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ABSTRACT

Single domain generalization (SDG) is a challenging scenario of domain gener-
alization, where only one source domain is available to train the model. Typical
SDG methods are based on the adversarial data augmentation strategy, which
complements the diversity of source domain to learn a robust model. Existing
SDG methods require the source and target domains to have the same label space.
However, as target domains may contain novel categories unseen in source label
space, this assumption is not practical in many real-world applications. In this
paper, we propose a challenging and untouched problem: Open-Set Single Domain
Generalization (OS-SDG), where target domains include unseen categories out
of source label space. The goal of OS-SDG is to learn a model, with only one
source domain, to classify a target sample with correct class if it belongs to source
label space, or assign it to unknown classes. We design a CrossMatch approach
to improve the performance of SDG methods on identifying unknown classes by
leveraging a multi-binary classifier. CrossMatch generates auxiliary samples out
of source label space by using an adversarial data augmentation strategy. We also
adopt a consistency regularization on generated auxiliary samples between multi-
binary classifiers and the model trained by SDG methods, to improve the model’s
capability on unknown class identification. Experimental results on benchmark
datasets prove the effectiveness of CrossMatch on enhancing the performance of
SDG methods in the OS-SDG setting.

1 INTRODUCTION

Deep neural networks have obtained remarkable success in many classification tasks (Sze et al.,
2017), as they can learn discriminative feature representations from data. These achievements are
strongly relied on the independent and identically distributed (i.i.d) assumption (Vapnik, 1992), i.e.,
the training and testing samples are from the same distribution. However, in real-world application,
the i.i.d assumption is often violated due to the dataset shift problem. As a result, the performance of
deep neural networks degrades notably (Hendrycks & Dietterich, 2019; Recht et al., 2019). To tackle
this challenge, domain adaptation (DA) (Long et al., 2018; Peng et al., 2020; Zhu et al., 2021b;a)
is proposed, which aims to mitigate the discrepancy between the source and target domains. DA
assumes that both the source and target domains are accessible during model training stage. Even
though DA has demonstrated promising performance on dealing with the dataset shift problem, it still
fails in some practical scenarios when the target domains are unaccessible at the model training stage.

Domain generalization (DG) (Zhao et al., 2020b; Zhou et al., 2021b) is introduced to deal with
the dataset shift problem and the absence of target domains. The goal of DG is to train a model
from multiple source domains comprising the same label space, such that the learned model can
generalize well to any unseen target domains. Despite of the success of DG in many real-world
applications (Zhou et al., 2021a), it yet fails to a worst-case domain generalization scenario, i.e.,
single domain generalization (SDG). In SDG, only one source domain is available to train the model
while the learned model need to generalize well on many unseen target domains. Several recent
studies have made significant progress on this challenging yet practical scenario (Volpi et al., 2018;
Zhao et al., 2020a; Qiao et al., 2020; Fan et al., 2021).
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Figure 1: Illustration of label space of domain adaptation (DA), domain generalization (DG), single
domain generalization (SDG), open domain generalization (ODG), and open-set single domain
generalization (OS-SDG). Different colors represent different domains. As there is no prior knowledge
about the target domains, existing DG and SDG methods cannot handle unknown classes (e.g., camera
and truck) in target domain. ODG provides multiple source domains to learn a model. However, our
proposed OS-SDG only supplies a single source domain, which is more challenging than ODG.

Table 1: Illustration of difference between the proposed Open-Set Single Domain Generalization
(OS-SDG) and other related tasks. Ds and Dt denote source and target domains, respectively. Cs and
Ct denote the label space of source and target domains, respectively.

Task More than one Ds for training ? Need Cs = Ct? Access to Dt?

Domain Adaptation × ✓ ✓
Domain Generalization ✓ ✓ ×
Single Domain Generalization × ✓ ×
Open-Set Domain Adaptation × × ✓
Open Domain Generalization ✓ × ×
The Proposed OS-SDG × × ×

One assumption in DG and SDG is that the label spaces of source and target domains are uniform.
However, in some more realistic scenarios such as autonomous driving and biomedical applications,
it is possible that the target domains contain novel categories that are unseen in the source label space.
As a result, the learned model cannot tackle target samples from novel categories, which dramatically
degrades the robustness of existing DG and SDG methods. Until recently, this interesting yet tough
problem is investigated by Shu et al. (2021), which proposes a task called open domain generalization
(ODG). ODG assumes that both source and target domains have different label spaces, and multiple
source domains are accessible for training. An ODG model either classifies a target sample with the
correct class if it belongs to the multiple source label spaces, or marks it as unknown class.

In this paper, we consider a worst-case open-set problem (Geng et al., 2020) in SDG: only one source
domain is accessible for training, and multiple target domains include samples that do not belong to
any class in the source label space. We name this novel and challenging problem as Open-Set Single
Domain Generalization (OS-SDG). Figure 1 illustrates the relationship between source and target
label spaces in DA, DG, SDG, ODG, and OS-SDG. We also summarize how our problem is different
from several related problems in Table 1. The goal of OS-SDG is to learn a model from a single
source domain, which can generalize to unseen target domains with samples from unknown classes.

Inspired by universal domain adaptation (You et al., 2019; Saito et al., 2020; Zhu & Li, 2021), an
“unknown” target sample tends to have a larger entropy of the learned model’s output than samples
from “known” classes. We can draw a boundary between “known” and “unknown” classes by using
the entropy of the learned model’s outputs. We evaluate the performance of representative SDG
methods (Volpi et al., 2018; Zhao et al., 2020a) in the proposed OS-SDG task. Results (refer to
Figure 5 in Section 4) show that the existing SDG methods have very limited capability on identifying
unknown classes in target domains, although they obtain promising results in terms of per-class
mean accuracy. These SDG methods only focus on synthesizing samples from diverse distributions
to enrich source domain, and thus they cannot properly identify samples from unknown classes.
The research challenge of modeling and identifying unknown classes in open-set single domain
generalization is still untouched.

We propose a novel approach named CrossMatch to address the OS-SDG problem. First, CrossMatch
induces unknown classes information by generating auxiliary samples that are potentially out of the
source label space. These auxiliary samples may not belong to the actual unknown classes in the
target domains, as we do not have access to the target label space during training stage. However,
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we encourage the auxiliary samples to be far away from the known classes in the source domain,
and thus they could still assist in identifying whether a sample belongs to known classes or not. In
particular, we adopt a multi-binary classifier (Liu et al., 2019; Saito & Saenko, 2021) that consists
of multiple one-vs-all binary classifiers. For a given sample, if all the binary classifiers mark it as
negative, we believe this sample has a high probability of belonging to an unknown class. Therefore,
this characteristic allows us to design a new loss function to generate auxiliary samples for unknown
classes. Second, with the generated auxiliary samples for unknown classes, we minimize their entropy
of multi-binary classifier’s output to help model learn discriminative feature distributions between
known and unknown classes, and improve the capability of multi-binary classifier on unknown class
identification. Last, we design a novel consistency regularization to further improve the capability
of model on unknown class identification by propagating unknown class information, learned by
multi-binary classifier, to the model.

2 RELATED WORK AND BACKGROUND

Domain Generalization (DG) aims to learn a model from multiple source domains and expects it to
generalize over unseen target domains. Muandet et al. (2013) proposed a kernel-based method to
learn domain invariant feature representations by minimizing the dissimilarity across source domains.
Shankar et al. (2018) augment source domain by using adversarial gradients obtained from a domain
discriminator. Zhou et al. (2020) synthesize samples by mapping source samples to pseudo-novel
domains with an optimal transport-based distance measure. Recently, meta-learning has involved in
DG problem (Li et al., 2018; Dou et al., 2019; Du et al., 2020). The main idea lies in learning the
model under a domain shift which is induced by meta-train and meta-test from source domains.

Single Domain Generalization (SDG) is a more challenging and realistic problem than DG. It
assumes the access to a labeled source domain for training, and many unseen target domains for
test. The source and target domains are sampled from different distributions. The goal of SDG is to
learn a model from the source domain, which can generalize well on many unseen target domains.
Adversarial gradient-based augmentation is usually used in SDG for generating new samples to
enrich the diversity of source domain. For instance, Adversarial Data Augmentation (ADA) (Volpi
et al., 2018) adopts sign-flipped gradients back-propagated from label classifier to generate new
samples. Maximum-Entropy Adversarial Data Augmentation (MEADA) (Zhao et al., 2020a) further
improves ADA by generating more “hard” samples. Qiao et al. (2020) use an auxiliary Wasserstein
autoencoder to help ADA generate more “challenging” samples. Fan et al. (2021) design an adaptive
normalization scheme with ADA to enhance the generalization of learned model.

Open-Set Recognition (OSR) aims to identify unknown classes samples that are completely unseen
during the training stage (Geng et al., 2020). Bendale & Boult (2016) propose a model layer, i.e.,
OpenMax, to estimate the probability of a test sample belonging to the unknown class. Padhy et al.
(2020) apply the one-vs-all classifier to identify unknown class samples. Although many OSR
methods have obtained good performance under a strong assumption that the source and target
domains have similar distributions, they still fail to address the proposed SS-SDG problem, where
the source and target domains are selected from different distributions.

Open-Set Domain Adaptation (OSDA) is proposed by Panareda Busto & Gall (2017) where both
source and target domains have private label spaces, respectively, and the common label space is
known. Recently, Saito et al. (2018) adjust the OSDA setting by claiming no source private label
space, which means target label space contains source label space. Recent OSDA (Liu et al., 2019;
Bucci et al., 2020) methods focus on this challenging setting. However, OSDA faces two limitations.
First, it relies on an assumption that the target domain is accessible during training stage. Second,
OSDA methods focus on the scenario that there are only one source domain and one target domain.

Open Domain Generalization (ODA) is proposed by (Shu et al., 2021). In this problem, a target
domain and multiple source domains have different label spaces. The goal is to learn a model from
multiple source domains to correctly classify each target sample into either a known class in the
source label space or an unknown class. They utilize meta-learning framework to learn generalizable
representations across domains augmented on both feature-level and label-level. Our OS-SDG
problem is more challenging than the ODA problem, as OS-SDG has only one source domain for
training but multiple target domains for test, while ODA has multiple source domains for training
and only one target domain for test.
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Worst-Case Problem is proposed by (Sinha et al., 2018). In single domain generalization, we
consider to learn the model with source domain by solving the following objective function:

min
θ

sup
Dt

{E[Lce(θ;Dt) : D(Dt,Ds) ≤ ρ]} , (1)

where D represents a distance metric that measures the similarity between source and target domains.
ρ indicates the largest transportation cost of moving source domainDs to target domainDt. θ denotes
model parameters optimized by cross-entropy loss function Lce.

Adversarial Data Augmentation (Volpi et al., 2018) aims to enrich the diversity of source domain
by generating a domain D to approximate the unseen target domains Dt. It reformulates worst-case
problem (in Eq. 1) into a Lagrangian optimization problem with a fixed penalty parameter γ ≥ 0:

min
θ

sup
D
{E[Lce(θ;D)]− γD(D,Ds)} . (2)

Here D denotes the Wasserstein metric (Volpi et al., 2018) used to preserve the semantics of the
generated samples. The overall loss function is formulated as:

Lada = Lce(θ;Ds)− γLconst(θg;D,Ds), (3)

where Lconst(θg;D,Ds) = ∥G(x)−G(xs)∥22 +∞ · 1{y ̸= ys} and G is the feature extractor. The
whole training process is an iterative procedure where two stages are alternated, i.e., maximization
stage and minimization stage. At maximization stage, the new domain D is generated from Ds by
maximizing Lada with learning rate η:

xt+1 ← xt + η∇xtLada(θ;xt). (4)

After the maximization stage, the generated domain D is appended to Ds. At the minimization stage,
θ is optimized by minimizing the loss Lce with Ds.

Multi-Binary Classifier has proved its capability on unknown class identification in domain adapta-
tion related problems (Liu et al., 2019; Saito & Saenko, 2021). A multi-binary classier Fb with k
classes is defined as Fb = {F 1

b , . . . , F
k
b }, where F i

b is the i-th one-vs-all binary classifier with output
pib = F i

b (G(x)) ∈ R2. We use pib(t = 0|x) and pib(t = 1|x), where pib(t = 0|x) + pib(t = 1|x) = 1,
to indicate how likely the sample belongs to the i-th class and other classes, respectively. Recently,
Saito & Saenko (2021) proposes a hard negative binary classifier sampling strategy to help Fb learn a
better boundary to identify unknown classes by minimizing the following loss function:

Lova(x, y) = − log(pyb (t = 0|x))−min
i ̸=y

log(1− pib(t = 1|x)). (5)

Here the objective is to improve the robustness of multi-binary classifier on unknown class identifica-
tion by optimizing each binary-classifier with the corresponding hard negative samples. Furthermore,
for unlabeled samples, minimizing their multi-binary entropy loss Lb

ent:

Lb
ent(x) = −

k∑
i=1

pib(t = 0|x) log pib(t = 0|x) + pib(t = 1|x) log pib(t = 1|x). (6)

They will either be aligned to source samples or be kept as unknown, and help improve the confidence
of model on unknown class identification.

3 METHODOLOGY

In this section, we formally introduce the Open-Set Single Domain Generalization (OS-SDG) task,
and then describe the proposed CrossMatch approach in detail.

3.1 OPEN-SET SINGLE DOMAIN GENERALIZATION

Given a labeled source domain Ds = {(xi
s, y

i
s)}

ns
i=1 with label space Cs, and multiple unseen target

domains Dt = {D1
t , . . . ,Dn

t } where Di
t = {(x

j
t,i, y

j
t,i)}

ni
t

j=1 with label space Ct = C1t = · · · = Cnt .
The source and target domains are sampled from different distributions. As target domains have novel
classes that do not belong to Cs, we denote those novel classes as an unknown class space in target
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Figure 2: Overview of CrossMatch in SDG methods. xs represents source samples while xk and
xu denote generated known class and auxiliary unknown class samples, respectively. G is the
feature extractor where gs = G(xs). The multi-binary classifier is Fb = {F 1

b , . . . , F
|Cs|
b } where

pbs = Fb(gs). F is the multi-class classifier where ps = F (gs). (a) At minimization stage, we
adopt Lova(Eq. 5) and Lb

ent (Eq. 6) to optimize Fb while train F by cross-entropy loss Lce. We also
propose a novel loss Lccr to improve the capability of F on unknown class identification. (b) At
maximization stage, SDG methods maximize their defined losses, e.g., Lada (Eq. 3), to generate
new samples to enrich the diversity of source domain in Cs, while we propose an auxiliary sample
generation loss Lunk to generate samples that are far way from Cs. After maximization stage, the
generated xk is appended to source domain Ds.

domains, Cut = Ct\Cs. The goal of OS-SDG is to train a model with Ds to classify target samples
into |Cs| + 1 classes, where the novel classes in target domains are treated as one unknown class.
Figure 1 illustrates the relationship of label space between source and target domains in OS-SDG. The
research challenges in OS-SDG are twofold. First, how can we generate unknown classes samples
that could complement sample diversity in the source domain? Second, what is an effective strategy
to improve the model’s capability on unknown class identification?

3.2 CROSSMATCH

The proposed CrossMatch approach generates auxiliary samples for unknown classes out of Cs
(Sec. 3.2.1) and then exploits those samples to improve the capability of existing SDG methods on
unknown class identification (Sec. 3.2.2). An overview of the proposed CrossMatch approach is
shown in Figure 2.

Inspired by the worst-case problem defined in SDG, we extend it to OS-SDG setting based on the
CrossMatch approach, as follows:

min
θ,θfb

sup
D={Dk,Du}

{E[Lk(θ, θfb ;Ds) + Lu(θ, θfb ;Du) + Lunk(Ds)] : D(Dk,Ds) ≤ ρ,D(Du,Ds) ≥ ρ} ,

(7)
where θ = {θg, θf} includes the parameters of feature extractor G and multi-class classifier F . θfb is
the parameters of multi-binary classifier Fb. D = {Dk,Du} denotes the augmented domain consists
of known classes domain Dk and auxiliary unknown classes domain Du. Lk = {Lce + Lova}
represents those loss functions who use Ds to optimize model, i.e., cross-entropy loss Lce(θg, θf ;xs)
and one-vs-all lossLova(θg, θfb ;xs) (in Eq. 5). Lu = {Lb

ent+αLccr} includes two loss functions that
optimize model with Du, i.e., multi-binary entropy loss Lb

ent(θg, θfb ;xu) (Eq. 6) and the proposed
cross-classifier consistency regularization loss Lccr(θg, θf , θfb ;xu) that improve the capability of F
on unknown class identification. Lunk(Ds) (Eq. 13) is a newly proposed loss function for generating
auxiliary samples. D is the Wasserstein metric and ρ is the largest domain discrepancy between two
domains.

At minimization stage, the overall loss function is defined as follows:

Lmin = Lce + Lova + Lb
ent + αLccr, (8)

where α is the hyper-parameter.

At maximization stage, we aim to generate two kinds of samples: known class samples xk ∈ Dk

and auxiliary samples xu ∈ Du which are far away from the known classes in the source label space.
For known class samples, we consider the following Lagrangian relaxation derived from Eq. 7 with
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penalty parameter γ:
sup
Dk

{E[Lce(θ;Dk)]− γD(Dk,Ds)} , (9)

where D(Dk,Ds) = Lconst(θg;Dk,Ds) is defined in Eq. 3. To solve this penalty problem in
Eq. 9, we adopt the same strategy in (Volpi et al., 2018) with the suitable conditions (Boyd
et al., 2004) by performing stochastic gradient descent procedures. We define the robust surrogate
loss ϕ(θ;xs, ys) = supxk∈Dk

{Lce(θ;xk, ys) − γLconst(θg;xk, xs)} and have ∇θϕ(θ;xs, ys) =
∇θLce(θ;x

∗
k, ys), where x∗

k = argmaxxk∈Dk
{Lce(θ;xk, ys)− γLconst(θg;xk, xs)} is an adversar-

ial perturbation of xs at the current model θ. We adopt a few iterations to generate known class
samples with learning rate η by:

xt+1
k ← xt

k + η∇xt
k
{Lce(θ;x

t
k, ys)− γLconst(θg;x

t
k, xs)}. (10)

The generation procedure in Eq. 10 is consistent with the single domain generation method
ADA (Volpi et al., 2018), which can be further extended to other single domain generation methods,
e.g., MEADA (Zhao et al., 2020a), by adding more loss objectives.

Similar to the way of generating known class samples, we also convert Eq. 7 into a Lagrangian
relaxation to generate auxiliary samples with penalty parameter γ:

sup
Du

{E[Lunk(Du)] + γD(Du,Ds)} . (11)

By adopting the same strategy as known class sample generation process, we can generate auxiliary
samples with the following rule:

xt+1
u ← xt

u + η∇xt
u
{Lunk(x

t
u) + γLconst(θg;x

t
u, xs)}, (12)

where η is the learning rate of stochastic gradient ascent. The details of Lunk and Lccr will be
described in Section 3.2.1 and Section 3.2.2, respectively.

Remarks. CrossMatch aims to tackle the challenges in OS-SDG from two aspects: (i) generation of
auxiliary samples for unknown classes, and (ii) improvement of unknown class identification. The
key innovation of the proposed approach lies in jointly encouraging the model to generate auxiliary
samples for unknown classes by maximizing the newly designed loss Lunk at the maximization stage,
and improving the capability of multi-class classifier F on unknown class identification. In particular,
we optimize the proposed cross-classifier consistency regularization lossLccr with generated auxiliary
samples for unknown classes at the minimization stage.

3.2.1 AUXILIARY SAMPLE GENERATION FOR UNKNOWN CLASSES

The key idea of adversarial data augmentation is to use sign-flipped gradients back-propagated from
a label classifier or other related terms (Volpi et al., 2018; Qiao et al., 2020) to generate diversified
samples. Inspired by the structure of multi-binary classifier Fb, if a given sample is classified as
“other class” by all the binary classifiers in Fb, it has a high probability to be associated with unknown
classes. For example, Cs contains four known classes (e.g., “phone”, “airplane”, “radio” and “car”)
and Cut consists of two unknown classes “truck” and “camera”, as illustrated in Figure 1. We assume
that Fb has been well trained in the source domain. If a target sample belongs to the class “phone”,
the corresponding binary classifier should output a high probability to “phone”, while the other binary
classifiers will classify it as “other class”. But, if a target sample belongs to “truck”, all the binary
classifiers would classify it as “other class”.

With this insight, we design a novel auxiliary sample generalization loss Lunk to generate samples
that are possibly out of source label space. Given a source sample xs with label ys, multi-binary
classifier Fb and feature extractor G, we denote Lunk as:

Lunk(xs, ys) = − log(pys

b,s(t = 0|xs)) +

k∑
i ̸=ys

log pib,s(t = 1|xs), (13)

where pys

b,s(t = 0|xs) and pys

b,s(t = 1|xs) represent the probabilities of being ys-th class and other
classes from the ys-th binary classifier, respectively. By maximizing Lunk at the maximization stage,
it encourages the model to generate new samples that all binary classifiers in Fb predict it as “other
class”. Thus, the new generated sample could belong to unknown classes. As entropy loss function
has proved its effectiveness on diversifying the adversarial generated samples (Zhao et al., 2020a), to
further enrich the diversity of auxiliary samples, we also incorporate the multi-binary loss Lb

ent and
one-vs-all loss Lova to Lunk.
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3.2.2 CROSS-CLASSIFIER CONSISTENCY REGULARIZATION

With the generated auxiliary samples for unknown classes, we minimize the multi-binary entropy
loss Lb

ent to enhance the capability of multi-binary classifier Fb on unknown class identification, and
help feature extractor G learn discriminative feature representations, which benefit the multi-class
classifier F on unknown class identification. Each auxiliary sample xu will be aligned to source
samples if it belongs to Cs, or kept as unknown. To make full use of unknown classes information
learned by Fb, we propose the cross-classifier consistency regularization (CCR) loss to propagate
those information learned by Fb to F . The key idea lies in encouraging Fb and F to produce the
similar output distribution, in form of one-vs-all, for each generated auxiliary sample from Du:

Lccr(xu) =

k∑
i=1

∥∥pib,u − pib′,u
∥∥2
2
, (14)

where pib,u ∈ R2 represents the i-th binary classifier’s output. pib′,u indicates the one-vs-all version of
multi-class classifier F ’s output pu for i-th class, i.e., pib′,u =

[
piu, 1− piu

]
, piu is the probability of x

belongs to i-th class. Different from previous consistency regularization (Laine & Aila, 2017; Sajjadi
et al., 2016), which encourages the classifier to produce similar outputs for sample under different
augmentations, our CCR encourages different classifiers to generate similar output distributions for a
given sample.

3.3 INFERENCE

M

x

0.1 0.2 … 0.3

entropy

prediction
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Yes
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|C |s

Figure 3: Inference procedure.

Figure 3 illustrates the inference procedure where the learned
model M consists of a feature extractor G and a multi-class
classifier F . The target sample is marked as unknown class if
its entropy is larger than the threshold µ. Otherwise, it will be
assigned to a class in the source label space Cs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We briefly introduce the experimental setup in this section. More details about the experimental
settings and experimental results are provided in the Appendix due to space limit.

Datasets. (1) Digits comprises of five digits datasets: MNIST (LeCun et al., 1989), SVHN (Netzer
et al., 2011), USPS (Hull, 1994), MNIST-M and SYN (Ganin & Lempitsky, 2015). MNIST is the
source domain, and its label space includes numbers from 0 to 4. The other datasets are treated
as target domains, and their target unknown label space Cut contains numbers from 5 to 9. (2)
Office31 (Saenko et al., 2010) contains 31 classes collected from three visually distinct domains:
Amazon, DSLR and Webcam. The 10 classes shared by Office-31 and Caltech-256 (Gong et al.,
2012) form the source label space Cs. In alphabetical order, the last 11 classes are used as target
unknown class space Cut . Due to DSLR and Webcam are relatively small, we only use Amazon as
the source domain. (3) Office-Home (Venkateswara et al., 2017) consists of four domains: Artistic,
Clip Art, Product, and Real-World. It comprises of 65 categories from four dissimilar domains. In
alphabetic order, we select the first 15 classes as the source label space Cs. The remaining 50 classes
are viewed as target unknown label space Cut . Each domain serves as source domain, and the rest are
target domains. (4) PACS (Li et al., 2017) consists of four domains: Art Paint, Cartoon, Sketch, and
Photo. It has 9,991 images from seven object categories.

Implementation Details. For Digits, we adopt the ConvNet (LeCun et al., 1989) with architecture
conv-pool-conv-pool-fc-fc-softmax, resize all images to 32×32, and follow the settings in Volpi et al.
(2018); Zhao et al. (2020a). For Office31, Office-Home and PACS, we use an ImageNet-pretrained
ResNet18 (He et al., 2016) as the base network.

Baselines and Metrics. We adopt the Empirical Risk Minimization (ERM) (Koltchinskii, 2011)
as a simple baseline without any consideration of SDG. We compare with two state-of-the-art
SDG methods, Adversarial Data Augmentation (ADA) (Volpi et al., 2018) and Maximum-Entropy
Adversarial Data Augmentation (MEADA) (Zhao et al., 2020a). We also adopt Open Set Domain
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Table 2: Results (%) on Digits (ConvNet) and Office31 (ResNet18).

Dataset Metric OSDAP OpenMax ERM +CM ADA +CM MEADA +CM

Digits
acc 41.42 42.38 49.17 49.07 50.22 49.71 52.98 51.27
accu 70.60 83.81 13.04 53.52 15.11 52.07 29.83 46.11
acck 35.59 34.40 56.40 48.67 57.24 49.24 57.61 52.30

hs 40.46 40.67 17.97 40.15 20.14 39.93 30.37 38.70

Office31
acc 76.51 18.19 79.82 78.30 80.13 78.61 80.26 78.98
accu 84.28 100.0 27.04 37.60 25.24 34.51 25.09 41.08
acck 75.77 10.01 85.10 82.37 85.62 83.02 85.78 82.77

hs 77.68 16.74 40.69 51.14 38.65 48.50 38.55 54.69

Table 3: Results (%) on Office-Home (ResNet18).

Method Artistic Clip Art Product Real-World Average

acc hs acc hs acc hs acc hs acc hs

OSDAP 45.61 52.35 52.78 58.82 41.45 47.95 53.51 58.40 48.34 54.38

OpenMax 22.42 30.64 22.67 29.51 15.10 16.65 25.54 33.07 21.43 27.47

ERM 65.00 31.07 64.12 35.78 60.53 36.33 66.59 33.92 64.06 34.28
ERM+CM 65.49 52.85 63.37 50.51 58.03 47.25 67.75 52.60 63.66 50.80

ADA 68.29 32.94 65.10 42.09 60.52 34.72 67.04 34.86 65.24 36.15
ADA+CM 66.30 46.68 62.64 49.31 58.72 47.47 66.82 50.47 63.62 48.48

MEADA 68.31 33.29 65.25 42.05 60.43 35.68 67.04 34.65 65.01 36.42
MEADA+CM 65.85 53.22 62.90 48.87 58.36 45.34 67.10 50.77 63.55 49.55

Adaptation by Backpropagation (OSDAP) (Saito et al., 2018) a representative method in open-set
domain adaptation and OpenMax (Bendale & Boult, 2016) a typical open-set recognition method as
baselines. Furthermore, we extend ERM, ADA, and MEADA using the proposed CrossMatch (CM)
approach (denoted by “+CM”). We adopt the overall mean accuracy (acc), known class accuracy
(acck) unknown class accuracy (accu) and h-score (hs) (Fu et al., 2020) as evaluation metrics.

4.2 RESULTS AND DISCUSSIONS

Digits and Office31. Table 2 shows the results of our approach and baselines on the Digits and
Office31 datasets. Our proposed method is superior to ADA by more than 19% and 9% with respect
to hs on Digits and Office31, respectively. Compared with the state-of-the-art method MEADA,
which obtains the best acc among all the methods, our method still significantly outperforms it with
more than 8% and 16% in terms of hs on Digits and Office31, respectively. Meanwhile, our method
achieves comparable mean accuracy (acc) than baselines. The strong baseline method OSDAP,
uses source and target domains to learn the model, gets better results with regard to accu in Digits
and Office31 datasets. While our method learns the model without target domain but gets similar
performance in terms of hs in Digits, which proves the effectiveness of our method. Compared with
representative open-set recognition method, OpenMax, our method obtains similar results in terms
of hs and better performances with regard to acc and acck in Digits dataset. OpenMax, without
considering the domain shift problem, gets high performance in terms of accu by wrongly marking
most of testing samples as unknown class. When domain shift is larger in Office31 dataset, we find
that OpenMax gets worse performance in terms of acc, acck, and hs.

Office-Home. Table 3 shows the acc and hs on Office-Home. Each time, one domain serves as the
source domain and the rest three ones are target domains. Office-Home is more challenging than
the previous two datasets because it contains more target unknown classes than them. Although
the performance of our method on acc is slightly lower than baselines, we observe remarkable
improvement of 16.52%, 12.22%, and 13.13% compared with ERM, ADA, and MEADA in terms
of hs, respectively. Such improvements over baselines demonstrate the effectiveness of our method.
Furthermore, compared with strong baseline OSDAP, our method gets better performance in terms of
acc and similar results on hs, demonstrates the efficiency of our method. OpenMax fails to correctly
identify known classes due to significant domain shift existed in Office-Home dataset.

PACS. We further evaluate the effectiveness of our method on PACS dataset. As shown in Table 4, our
method outperforms all the baselines in terms of acc and hs. In particular, our method significantly
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Table 4: Results (%) on PACS (ResNet18).

Method Art Paint Cartoon Sketch Photo Average

acc hs acc hs acc hs acc hs acc hs

OSDAP 53.30 46.58 43.73 38.81 42.05 41.03 30.81 32.89 42.47 39.83

OpenMax 52.59 53.60 31.71 25.23 29.85 19.87 27.60 19.47 35.44 29.54

ERM 62.24 38.90 55.34 40.96 39.19 28.89 38.32 35.74 48.77 36.12
ERM+CM 63.52 44.9 57.6 48.31 38.53 30.43 42.52 41.6 50.54 41.31

ADA 62.48 39.02 56.43 41.55 39.03 26.93 40.28 38.13 49.56 36.41
ADA+CM 64.26 42.4 60.41 51.81 42.48 35.18 43.97 42.76 52.78 43.04

MEADA 62.43 38.85 56.1 41.34 38.89 26.43 39.88 38.24 49.33 36.22
MEADA+CM 62.63 41.88 60.03 51.36 41.51 35.76 43.5 41.6 51.92 42.65

improves the capability of baselines, i.e., ERM, ADAN and MEADA, on unknown class identification
while slightly enhances the averaged accuracy over all classes. For other two baselines, i.e., OSDAP
and OpenMax, we observe the similar phenomenons as Office-Home when large domain gaps are
existed among source and target domains.

4.3 ANALYSIS
Table 5: Ablation study for auxiliary sample generation
on Digits dataset.

Lb
ent+Lova Lunk Lccr acc accu hs

52.98 29.83 30.37

✓ 51.86 29.01 29.36
✓ ✓ 51.08 42.55 36.94

✓ ✓ 52.16 30.47 30.55
✓ ✓ ✓ 51.27 46.11 38.70

On the Effect of Lunk and Lccr. We con-
duct ablation studies to examine the effec-
tiveness of the proposed Lunk (Eq. 13) and
Lccr (Eq. 14) and show the results in Ta-
ble 5. The top row denotes the performance
of baseline, i.e., MEADA. Firstly, the mid-
dle row demonstrates that simply maximiz-
ing the combination of Lb

ent and Lova to
generate “auxiliary” samples for unknown class would slightly decrease the performance of baseline.
With the proposed Lunk, we observe that the performance surpasses the baseline by more than 12%
and 6% in terms of accu and hs, which proves the effectiveness of proposed Lunk. Moreover, we
observe that incorporating Lccr can consistently improve the performance of both models in the
middle row, which validate the effectiveness of Lccr.
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Figure 4: Varying the size of known
classes.

Varying Size of known classes. To verify the robustness of
our method under different sizes of known classes, we conduct
experiments on Office-Home where Real-World is selected as
the source domain. The size of known classes varies from 10 to
60. As shown in Figure 4, our method continuously outperforms
MEADA with significant improvements in terms of hs while
obtains similar results as MEADA with respect to acc. It indicates
that our method can consistently improve the capability of SDG
methods on unknown class identification.

5 CONCLUSION

In this paper, we propose a new domain generalization task, i.e., open-set single domain generalization
(OS-SDG), which aims to generalize the model from a single source domain to unseen target domains
and simultaneously deal with unknown classes. We further propose a novel CrossMatch approach
to tackle the OS-SDG task, which generates auxiliary samples for unknown classes and improves
the capability of unknown class identification with a novel consistency regularization. Extensive
experiments demonstrate that the proposed CrossMatch method largely facilitates the capability of
existing single domain generalization methods on unknown class identification.
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A APPENDIX

The appendix provides descriptions of algorithm, details for datasets and experimental settings, and
additional experimental results.

A.1 ALGORITHM

Algorithm 1 illustrates details of our proposed method.

Algorithm 1 CrossMatch with Adversarial Data Augmentation based Single Domain Generalization
methods.
Input: Source domainDs = {(xi

s, y
i
s)}

ns
i=1 and generated auxiliary unknown class domainDu = {}.

Initialized parameters θg, θf and θfb for feature extractor G, multi-class classifier F and multi-
binary classifier Fb.

Output: Learned feature extractor G and multi-class classifier F ;
1: for k = 1 to K do ▷ Run the maximizing procedure K times
2: for t = 1 to TMIN do ▷ Run the minimization stage TMIN times
3: Sample (xs, ys) uniformly from Ds

4: (θg, θf )← (θg, θf )− β∇(θg,θf )Lce(θg, θf ;xs, ys)
5: (θg, θfb)← (θg, θfb)− β∇(θg,θfb )

Lova(θg, θfb ;xs, ys)

6: if Du is not empty then
7: Sample xu uniformly from Du

8: (θg, θfb)← (θg, θfb)− β∇(θg,θfb )
Lb
ent(θg, θfb ;xu)

9: (θg, θf , θfb)← (θg, θf , θfb)− β∇(θg,θf ,θfb )
Lccr(θg, θf , θfb ;xu)

10: end if
11: end for
12: for all (xs, ys) ∈ Ds do
13: xk ← xs and xu ← xs

14: for t = 1 to TMAX do ▷ Run the maximization stage TMAX times
15: xk ← xk + η∇xk

{Lsdg − γLconst(xk, xs)}
16: xu ← xu + η∇xu

{
Lunk + Lova ++Lb

ent + γLconst(xu, xs)
}

17: Append (xk, ys) to Ds and xu to Du

18: end for
19: end for
20: end for
21: while not reach maximum steps T do
22: Sample (xs, ys) uniformly from Ds

23: Sample xu uniformly from Du

24: (θg, θf )← (θg, θf )− β∇(θg,θf )Lce(θg, θf ;xs, ys)
25: (θg, θfb)← (θg, θfb)− β∇(θg,θfb )

Lova(θg, θfb ;xs, ys)

26: (θg, θfb)← (θg, θfb)− β∇(θg,θfb )
Lb
ent(θg, θfb ;xu)

27: (θg, θf , θfb)← (θg, θf , θfb)− β∇(θg,θf ,θfb )
Lccr(θg, θf , θfb ;xu)

28: end while

A.2 DATASETS

Digits consists of 5 different datasets: MNIST (LeCun et al., 1989), SVHN (Netzer et al., 2011),
USPS (Hull, 1994), SYN and MNIST-M (Ganin & Lempitsky, 2015). Following the setting defined
by (Volpi et al., 2018; Zhao et al., 2020a), we select 10,000 images from MNIST as the source domain
and the rest datasets are viewed as target domains. The source label space Cs contains numbers from
0 to 4 and target unknow class space Cut includes numbers from 5 to 9. We resize all the images to
32×32 and duplicate their channels to convert all the grayscale images to RGB.

Office31 (Saenko et al., 2010) includes 4,652 images in 31 categories collected from three domains:
Amazon, Webcam and DSLR. We follow the protocol proposed by (Panareda Busto & Gall, 2017).
We use the 10 classes (back pack, bike, calculator, headphones, keyboard, laptop, monitor, mouse,
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mug and projector) shared by Office-31 and Caltech-256 (Gong et al., 2012) as the source domain
label space Cs. Then in alphabetical order, the last 11 classes (ruler, punchers, stapler, scissors, trash
can, tape dispenser, pen, phone, printer, ring binder and speaker) are used as target unknown class
space Cut . Due to the number of images in DSLR and Webcam are relatively small, we only use
Amazon as the source domain.

Office-Home (Venkateswara et al., 2017) contains 15,500 images from four domains: Artistic, Clip
Art, Product, and Real-World. As it comprises of 65 categories from four dissimilar domains, it’s
more challenging than Digits and Office-31. In alphabetic order, we select the first 15 classes (alarm
clock, backpack, battery, bed, bike, bottle, bucket, calculator, calendar, candles, chair, clipboards,
computer, couch and curtains) as the source label space Cs. The remaining 50 classes are viewed as
target unknown label space Cut . Each time, one domain is selected as source domain and the rest are
viewed as target domain.

PACS (Li et al., 2017) is a recent challenging benchmark for domain generalization that includes four
domains: Art Paint, Cartoon, Sketch, and Photo. It consists of 9,991 images and 7 object categories
shared across these domains. In alphabetic order, we choose the first four classes (dog, elephant,
giraffe, and guitar.) as the source label space Cs. The last three classes (horse, house, and person.)
are selected as target unknown label space Cut . We train the model by one domain and evaluate the
learned model by the rest domains

A.3 EVALUATION METRICS.

We adopt the evaluation protocol in Open-Set Domain Adaptation (Panareda Busto & Gall, 2017),
where all the target classes out of Cs are regarded as one unified unknown class. We compute the mean
accuracy averaged over all classes in |Cs|+ 1 (i.e., acc) and the unknown class accuracy (i.e., accu)
across all target domains. To better evaluate the capability of methods on unknown class identification,
we also adopt the h-score (hs) (Fu et al., 2020) metric, hs = 2 ∗ accs ∗ accu/(accs + accu). It is the
harmonic mean of average per-class accuracy in Cs (i.e., acck) and accu. The h-score value is high
only when both acck and accu are high.

A.4 IMPLEMENTATION DETAILS

We set the same parameters and optimization functions to baselines and ours.

Digits. Following the setup of (Volpi et al., 2018; Zhao et al., 2020a). We use ConvNet (LeCun
et al., 1989) (conv-pool-conv-pool-fc-fc-softmax) as the base model. The batch size is 32. We adopt
Adam with learning rate β = 0.0001 for minimization stage and SGD with learning rate η = 1.0 for
maximization stage. We set T = 10000, TMIN = 100, TMAX = 15, K = 3, γ = 1.0 and α = 1.
The reported results are the averaged results based on 10 random experiments.

Office31, Office-Home and PACS. Referring to the setup of (Zhao et al., 2020a) on PACS, we adopt
ImageNet-pretrained ResNet18 as base network and set the batch size to 32. We use SGD with
learning rate β = 0.001 which adjusted by a cosine annealing schedule (Zagoruyko & Komodakis,
2016), the momentum of 0.9 and the weight decay of 0.00005 for minimization stage. We adopt the
SGD with learning η = 1.0 for maximization stage. We set T = 10000, TMIN = 100, TMAX = 15,
K = 1, γ = 1.0 and α = 1. The reported results are the averaged results based on 3 random
experiments.

A.5 CONVERGENCE ANALYSIS

We testify the convergence performance of our method under acc and accu by comparing it against
ADA and MEAD on the Digits and Office31 datasets, respectively. Figure 5 (a) and (b) illustrate the
capability of our method on improving the unknown class identification performance. We observe
that the value of accu is relatively high at the early training stage. This phenomenon is induced by
the model that is not well-trained and prefers to output high entropy values for testing samples. Even
though the performance of accu drops during the training stage, our method still outperforms ADA
and MEADA in terms of accu while achieves similar mean accuracy acc.
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Figure 5: (a) acc and accu convergence of ADA and ours on Digits. (b) acc and accu convergence of
MEADA and ours on Office31.

Table 6: Results (%) on Digits (ConvNet) under different values of α.

α 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ADA+CM
acc 49.65 50.6 49.56 49.71 49.18 50.18 48.64
accu 49.69 51.56 47.53 52.07 52.36 48.14 56.62
hs 38.44 41.04 38.54 39.93 39.6 39.13 40.81

MEADA+CM
acc 50.65 52.3 51.6 51.27 51.57 50.47 51.01
accu 46.66 37.78 42.53 46.11 42.29 51.53 48.02
hs 39.14 36.34 37.07 38.70 37.36 41.67 40.08

A.6 PARAMETER SENSITIVITY

We analyze the sensitivity of α in Eq. 8 on Digits datasets by varying it from 0.4 to 1.6. Table 6 shows
performance of our method in terms of acc, accu, and hs. Compared ADA and MEADA performance
on Digits datasets (in Table 2), our method significantly outperforms them with respect to accu and
hs while obtains comparable results on acc, which proves our method is robust to different choices of
α. We also evaluate the sensitivity of µ in Figure 3 on Digits. As shown in Table 7, With small value
of µ, the inference framework would mark many known classes samples as unknown class. With
large value of µ, the inference framework will reject many unknown class samples to known classes.

A.7 PERFORMANCE OF UNKNOWN CLASS IDENTIFICATION AND KNOWN CLASSES
CLASSIFICATION

We report the performance of our method and baselines in terms of unknown class accuracy accu
and known classes accuracy acck on Office-Home and PACS datasets. More details can be found in
Table 8 and 9.

A.8 EXPERIMENTAL RESULTS WITH STANDARD DEVIATION (STD)

We provide STD value for our method and baselines, i.e., ERM, ADA, and MEADA on four datasets,
i.e., Digits, Office31, Office-Home, and PACS in Table 10, 11, and 12.
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Table 7: Results (%) on Digits (ConvNet) under different values of µ.

Metric µ=0.2 µ=0.6 µ=0.804 µ=1.0 µ=1.2

ERM ERM+CM ERM ERM+CM ERM ERM+CM ERM ERM+CM ERM ERM+CM

acck 48.54 42.34 54.07 48.36 56.40 48.67 58.13 53.68 58.98 56.35
accu 47.25 69.61 25.21 53.91 13.04 53.52 5.91 38.17 1.66 29.36
acc 48.37 46.88 49.26 49.28 49.17 49.07 49.42 51.09 48.02 51.85
hs 40.82 42.68 29.69 40.28 17.97 40.15 9.77 33.88 3.09 28.98

Table 8: Known classes accuracy (%) and unknown class accuracy (%) on Office-Home (ResNet18).

Method Artistic Clip Art Product Real-World Average

acck accu acck accu acck accu acck accu acck accu

OSDAP 44.13 67.84 51.69 69.26 40.00 63.47 52.48 66.92 47.07 66.87

OpenMax 17.38 98.08 17.72 97.04 9.53 98.59 20.78 97.01 16.35 97.68

ERM 68.54 20.53 66.75 24.65 62.81 26.26 69.48 23.18 66.90 23.66
ERM+CM 66.48 48.57 64.80 41.95 59.17 40.94 69.36 43.69 64.95 43.79

ADA 71.36 22.05 67.37 31.19 62.91 24.55 69.92 23.88 67.89 25.42
ADA+CM 67.53 39.59 64.10 40.67 59.92 40.72 68.53 40.79 65.02 40.44

MEADA 71.37 22.36 66.45 31.27 62.75 25.60 69.92 23.71 67.62 25.74
MEADA+CM 66.63 45.28 64.43 37.84 59.74 37.71 68.82 41.28 64.90 40.53

Table 9: Known classes accuracy (%) and unknown class accuracy (%) on PACS (ResNet18).

Method Art Paint Cartoon Sketch Photo Average

acck accu acck accu acck accu acck accu acck accu

OSDAP 54.17 49.84 41.36 51.68 38.84 54.92 28.09 41.62 40.62 49.51

OpenMax 42.87 91.48 15.27 97.44 13.16 96.61 11.96 90.22 20.82 93.94

ERM 68.80 24.57 59.46 33.08 43.34 20.27 37.54 30.03 52.29 26.99
ERM+CM 68.66 44.56 62.25 43.18 41.01 33.16 39.91 54.21 52.96 44.53

ADA 70.95 28.80 62.08 33.83 43.18 22.41 40.65 38.77 54.22 30.93
ADA+CM 72.93 40.12 64.39 49.06 44.98 40.85 43.27 52.53 56.40 45.64

MEADA 70.90 28.65 62.09 33.55 43.42 22.90 39.78 40.31 54.05 31.35
MEADA+CM 70.45 33.36 63.76 53.74 40.25 48.79 42.89 50.57 54.34 46.61

Table 10: Results (%) with STD Value on Digits (ConvNet) and Office31 (ResNet18).

ERM ERM+CM ADA ADA+CM MEADA MEADA+CM

Digits
acc 49.17±0.2 49.07±0.2 50.22±0.1 49.71±0.2 52.98±0.2 51.27±0.1
accu 13.04±0.1 53.52±0.1 15.11±0.2 52.07±0.3 29.83±0.2 46.11±0.2
acck 56.40±0.2 48.67±0.2 57.24±0.3 49.24±0.2 57.61±0.3 52.30±0.2

hs 17.97±0.2 40.15±0.1 20.14±0.2 39.93±0.2 30.37±0.2 38.70±0.2

Office31
acc 79.82±0.3 78.30±0.3 80.13±0.2 78.61±0.2 80.26±0.2 78.98±0.2
accu 27.04±0.5 37.60±0.2 25.24±0.3 34.51±0.3 25.09±0.3 41.08 ±0.2
acck 85.10±0.2 82.37±0.2 85.62±0.3 83.02±0.3 85.78±0.3 82.77±0.3

hs 40.69±0.4 51.14±0.2 38.65±0.3 48.50±0.3 38.55±0.2 54.69±0.2
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Table 11: Results (%) with STD value on Office-Home (ResNet18).

Method Artistic Clip Art Product Real-World Average

acc hs acc hs acc hs acc hs acc hs

ERM 65.00±0.3 31.07±0.6 64.12±0.3 35.78±0.6 60.53±0.4 36.33±0.5 66.59±0.3 33.92±0.5 64.06 34.28
ERM+CM 65.49±0.3 52.85±0.4 63.37±0.4 50.51±0.6 58.03±0.3 47.25±0.7 67.75±0.6 52.60±0.4 63.66 50.80

ADA 68.29±0.6 32.94±0.4 65.10±0.4 42.09±0.3 60.52±0.2 34.72±0.3 67.04±0.3 34.86±0.4 65.24 36.15
ADA+CM 66.30±0.4 46.68±0.3 62.64±0.5 49.31±0.4 58.72±0.3 47.47±0.3 66.82±0.4 50.47±0.3 63.62 48.48

MEADA 68.31±0.3 33.29±0.4 65.25±0.4 42.05±0.5 60.43±0.3 35.68±0.2 67.04±0.3 34.65±0.4 65.01 36.42
MEADA+CM 65.85±0.4 53.22±0.4 62.90±0.3 48.87±0.2 58.36±0.3 45.34±0.3 67.10±0.2 50.77±0.3 63.55 49.55

Table 12: Results (%) on PACS (ResNet18).

Method Art Paint Cartoon Sketch Photo Average

acc hs acc hs acc hs acc hs acc hs

ERM 62.24±0.5 38.90±0.4 55.34±0.6 40.96±0.5 39.19±0.4 28.89±0.3 38.32±0.2 35.74±0.4 48.77 36.12
ERM+CM 63.52±0.4 44.9±0.6 57.6±0.4 48.31±0.5 38.53±0.5 30.43±0.6 42.52±0.3 41.6±0.4 50.54 41.31

ADA 62.48±0.6 39.02±0.4 56.43±0.4 41.55±0.5 39.03±0.2 26.93±0.4 40.28±0.6 38.13±0.5 49.56 36.41
ADA+CM 64.26±0.5 42.4±0.6 60.41±0.4 51.81±0.4 42.48±0.3 35.18±0.5 43.97±0.4 42.76±0.7 52.78 43.04

MEADA 62.43±0.4 38.85±0.3 56.1±0.6 41.34±0.4 38.89±0.7 26.43±0.5 39.88±0.6 38.24±0.4 49.33 36.22
MEADA+CM 62.63±0.5 41.88±0.6 60.03±0.3 51.36±0.6 41.51±0.4 35.76±0.4 43.5±0.5 41.6±0.5 51.92 42.65
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