
Statistically and Computationally Efficient Linear
Meta-representation Learning

Kiran Koshy Thekumparampil†, Prateek Jain‡, Praneeth Netrapalli¶, Sewoong Oh± ∗
†University of Illinois at Urbana-Champaign, ‡Google Research India,
¶Microsoft Research India, ±University of Washington, Seattle

Abstract

In typical few-shot learning, each task is not equipped with enough data to be
learned in isolation. To cope with such data scarcity, meta-representation learn-
ing methods train across many related tasks to find a shared (lower-dimensional)
representation of the data where all tasks can be solved accurately. It is hypothe-
sized that any new arriving tasks can be rapidly trained on this low-dimensional
representation using only a few samples. Despite the practical successes of this
approach, its statistical and computational properties are less understood. Recent
theoretical studies either provide a highly suboptimal statistical error, or require
many samples for every task, which is infeasible in the few-shot learning setting.
Moreover, the prescribed algorithms in these studies have little resemblance to
those used in practice or they are computationally intractable. To understand and
explain the success of popular meta-representation learning approaches such as
ANIL [43], MetaOptNet [36], R2D2 [9], and OML [33], we study a alternating
gradient-descent minimization (AltMinGD) method (and its variant alternating min-
imization (AltMin) in the Appendix) which underlies the aforementioned methods.
For a simple but canonical setting of shared linear representations, we show that
AltMinGD achieves nearly-optimal estimation error, requiring only Ω(polylog d)
samples per task. This agrees with the observed efficacy of this algorithm in the
practical few-shot learning scenarios.

1 Introduction

Common real world tasks follow a long tailed distribution where most of the tasks only have a small
number of labeled examples [51]. Collecting more clean labels is often costly (e.g., medical imaging).
As each task does not have enough examples to be learned in isolation under this few-shot learning
scenario, meta-learning attempts to jointly learn across a large number of tasks to exploit some
structural similarities among those tasks.

One popular approach is to learn a shared representation, where new arriving tasks can be solved
accurately [45]. The premise is that (i) there is a shared low-dimensional representation fU (x) ∈ Rr
represented by a task-independent meta-parameterU and (ii) a simple linear model of 〈vi, fU (x)〉 can
make accurate prediction on the i-th task with a task-specific parameter vi. Once the representation
fU has been learnt, we can rapidly adapt to new arriving tasks as the representation dimension r
is much smaller than the dimension d of the input data. This approach is becoming increasingly
popular with a growing list of recent applications [33, 36, 9, 42, 43, 27, 47, 14, 13, 18] and has
been empirically shown to achieve the state-of-the-art performances on benchmark few-shot learning
datasets [47, 14, 43].

∗†thekump2@illinois.edu, ‡prajain@google.com, ¶pnetrapalli@google.com (Part of the work was done
while at Google Research India), and ±sewoong@cs.washington.edu.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

These successes rely on a simple but effective training algorithm which alternately updates U and
{vi} which we call AltMinGD (Alternating Minimization and Gradient Descent). Suppose we are
given t tasks, and the i-th task is associated with a dataset {(x(i)j ∈ Rd, y(i)j)}mj=1 of size m. In
this paper, we closely follow the formulation of [47], which solves for a function fU : Rd → Rr
(typically a deep neural network) and a task-specific linear model vi ∈ Rr on a choice of a loss `(·, ·):

min
U

{ ∑
i∈[t]

min
vi∈Rr

∑
j∈[m]

`(〈vi, fU (x
(i)
j)〉, y(i)j)

}
, (1)

by alternately applying a (stochastic) gradient descent step of U in the outer loop (for given vi’s) and
numerically finding the optimal solution vi in the inner loop (for a given U). Several closely related
algorithms have been proposed, including separating training-set used for the inner loop and the
validation-set used for the outer-loop [43, 36, 9, 5], early stopping the inner-loop [33], applying to
datasets with imbalanced data sizes [42, 14], and proposing new architectures and regularizers [27].
There is an increasing list [47, 14, 43] of numerical evidences showing that these meta representation
learning improves upon competing approaches including MAML [20] and its variants [23, 32, 39].
Further, [43] provides experimental evidences that shared representation is the dominant component
in the efficacy of MAML [20], even though MAML does not explicitly seek a shared representation.

In this paper, we analyze the computational and statistical properties of AltMinGD and its variant
AltMin under the simple but canonical setting of learning a shared linear representation for linear
regression tasks [48]. The fundamental question of interest is: as the number of tasks grow, does
AltMinGD learn the underlying r-dimensional shared representation (subspace) more accurately, and
consequently make more accurate predictions on new tasks? This question is critical in explaining
the empirical success in few-shot learning where the number of tasks in the training set is large
while each of those tasks is data starved. Further, in settings like crowdsourcing or bioinformatics,
collecting more data on new tasks is easier than collecting more data on existing tasks.

Contributions. We analyze the widely adopted AltMinGD and prove a nearly optimal error rate. We
show that AltMinGD requires only m = Ω(log t+ log log(1/ε)) samples per task to achieve an error
of ε in estimating the representation U when we have a large enough number t of tasks in the training
data and assuming a constant dimensionality r = O(1) of the representation. Under this condition,
AltMinGD achieves an error decaying as Õ(σ

√
d/mt), which nearly matches the fundamental lower

bound. Together, these analyses imply that AltMinGD is able to compensate for having only a few
samples per task (small m) by having many few-shot tasks (large t), significantly improving the
state-of-the-art (see Table 1). Note that the log log(1/ε) dependence of m is hidden in the Ω̃ notation
and is not explicitly visible from our main theorems or the table. A fine grained analysis showing this
dependence is provided in Theorem 9 in Appendix C.

We follow the proof strategy of alternating minimization algorithms for matrix sensing [30, 38], but
there are important differences making the analysis challenging. First, the meta-learning dataset does
not satisfy Restricted Isometry Property (RIP) central in the existing matrix sensing analysis, and
hence none of the technical lemmas can be directly applied. We leverage on the task diversity property
in Assumption 2, to prove all necessary concentration bounds. Next, there is an inherent asymmetry
in the problem; we require accurate estimation of U for generalization to new arriving tasks (which is
the primary goal of meta-learning), but we do not necessarily require accurate estimation of vi’s. We
exploit this to ensure accurate estimation of U with a small m.

Our analysis of AltMinGD leads to a fundamental theoretical question: is the condition m = Ω(log t)
necessary? We introduce a variation AltMinGD-S, which at each iteration selects a subset of tasks
that are well-behaved (covering the r-dimensional subspace of current estimated U) and uses (the
empirical risk of) only those tasks in the update. While log t dependence is unavoidable if we require
all t tasks to be well-behaved, ensuring a large fraction to be well-behaved requires smaller m. When
the noise is sufficiently small with variance O(1/ log t), we show that AltMinGD-S requires only
m = Ω(log log(1/ε)) (with no dependence on t) to estimate the shared representation accurately.

Inspired by a long line of successes in matrix completion and matrix sensing [30], we also analyze a
variation of AltMinGD that alternately applies minimization for U and {vi} updates, which we call
AltMin, and prove a slightly improved guarantees at an extra computational cost of a factor of dr2.

Notations: [n] = {1, 2, . . . , n}. ‖A‖ and ‖A‖F denote the spectral and Frobenius norms of a matrix
A. 〈A,B〉 denotes the inner product. A† is the Moore-Penrose pseudoinverse. x ∼ N (0, Id×d) means

2

that x is a d dimensional standard isotropic Gaussian random vector. Õ, Ω̃ and Θ̃ hide logarithmic
terms in dimension d, rank r, tolerance ε and other problems parameters.

1.1 Related work

There is a large body of work in meta-learning since the seminal work in learning to learn [46],
inductive bias learning [7], and multitask learning [12]. One popular approach starting from [28, 6]
is to learn a shared low-dimensional representation for a set of related tasks. This is becoming
increasingly popular with empirical successes in the few-shot learning scenarios [33, 36, 9, 42, 43,
27, 47, 14].

Linear representation learning. In this paper, we show that the popular AltMinGD algorithm for
solving meta representation learning, achieves near-optimal error rate and sample complexity when
applied to recovering linear representations, i.e. fU (x) = UTx. This problem has been studied in
[3, 44, 40] and Nuclear-norm minimization approaches are proposed in [4, 24, 2, 41] but they do not
provide subspace/generalization error guarantees and suffer from large training time. Closest to our
work are [48, 35, 34, 19] which propose new algorithms with statistical guarantees. We also point
out a concurrent and independent work [16], which also analyzes AltMinGD but for a special case of
the noiseless setting. Authors empirically showed that AltMinGD performs better than other baseline
federated learning algorithms for neural meta-representation learning on some datasets. We compare
these results with our guarantees in Section 4.1.

Competing against meta-representation learning approaches listed above are the bi-level optimization
based methods. A pioneer in this direction is MAML [20], which is analyzed under linear regression
tasks in [15, 21, 8, 22]. [15] and [21] identify that MAML outperforms a simple Empirical Risk
Minimization (ERM) when tasks are heterogeneous in their respective level of difficulty. [8] shows
that, perhaps surprisingly, negative learning rate is optimal for MAML applied to linear regression
tasks, where zero learning rate corresponds to the standard ERM.

Matrix sensing. Starting from matrix sensing and completion problems [11, 37, 30], recovering
a low-rank matrix from linear measurements has been a popular topic of research. Linear meta-
learning is a special case of matrix sensing, but with a non-standard sensing operator of the form
A(UV T) = [A1(UV T), . . . , Amt(UV

T)] where Aij(UV T) = 〈xije>i , UV >〉. This operator does
not satisfy restricted isometry property in general, and existing matrix sensing results do not apply.
Similar sensing operators have been studied in [29, 52] which gives m = Ω(d). We provide a
significantly tightened analysis to require only m = Ω(log t+ log log(1/ε)).

2 Problem Formulation: Meta-learning of Shared Representation

We focus on the meta-learning problem with a shared linear representation for linear regression tasks.
Let t denote the number of tasks. The i-th task is associated with m samples {(x(i)j ∈ Rd, y(i)j ∈
R)}mj=1. We assume there is a common low-dimensional representation (U∗)Tx of each data point
x, parameterized by U∗ ∈ Rd×r where r � d. The corresponding observation y is sampled by
regressing over the low-dimensional representation (U∗)Tx. Now, in general, learning U∗ is NP-hard
[25]. Instead, similar to [48], we study the problem in the following tractable random design setting.
Assumptions 1. Let U∗ ∈ Rd×r be an orthonormal matrix. For a task i ∈ [t], with task specific
parameter vector v∗(i) ∈ Rr and j-th example x(i)j ∼ N (0, Id×d), its observation is:

y
(i)
j = 〈x(i)j , U∗v∗(i)〉+ ε

(i)
j , (2)

where ε(i)j ∼ N (0, σ2) is the measurement noise which is independent of x(i)j . We denote by
ṽ∗(i) = U∗v∗(i) the model parameter vector for each regression task in d-dimensions. We denote the
matrix of these parameters as: Ṽ ∗ = U∗(V ∗)T where (V ∗)T = [v∗(1), . . . , v∗(t)].

The difficulty of estimating U∗ still depends on the diversity or incoherence of the tasks.
Assumptions 2. Let λ∗1 and λ∗r denote the largest and smallest eigenvalues of the task diversity
matrix (r/t)(V ∗)TV ∗ ∈ Rr×r respectively. Let κ = λ∗1/λ

∗
r . We say that V ∗ is µ-incoherent if

max
i∈[t]
‖v∗(i)‖2 ≤ µλ∗r . (3)

3

To estimate the subspace U , we minimize the empirical risk of the t tasks in the training data, over the
meta-parameter U ∈ Rd×r and the task-specific model parameters V = [v(1), . . . , v(t)]T ∈ Rt×r:

L(U, V) =

t∑
i=1

m∑
j=1

1

2

(
y
(i)
j −

〈
Uv(i), x

(i)
j

〉)2
. (4)

The problem is non-convex due to the bi-linearity of Uand V . We are interested in the few-shot
learning setting where the goal is to learn the representation accurately despite a small number of
samples per task in the training data. Now, even if the representation U∗ is known a priori, we would
require O(r) samples per task to learn the parameter v. Furthermore, information theoretically the
total number of samples m · t should scale at most linearly with the data dimension d.

3 Alternating minimization

We focus on AltMinGD from [47], which learns a shared parameterized representation fU (·) as in
(1). Several variations of this algorithm are widely used, for example [43, 36, 9]. However, we note
that these previous works neither referred to this algorithm as AltMinGD, nor explicitly related it
to the Alternating Minimization (AltMin) framework [30]. To highlight this connection we follow
the notations from the latter [30]. AltMinGD alternately updates the matrix of regression parameters
V using exact minimization with fixed U , and updates the representation parameter U using the
standard gradient descent step. Concretely,

v(i) ∈ arg min
v∈Rr

∑
j∈[m]

`(〈v, fU (x
(i)
j)〉, y(i)j) ,∀i ∈ [t] ,

U ← U − η
∑
i∈[t]

∑
j∈[m]

∇U `(〈v(i), fU (x
(i)
j)〉, y(i)j) .

As `(·, ·) is typically a convex function, we can estimate v(i) efficiently for a fixed U . Note that many
methods used in practice (ANIL [43] and MetaOptNet [36]) back-propagate through their respective
inner (potentially inexact) optimization step. However, since we do exact inner minimization with
respect to V , by a generalization of the Danskin’s theorem [10], back-propagating through the
inner minimization is equivalent to computing the gradient ∇UL(U, V) with respect to U and then
setting V = V ∗(U), where V ∗(U) ∈ arg minV L(U, V) is the minimizer for the current U . That is,
∇U minV L(U, V) = ∇UL(U, V ∗(U)). For the linear representation learning problem specified in
Section 2, the above updates reduce to the following:

v(i) ∈ arg min
v

∑
j

(y
(i)
j − 〈x

(i)
j , Uv〉)2 , for all i ∈ [t] ,

U ← U − η∇UL(U, V) = U + η
∑
i,j

(y
(i)
j − 〈x

(i)
j , Uv(i)〉)x(i)j (v(i))> .

Given U , we can efficiently estimate each of the low r-dimensional regression parameters v(i)’s
separately and in parallel using standard least squares regression. Our analysis requires that when
we update V for current U , U should be independent from the training points. Similarly, during the
update for U , V should be independent of the data points. We ensure the independence using two
strategies: (a) similar to standard online meta-learning settings [20], we randomly select (previously
unseen) tasks to update U and V , (b) within each task, we divide the datapoints into two sets to
update V and U separately. But in our experiments, we re-used all the samples at each iteration.
Algorithm 1 presents a pseudo-code of AltMinGD applied to Problem (4). Note that in Algorithm 1,
we apply QR-decomposition on U after every U update to ensure that magnitude of U and V does
not stray far away from that of true U∗ and V ∗, respectively. Otherwise, the sample complexity
requirements of the algorithm increase in the condition number factors.

Run-time and memory usage: Exact update for v(i) has a time complexity of O(mr2 + r3), which
can be brought down to O(m · r) by using gradient descent for solving the least squares. Our analysis
shows that under the sample complexity assumptions of Theorem 1, each of the least squares problem
has a constant condition number. So, the total number of iterations for this update scale as log 1

ε to
achieve ε error. If we set ε = 1/poly(t, σ), then using standard error analysis, we should be able to

4

Algorithm 1 AltMinGD : Meta-learning linear regression parameters via alternating minimization
gradient descent

Required: Data: {(x(i)j ∈ Rd, y(i)j ∈ R)}mj=1 for all 1 ≤ i ≤ t, K: number of steps, η: stepsize.
1 Initialize U ← Uinit

2 Randomly shuffle the tasks {1,. . . ,t}
for 1 ≤ k ≤ K do

3 Tk ← [1 + t(k−1)
K , tkK]

for i ∈ Tk do
4 v(i) ← arg min

v̂∈Rr

∑
j∈[m/2]

(
y
(i)
j −

〈
Uv̂, x

(i)
j

〉)2
end

5 U ← U + η
∑
i=Tk

m∑
j=1+m

2

(
y
(i)
j −

〈
Uv(i), x

(i)
j

〉)
x
(i)
j (v(i))>

6 U ← QR(U)

end
7 return U

Algorithm 2 AltMinGD-S : Meta-Learning regression parameters via AltMinGD over task subsets

Required: Data: {(x(i)j ∈ Rd, y(i)j ∈ R)}mj=1 for all 1 ≤ i ≤ t, K: number of steps, η: stepsize.
Use the same steps as AltMinGD (Algorithm 1), but replace Line 3 with:

3 Tk ←
{
i ∈ [1 + t(k−1)

K , tkK]
∣∣ σmax(U>S(i)U) ≤ 2; σmin(U>S(i)U) ≥ 1

2 ;

where S(i) = 2
m

∑
j∈[m/2] x

(i)
j (x

(i)
j)>

}

obtain the optimal error rate in Theorem 9. The gradient descent update for U requires O(mt · dr)
time assuming large enough mt. Furthermore space complexity of AltMinGD is O(dr + t · r2).

We provide an estimate of the statistical efficiency of the AltMinGD in Theorem 1. We also
provide an analysis of the traditional Alternating Minimization algorithm (AltMin) which uses exact
minimization for updating U in the Appendix A. We obtain a slightly improved statistical guarantee
for AltMin in terms of the condition number but its run-time is slower than that of AltMinGD.

3.1 Subset Selection

Algorithm 1 operates over all the tasks in a batch, each of which are generated using a random process.
Now, if the number of tasks t is large, then there is a non-trivial probability that some of the tasks are
outliers, i.e., they have a large amount of error. This might lead to an arbitrary poor solution due to
the outlier tasks. This is reflected in our analysis of AltMinGD (see Theorem 1), where the number
of samples per task grows logarithmically with t which is non-intuitive as typically larger number of
tasks should not hurt the sample complexity.

In more general representation learning problems, when the number of tasks t is large, there is
more chance that some of them are outlier tasks. Ideally we want to design an estimator for shared
representation U that is robust to a few outlier tasks. For the linear representation learning problem,
we observe that to ensure small error for a task, we require the Hessian to be well-conditioned. So,
we compute the eigenvalues of the Hessian U>S(i)U for each task with the current U , and select
only the tasks whose eigenvalues lie close to the expected repeated eigenvalue 1. Algorithm 2 applies
this criteria to select tasks in each iteration, and then use the standard AltMinGD updates on those
selected tasks. This leads to an improved dependence on t as we show in Theorem 3.

Run-time: On top of the run-time complexity of AltMinGD, the subset selection scheme adds an
additiveO(mt ·dr+t ·r3) term. This arises due toO(r3) eigen-decompositions of Ũ>S(i)Ũ ∈ Rr×r
for each task.

5

4 Statistical guarantees for Alternating Minimization algorithms

We reiterate that Õ and Ω̃ hide logarithmic terms in d and r and other problem parameters. We
analyze the AltMinGD and AltMinGD-S algorithms using the rescaled Frobenius norm error: ‖(I−
U∗(U∗)>)U‖F /

√
r ∈ [0, 1] between the rank-r subspaces corresponding to the true U∗ and the

output of the algorithm U . We first provide our main results analyzing these algorithms, and present
detailed comparisons to previous results in Section 4.1

AltMinGD: We first present our main result for the AltMinGD method (Algorithm 1), applied to the
linear representation learning problem described in Section 2.
Theorem 1 (Simplified version of Theorem 9 in Appendix C). Let there be t linear regression tasks,
each with m samples satisfying Assumptions 1, 2. Let κ := λ∗1/λ

∗
r and let,

m ≥ Ω̃(r2 + r log t+ κ · (σ/
√
λ∗r)

2r2 log t), t ≥ Ω̃(κ · µ2r3), and

mt ≥ Ω̃(κ · µdr2 + κ3 · µdr2(σ/
√
λ∗r)

2).

Then AltMinGD (Algorithm 1), initialized at Uinit s.t. ‖(I − U∗(U∗)>)Uinit‖F ≤
min(21/121, Õ(1/κ)) and run for K = Ω(dκ log(mt/(κ · µdr · (σ/

√
λ∗r))e) iterations with the

stepsize η = r/t
2λ∗1

, outputs U so that the following holds (w.p. ≥ 1−K/(dr)10):

‖(I− U∗(U∗)>)U‖F√
r

≤ Õ

(√
κ

(
σ√
λ∗r

)√
µd r

m t

)
. (5)

Remark 1 (Initialization): Our result holds if the initial point Uinit is reasonably accurate. One
choice of initialization is to use the Method-of-Moments (MoM) [48]. Due to sub-optimality of MoM
approach ([48, Theorem 3], also provided in Theorem 12 in Appendix), we get an additional sample
complexity requirement of mt ≥ Ω̃(κ2dr2 (µκ+ r(σ/

√
λ∗r)

4). Note that this does not degrade the
asymptotic error rate, Õ(

√
dr/mt) when ε = Õ(

√
dr/mt)→ 0. In our experiments, we observed

that random initialization works just as well. Such a requirement of a good initialization is common
in theoretical analyses of alternating update methods [30, 38], where it has been widely observed that
random initialization works well in practice.

Remark 2 (Generalization in few-shot learning): Learning a shared representation helps in gener-
alizing to new arriving tasks in few-shot learning. Suppose we run Algorithm 1, under the conditions
of Theorem 1 to get an estimated subspace U . Let a new task, whose task specific regression parame-
ter v∗+ lie in U∗, be introduced with m+ samples. Now, we can apply the step 4 of Algorithm 1, with
U and the new samples, to meta-learn an estimate v+ of v∗+. Then the mean-squared-error (MSE)
of the estimated parameter is Õ((σ/

√
λ∗r)(µdr

2/mt+ r/m+)). Therefore, as long as mt is large
enough, we only need m+ = Ω(r) additional samples to get an arbitrarily small MSE, as opposed
to m+ = Ω(d) of the trivial baseline of solving the new task by itself. We also improve upon other
baselines from [48] in terms of dependence on σ and t; see Section 4.1 and Table 1 for more details.

Remark 3 (Near-optimality of the error rate): We note that our error rate matches – up to
poly(κ, µ) factors – the information theoretic lower bound given in Corollary 2.
Corollary 2. [48, Theorem 5] Let r ≤ d/2 and mt ≥ r(d− r), then for all V ∗, w.p. ≥ 1/2

inf
Û

sup
U∈Grr,d

‖(I− U∗(U∗)>)Û‖F√
r

≥ Ω
(1

κ

σ√
λ∗r

√
d r

m t

)
, (6)

where Gr,d is the Grassmannian manifold of r-dimensional subspaces in Rd, the infimum for Û
is taken over the set of all measurable functions that takes mt samples in total from the model in
Section 2 satisfying Assumption 1 and 2.

However, the sufficient conditions onmt in Theorem 1 has a factor r gap from the necessary condition
above, which we discuss with a concrete example in the next remark.

Remark 4 (Gaussian example): Let us interpret our result using a concrete example. Consider
independent Gaussian parameters v∗(i) ∼ N (0, (1/r)Ir×r) such that the signal-to-noise ratio (i.e.,
xTU∗v∗(i)/σ2) is independent of r. Then with high probability ‖v∗(i)‖ = Θ̃(1) and λ∗1 = λ∗r =

6

Θ̃(1). It follows that as per Assumption 2 the condition number κ = Θ̃(1) and µ = Θ̃(1). To
estimate U∗ up to an ε error, AltMinGD needs a total of mt = Õ(dr2 + σ2dr/ε2) samples. The
second term is dominant for small ε and is optimal, which follows from the near-optimality in Remark
2. However, it is an open question if the first term is necessary, as the best known lower bound in the
noiseless case will require mt = Ω(dr). In this well-behaved Gaussian case, AltMinGD requires
m ≥ Ω̃(r2 + (1 + σ2)r log t) per task samples.

Remark 5 (Dependence on the minimum eigenvalue): Notice that in the limit of λ∗r → 0, V ∗ is
rank deficient, thus making it impossible to recover the entire subspace of U∗. This is reflected in our
Theorem 3 where the error-rate approaches the maximum possible value of one as λ∗r approaches zero
(the LHS of Eq. (5) is at most one). However, for prediction error, smaller rank of V ∗ implies smaller
dimensional representation to be learned, thus the prediction error bound should improve with lower
λ∗r (and also smaller rank of V ∗). Proving a tight guarantee in the prediction error is more challenging
and most of the existing results in matrix sensing literature [29] only provide guarantees in parameter
estimation error. On the contrary, the lower-bound in (6) becomes zero as λ∗r decreases, implying
that the lower-bound is significantly weaker in λ∗r . This is expected since the lower-bound is derived
through a lower-bound for the corresponding subspace regression loss. Intuitively when λ∗r = 0 the
tasks become less diverse (more homogeneous), and therefore the regression becomes easier. Such
condition number mismatch in upper and lower-bounds are common in low-rank literature [30].

Task subset selection (AltMinGD-S): One downside of Algorithm 1 is that m needs to increase with
t (i.e., m = Ω(log t)). We introduce AltMinGD-S in Algorithm 2 to study a fundamental question
of whether this log t dependence is necessary. We show that when the noise is sufficiently small,
AltMinGD-S achieves a per task sample complexity that does not increase with t.
Theorem 3 (Simplified version of Theorem 11 in Appendix D). Consider the setting of Theorem 1.
Let κ := λ∗1/λ

∗
r .

m ≥ Ω̃(r2 + κ · (σ/
√
λ∗r)

2r2 log t), t ≥ Ω̃(κ · µ2r3), and

mt ≥ Ω̃(κ · µdr2 + κ3 · µdr2(σ/
√
λ∗r)

2).

Then AltMinGD (Algorithm 2), initialized atUinit s.t. ‖(I−U∗(U∗)>)Uinit‖F ≤ min(21/121, Õ(1
κ))

and run forK = Ω(dκ log(mt/(κ · µdr · (σ/
√
λ∗r))e) iterations using the stepsize η = r/t

2λ∗1
, outputs

U so that the following holds (w.p. ≥ 1−K/(dr)10):

‖(I− U∗(U∗)>)U‖F√
r

≤ Õ

(√
κ

(
σ√
λ∗r

)√
µd r

m t

)
. (7)

Remark 7 (Bias of Subset Selection): One may observe that this scheme may introduce a bias in
the training data at each iteration. However, we control this bias by adding a new requirement that the
number of tasks should be at least t ≥ Ω̃(κ · µ2r3) (Theorem 6). This ensures that the only a small
O(1/µr) fraction of the tasks are discarded at each step (Lemma D.1 in the Appendix D.1), and this
leads to a low bias. This requirement may be insignificant in our regime of interest where the number
of tasks may be exponentially large, so that AltMinGD-S can provide a gain over AltMinGD.

Remark 6 (When noise is small enough): Note that when the noise variance σ is small enough or
when there are large number of tasks, i.e. σ2 � O(1/log t), AltMinGD-S only needs m ≥ Ω̃(r2)
samples per task, assuming suitable initialization (see Remark 1). Furthermore, since AltMin-S
selects a fraction of tasks to perform updates and the selection process requires onlyO(mt ·dr+t ·r3),
the time-complexity of the method remains same as that of AltMinGD, up to constant factors. Next
we see that AltMinGD-S removes the dependence of m on t completely, in the noiseless setting.
Corollary 4. Let there be t linear regression tasks, each with m samples satisfying Assumptions 1, 2,

m ≥ Ω̃(r2), t ≥ Ω̃(µ2r3K), and mt ≥ Ω̃(µdr2K).

Additionally assume that the observations are noiseless, i.e. σ = 0. Then AltMinGD-S (Algorithm 2),
initialized at Uinit s.t. ‖(I− U∗(U∗)>)Uinit‖F ≤ min(21/121, Õ(1/κ)) and run for K iterations
using the stepsize η = 1

2λ∗1
, outputs U so that the following holds (w.p. ≥ 1−K/(dr)10):

‖(I− U∗(U∗)>)U‖F√
r

≤ (1− 1

6κ
)KÕ (κ) . (8)

7

The above corollary shows that in the noiseless setting, the per-task sample complexity for AltMinGD-
S does not grow with t, and is nearly optimal. Also note that that even for noiseless setting, tech-
niques like Method-of-Moments (MoM) still incur error of

√
dr/mt, ignoring κ terms. In contrast,

AltMinGD-S when initialized using MoM method (see Remark 1)), incurs just Õ(exp(−t/κ)) error.
Proofs of Theorems 1 & 3 are in Appendix C.1 & Appendix D.1.

4.1 Sample complexity comparison

To the best of our knowledge, Theorems 1 and 3 presents the first analysis of an efficient method
for achieving optimal error rate in σ, d and r. [48] is most relevant that analyzes the landscape of
the Empirical Risk Minimization (ERM) with Burer-Monteiro factorization. It shows that ERM
can achieve a rescaled Frobenius norm error of ε with t tasks (assuming t ≥ d), when m ≥
Ω̃(r4 log(t) + r2 log(t)σ2/ε2). We stress that this is highly sub-optimal as for small estimation
ε, more tasks do not help improve the per-task sample complexity. This also does not reconcile
with practice where more tasks tend to help accuracy and helps overcome small number of samples
per-task. In contrast, AltMinGD requires m ≥ Ω̃(r2(1 + σ2) log(t) + (r2σ2/ε2)(d/t)) where small
error ε can be achieved by collecting more tasks and increasing t. [19] studies the global minimizer
of the non-convex ERM optimization in Eq. (4), without providing an efficient algorithm to solve it.
The authors show that non-convex ERM achieves a small generalization error if m = Ω̃(d), which is
impractical in the few-shot learning setting.

Another approach is Method-of-Moments (MoM), which estimates U by finding the principal
directions of a particular 4th moment of the data [48, 35]. MoM can indeed trade-off smaller error
ε by increasing the number of tasks t. But the algorithm is inexact, i.e., even for σ = 0, we need
m→∞ to achieve exact recovery of U∗; see Appendix G. This is in a stark contrast with AltMinGD
and AltMinGD-S where for noiseless case, we can find U∗ exactly, as long as m = O(r log t+ r2)
and t = O(dr); see Figure 1a for an illustration. We consolidate these comparisons in Table 1.

Finally, a concurrent and independent work by [16] also analyzes AltMinGD but only for the special
case when there is no noise, i.e., σ = 0. We show tighter results that are more generally applicable:
(i) our analysis applies to general noise σ that is not necessarily zero, (ii) even in the noiseless case,
our analysis of AltMinGD is tighter and shows a smaller sample complexity, and (iii) we present
novel AltMinGD-S that further improves the sample complexity. Precisely, in the noiseless case,
[16] proves that m = Ω̃(κ2 · r3 log t) is sufficient for finding U∗ with a large enough t. Our tighter
analysis shows that m = Ω̃(r log t+ r2) (Theorem 1) is sufficient with no dependence in κ. Note
that the condition number κ > 1 and can be arbitrarily large depending on the problem instance.
Further, we present a novel algorithm, AltMinGD-S , that only requires m ≥ Ω̃(r2) (Corollary 4).

Table 1: Comparison of per-task sample complexity results m(t, ε) to reach ε error when solving
linear meta-representation learning with t tasks, d dimensions, subspace rank r = O(1) and noise
variance σ2 (Sections 4, 2); let t > d. We also report if the prescribed algorithm is computationally
tractable and extendable to practical neural-net setting. AltMinGD-S relies on the eigen values of the
data when projected onto U and cannot be directly applied to neural networks.

Analysis Per-task sample complexity m(t, ε) Tractable? Practical?

Non-convex ERM [19] Ω̃(d+ log(t) + σ2

ε2
) No –

Burer-Monteiro ERM [48] Ω̃(log(t) + σ2

ε2
) Yes Yes

Method-of-Moments [48, 35] Ω(1 + d
tε2

+ σ2d
tε2

) Yes No
AltMinGD (Theorem 1) Ω̃((1 + σ2) log t+ σ2d

tε2
) Yes Yes

AltMinGD-S (Theorem 3) Ω̃(1 + σ2 log(t) + σ2d
tε2

) Yes No
Lower-bound [48] Ω̃(1 + σ2d

tε2
) – –

5 Experimental results

In this section we empirically compare the performance of AltMinGD (Algorithm 1) and its exact
minimization variant AltMin (Algorithm 3 in Appendix), two different versions of Method-of-

8

Noise magnitude (σ)

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(a)
Number of tasks (t)

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(b)
Number of samples per tasks (m)

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(c)
Figure 1: (a): AltMin and AltMinGD achieves vanishing error as noise σ decreases, whereas the error
of the two Method-of-Moments (MoM, MoM2) stay bounded away from zero. BM-GD, which seems
unstable and hard to tune, achieves an intermediate level of error. (b), (c): AltMin, AltMinGD and
BM-GD incurs significantly smaller error in estimation of true subspace U∗ than MoM and MoM2,
both for growing number of tasks (t) and for growing number of samples per task (m).

Noise magnitude (σ)

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(a) AltMin
Noise magnitude (σ)

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(b) AltMinGD

Noise magnitude (σ)

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(c) MoM
Noise magnitude (σ)

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(d) MoM2
Noise magnitude (σ)

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(e) BM-GD

Figure 2: Compared to others, BM-GD is unstable and challenging to tune in the low-noise regime.

Moments (MoM [48], MoM2 [35]), and simultaneous gradient descent on (U, V) using the Burer-
Monteiro factorized loss (4) (BM-GD [48]). We omit AltMinGD-S here because the logarithmic
gain (1/ log(t)) of AltMinGD-S will only be observed when we have an exponentially large number
of tasks (t). This is challenging to simulate using our modest computing hardware. However, for
big-data scenarios similar subset select schemes may be useful. In all the figures, the magenta dashed
line with square marker represents AltMinGD, the blue straight line with circular marker denotes
the AltMin , the red dotted line with downwards pointing triangular marker denotes the MoM, the
yellow dotted line with upwards pointing triangular marker represents the MoM2, and the green
dashed and dotted line with diamond marker represents the BM-GD. In all the figures we plot the
subspace estimation error of the output U of the algorithms. The error is calculated using the rescaled
Frobenius norm ‖(I− U∗(U∗)>)U‖F /

√
r, which takes a value in the interval [0, 1]. All results are

averaged over multiple runs, and more experiments details and plots are provided in Appendix H.

Figure 1a plots subspace distance against the standard deviation σ of the regression noise, ε(i)j ∼
N (0, σ2); see (2). Clearly, as predicted by Theorems 1 and 5 (in Appendix), the methods we
consider—AltMinGD and AltMin —achieve smaller error than MoM methods for small noise regime.
Here the error of AltMinGD and AltMin are linearly proportional to σ. However as predicted the
error of MoM and MoM is a constant multiple of

√
dr3/mt =

√
r for all values of σ, and it does

not improve when σ decreases (see Table 1). While BM-GD does not have any known algorithmic
guarantees, it still performs better than MoM methods. However, BM-GM becomes unstable and
challenging to tune at low noise regime, even at a lower or comparable step-size than AltMinGD. To
highlight this, the individual trials for each algorithm in this plot are plotted in Figure 2. Figure 1b
plots the subspace error against the number of tasks t. In Figure 1c, we plot the the error against

9

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AltMin
AltMinGD
BM-GD

High task diversity

Number of iterations

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(a)

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AltMin
AltMinGD
BM-GD

Moderate task diversity

Number of iterations

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(b)

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AltMin
AltMinGD
BM-GD

Low task diversity

Number of iterations

E
rr

or
:‖

(I
−
U
∗ (
U
∗)
>

)U
‖ F

(c)
Figure 3: AltMin converges using fewer iterations than AltMinGD and BM-GD, but AltMinGD can
be faster in practice due to its computationally cheaper iteration. While the performance of all the
methods degrade as task diversity decreases, AltMin appears to be most robust to changes in diversity.

the number samples per tasks m. In both of these figures, we observe that, AltMinGD, AltMin and
BM-GD achieve much smaller subspace error than the MoM and MoM2. Furthermore, as predicted,
the squared error of all these methods decrease linearly in m and t. We again note that BM-GD
is unstable and hard to tune, especially for large t. The individual trials for each algorithm on
these two plots are plotted in the Appendix H. ERM-based BM-GD performs poorer than Alternate
Minimization-based AltMin and AltMinGD. This might be due to the presence of many bad local
minima in the optimization landscape of the ERM problem jointly over (U, V) [48, Theorem 2].

In Figure 3, we plot the subspace estimation error against the number of iterations of AltMinGD, Alt-
Min, and BM-GD for varying levels of task diversity µ (Assumption 2). We observe that AltMin takes
significantly fewer iterations to converge than AltMinGD and BM-GD, and AltMinGD converges
earlier than BM-GD. However, each iteration of AltMin is very slow as it needs O(d3) operations,
where as AltMinGD and BM-GD need only O(d) operations per iteration. Therefore, AltMinGD
could be the fastest in practical high-dimensional setting. BM-GD seems to be slower than AltMinGD
because BM-GD seems to need a smaller stepsize than AltMinGD to stabilize its convergence. While
all the methods perform worse when the task diversity decreases ((a) → (b) → (c)), we see that
AltMin is more robust than others. This may be attributable to AltMin’s tighter dependence on the
condition number κ (Theorem 5, in Appendix) when compared to AltMinGD (Theorem 1).

6 Conclusion

When learning a shared representation for multiple tasks, a common approach is to alternate between
finding the best linear model for each task on the current representation, and taking one gradient
descent step to update the shared representation. This algorithm, AltMinGD, has been widely used
in meta-representation learning with little theoretical understanding. We provide insights into the
empirical success of AltMinGD by studying it in the canonical problem of linear meta-learning. We
showed that, AltMinGD provides a nearly optimal error rate, along with nearly optimal per-task and
overall sample complexities in their dependence in the dimensionality d of the data. To the best
of our knowledge, this is the first such optimal error rate that scales appropriately with the noise
in observations, while still ensuring per-task sample complexity to be nearly independent of the
dimensionality d. Latter is a key requirement in meta-learning as individual tasks are data-starved.
The limitations of our results are: (i) the analysis does not extend to non-linear representations, (ii)
the dependence on the rank r of the shared subspace, the incoherence µ, and the condition number κ
may not be tight; and (iii) our analysis is “local” and requires a good initialization. We also proposed
and analyzed a task subset selection-based method (AltMinGD-S) that further improves the per-task
sample complexity and ensures that it is independent of the number of tasks in small noise or large
number of tasks regime. However, the subset selection scheme heavily relies on the linearity of the
shared representation. Therefore, this scheme cannot be directly applied to more practical neural
network training. It also remains an open question if it is possible to achieve a per-task sample
complexity that does not depend on the number of tasks t, even in the large noise setting.

Our work leads to several interesting future directions and questions. For the non-linear version of
the problem, ensuring optimal error rate with optimal per-task sample complexity is an interesting
open question. Finally, analyzing alternating minimization methods with stochastic gradients and
streaming tasks is another promising direction. Our proof techniques could be combined with that of
recent results in efficient one-pass SGD [31] to design a nearly optimal stochastic algorithm.

10

Acknowledgements

Oh acknowledges funding from Google faculty research award, NSF grants IIS-1929955, CCF-
1705007, CNS-2002664, CCF 2019844 as a part of Institute for Foundation of Machine Learning,
and CNS-2112471 as a part of Institute for Future Edge Networks and Distributed Intelligence. We
also thank anonymous reviewers for their reviews and suggestions for improving our manuscript.

References
[1] Ali R Amir-Moéz et al. Extreme properties of eigenvalues of a hermitian transformation and

singular values of the sum and product of linear transformations. Duke Mathematical Journal,
23(3):463–476, 1956.

[2] Yonatan Amit, Michael Fink, Nathan Srebro, and Shimon Ullman. Uncovering shared structures
in multiclass classification. In Proceedings of the 24th international conference on Machine
learning, pages 17–24, 2007.

[3] Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple
tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov):1817–1853, 2005.

[4] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine learning, 73(3):243–272, 2008.

[5] Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason Lee, Sham Kakade, Huan Wang, and
Caiming Xiong. How important is the train-validation split in meta-learning? In International
Conference on Machine Learning, pages 543–553. PMLR, 2021.

[6] Jonathan Baxter. Learning internal representations. In Proceedings of the eighth annual
conference on Computational learning theory, pages 311–320, 1995.

[7] Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research,
12:149–198, 2000.

[8] Alberto Bernacchia. Meta-learning with negative learning rates. In International Conference on
Learning Representations, 2020.

[9] Luca Bertinetto, Joao F Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. In International Conference on Learning Representations,
2018.

[10] Dimitri Bertsekas. Convex optimization theory. Athena Scientific, 2009.

[11] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772, 2009.

[12] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[13] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. In International Conference on Learning Representations, 2018.

[14] Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and Trevor Darrell. A new meta-baseline
for few-shot learning. arXiv preprint arXiv:2003.04390, 2020.

[15] Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Why does maml outperform erm? an
optimization perspective. arXiv preprint arXiv:2010.14672, 2020.

[16] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared
representations for personalized federated learning. arXiv preprint arXiv:2102.07078, 2021.

[17] I. Csiszár and G. Tusnady. Information geometry and alternating minimization procedure.
Statistics and Decision, 1984.

[18] Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline
for few-shot image classification. In International Conference on Learning Representations,
2019.

11

[19] Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning
the representation, provably. arXiv preprint arXiv:2002.09434, 2020.

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[21] Katelyn Gao and Ozan Sener. Modeling and optimization trade-off in meta-learning. Advances
in Neural Information Processing Systems, 33, 2020.

[22] Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, and Tom
Goldstein. Unraveling meta-learning: Understanding feature representations for few-shot tasks.
In International Conference on Machine Learning, pages 3607–3616. PMLR, 2020.

[23] Fusheng Hao, Fengxiang He, Jun Cheng, Lei Wang, Jianzhong Cao, and Dacheng Tao. Collect
and select: Semantic alignment metric learning for few-shot learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8460–8469, 2019.

[24] Zaid Harchaoui, Matthijs Douze, Mattis Paulin, Miroslav Dudik, and Jérôme Malick. Large-
scale image classification with trace-norm regularization. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3386–3393. IEEE, 2012.

[25] Moritz Hardt, Raghu Meka, Prasad Raghavendra, and Benjamin Weitz. Computational limits
for matrix completion. In Conference on Learning Theory, pages 703–725. PMLR, 2014.

[26] Harold V Henderson and Shayle R Searle. On deriving the inverse of a sum of matrices. Siam
Review, 23(1):53–60, 1981.

[27] Shaoli Huang and Dacheng Tao. All you need is a good representation: A multi-level and
classifier-centric representation for few-shot learning. arXiv preprint arXiv:1911.12476, 2019.

[28] Nathan Intrator and Shimon Edelman. Making a low-dimensional representation suitable for
diverse tasks. In Learning to learn, pages 135–157. Springer, 1996.

[29] Prateek Jain and Inderjit S Dhillon. Provable inductive matrix completion. arXiv preprint
arXiv:1306.0626, 2013.

[30] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 665–674, 2013.

[31] Prateek Jain, Sham Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Paral-
lelizing stochastic gradient descent for least squares regression: mini-batching, averaging, and
model misspecification. Journal of Machine Learning Research, 18, 2018.

[32] Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic meta-learning for few-shot learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11719–11727, 2019.

[33] Khurram Javed and Martha White. Meta-learning representations for continual learning. In
Advances in Neural Information Processing Systems, volume 32, 2019.

[34] Weihao Kong, Raghav Somani, Sham Kakade, and Sewoong Oh. Robust meta-learning for
mixed linear regression with small batches. Advances in Neural Information Processing Systems,
33, 2020.

[35] Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, and Sewoong Oh. Meta-learning for
mixed linear regression. In International Conference on Machine Learning, pages 5394–5404.
PMLR, 2020.

[36] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning
with differentiable convex optimization. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10649–10657. IEEE Computer Society, 2019.

[37] Raghu Meka, Prateek Jain, and Inderjit S Dhillon. Guaranteed rank minimization via singular
value projection. arXiv preprint arXiv:0909.5457, 2009.

12

[38] Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval using alternating mini-
mization. IEEE Transactions on Signal Processing, 63(18):4814–4826, 2015.

[39] Boris N Oreshkin, Pau Rodriguez, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. arXiv preprint arXiv:1805.10123, 2018.

[40] Alon Orlitsky. Supervised dimensionality reduction using mixture models. In Proceedings of
the 22nd international conference on Machine learning, pages 768–775, 2005.

[41] Massimiliano Pontil and Andreas Maurer. Excess risk bounds for multitask learning with trace
norm regularization. In Conference on Learning Theory, pages 55–76, 2013.

[42] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L. Yuille. Few-shot image recognition by
predicting parameters from activations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[43] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of MAML. arXiv preprint arXiv:1909.09157,
2019.

[44] Irina Rish, Genady Grabarnik, Guillermo Cecchi, Francisco Pereira, and Geoffrey J Gordon.
Closed-form supervised dimensionality reduction with generalized linear models. In Proceed-
ings of the 25th international conference on Machine learning, pages 832–839, 2008.

[45] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference
on computer vision, pages 843–852, 2017.

[46] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
learn, pages 3–17. Springer, 1998.

[47] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Re-
thinking few-shot image classification: a good embedding is all you need? arXiv preprint
arXiv:2003.11539, 2020.

[48] Nilesh Tripuraneni, Chi Jin, and Michael I Jordan. Provable meta-learning of linear representa-
tions. arXiv preprint arXiv:2002.11684, 2020.

[49] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[50] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[51] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In Advances
in Neural Information Processing Systems, pages 7029–7039, 2017.

[52] Kai Zhong, Prateek Jain, and Inderjit S Dhillon. Efficient matrix sensing using rank-1 gaussian
measurements. In International conference on algorithmic learning theory, pages 3–18. Springer,
2015.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] see Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We

conduct a purely theoretical study analyzing existing techniques.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] see Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No] Instead error bars we provide separate plots for each of
the random runs for all the algorithms (some in Appendix H).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The amount of compute required to
run our simulations is trivial

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

