
to the lack of presence of sufficient features for those classes. In
our classification scheme, the features to represent the samples are
extracted from the data. Identification of characteristic features for
a class depends upon the training samples available for that class.

31

WebSci *20, July 6-10, 2020, Southampton, United Kingdom

Lower presence in the train set results in the lack of appropriate
representation in the feature space leading to low Recall. We exploit
this behaviour to identify ways to boost the performance of these
classes. The lower threshold is preferred for resource-constrained
classes which helps to expand the feature space. However, a small
threshold presents the challenge of selecting low confidence mis-
classified samples and in turn, lowering the Precision. To handle
both scenarios, we carefully adapt the threshold for each class based
on the performance of that class on the validation set.

()

A¢ in Equation 2 is decided based on the Precision and Recall values
of class c. A{ should be positive for classes with low Recall score,
which decreases the threshold and negative for low Precision classes
to increase the threshold. To conform to this behaviour, we define
Af as,

Tf = min ([T{_; — A{],0.9999) ,for i > 1

(P° - R)
Ni= =5)
Where P{ and R{ are the Precision and Recall scores for class ¢ in
iteration i respectively. Equation 3 achieves this by subtracting Re-
call from Precision and then dividing this difference by a constant
to dampen its effect. The value of the constant was set to 2 in our
experiments based on empirical evidence. However, this simplified
equation does not capture the desired behaviour of increasing the
threshold in each iteration. As a general rule, we want to increase
the threshold with each iteration to compensate for any misclassi-
fied sample. Towards this desired effect, we include another term
to the RHS of Equation 3 to get a modified formulation for A{ as
given below in Equation 4.

o (BB
! 2
Where F f is the F; score for class c in iteration i. The additional
term also has the added advantage of boosting the threshold even
when Precision and Recall are the same, i.e. Pl.c == Rf. We make
use of Precision, Recall and F; scores of each class to boost the
threshold accordingly for that class. This way, boosting is done
according to the performance of that particular class.

To increase the boosting term in A{ in each iteration, we multiply
the Fic with the iteration number i. However, to adjust the influence
of boosting, we multiply a small constant €. € is chosen using
the validation set, and fixed across all experiments for a dataset.
The value of € was considered to be within the range [e™%, e™?].
We calculate the initial threshold T{ using the classifier on the
validation set.

— ieFy

4

(©)

T{ = max

P¢ —R¢
([% —EFS] ,0.5),f0ri:1

Where Pg R R(c) and Fg are the Precision, Recall and F; scores for
class ¢ on the validation set. To calculate the Precision, Recall and
Fy scores, we use 0.5 as the initial threshold Tj.

The confidence criterion can be summarized as,

0.5, ifi=0
TiC = {max ([P" ;RO - ng] ,0.5) R ifi=1 (6
min([Tl.C_l - (Pi R ieFl.C)] ,0.9999), ifi>1

WebSci "20, July 6-10, 2020, Southampton, United Kingdom

Table 1: Change in threshold: example scenarios.

Precision Recall A (Change)

0.9 (High) 0.4 (Low) 0.1750 (Decrease)

0.4 (Low) 0.9 (High) -0.3249 (Increase)

0.9 (High) 0.9 (High) -0.1218 (Increase)

0.4 (Low) 0.4 (Low) -0.0541 (Slight Increase)

i = 0 signifies supervised approach, Tg = 0.5 is used to convert
class confidence scores to calculate the Precision, Recall and Fy
scores. There is no sample selection step during supervised learning.
0.5 was used to calculate scores for all results in this paper.

Analysis of Threshold Criterion: Equation 2 works as a filter
for misclassified samples. Usually, when Py is high and R is low,
Tl.C is decreased from previous value. Similarly, when PiC is low
and Ry is high, T} is increased. However, this behaviour changes
when P{ and R{ are both high or low. When P{ and R{ both are
high or low, the term ieFl.c will increase the threshold Tl.c. However,
the amount of increment depends on the values of P] and R{. We
summarize these different possibilities with their effects on the A
for few examples in Table 1. For these examples, we considered
i=lande=e2
3.1.3 Confidence Score to Class Label. After the thresholds T; and
capacities k; are decided for each class, we select the top samples
for each class such that both Equation 1 and 2 are satisfied. Presence
of both the criteria makes sure that the incorporation of selected
samples improves the Recall score without harming the Precision.
After the samples are selected, we convert the confidence scores to
labels using Equation 7.

Let s{ be the predicted confidence score for a short-text s for

class ¢ in the i'? iteration. We assign the sample s to class ¢ based
on the following rule:

7

otherwise

{1, ifs{ > T ands € I'Y
L
0,

Note that sample s might still be added to the selected set I'; for
other classes. To ensure sufficient availability of highly confident
resource-constrained class samples, the batch size for the unlabelled
data should be substantial.

3.2 Stopping Criteria:
The iteration stops if any of the below-mentioned criteria are met.
e No performance improvement: If the performance (Macro-
F; score) on the validation set does not increase in three con-
secutive iterations, we stop the process. In such a case, the
former highest-performing model is chosen as the candidate
model.
e Unlabelled pool exhausted: If all the unlabelled data were
exhausted, the iterative process stops with the last highest-
performing model as the candidate model.

3.3 Incremental Learning and Vocabulary

Expansion

One of the most significant advantages of the proposed frame-
work is that it works in an incremental setup. As a result, a newly

32

S. Ghosh, et al.

Table 2: Vocabulary expansion of each dataset (Iteration 0
represents supervised iteration).

Iteration Kaggle! FIRE16 SMERP17

0 10633 2986 3046
1 12535 3307 3411
2 - 3604 3755
3 - 3860 4105
4 - 4210 4432
5 - 4569 4820

collected set of unlabelled samples may be incorporated into the
framework on-the-fly as soon as those are available. The batch size
of the unlabelled data may vary among iterations. The flexibility to
vary batch size is crucial as the incoming number of samples is not
known apriori during an ongoing disaster.

Our framework gradually increases the vocabulary of the feature
space by incorporating unknown words from unlabelled data. Table
2 lists the vocabulary expansion for all the datasets. Addition of
essential words helps expand the feature set, which improves the
Recall score of the model. This technique is especially helpful for
resource-constrained classes, and in disaster scenarios, where accu-
mulation of sufficient number of short-texts might not be possible.

4 DATASET

We experiment with our proposed framework on two different
types of disaster datasets. Initially, we use the “Kaggle NLP with
Disaster Tweets (Kaggle)”? competition data as a binary classifica-
tion task to predict disaster relevant tweets. Kaggle contains tweets
posted during various disasters with “relevant” or “not relevant”
as class labels. We use the file “train.csv” from the competition as
the labelled data and break into train, validation and test sets for
our training and evaluation purposes. The “test.csv” file was used
as the unlabelled data. After cleaning and processing, the dataset
contains a total of 9897 samples. 76.9% is of the dataset is labelled
and the remaining 23.1% is unlabelled as seen in Figure 1.

We also use two disaster-related tweet datasets called “Forum
for Information Retrieval Evaluation” 2016 (FIRE16) [5] and “Social
Media for Emergency Relief and Preparedness (SMERP17)” [18] con-
taining tweets with granular class information like infrastructure
damage, resource required and other actionable information. FIRE16
and SMERP17% contain labelled and unlabelled tweets posted dur-
ing 2015 earthquake in Nepal and 2016 earthquake in central Italy
respectively. Each dataset comes with a set of labelled tweets tagged
with predefined classes based on the situational information it con-
tains.

Usually, each short-text contains situational information related
to a single class as described in the TREC format. However, some-
times a short-text might contain information relevant to multiple
classes. In such a scenario, the short-text is tagged with all the
relevant classes. We could collect a total of 50, 774 and 71, 659 la-
belled or unlabelled tweets of FIRE16 and SMERP17. Out of which,

!Kaggle has very limited unlabelled data, all of which was incorporated in 1 iteration.
2 https://www.kaggle.com/c/nlp- getting- started/overview

3This work is not a part of the SMERP task, we re-purposed the dataset for short-text
classification task.

https://www.kaggle.com/c/nlp-getting-started/overview

Semi-Supervised Granular Classification Framework for Resource Constrained Short-texts

Table 3: Class details and distribution of samples for each
dataset.

(a) Kaggle
Class Title Train Val Test
0 Irrelevant 2279 760 1303
1 Relevant 1717 573 981
Sample count 3996 1333 2284
(b) FIRE16
Class Title Train Val Test
1 Resources Available 271 122 183
2 Resources Required 149 49 93
3 Medical Resources Available 160 67 104
4 Medical Resources Required 52 26 33
5 Requirements / Availability of Re- 96 84 62
sources at Specific Locations
6 Activities of Various NGOs / Govern- 181 84 106

ment Organizations

7 Infrastructure Damage and Restora-
tion Reported
Sample count

108 64 80

759 326 466

(c) SMERP17

Train Val Test
174 43 93
119 30 64

Class Title
1 Resources Available

2 Resources Required

3 Infrastructure Damage, Restoration 1129 282 605
and Casualties Reported

4 Rescue Activities of Various NGOs / 202 50 108
Government Organizations
Sample count 1624 405 807

labelled data constitutes approx 3.05% and 3.71% from each dataset
as seen in Figure 1. Note that the short-text count mentioned here
may vary from the original dataset. The Twitter policy does not
allow direct short-text sharing, tweets were downloaded before
the experiments, and some tweets may not be retrieved if they are
deleted or made private. Remaining 49, 223 and 68, 964 tweets were
unlabelled and henceforth called unlabelled set. Below we discuss
the labelled data in more detail.

4.1 Labelled Data

The Kaggle has 7613 tweets labelled with either relevant (1) or irrel-
evant (0) as class labels. A class-wise detail of the data is provided
in Table 3a. Remaining 2284 tweets are unlabelled. The FIRE16 and
SMERP17 labelled data contains 1551 and 2695 tweets assigned
to 7 and 4 predefined classes, respectively. In the original dataset,
the classes have numbers as FMT1, FMT2,--- ,FMT7 for FIRE16
and SMERP-T1,SMERP-T2,--- ,SMERP - T4 for SMERP17. We
denote each class by their numeric value in this paper. Figure 1
summarise the dataset details along with class distribution. A de-
tailed class-wise count of samples are provided in Tables 3b and
3c.

5 EXPERIMENTAL SETUP

We divided the labelled data into Train, Validation and Test sets with
50%, 20% and 30% of the total short-texts respectively. Tables 3a, 3b

33

WebSci *20, July 6-10, 2020, Southampton, United Kingdom

Kaggle Labeled & Unlabeled FIRE16 Labeled & Unlabeled ~ SMERP Labeled & Unlabeled
Labeled Labeled

Labeled

31% 3.9%

4 76.9%
[[“
| [
‘, ‘- ‘
\ 8% \ 96.9% \
\ \

\ \
Unlabeled _d N - N
—J " Unlabeled

96.1%

~ Unlabeled

Kaggle Class Distribution FIRE16 Clgss Distribution SMERP17 CﬁI’ass Distribution
6
13.0% Somen
y 1
i (26.5%

12.4%
10.7%

1
2 / 73%

11% 5 |

51% \
13.4% 15,29 4 \ 69.5%
\\ 3
e

Figure 1: Dataset Details: The first row shows the proportion
of Labelled and Unlabelled data for each dataset. The sec-
ond row shows the distribution of different classes in the
labelled data.

and 3c show exact counts of short-texts used for Train, Validation
and Test sets for Kaggle, FIRE16 and SMERP17 respectively. Sample
count is the number of samples present in each set*. The same set
of train, validation and test were used across all experiments. Train
and Test set were used for model training and testing, respectively.
Validation set was used for various hyper-parameter selection and
to calculate capacity and threshold values. Details of the hyper-
parameter selection are described in Section 5.1.

We initially experimented with the following machine learn-
ing algorithms: Gaussian Naive Bayes (GNB), Decision Tree (DT),
Random Forest (RF), AdaBoost (AB), k-Nearest Neighbor (kNN),
Logistic Regression (LR) and Support Vector Machine (SVM) to
decide the best performing classifier for each dataset. After our
extensive experiments gave evidence that for Kaggle, LR and for
FIRE16 and SMERP17, SVM is best-performing classifier (see Table
4), we use those classifiers for all subsequent experiments for that
dataset. Platt scaling [16] was used to get individual class confi-
dence scores. As the short-texts may belong to more than one class,
One-vs-Rest approach was taken for multi-label classification. Stan-
dard text pre-processing technique was used before feeding the
text to the classifiers. We used Term Frequency - Inverse Document
Frequency (TFIDF) to generate features for our algorithms. Note
that the proposed framework is agnostic to the feature generation
and algorithm used in this paper. It can be used with any classifier
and any vocabulary-based feature generation technique such as
embedding based techniques.

5.1 Hyper-Parameter Selection

The proposed framework has two different types of hyper-parameters.
The first set of parameters could be thought of as modelling choices
for the framework such as “batch size” for unlabelled data in each
iteration and the value of € in Equation 4. Out of these, “batch
size” for unlabelled data had the least effect in performance except
when it was too small. In such cases, the learning capability of the
framework reduces drastically due to the lack of distinct features.
These hyperparameters were selected using the validation set.

“Note that the sample count is not the same as the summation of the values in that
column due to multi-label nature of the datasets.

WebSci "20, July 6-10, 2020, Southampton, United Kingdom

Class-wise scores of FIRE16

Sup. 0.912%8987

[SSF
08 .73420.7312
h

0.7114
0.7021
th

°
o

0.51

Precision

©
IS

0.4077

0.2

0.0

4(52)
Classes

5(96)

Class-wise scores of FIRE16

Sup. 0.917%9027

[SSF

Recall

12506
1194821

0.08%

4(52)
Classes

)

3(160) 5 (96)

Figure 2: Class-wise Precision (SD) and Recall (SD) scores for
FIRE16. Number of training examples for the class is men-
tioned in brackets after the class label in x-axis.

The other set of parameters that needed to be tuned are algorithm
specific parameters. We used the same validation set for both types
of hyper-parameter selection. Once the best model parameters were
decided using the validation set, we tuned the algorithm specific
parameters such as regularization parameter in SVM or penalty for
Logistic Regression. Regularization parameter indicates the cost
of a wrong classification. Higher value signifies costly misclassifi-
cation so that algorithm learns to make fewer mistakes. However,
this comes with the trade-off in the shrunk margin between classes
in SVM algorithm. All the hyper-parameters were tuned during al-
gorithm selection. Once the algorithm was decided for each dataset,
the hyper-parameters were fixed for all subsequent experiments.

In the next Section, we present our results and analyze the per-
formance of the different algorithms in detail.

6 RESULTS AND ANALYSIS

We answered several interesting questions related to multi-label
short-text classification to granular classes. Table 5 contains the
most comprehensive result related to our study. Test set was used to
generate all results. We ran each experiment 10 times to calculate
the average score along with their Standard Deviation (SD). In
Figures 2, 3, 7 and 8 black rectangle on top of bars signify the SD
calculated over 10 runs.

Which is the best classifier for each dataset? We applied
various off-the-shelf classifiers (see Section 5 for the list of clas-
sifiers) to decide the best classifier on each dataset. Results from

34

S. Ghosh, et al.

Class-wise scores of SMERP17

Sup.
1.00{ 3 SSF
0.95
0.90
c
o
20.85
13
&
0.80 0.7538
0.7513
0.75
0.70
0.65
1(174)
Classes
105 Class-wise scores of SMERP17
’ Sup.
1.00] == SSF
0.95
0.8908
0.90 0.8708
= 0.8363
3
$0.85
o
0.80 0.7587 0.781
0.7489
0.75
0.70

1(174) 2(119) 4 (202)

Classes
Figure 3: Class-wise Precision and Recall scores for
SMERP17. Number of training examples for the class is men-
tioned in brackets after the class label in x-axis.

this experiment are mentioned in Table 4. LR works best for binary
classification task on Kaggle for both supervised (Sup.) and Semi-
Supervised Framework (SSF) approaches. However, for multi-label
classification task on FIRE16 and SMERP17, SVM with one-vs-rest
approach outperforms all other classifiers.

Is our framework effective over supervised approach? To
verify the effectiveness of our framework over the standard super-
vised approach, we tested the performance of the best performing
classifier, with and without our framework, on the test set. Findings
from Table 4 shows that our framework SSF using unlabelled data
improves overall performance over supervised learning Sup. for all
datasets. In 19 out of 21 classifier-dataset combinations in Table 4,
our approach SSF improves classifier performance except for GNB
and kNN algorithm on the SMERP17 data. This improvement is due
to the incorporation of critical out-of-vocabulary words from un-
labelled data which helps expand the feature space. Incorporation
of new words to the vocabulary helps to improve the Recall score.
Figures 2 and 3 compare the improvement in Precision and Recall
scores between Sup. and SSF approach. Improvement in Kaggle
is minimal as the unlabelled data is limited, which restricts the
expansion of the feature space. Our framework works efficiently
when sufficient unlabelled data is supplied as seen with the other
two datasets.

Second and last column in Table 5 summaries the class-wise
performance between Sup. and SSF For FIRE16, F; score for 5 out of
7 classes improves with a marginal drop for class 1. We can see that
performance for class 4 and 5 in FIRE16 improved by a large margin

Semi-Supervised Granular Classification Framework for Resource Constrained Short-texts

WebSci *20, July 6-10, 2020, Southampton, United Kingdom

Table 4: Best performing [Macro-F; (SD)] classifier calculated over 10 runs for each dataset. “Sup.” and “SSF” denotes supervised

and semi-supervised performance respectively.

Also Kaggle FIRE16 SMERP17
& Sup. SSF Sup. SSF Sup. SSF
GNB 0.6111 (.0053) 0.7024 (.0099) 0.4678 (.0126) 0.4874 (.0123) 0.6370 (.0045) 0.6312 (.0056)
AB 0.6485 (.0054) 0.6672 (.0036) 0.5567 (.0057) 0.5653 (.0072) 0.7972 (.0095) 0.8250 (.0052)
DT 0.6499 (.0021) 0.7043 (.0049) 0.5365 (.0043) 0.5397 (.0089) 0.7523 (.0063) 0.7624 (.0083)
RF 0.6862 (.0067) 0.7138 (.0074) 0.5485 (.0096) 0.5661 (.0081) 0.7877 (.0092) 0.8020 (.0094)
KNN 0.7332 (0126) 0.7465 (.0165) 0.5061 (.0235) 0.5548 (.0156) 0.8275 (.0269) 0.7789 (.0307)
LR 0.7609 (.0027) 0.7699 (.0041) 0.5595 (.0058) 0.5879 (.0063) 0.8331 (.0065) 0.8500 (.0083)
SVM 0.7351 (.0068) 0.7376 (.0097) 0.5868 (.0085) 0.6118 (.0102) 0.8523 (.0026) 0.8660 (.0064)
Iteration-wise score for FIRE16 100 Iteration-wise score for SMERP17
ool 29132 qoma 09002 0.8987 R - —Y) p.9884 £.9901 0.9891
. —=— 2(119)
08171 0.8101 0es] 7 21129
0g] 0802 ———— 0.8433 : 4(202)
Q.734; £.7375 £.7348 97312
RTINS 7 07125 D13 0.90
5 0.7 5 0.8838 0.8819 0.8845 0.8442
g 0.6 ;é 0.85
e . hse8L 0 o542 05479]
0.5 : itiggi \MA///‘DM//J.SJH 038116 £.8138 .a_mz/"p's‘z
: 4(52) 0.80
—— 5(96)
0.4y sﬁig 0371 0.3053 0897 075 251 £.7531 07538 97338
00 0’5 10 15 20 25 30 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Iteration Iteration
Iteration-wise score for FIRE16 Iteration-wise score for SMERP17
09147 0.9118 0.904 0.9027 1000 o, 4 (174) 0.9894 0.9934 0.9942
—=— 2(119)
—— 3(1129)
081 07702 0.7771 0.764; 07751 0.95 4(202)
7216 :7339
o 0.90 05818 8861 0.8408
= 3-53“\;)_3059/&5139—’/‘0'5:57 3 0.8708
g 085 8363
0.4{ —— 1(271)
—=— 2(149) 0.80
—— 3(160) 2406
4(52) 4’01152/,.0.135—’/’0 3 i
0.2{ —— 5(96) 0.1944 0.75 .7489 7387
—e— 6(181) 01121 p1534
— 7(108)
oo s o s 7o 75 70 0.0 0.5 1.0 15 2.0 2.5 3.0

Iteration

Figure 4: Iteration-wise Precision and Recall scores for indi-
vidual classes of FIRE16.

of 88.67% and 10.78% respectively due to significant improvement
in Recall as seen in Figure 2. Supervised performance for class 7 is
high with a comparatively lower number of samples in the training
set because of distinct feature set. Incorporation of new samples
results in low performance for class 7. For SMERP17, the framework
outperforms Sup. for all classes.

Does Capacity criterion make a difference? In Table 5, col-
umn “Sampling (1.0)” refers to a scenario when there was only
threshold criterion in place [3, 8, 14]. All samples for which the
predicted confidence scores were above the threshold were selected
and assigned to the corresponding class(es). In such a scenario,
we found that most of the predicted samples belong to the class
with majority representation in training set with a high confidence

35

Iteration

Figure 5: Iteration-wise Precision and Recall scores for indi-
vidual classes of SMERP17.

score. This phenomenon happens because the availability of a large
number of training samples for the majority class helps in better
learning for the class, and thereby resulting in higher and more
reliable confidence scores for the class.

Moreover, a similar distribution of the samples can be expected
to be present in the unlabelled dataset. Hence, a large number of ex-
amples from the unlabelled data have high confidence scores for the
majority class, whereas, for the minority or resource-constrained
classes, much lesser number of samples have such high confidence
scores. Hence, the method ends up adding more number of ma-
jority class examples to the training set during the iterations of
the semi-supervised framework. Adding samples without capacity
limit works best when the size of the unlabelled data is limited, or

WebSci "20, July 6-10, 2020, Southampton, United Kingdom

Iteration-wise Threshold for FIRE16

Threshold

0.1149

7(108)

0 1 2 3 4 5
Iteration

1.0 1(174)
2(119)
3(1129)
0.9 4(202)

0.8

Threshold

0.6

0.5

0 1 2 3 4 5
Iteration

Figure 6: Evolution of thresholds with iteration for FIRE16
(top) and SMERP17 (bottom).

the proportion of relevant samples are very high in the unlabelled
data. This behaviour can be seen for Kaggle in Table 5a.

Does Threshold criterion make a difference? The purpose
of the Threshold criterion is to carefully filter out low confidence
samples based on the performance of that class. Performance of a
class is related to the number of training samples. Our Threshold
criterion lowers the threshold to incorporate a more significant
amount of data for resource-constrained classes, as seen in Figure
6. On the other hand, increases the threshold for well-performing
classes. This careful selection helps to improve the Recall for re-
source constrained classes without harming the Precision of other
classes. Without any restriction on the threshold, very low con-
fidence samples might get selected, resulting in lower Precision.
We again turn to Table 5 to observe this behaviour. Columns “Add
count (25, 50 and 75)” refers to scenarios where a fixed number of
top samples for each class are selected without any restriction on
the confidence. The Precision score for class 1 in FIRE16 and class
4 in SMERP17 is high® (0.7357 and 0.7576) when only (25) samples
are selected. However, it falls sharply (0.6975 and 0.7361) as more
samples (75) are selected, resulting in a lower F; score.

Are both criteria necessary? With the previous two experi-
ments, we found that there is a need to have capacity restriction to
avoid adding majority class samples. On the other hand, a threshold
restriction makes sure that very low confidence samples are not
incorporated for self-learning.

SDue to lack of space, Precision and Recall tables were not presented in the paper.

36

S. Ghosh, et al.

Is the proposed framework effective over other existing
semi-supervised baselines? The proposed framework is com-
pared with four baselines; supervised classifier trained only on
labelled data, random sampling-based semi-supervised classifier
as mentioned in [8, 14] and finally with [3] which has a threshold
restriction but without any restriction on the number of samples
to be added per class. To make a fair comparison, we use the same
threshold value in all the baselines to convert the confidence score
to class labels. The result are summarised in Table 5. Our framework
outperforms all the other baseline except for Kaggle. Selecting all
samples above a threshold, as proposed in [3], is suitable when the
distribution of relevant samples are high in the unlabelled data.
However, typically that’s not the scenario for short-texts generated
during disasters. A significant portion of the generated short-texts
are either sentiment of people or irrelevant to the disaster. The
proposed framework performs better as such scenarios in FIRE16
and SMERP17, as seen in Table 5. Random sampling with different
rates (0.4, 0.6, 0.8) [8] performs well in a few specific cases when a
small set of samples are assigned to that class, such as for class 6
for FIRE16.

How effective is our framework for resource-constrained
classes? Next, we experimented with our framework in the re-
source constrained scenario. It can be seen from Figures 4 and 5 for
FIRE16 and SMERP17 that the Precision for all the classes remain
almost constant across iteration. However, the Recall scores for
the resource-constrained classes keep on improving. This improve-
ment happens due to the careful selection of the new examples to
be added to the training set at each iteration. Iteration 0 refers to
supervised iteration, initial dip at iteration 1 is due to the improper
initialization of thresholds. The framework updates the threshold
of each class according to the performance.

To verify the effectiveness of our framework in resource con-
strained scenario, we randomly selected samples of a class from the
training set to make that class resource-constrained. FIRE16 already
has two resource-constrained classes (Class 4 and 5) with less than
100 samples. For remaining classes in FIRE16 and SMERP17, we
randomly select 80%, 50% and 20% of samples for a class from the
training set. Note that selecting samples of a class may result in a
small number of samples being removed from other classes due to
multi-label nature.

Figures 7 and 8 summarize our findings for resource-constrained
classes for FIRE16 and SMERP17. Results show as we reduce the
number of training samples for a class, performance gap between
our framework over the supervised approach increases. For exam-
ple, the F; score difference between Sup. and SSF for class 1 of
FIRE16 increases from 0.58% to 3.32% and finally 22.30% for 80%,
50% and 20% of the training set. Similar patterns of more significant
performance gap can be found for all classes.

On improvements in performance and its impact: From the
above analysis, we see that the proposed framework results in over-
all performance improvement for all datasets. Almost all the cases,
the Recall scores of the classes improved, without any significant
reduction in the Precision. For disaster mitigation, even a small
improvement in the Recall would indicate being able to identify
and retrieve more number of relevant short-texts for the classes,
where classes are connected with situations at the affected regions.
Identifying more number of such situational information would

Semi-Supervised Granular Classification Framework for Resource Constrained Short-texts WebSci *20, July 6-10, 2020, Southampton, United Kingdom

Table 5: Performance [Macro-F; (SD)] comparison between our approach and baselines calculated over 10 runs.

(a) Kaggle
Add Count [Sampling
25 50 75 0.4 0.6 0.8 1.0
0 0.8054 (.0021) 0.8056 (.0027) 0.8073 (.0033) 0.8075 (.0039) 0.8087 (.0064) 0.8104 (.0050) 0.8106 (.0042) 0.8121 (.0034) 0.8101 (.0043)
1 0.7165 (.0043) 0.7175 (.0047) 0.7203 (.0052) 0.7200 (.0063) 0.7243 (.0068) 0.7283 (.0057) 0.7297 (.0051) 0.7311 (.0058) 0.7298 (.0041)

Class Sup. SSF

(b) FIRE16
Add Count [Sampling
25 50 75 0.4 0.6 0.8 1.0
0.7278 (0116) 0.7247 (0141) 0.7047 (.0148) 0.6915 (.0163) 0.6903 (.0216) 0.6814 (.0204) 0.6794 (.0188) 0.6770 (.0173) 0.7267 (.0168)
0.6976 (.0170) 0.7097 (.0185) 0.6973 (.0193) 0.6934 (.0201) 0.7121 (.0234) 0.7145(.0221) 0.7192 (.0245) 0.6894 (.0267) 0.7244 (.0173)
0.7857 (.0104) 0.7831 (.0158) 0.7731 (.0171) 0.7702 (.0165) 0.7874 (.0198) 0.7878 (.0202) 0.7831 (.0191) 0.7657 (.0179) 0.7889 (.0140)
0.1395 (.0278) 0.1790 (.0326) 0.2045 (.0341) 0.2180 (.0333) 0.2395 (.0352) 0.2425 (.0346) 0.2484 (.0361) 0.2512 (.0348) 0.2632 (.0338)
() (
) (
) (

Class Sup. SSF

@
(.
@
(-

0.3043 (.0271) 0.3074 (.0311) 0.3127 (.0327) 0.3226 (.0357) 0.3183 (.0348) 0.3262 (.0353) 0.3322 (.0324) 0.3341 (.0249) 0.3371 (.0276)
0.5392 (.0166) 0.5342 (.0171) 0.5107 (.0168) 0.5262 (.0192) 0.5402 (.0214) 0.5414 (.0207) 0.5423 (.0176) 0.5373 (.0221) 0.5417 (.0156)
0.9139 (.0089) 0.9063 (.0154) 0.8963 (.0147) 0.8938 (0151) 0.8904 (.0142) 0.9018 (.0187) 0.9024 (.0183) 0.8967 (.0158) 0.9006 (.0133)

NN G W N =
A~~~ e~~~

(c) SMERP17
Add Count [Sampling
25 50 7. 0.4 0.6 0.8 1.0
0.7542 (.0104) 0.7451 (.0176) 0.7504 (.0121) 0.7562 (.0129)
0.8039 (.0187) 0.8113 (.0137) 0.7890 (.0172) 0.8290 (.0170)
0.9795 (.0066) 0.9817 (.0054) 0.9744 (.0097) 0.9916 (.0032)
0.8704 (.0126) 0.8698 (.0154) 0.8457 (.0213) 0.8874 (.0130)

Class Sup. SSF

0.7500
0.7918
0.9902
0.8772

5

.0098) 0.7510 (.0120) 0.7523 (.0114) 0.7471 (.0138) 0.7413 (0141
0163) 0.7922 (.0144) 0.7854 (.0155) 0.7819 (.0146) 0.7924 (.0154
.0041) 0.9814 (.0047) 0.9773 (.0071) 0.9724 (.0065) 0.9781 (.0059
.0095) 0.8879 (.0108) 0.8815 (.0115) 0.8768 (.0172) 0.8721 (.0119

=W N =
—~ e~~~
NANCANA e

e F1 scores for FIRE16 F1 scores for FIRE16
0.6507 0.6545
Supervised 0.7048 Supervised
o, i e 0.6832 I [SSF
> 2
0.5535
0.5571
0.4489
7 7 0.4273
2 7
¢/7
_
80% 50% 20% ‘ 50% 20%
Train percentage of Class 1 Train percentage of Class 2
F1 scores for FIRE16 F1 scores for FIRE16
0.8243 0.550 0.518 S m
0.816 Supervised 0.5046 Z Supervise
07978 = B 3 SSF . 1 SSF
0.525 {
0.7258 0.4682
0.500
0.6826 +
% 7 0.475 0.4455
& 0.450
0.425
0.400
0.375

= 0.350
80% 50% 20% 80%

50%
Train percentage of Class 3 Train percentage of Class 6

Figure 7: Performance improvement of resource-constrained classes with 80%, 50% and 20% of training data for FIRE16 (Black
rectangle represents SD).

37

WebSci °20, July 6-10, 2020, Southampton, United Kingdom

F1 scores for SMERP17

F1 scores for SMERP17

%2}

. Ghosh, et al.

F1 scores for SMERP17

0.6613

T

0.6588 2 Supervised

07833
) ssF Z

08
0.6211
0.5949

0.4705

0.6909

Supervised 0.8773 o887 2z Supervised
i [SsF

0.7252 0.62

0.774
0.7314

80% 20% 80%

Train percentage of Class 1

50%
Train percentage of Class 2

20% 80% 20%

Train percentage of Class 4

Figure 8: Performance improvement of resource-constrained classes with 80%, 50% and 20% of training data for SMERP17.

help in planning the rescue and relief operations, and thereby being
able to reach out to more number of affected people in a timely
manner, and helping them in fighting the adverse conditions. No-
ticeably, we see that the Recall scores for the resource-constrained
classes improved by a large margin. In the datasets considered, the
available resource-constrained classes happened to be the classes
related to "Medical resources required”, "Requirement/availability
of resources at specific locations" and "Resources required.” Identi-
fication of more number of short-texts from these classes from the
massive stream of short-texts would directly help the people in the
affected regions.

7 CONCLUSION AND FUTURE WORK

In this work, we studied the usefulness of semi-supervised learn-
ing to classify short-texts generated during ongoing disasters to
predefined granular classes. We applied the proposed self-learning
based semi-supervised learning framework in three disaster-related
datasets to show it’s effectiveness over supervised algorithms and
other semi-supervised learning based baselines. Specifically, under
the assumption that the distribution of classes in the real world
is imbalanced and a sufficient number of samples might not be
available, our proposed framework outperforms supervised and
other baselines significantly for resource-constrained classes by
adaptively allowing more samples to be selected for such classes.
By incrementally incorporating unlabelled data, we can effectively
manage rescue operations during ongoing disasters. Our study also
provides useful insights into model performance when labelled data
is limited and imbalanced. While Precision of resource-constrained
classes was moderate, Recall score is deficient potentially missing
to retrieve much crucial situational information. More exploration
is needed from the effects of feature generation techniques such as
embedding based techniques, to gain better insights on the effects
of selecting unlabeled data. We plan to explore such effects in our
future work.

ACKNOWLEDGMENTS

This work is supported by the Vivesvaraya PhD Scheme for Elec-

tronics and IT, Ministry of Electronics and Information Technology

(MeitY), Government of India under Grant No.:
EE/2016-17/034/MLA/MZAK/0235.

REFERENCES

[1] Cornelia Caragea, Nathan McNeese, Anuj Jaiswal, Greg Traylor, Hyun-Woo Kim,
Prasenjit Mitra, Dinghao Wu, Andrea H Tapia, Lee Giles, Bernard J Jansen, et al.
2011. Classifying text messages for the Haiti earthquake. In Proceedings of the 8th

38

international conference on information systems for crisis response and management
(ISCRAM2011). Citeseer.

[2] Cornelia Caragea, Adrian Silvescu, and Andrea H Tapia. 2016. Identifying Infor-
mative Messages in Disasters using Convolutional Neural Networks.. In ISCRAM.

[3] Oduwa Edo-Osagie, Gillian Smith, Iain Lake, Obaghe Edeghere, and Beatriz
De La Iglesia. 2019. Twitter mining using semi-supervised classification for
relevance filtering in syndromic surveillance. PloS one 14, 7 (2019).

[4] Samujjwal Ghosh and Maunendra Sankar Desarkar. 2018. Class specific TF-IDF
boosting for short-text classification: Application to short-texts generated during
disasters. In Companion Proceedings of the The Web Conference 2018. 1629-1637.

[5] Saptarshi Ghosh and Kripabandhu Ghosh. 2016. Overview of the FIRE 2016 Mi-
croblog track: Information Extraction from Microblogs Posted during Disasters..
In FIRE (Working Notes). 56—61.

[6] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification
using distant supervision. CS224N project report, Stanford 1, 12 (2009), 2009.

[7] Muhammad Imran, Carlos Castillo, Fernando Diaz, and Sarah Vieweg. 2015.
Processing social media messages in mass emergency: A survey. ACM Computing
Surveys (CSUR) 47, 4 (2015), 1-38.

[8] Vivian Lay Shan Lee, Keng Hoon Gan, Tien Ping Tan, and Rosni Abdullah. 2019.
Semi-supervised Learning for Sentiment Classification using Small Number of
Labeled Data. Procedia Computer Science 161 (2019), 577-584.

[9] Hongmin Li, Nicolais Guevara, Nic Herndon, Doina Caragea, Kishore Neppalli,
Cornelia Caragea, Anna Cinzia Squicciarini, and Andrea H Tapia. 2015. Twitter
Mining for Disaster Response: A Domain Adaptation Approach.. In ISCRAM.

[10] Dina Fine Maron. 2013. How Social Media Is Changing Disaster Response.
Scientific American (2013). https://www.scientificamerican.com/article/how-
social-media-is-changing-disaster-response/

[11] Hossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett. 2020. Self-Distillation
Amplifies Regularization in Hilbert Space. arXiv:cs.LG/2002.05715

[12] Ken Moule. 2012. Situation awareness for disaster management in the information
age. Global GBM (2012).

[13] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Sarah Vieweg. 2014.
Crisislex: A lexicon for collecting and filtering microblogged communications in
crises. In Eighth International AAAI Conference on Weblogs and Social Media.

[14] Neha Pandey and S Natarajan. 2016. How social media can contribute during
disaster events? Case study of Chennai floods 2015. In 2016 International Confer-
ence on Advances in Computing, Communications and Informatics (ICACCI). IEEE,
1352-1356.

[15] V Pekar, J Binner, and H Najafi. 2016. Detecting Mass Emergency Events on
Social Media: One Classification Problem or Many?. In Proceedings of the Interna-
tional Conference on Data Mining (DMIN). The Steering Committee of The World
Congress in Computer Science, Computer ..., 31.

[16] J Platt. 1999. Probabilistic Outputs for SVMs and Comparisons to Regularized
Likehood Methods, Advances in Large Margin Classifiers.

[17] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake shakes
Twitter users: real-time event detection by social sensors. In Proceedings of the
19th international conference on World wide web. ACM, 851-860.

[18] Tanmoy Chakraborty Debasis Ganguly Gareth Jones Marie-Francine Moens
Saptarshi Ghosh, Kripabandhu Ghosh. 2017. First International Workshop on
Exploitation of Social Media for Emergency Reliefand Preparedness (SMERP). In
39th European Conference on IR Research, ECIR. LNCS 10193. https://doi.org/10.
1007/978-3-319-56608-5

[19] Isaac Triguero, Salvador Garcia, and Francisco Herrera. 2015. Self-labeled tech-
niques for semi-supervised learning: taxonomy, software and empirical study.
Knowledge and Information systems 42, 2 (2015), 245-284.

[20] David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling su-
pervised methods. In 33rd annual meeting of the association for computational
linguistics. 189-196.

[21] Shanshan Zhang and Slobodan Vucetic. 2016. Semi-supervised discovery of
informative tweets during the emerging disasters. arXiv preprint arXiv:1610.03750
(2016).

https://www.scientificamerican.com/article/how-social-media-is-changing-disaster-response/
https://www.scientificamerican.com/article/how-social-media-is-changing-disaster-response/
https://arxiv.org/abs/cs.LG/2002.05715
https://doi.org/10.1007/978-3-319-56608-5
https://doi.org/10.1007/978-3-319-56608-5

	Abstract
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Sample Selection Criteria
	3.2 Stopping Criteria:
	3.3 Incremental Learning and Vocabulary Expansion

	4 Dataset
	4.1 Labelled Data

	5 Experimental setup
	5.1 Hyper-Parameter Selection

	6 Results and Analysis
	7 Conclusion and Future Work
	Acknowledgments
	References

