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Abstract

A growing body of research runs human subject evaluations to study whether
providing users with explanations of machine learning models can help them with
practical real-world use cases. However, running user studies is challenging and
costly, and consequently each study typically only evaluates a limited number
of different settings, e.g., studies often only evaluate a few arbitrarily selected
explanation methods. To address these challenges and aid user study design, we
introduce Use-Case-Grounded Simulated Evaluations (SimEvals). SimEvals in-
volve training algorithmic agents that take as input the information content (such as
model explanations) that would be presented to each participant in a human subject
study, to predict answers to the use case of interest. The algorithmic agent’s test set
accuracy provides a measure of the predictiveness of the information content for
the downstream use case. We run a comprehensive evaluation on three real-world
use cases (forward simulation, model debugging, and counterfactual reasoning) to
demonstrate that SimEvals can effectively identify which explanation methods
will help humans for each use case. These results provide evidence that SimEvals
can be used to efficiently screen an important set of user study design decisions,
e.g. selecting which explanations should be presented to the user, before running a
potentially costly user study.

1 Introduction

The field of interpretable machine learning has proposed a large and diverse number of techniques
to explain model behavior (e.g., [37, 28, 138, [34) 29]). A growing body of work studies which of
these techniques can help humans with practical real-world use cases [2, 120} 116, |18, 133} 135,18, [16].
Because it is difficult to anticipate exactly which explanations may help humans with a particular use
case [9,[10], the gold standard to evaluate an explanation’s usefulness to humans is to run a human
subject study [11]]. These studies ask users a series of questions about the use case and provide the
users with relevant information (such as model explanations) to answer each question.

Selecting the relevant information, which we call information content, to provide each user in the
human subject study comprises an important set of design decisions [18}5]]. The researcher needs to
consider the choice of explanation methods, hyperparameters that are used to calculate the model
explanations, and whether additional pieces of information should be provided to the user (such as
the model’s prediction on the data-point being explained) While a researcher may wish to run
several user studies to evaluate many different types of information content, in practice this is often
infeasible: user studies are resource intensive and time-consuming, requiring the recruitment and
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"'We note that there are several additional user study design decisions beyond what information is shown to
the user: for example, how the information is presented or visualized, the user study interface design, etc. We
consider these additional design decisions to be out-of-scope for our study for reasons discussed in Appendixm
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Researcher: “Which explanation methods would help users for this use case?”
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Figure 1: An overview of how SimEvals can help a researcher with an important user study design
decision: selecting which explanation methods to evaluate given their specific use case. (Left) Prior
to our work, existing user studies often only evaluate a small number of explanation methods due to
resource constraints. When selecting candidate explanations to evaluate, researchers often simply
choose the most popular or well known explanation methods with little justification about why each
explanation may be helpful for the downstream use case. (Right) We propose using SimEvals, which
are use-case-grounded, algorithmic evaluations, to efficiently screen explanations before running a
user study. In this example, the researcher runs a SimEval on each of the four candidate explanation
methods and then uses the results of the SimEvals to select two promising explanation methods
where the algorithmic agent has high accuracy for their human subject study.

compensation of real users. Due to these constraints, most studies are far from comprehensive in
terms of the number of design decisions evaluated. For example, most user studies typically only
evaluate a few explanation methods, with default hyperparameter settings, that are often arbitrarily
selected based on their perceived popularity (Figure[T} Left).

For example, forward simulation is a canonical use case where users are asked “Can you predict
what the model’s prediction is for this individual?” [35, 8, [16]. To answer this question, the user is
provided with information content, which may include data-points (e.g., the individual’s features) and
model explanations for those data-points (e.g., a SHAP [29] importance score for each feature). The
researcher can then measure which set of information content (and consequently which explanation
method) enables users to achieve the best performance (e.g. the highest accuracy when answering
the use case questions). Beyond forward simulation, other user studies have investigated use cases
ranging from model debugging to counterfactual reasoning [2, 20, (16} 18} 33]].

In this work, we introduce Use-Case-Grounded Simulated Evaluations (SimEvals): a general frame-
work for conducting use-case-grounded, algorithmic evaluations of the information content present in
a user study (Figure|l| Right). Each SimEval involves training and evaluating an algorithmic agent,
which is an ML model. The agent learns to predict the ground truth label for the use case given the
same information that would be presented to a user in a human subject study. The agent’s test set
accuracy is a measure of whether the information content provided (which critically includes the
model explanation) is predictive for the use case.

By comparing the agent’s test set accuracy for different types of information content, the researcher
can efficiently identify promising and eliminate unhelpful information content types (e.g. explanation
methods as shown in Figure[I) to present to real humans in their final human subject study. Since
SimEvals are intended to inform, not replace, human subject evaluations, we note that our algorithmic
agent does not incorporate additional factors such as the effects of cognitive biases [26, 135]], that may
affect human decision-making (see Appendix[J). In our experiments, we show that using SimEvals
to measure predictive information can indeed identify which information content can help a human
with a downstream use case.

In this work, we focus primarily on the design choice of selecting which explanation methods to
evaluate. We conduct an evaluation on a diverse set of use cases and explanation methods: (1) We
compare SimEvals with findings from prior user studies, and (2) we run our own user study motivated
by use cases studied in prior work. In both cases, we find that SimEval effectively distinguishes
between explanations that are ultimately helpful versus unhelpful to human subjects in the user study.



Our primary contributions in this work are as follows:

1. Introducing SimEvals Framework. We are the first to propose an automated use-case-grounded
evaluation framework to measure the predictive information contained in the information content
provided to a user in a human subject study. We instantiate our framework on three diverse use
cases to illustrate important differences in how SimEvals can be instantiated, showcasing how the
SimEval framework covers a wide variety of real-world use cases and explanation methods.

2. Identifying Promising Explanations for Humans. We demonstrate that SimEvals can distin-
guish between which explanations are promising versus unhelpful for humans on each of the three
use cases we consider. Specifically, we find that when there is a significant gap between SimEval
performance for two explanations, we observe a similar significant gap in human performance when
using the same explanations.

2 Related Work

Types of User Studies on Explanations: Many prior works run user studies to evaluate IML methods,
covering a diverse set of goals [30]. Specifically, IML user studies can differ in the independent
variable that is changed (e.g., the explanation method used [20, [16] or the visualization of the
explanation [24]]) and the dependent variable(s) being measured (e.g., the user’s performance on a use
case [20, |16} 26, 128} 27, [14], time taken to complete the use case [26]], or trust in the ML model [7]).
We focus on the set of user studies that measure how different explanation methods (independent
variable) affect how accurately users can complete a use case (dependent variable).

We group existing user studies on explanations that measure the accuracy of users on a use case
into two categories. The first category studies the utility of explanations in use cases where the
predictiveness of the explanation method is already known to researchers. For example, [26} 128, 27]
ask users to answer simple comprehension questions about a decision set explanation, where these
explanations contain the information necessary to complete the use case with perfect accuracy. Thus,
these studies measure humans’ ability to comprehend and interpret the explanations without error. In
contrast, the second category includes studies where the predictiveness of the explanation method
is not known to researchers in advance of their study [24, (16} 2]]. Our framework was developed to
aid researchers in this second setting to quickly validate whether or not an explanation method is
predictive for their use case.

Algorithmic frameworks for evaluating explanations: One line of evaluation frameworks focuses
on automating the ability to measure desirable properties relating to the faithfulness of the explanation
to the model [22, 1, 144]], which does not account for any downstream use cases for the explanation.
In contrast, our algorithmic evaluation framework allows researchers to customize and perform a use
case grounded evaluation of explanation methods.

We were able to identify one-off examples that use algorithmic agents to perform use case grounded
evaluations in prior work [33} 45,23, 36]. All of these examples propose evaluations designed around
one specific use case. Our framework is more general, and can be applied to a wide variety of use
cases for explanations. Our work is the first to propose a learning-based agent to identify which
explanation methods may be predictive for a downstream use case. We provide a more in-depth
discussion of how these examples can be contextualized in our general framework in Appendix [A.

3 General Framework

We present a general framework to train SimEval which measure the predictiveness of information
content choices for a downstream use case. Recall that when designing a user study, the researcher
must identify candidate choices of information content (e.g. which explanation methods, hyperparam-
eters, or other additional baseline information) to evaluate. Our framework trains a SimEval agent
for each choice of information content that the researcher intends to evaluate for a downstream use
case. The researcher can then interpret the test set accuracy of each SimEval agent as a measure
of the predictiveness of that information content. Before describing how to train each agent, we
overview three use-case-specific components shared across all agents/types of information content
that the researcher must instantiate:

*Tutorial on how to run your own SimEvals: https://github.com/valeriechen/simeval_tutorial
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Figure 2: (Left) SimEval trains an agent (e.g., ML model) on the same information (observation
and use case label) that a user would see in a human subject evaluation. (Right) For the forward
simulation use case, where the goal is to simulate the ML model’s prediction for a given data-point, we
demonstrate how to instantiate the observation (which contains the data-point x; and its corresponding
explanation E(x;, f)) and use case label (f(x;)). This input/output definition is used to generate
data to train and evaluate the agent. In Section[5 we show that training an algorithmic agent using
this framework allows us to corroborate findings about the usefulness of explanations as studied in
Hase and Bansal [[16].

1. A base dataset (D = {(x,y)}), on which the explanation method’s utility will be evaluated.

2. The base model family, F, which is the family of prediction models. The trained base model
f € F, which is trained on D, is used to generate explanations.

3. A function that defines a use case label, which is a ground truth label for the use case. This label
corresponds to the correct answer for each question that a user must answer in the user study.

Now, we describe how to train and evaluate each agent model We introduce a three-step general
framework: (1) data generation, (2) agent training, and (3) agent evaluation. Since the three steps
of our framework closely parallel the steps in a standard ML workflow for model training and
evaluation, canonical ML training techniques can also be used to train an algorithmic agent. The
primary difference from the standard ML workflow is that in our framework, Step (1) is much more
involved to ensure that the data generated as input to the algorithmic agent reflects the information
content that would be presented to a human subject in a user study as shown in Figure

Step 1: Data Generation. The goal of this step is to use the researcher’s choice of information
content and use-case-specific components to generate a dataset to train and evaluate the agent. The
dataset consists of observation and use case label pairs, where the information content defines what
information is included in each observation. We show a concrete example of data generation for
the forward simulation use case in Figure|3] The specific construction of each observation can vary
depending on several factors to accommodate a diverse range of use cases and user study designs:
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Figure 3: An example of the data generation process for the forward simulation use case from Hase
and Bansal [[16]. (Left) For this particular information content type, each observation contains the
data-point x; and the model explanation for that datapoint E(f, x;). The three use-case-specific
components are the base dataset D, base model family ., and function that defines a use case label.
(Right) These components are used to generate a dataset of /N observations.

3Note the distinction between the prediction model being explained (which we call the “base model”) and
the separate agent model.



Local vs. global. The SimEval framework can be used to evaluate both local and global explanations:
A local explanation method E'( f, x) takes as input prediction model f and a single data-point x € X.
A global explanation method E(f, D) takes as the input model f and a dataset D. The specific
construction of each observation (i.e., whether the observation contains a single explanation vs. an
aggregation of explanations) depends on whether the use case is a global problem (using explanations
to answer a question about the entire model) or a local problem (using an explanation to answer a
question about the model’s behavior at a particular point). For global problems, the use case label is
the same for a given model as opposed to for local problems, the use case label varies depending on
the data-point of interest. A longer discussion can be found in the Appendix [E.

Multiple datasets D; and models f;. Instead of building each observation using a single base dataset
and base model, for some use cases we sample each observation ¢ from a different base dataset D;
(and use it to train a new base model f;). We do so because (a) global problems require multiple
models to have a diverse set of use case labels and (b) it may be undesirable for the agent to overfit to
a single base dataset.

Human Factors. When selecting explanation methods for evaluation, it is important to consider factors
that influence the way humans reason about explanations. We advocate for researchers to select
explanations that also satisfy desirable proxy metrics such as faithfulness and stability. Additionally,
it is important to select explanations that are suitable for human use. We discuss these considerations
in the context of our experiments and user study in more detail in Appendix

Step 2: Agent training. After generating a dataset, the researcher trains an algorithmic agent (e.g.,
a machine learning model) to predict the use case label for a given observation. While this step can
be viewed as equivalent to training an ML model (i.e., requiring standard hyperparameter search and
tuning), this step is also analogous to “training” phases in human subject studies in which humans
are provided with labeled examples to convey relevant knowledge for the use case (e.g., presented
example explanations and expected conclusions). The training process allows the algorithmic agent
to implicitly learn relevant domain knowledge about the use case from labeled examples, even when
the researcher does not have any knowledge a priori of how to predict the use case labels.

In terms of model architecture selection, the researcher should select an agent model that is able to
encode and learn meaningful representations of the observations that are input to the agent (which
include the data-point and explanations). For example, the researcher needs to define the encoding for
the choice of explanation. There are some standard ways to encode certain types of explanations (e.g.,
a feature attribution explanation for tabular data can be encoded as a vector of length d if x € R? and
concatenated to the data-point to create an observation vector of length 2d). However, in general,
the researcher can leverage their domain knowledge in selecting the model: for example, a CNN
architecture is appropriate for a base dataset containing images. We discuss in Appendix [E how we
encode the explanations evaluated in our experiments.

Step 3: Agent evaluation. After training the agent, the researcher evaluates the agent’s ability to
make predictions on unseen test examples. This phase is analogous to the evaluation portion of typical
user studies, where humans are tested on new examples. The agent’s accuracy on these examples is a
measure of the predictiveness of the information content for the use case: a relative higher accuracy
is evidence that a particular type of information content is more useful. We note that the agent’s
performance (i.e. test set accuracy) is not intended to be interpreted as the exact, anticipated human
subject’s performance when given the same set of information content as the algorithmic agent. We
discuss several factors beyond the predictive information in the explanation that may affect human
performance in Appendix |J| As such, researchers should focus on statistically significant differences
in agent performance when interpreting their SimEvals, as smaller differences between information
content may not generalize to human performance.

4 Instantiating SimEvals

We instantiate our general framework to study the utility of popular post-hoc and by-design expla-
nations (e.g., LIME, SHAP, Anchors, GAM) for three different use cases, spanning a diverse set of
problems (forward simulation [16], counterfactual reasoning [25]], and data bugs [20]). The first two
use cases are local problems that focus on base model behavior at a specific point, while the third is a
global problem that asks questions about the base model behavior more broadly. The human subject
evaluations that studied these use cases primarily focused on studying which explanation method best
helps users answer the use case questions.



Next, we focus on a key portion of the SimEval framework that must be carefully defined, discussing
the data generation process in Step (1) for each use case. Further details on data generation algorithms
and agent architectures used for each use case can be found in Appendices[B]and [E.

Forward simulation measures whether a user correctly simulates (i.e., predicts) the ML model’s
prediction on a given data-point [35,8,[16]]. Our particular set-up is motivated by Hase and Bansal [16]],
where the authors test whether providing users with explanations helps users better predict a base
model’s behavior when compared to a control setting in which users are not given explanations. Here,
each observation given as input to the SimEval agent consists of a single data-point and explanation
(xi, E(x4, f)), where x; is sampled from the base dataset D. Following the same procedure as Hase
and Bansal, we split D into train, test, and validation sets. The agent is trained on a dataset of
observations from the training set and is then evaluated on observations from the unseen validation
set. The use case label u; = f(x;) is the model f’s output.

Counterfactual reasoning is a concept from philosophy used to describe “what if” conditionals
that are contrary to fact [43]. Counterfactual reasoning can enable individuals to reason about
how to achieve a desired outcome from a prediction model. We study a specific instantiation of
counterfactual reasoning from Kumar et al. [25]. Our use case examines whether a model’s output
f(x;) increases for some input x; in a counterfactual setting where a given feature of x; is increased.
Like forward simulation, each observation used to train and evaluate the agent consists of a single
data-point but differs in that each observation also includes the base model prediction on that data-
point: (x;, f(x;), E(x;, f)). For a given input x;, the use case label u; answers the question: “Does
f(x;) increase if a particular feature of x; is increased?”. We use the same agent model architecture
as in the forward simulation use case.

One important difference for counterfactual reasoning is that each base dataset D; and its correspond-
ing base model f; can differ across observations. We construct the agent’s observations in this way to
prevent the agent from simply memorizing where an individual base model is increasing versus de-
creasing with respect to a particular feature, instead encouraging the agent to learn a heuristic for this
use case that generalizes across different base models (further discussion provided in Appendix D).

Data bugs is a use case where the user is asked to predict whether the base model was trained on a
dataset containing a systematic error. For this use case, the researcher additionally needs to provide
a “bug definition" B, which corrupts the given base dataset. We consider bug definitions studied in
Kaur et al. [20] and summarize their motivation for identifying each of these bugs: The missing value
bug occurs when missing values for a feature are imputed using the mean feature value. This can bias
the prediction model towards the mean value. The redundant feature bug occurs when the dataset
contains features that are redundant, or contain the same predictive information. This can distribute
the true importance of the measure between the redundant features, failing to convey the measure’s
actual importance. We note that while explanations may not be the only approach to identify these
data bugs, the authors demonstrate that model explanations can help users with this use case.

A distinguishing feature of the data bugs use case is that the study participants in Kaur et al. [20]
were given a set of data-points and explanations per observation because it might be easier to detect a
model bug if given more than one data-point (an illustration provided in the Appendix [F3). As such,
each observation for the agent is also a set of data-point, model prediction, and explanation tuples:

{(xl(.j)7 f(xl(.j)), E(xgj), fi))}le, where xl(.j) denotes the jth element in the set which is part of the

ith observation. In our experiments, we vary the proportion of datasets D; that have bug B. For the
datasets that have the bug, we set u; = 1 and u; = 0 otherwise.

For data bugs, each base dataset D; and its corresponding base model f; differ across observations
because data bugs is a global problem, i.e. the use case label u; is a property of base model f;.
Specifically, we derive many D; by subsampling one dataset D. This allows us to create a variety of
training (and evaluation) examples for the agent with varying use case labels, encouraging the agent
to learn a heuristic that generalizes better across different sets of points.

5 Comparing Simulation and Humans

To demonstrate that SimEvals are able to identify promising explanations, we run SimEvals on
the three use cases discussed in Section[d/and compare the algorithmic agent results to user study
results, which come from either prior user studies or our own Mechanical Turk studies. Specifically,



we validate that the algorithmic SimEval agent performs relatively well when given an explanation
that a human can perform well with, and performs relatively worse when given an explanation that is
not useful to a human. We include training details for our SimEvals in Appendix [F, extended results
(with error bars) and comparisons with human results in Appendix [G.

5.1 User study details

In our experiments, we compare the algorithmic SimEval agent’s performance to the average human
subject performance at predicting the use case label in a user study. For the Forward Simulation
use case, we compare the algorithmic agent’s performance to human performance as reported in a
previously conducted independent user study by Hase and Bansal [[16]. We conduct new user studies
to measure human performance on two of the use cases. For Counterfactual Reasoning, there
is no existing user study from the motivating work from Kumar et al. [25], necessitating that we
run our own. For Data Bugs, we conducted our own study that, unlike the original one by Kaur et
al [20], individually measures the usefulness of candidate explanations. We expand on the differences
between the two studies in Section[5.4]

Our user studies were conducted on Amazon Mechanical Turk, where we presented Turkers with
the observations sampled from the dataset that SimEvals were trained and evaluated on. This study
was approved by the IRB (STUDY2021_00000286) for exempt Category 3 research. We choose
a between-subjects study design, where each participant is randomly assigned to one explanation
settings from the SimEvals. In non-baseline settings, participants are also provided with explanations
for each x;, which we described to the Turkers as importance scores (Figure[7). The study is split
into two parts. First, each participant completes a “Train” survey (analogous to agent training) where
they are asked to predict the use case label for 15 observations and provided feedback on whether
their responses were correct after every 5 observations. Then participants complete a “Test” survey
(analogous to agent evaluation) where they predict the use case label for another 15 observations
without feedback. Each question corresponds directly to 1 randomly sampled observation used to
train or test the algorithmic agent. For each use case, we recruit 80 total participants: 20 participants
for each explanation setting. Other details, including the study interface and instructions for each use
case, participant recruitment process, details of initial pilot studies are provided in Appendix [H.

5.2 Forward Simulation

Following Hase and Bansal [16], we compare the prediction accuracy of our agent in the ‘No
explanation’ baseline setting (where the agent/human receives only the data-point without explanation)
with its prediction accuracy when given both the data-point and its corresponding explanation. The
authors evaluate 5 explanations in their user study: 2 are well-known explanations (LIME [37],
Anchors [38])) and the rest are bespoke. In this work, we do not evaluate the authors’ bespoke
methods since none outperformed the standard methods as described in Appendix

Table 1: (Left) Test accuracy of the agent model (averaged across 3 random seeds) when varying the
number of training observations the agent receives to perform forward simulation, recreating trends
in average human subject test accuracy (Right) from Hase and Bansal [16].

Agent Test Accuracy Human Test Accuracy
(Varying Train Set Size) from [16]]
Explanation 16 32 100 1000
LIME 942% 99.8% 100%  100% 81.9% + 8.8%
Anchors 89.2% 93.5% 94.7% 93.7% 75.8% + 8.5%
No explanation 82.3% 83.7% 85.7% 88.7% 70.7% £ 6.9%

Findings: Hase and Bansal [[16] found that participants who were given the LIME explanation for
forward simulation achieved an accuracy increase that is more than twice that achieved by other
methods. As shown in Table[I] we find that SimEvals corroborates this result from the user study
even when varying the agent’s train set size. In Appendix we provide additional SimEvals
which hypothesize that SHAP and GAM are also promising choices for this use case.



5.3 Counterfactual reasoning

The counterfactual reasoning use case is introduced by Kumar et al. [25]], where the authors discuss
why SHAP feature importance scores [29] do not explicitly attempt to provide guidance for the
use case. Specifically, a positive SHAP feature importance score does not necessarily imply that
increasing that feature will increase the model’s prediction. We additionally hypothesize that an
approximation-based explanation like LIME might be more useful for this use case than SHAP. We
conduct a user study for this use case since Kumar et al. did not conduct a user study.

Table 2: Average agent test set accuracy (Left) aligns with average Turker test survey accuracy (Right)
for the counterfactual reasoning use case. (Left) Agent test set accuracies as we vary the number
of training observations the agent receives to perform counterfactual reasoning. (Right) The 95%
confidence interval of average user accuracy on 15 test observations where for each explanation
setting we recruited N = 20 Turkers.

Agent Test Accuracy Human Test
(Varying Train Set Size) Accuracy
Explanation 4 16 100 1000
LIME 929% 94.5% 99.2% 99.7% | 69.4% + 12.4%
SHAP 56.3% 52.5% 573% 64.9% | 41.4% + 6.14%
GAM 56.0% 53.5% 573% 63.5% | 45.7% £ 7.19%
No explanation 52.1% 55.6% 57.9% 60.3% | 48.6% + 5.61%

Findings: As shown in Table [2 (Left), we find that the simulated agent had significantly higher
accuracy when given LIME explanations. Additionally, we find that this trend is consistent across
all training set sizes: the agent achieves a 37% increase in validation accuracy when given LIME
instead of any other explanation after observing only 4 train observations. These results suggest that,
of the set of explanations considered, LIME is the most promising explanation for the counterfactual
reasoning use case. In Appendix [G.5|we demonstrate that LIME outperforms all other explanation
methods consistently across different types of model architectures.

As shown in Table 2| (Right), the gap in agent performance between LIME and the other explanations
is reflected in the human test accuracy in our Turk study. In particular, a number of Turkers are
able to use the predictiveness of LIME to complete the use case with high accuracy; whereas, in
general, Turkers using SHAP, GAM, and No Explanation perform no better than random guessing.
We ran an ANOVA test and found a statistically significant difference between the Turkers’ accuracy
using LIME vs. all other explanation settings and no statistically significant difference between the
other settings (Appendix [G.2). Note that there is also significant overlap in the error bars of agent
performance on SHAP, GAM, No Explanation (Table[6). We observe greater variance in participant
accuracy between participants for LIME compared to the other explanations. We believe that this is
because many, but not all, Turkers were able to learn how to use the LIME explanation successfully.

5.4 Data bugs

Kaur et al. [20] study two explanations (SHAP [29] and GAMs [17]) on two types of data bugs
(missing values and redundant features). In their study, users were prompted to suggest bugs that they
believed may be present via semi-structured explorations using these explanation tools. They found
that 4 out of 11 users mentioned a missing values bug and 3 users mentioned redundant features.
Their results suggest that both SHAP and GAM may be useful for finding these types of data bugs,
though they do not individually test each explanation’s usefulness and they also did not consider
providing users with baseline information content (without model explanations) to compare with
settings where users were presented with explanations. Thus, for this use case, we conducted our own
Turk user study on the missing values bug, evaluating both the explanations considered in the original
study and including additional explanation/baseline comparisons. We present SimEval results for
the missing values bug below (redundant features can be found in Appendix [G.4).

Missing Values: Kaur et al. [20] implement the missing values bug by replacing the ‘Age’ value
with the mean value of 38 for 10% of adults with > 50k income. We detail how we recreate this
bug in Appendix [F:3! In addition to comparing various explanation methods, we also use SimEvals
to evaluate the effect of varying the number of data-points per train set observation (e.g. the size S



of each set). We note is another type of information content that the researcher must select when
running a user study.

Table 3: Average agent test set accuracy (Left) aligns with average Turker test survey accuracy
(Right) for the data bugs (missing values) use case. (Left) Agent test set accuracies as we vary the
number of training observations the agent receives to perform counterfactual reasoning. (Right) The
95% confidence interval of average user accuracy on 15 test observations where for each explanation
setting we recruited N = 20 Turkers. We denote explanation settings that were considered in the
original user study with *.

Agent Test Accuracy Human Test
(Number of Data-points Per Observation) Accuracy
Explanation 1 10 100 1000
SHAP x 632% 84% 99.8% 100% 67.4% £ 11.5%
GAM * 64.8% 87.7% 100% 100% 64.4% + 7.2%
LIME 552% 569% 64.5% 75.9% 48.0% =+ 5.4%
Model Prediction 57.5% 57.4% 582% 67.3% 40.7% £ 5.2%

Findings: As shown in Table 3] (Left), we verify using SimEvals that SHAP and GAM explanations
contain predictive information to identify the missing values bug. We also find that the accuracy of
the algorithmic agent drops when given too few data-points (i.e., for observation sets of size < 10).
This means that a small number of data-points do not contain sufficient signal to detect the bug. Since
the researcher would need to present a large number of data-points and explanations to a human user
in a human-interpretable manner, a user interface is needed where the explanations are presented in
an aggregated fashion, which is indeed the approach taken by both Kaur et al. [20] and our study.
In Appendix |G, we observe similar trends in the relative performance of explanation methods even
when varying the bug strength and the parameterization of the agent model.

In our Turk study, we utilized the findings from our SimEvals experiments and presented the
explanations for S = 1000 data-points per observation in an aggregated fashion (via scatter plots
as shown in Figure [IT). As shown in Table [3] (Right), participants assigned to SHAP or GAM
consistently outperformed the participants assigned to LIME or the Model Prediction baseline, even
though our participant population for the user study were dissimilar from the participant population
(data scientists) of the original user study. We conducted pairwise statistical analyses and found
statistical significance between SHAP and LIME/Model Prediction as well as GAM and LIME/Model
Prediction and no statistical significance between other pairs of experimental conditions.

6 Discussion

Our experiments and analyses in Section [5 demonstrate that SimEvals are able to provide an
informative measure of the predictive information contained in a design set-up, and as such can
identify promising explanations from a set of candidate explanations. However, we emphasize that
because SimEvals only measure predictive information, the algorithmic agent’s accuracy cannot be
directly interpreted as the explanation’s utility to a human, as evidenced by the differences between
raw agent and human test accuracies in Tablesm @ and@ Furthermore, we note that small differences
between SimEval agent’s relative performance on explanations (e.g., in Table[2) may not generalize
to humans. We discuss potential human factors that may contribute to these differences between
SimEval and human performance in Appendix [J} These findings suggest an important direction for
future research to better understand these differences between agent and human, i.e., how human
factors beyond predictive information affect humans’ ability to reason about model explanations.

7 Conclusion

We proposed a use-case-grounded algorithmic evaluation called SimEvals to efficiently screen
choices of information content and identify good candidates for a user study. Each SimEval involves
training an agent to predict the use case label given the information content that would be presented
to a user. We instantiated SimEvals on three use cases motivated by prior work, and demonstrated
that the agent’s test set accuracy can be used as a measure of the predictiveness of information
content (more specifically, of an explanation method) for each use case. We found that humans
perform significantly better on explanations that SimEvals selects as promising compared to other
explanations. While our experiments focus primarily on the design choice of selecting explanation



methods, we note that researchers can also use SimEvals to screen the predictiveness of other types
of information content, such as hyperparameter selection for explanation methods or the baseline
information given with each observation. We hope that this work can be incorporated into future
explanation evaluation workflows to enhance the efficiency and effectiveness of user study design.
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