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Abstract

The goal of Bayesian inverse reinforcement learn-
ing (IRL) is recovering a posterior distribution over
reward functions using a set of demonstrations
from an expert optimizing for a reward unknown
to the learner. The resulting posterior over rewards
can then be used to synthesize an apprentice policy
that performs well on the same or a similar task.
A key challenge in Bayesian IRL is bridging the
computational gap between the hypothesis space of
possible rewards and the likelihood, often defined
in terms of Q values: vanilla Bayesian IRL needs to
solve the costly forward planning problem – going
from rewards to the Q values – at every step of the
algorithm, which may need to be done thousands
of times. We propose to solve this by a simple
change: instead of focusing on primarily sampling
in the space of rewards, we can focus on primarily
working in the space of Q-values, since the com-
putation required to go from Q-values to reward
is radically cheaper. Furthermore, this reversion
of the computation makes it easy to compute the
gradient allowing efficient sampling using Hamilto-
nian Monte Carlo. We propose ValueWalk – a new
Markov chain Monte Carlo method based on this
insight – and illustrate its advantages on several
tasks.

1 INTRODUCTION

Reinforcement learning (RL) has shown impressive perform-
ance across a wide variety of tasks, ranging from robotics
to game playing. However, one of the main challenges in
applying RL to real-world problems is specifying an appro-
priate reward function by hand, which is often difficult and
can result in reward functions that are only imperfect prox-
ies for designers’ intentions. Inverse reinforcement learning

(IRL) addresses this issue by instead learning the underlying
reward function from expert demonstrations.

A key challenge in IRL is that the reward function is of-
ten underdetermined by the available demonstrations, as
multiple reward functions can lead to the same optimal
behaviour. This can be solved by picking a criterion for
choosing among the reward functions compatible with the
demonstrations – maximum margin [Ng and Russell, 2000,
Ratliff et al., 2006] and maximum entropy [Ziebart et al.,
2008] are the most prominent examples. As an alternative,
Bayesian IRL explicitly tracks the uncertainty in the reward
using a probability distribution. This not only accounts for
the issue of underdeterminacy but also provides principled
uncertainty estimates to any downstream tasks, which can
be used, for instance, for the synthesis of safe policies or for
active learning.

While having these attractive properties, Bayesian IRL is
computationally challenging. While inference is done over
the space of reward functions (in terms of which the prior
is also expressed), the likelihood is usually formulated in
terms of Q values (or is otherwise linked to the distribu-
tion of trajectories), and going from the former to the latter
may require solving the whole forward planning problem
at each iteration (as is case in the original Bayesian IRL
algorithm [Ramachandran and Amir, 2007]), which is ex-
pensive in itself and may further need to be done thousands
of times during IRL inference. To avoid this, we propose to
use a simple insight: while going from rewards to Q-values
is expensive, the inverse calculation can be much simpler.
Thus, we propose to perform the inference as if it were done
primarily over the space of Q-values, computing reward
estimates beside it, resulting in a much cheaper algorithm.
A related formulation appeared already in the variational
method of Chan and van der Schaar [2021], which was, how-
ever, learning only a point estimate of the Q-function thus
sacrificing Bayesianism from the centre of the algorithm.

We instead propose a new method that provides a full
Bayesian treatment of the Q values, along with the rewards,
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and is able to provide samples from the true posterior, be-
ing based on Markov chain Monte Carlo (MCMC) as op-
posed to variational inference, which needs to pre-specify
a family of distributions within which to approximate the
posterior. Furthermore, since the computation required at
each step is much simpler than in prior MCMC-based meth-
ods [Ramachandran and Amir, 2007, Michini and How,
2012], which in itself makes our method more efficient, we
can also easily calculate the gradient, which allows us to
use Hamiltonian Monte Carlo [Duane et al., 1987] granting
further gains in efficiency.

The contributions of this paper are the following: (1) we
provide the first MCMC-based (and thus agnostic to the
shape for the posterior) algorithm for continuous-space
Bayesian inverse reinforcement learning; (2) we show that it
scales better on discrete-space cases than the MCMC-based
baseline, PolicyWalk; and (3) we show that we outperform
the previous state-of-the-art algorithm for continuous state-
spaces, AVRIL, better capturing the posterior over rewards
and performing better on imitation learning tasks.

The paper is organized as follows: Section 2 provides back-
ground on inverse reinforcement learning and Hamiltonian
Monte Carlo and summarizes related work. Section 3 intro-
duces our proposed algorithm called ValueWalk. Section 4
compares our approach to an MCMC-based predecessor,
PolicyWalk [Ramachandran and Amir, 2007], the previous
state-of-the-art scalable method for Bayesian IRL, AVRIL
[Chan and van der Schaar, 2021], and 2 imitation learning
baselines on several control tasks.

2 BACKGROUND

2.1 BAYESIAN INVERSE REINFORCEMENT
LEARNING

The goal of Bayesian inverse reinforcement learning
is recovering a posterior distribution over reward func-
tions based on observing a set of demonstrations
D = {(ϕ(s1), a1), ..., (ϕ(sn), an)} from an expert act-
ing in a Markov decision process (MDP) M =
(S,A, p, r, γ, tmax, ρ0) where S,A are the state and action
spaces respectively, ϕ : S → Φ is a feature function rep-
resenting states in a feature space Φ, p : S × A → P(S)
is the transition function where P(S) is a set of probability
measures over S, r : Φ × A → R is a reward function,
γ ∈ (0, 1) is a discount rate, tmax ∈ N ∪ {∞} is the time
horizon, and ρ0 ∈ P(S) is the initial state distribution.

In IRL, we know all elements of the MDP except for the
reward function and, possibly, the transition function (the
setting without the knowledge of transition dynamics – or
other form of access to the environment or its simulator
– is sometimes called strictly batch [Jarrett et al., 2020];
our method is applicable in both this setting and the one

including an environment simulator, though most of the ex-
periments are run in the former setting following the main
baseline method, AVRIL). Instead, we have a model of
how the expert policy is linked to the reward and, in the
case of Bayesian IRL, also a prior distribution over reward
functions, pR (which is, in general, a multi-dimensional
stochastic process, that for any set of state-action pairs re-
turns a joint probability distribution over the corresponding
set of real-valued rewards). Commonly used expert models
include Boltzmann rationality models such as

P[ai|ϕ(st)] =
eαQ

∗(ϕ(st),ai)∑
a′∈A eαQ∗(ϕ(st),a′)

(1)

[Ramachandran and Amir, 2007, Chan and van der Schaar,
2021] where Q∗(s, a) is the expected (discounted) return if
action a is taken in state s, and the optimal policy is sub-
sequently followed, and α is a rationality coefficient; the
maximum entropy approach [Ziebart et al., 2008], where the
probability of each trajectory is assumed to be proportional
to the exponential of the trajectory’s return; or sparse beha-
viour noise models [Zheng et al., 2014], where the expert is
assumed to behave rationally except for sparse deviations.
Beside these approximately rational models, various models
of irrationality can also be considered [Evans et al., 2015].
The Bayesian IRL framework is flexible with respect to the
choice of expert model, each such model just resulting in a
different likelihood function, and can also be extended to
the case where the model is not fully known.

In this article, we adopt the Boltzmann rationality model
(1). We will assume that conditional on the Q values, the
actions chosen by the expert are independent, yielding the
likelihood

p(D|r) =
∏

st,at,st+1∈D

eαQ
∗(ϕ(st),at)∑

a′∈A eαQ∗(ϕ(st),a′)
p(st+1|st, at)

(2)
for a discrete action space A (the expression can readily be
adapted to a continuous setting by replacing the sum by an
integral). Given this likelihood together with the prior over
rewards pR, we can calculate the posterior using the Bayes
Theorem as p(r|D) = p(D|r)pR(r)/p(D). Generally, we
cannot calculate this posterior analytically, so in practice,
we need to resort to approximate methods. In this article,
we use Markov chain Monte Carlo sampling.

When performing Bayesian inference over the reward, the
transition probabilities will be considered fixed (except for
Appendix A, which discusses the extension of Bayesian
inference also to transition probabilities). Thus looking at
the likelihood as a function of the reward, we can write

p(D|r) = c
∏

st,at∈D

eαQ
∗(ϕ(st),at)∑

a′∈A eαQ∗(ϕ(st),a′)
=: cL(D|r).

(3)
Since p(D) =

∫
p(D|r)dpR(r) = c

∫
L(D|r)dpR(r), the

constant transition term cancels out in the posterior, and,
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going forward, we can use the partial likelihood L in reward
posterior inference. Furthermore, MCMC algorithms gener-
ally depend only on the unnormalized distribution, thus we
can also drop the remainder of the marginal p(D) from our
calculation.

2.2 MARKOV-CHAIN MONTE CARLO (MCMC)

Markov chain Monte Carlo (MCMC) methods form a class
of algorithms widely used for sampling from complex prob-
ability distributions. MCMC methods rely on constructing
Markov chains whose stationary distribution is the distribu-
tion of interest. Usually a new candidate sample in the chain
is proposed and then accepted or rejected with probability
proportional to the one under the target distribution – in our
case the posterior over rewards.

In simpler MCMC methods, such as Metropolis-
Hastings [Metropolis et al., 1953, Hastings, 1970], which
were also used in some previous articles on Bayesian IRL
[Ramachandran and Amir, 2007, Michini and How, 2012],
the new step is proposed as a random jump in the sampling
space. However, this often leads to a high rejection rate, if
the jumps are large, or tightly correlated samples, if the jump
is small, both of which can make the algorithm inefficient.

Thus, we instead use the popular Hamiltonian (or hybrid)
Monte Carlo (HMC; Duane et al. [1987]) with the no-U-
turn (NUTS) sampler [Hoffman and Gelman, 2014], which
uses the gradient of the posterior density and Hamiltonian-
like dynamics to propose samples that are far apart but still
likely under the posterior, keeping a high acceptance rate,
thus improving the efficiency of the algorithm.

2.3 RELATED WORK

Inverse reinforcement learning is most often used as a com-
ponent in imitation learning: the more general task of learn-
ing an apprentice policy from expert demonstrations (see
Zare et al. [2023] for a good recent survey). Beside IRL,
the other major family of methods within imitation learn-
ing is behavioural cloning [Pomerleau, 1991, Ross et al.,
2011], which, in its vanilla form, aims to learn the policy via
supervised learning directly from the expert’s observation-
action pairs. The supervised learning approach has an ad-
vantage of lower computational cost, but faces the challenge
of covariate-shift, since the training states are distributed
according to the expert policy, not that of the learner agent,
though multiple methods try to mitigate this by encouraging
the learner policy to stay close to the expert one [Dadashi
et al., 2020, Reddy et al., 2019, Brantley et al., 2019].

Inverse reinforcement learning represents an alternative
which, instead of directly learning the observation-action
mapping, first learns an estimate of the reward function,
which can then be used to synthesize a policy. This can offer

better generalization, but usually requires a model of the
environment or access to it in order to run reinforcement
learning, and generally incurs a higher computational cost.

We build on the paradigm of Bayesian IRL introduced by
Ramachandran and Amir [2007]. While the Bayesian ap-
proach is attractive thanks to its principled treatment of
uncertainty in light of the limited demonstration data, the
key downside relative to other methods has been its scalabil-
ity to higher-dimensional settings. Michini and How [2012]
try to improve efficiency upon Ramachandran by focusing
computation into regions of the state space close to the
expert demonstration, still using MCMC, while Chan and
van der Schaar [2021] try to improve efficiency by using
an approximate variational distribution to model the pos-
terior, as well as an additional neural network that tracks
the Q function, which avoids the need for a costly inner-
loop solver. Mandyam et al. [2023] has recently used kernel
density estimation as an alternative method for approximate
Bayesian inference.1

As opposed to recent work experimenting with other approx-
imation techniques, we return to MCMC, with its greater
expressivity, while at the same time adapting it to be used
with continuous state spaces, which would not be feasible
with prior MCMC-based methods.

3 METHOD

Similarly to early work in Bayesian IRL [Ramachandran
and Amir, 2007, Michini and How, 2012], we use Markov
chain Monte Carlo sampling to produce samples from the
posterior distribution over rewards given a prior and expert
demonstrations. Our key innovation is in the way we calcu-
late the posterior. At each step of the Markov chain, these
previous methods generally (1) proposed a new reward (2)
used some method of forward planning, such as policy iter-
ation, to deduce the corresponding optimal Q function and
then (3) used the Q function to evaluate the likelihood and
the reward to evaluate the prior.

We suggest proceeding the other way round: our method
proposes a set of new parameters of the Q function and then
uses it to deduce the corresponding rewards, which is gener-
ally a much easier calculation than going from rewards to
Q functions. The method then uses the reward to calculate
the prior and the Q value to evaluate the likelihood, and
combines the two to calculate the unnormalized posterior
density. This value can then be used for calculating the ac-
ceptance probability in an MCMC algorithm. Also thanks to
the calculation being simple (rather than involving a RL-like
inner-loop problem) and differentiable, we can also calcu-

1The evaluation in this paper focuses on an offline setting
without access to environment dynamics, while the last mentioned
method fundamentally depends on having access to the environ-
ment dynamics so we omit it from the comparison in this paper.
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late the gradient, which we can use for efficient proposals
using HMC+NUTS. Since we construct the random chain in
the space of Q values instead of the space of rewards, used
by previous methods, we call our new method ValueWalk.

3.1 FINITE STATE AND ACTION SPACES

Let us first outline the algorithm for the case of finite state
and action spaces since the calculation can be performed ex-
actly in this case, and the later continuous algorithm builds
on this base case. We concentrate here on the calculation
of the posterior probability corresponding to a single pro-
posed set of Q values (which is performed at each step of
the HMC trajectory) and otherwise employ standard HMC.
Note that here, we assume the knowledge of the environ-
ment dynamics P , since this finite setting is close to that of
PolicyWalk [Ramachandran and Amir, 2007], which also
assumes this knowledge. However, the method can easily
be extended to the strictly batch setting using steps analog-
ous to the ones taken in the next subsection on continuous
spaces.

In this finite case, we maintain a vector Q ∈ R|S||A| repres-
enting the Q-value for each state-action pair. The first thing
to notice is that given such a vector, we can calculate the
corresponding reward vector of the same dimensionality as
Q using the Bellman equation as

R(s, a) = Q(s, a)−γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

πQ(a
′|s′)Q(s′, a′)

(4)
with either πQ(a′|s′) = I[a′ = argmaxa′′Q(s′, a′′)] or a
softmax approximation (which we use since it has the ad-
vantage of being differentiable using an inverse temperat-
ure coefficient ᾱ to regulate the softness of the approxim-
ation). Equation (4) can also be written in vector form as
R = (I−γP̄ )Q where P̄ is a |S||A|×|S||A| matrix whose
values are defined as P̄ (s, a; s′, a′) = P (s′|s, a)πQ(a′|s′).
In that case, given a prior pR over rewards, we can calculate
the prior of Q as

pQ(Q) = pR((I − γP̄ )Q) det(I − γP̄ ),

where pQ and pR are the prior probability densities of Q
and R respectively. Since P̄ is a stochastic matrix and 0 <
γ < 1, the determinant is always strictly positive.

This can be combined with the likelihood

L(D|Q) =
∏

(s,a)∈D

exp(αQ(s, a))/
∑
a′∈A

exp(αQ(s, a′))

to calculate the unnormalized posterior density p(Q|D) ∝
pQ(Q)L(D|Q) which we use in the standard HMC+NUTS
algorithm to produce samples from the posterior. Note that
the algorithm takes form of sampling Q-values, but produces
samples of rewards as a byproduct, which is what we are

Algorithm 1: Calculation of the unnormalized posterior
for finite S and A and known transition probabilities P
(performed in each step of HMC). The resulting candid-
ate reward sample R̄ is then accepted/rejected together
with the corresponding Q.
Data: a candidate matrix of Q values, set of expert

demonstrations D, prior over rewards pR
1 for s, s′ ∈ S, a, a′ ∈ A do
2 πQ(a′|s′) = I[a′ = argmaxa′′Q(s′, a′′)] ;
3 P̄ (s, a; s′, a′) = p(s′|s, a)π(a′|s′) ;
4 end
5 R̄ = (I − γP̄ )Q̄ where R̄, Q̄ are flattened vector

versions of the reward and Q-value matrices ;
6 pQ(Q) = pR(R̄) det(I − γP̄ ) ;
7 L(D|Q) =∏

(s,a)∈D exp(αQ(s, a))/
∑

a′∈A exp(αQ(s, a′)) ;
Result: p(Q|D) ∝ pQ(Q)L(D|Q); candidate sample

R̄

primarily interested in. Algorithm 1 summarizes this calcu-
lation. Note that Q here corresponds to the optimal Q value
(as opposed to the one corresponding to the expert policy).

Theorem 1 in Appendix B formally proves that even though
the algorithm primarily performs MCMC sampling over Q
values, the secondary Markov chain over rewards produced
by the algorithm also satisfies the detailed balance condition
with respect to the posterior over rewards and thus consti-
tutes a valid MCMC algorithm for sampling from the reward
posterior.

Note that the determinant needs to be recalculated only if
the optimal policy changes. Furthermore, we found that in
practice, the recovered samples do not differ significantly if
the determinant term is omitted.

See Section 4.1 for an example of this finite-case algorithm
applied to a gridworld environment. Note that if the reward
is known to depend only on the state, the sampling can
instead be performed over state-values V . Similarly, if it
depends on the full state, action, next state triple, it should
be performed over state-action-state values to maintain a
match in the dimensionality of the reward and value spaces.

The algorithm (and the Q-space trick) extends to the case of
unknown transition probabilities. See Appendix A for more
details on this.

3.2 CONTINUOUS STATE REPRESENTATIONS

For continuous or large discrete spaces, it is generally
no longer possible or practical to maintain a separate Q-
function parameter for each state, so we need to resort to
approximation. Thus, from now on, our inference will centre
around parameters θQ ∈ RnQ of a Q function approximator
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Qθ : Φ×A → R where Φ is the space of feature representa-
tions of the states. While the method is again centred around
the Q function, the algorithm can also produce samples
from the reward posterior at any set of evaluation points
of interest, Deval. Furthermore, a method such as warped
Gaussian processes [Snelson et al., 2003] can then be used
to generalize the reward posterior from Deval to new parts
of the state-action space.

The likelihood calculation remains very similar to the dis-
crete case:

L(D|θQ) =
∏

(s,a)∈D

exp(αQθQ(ϕ(s), a))∑
a′∈A exp(αQθQ(ϕ(s), a

′))
(5)

(assuming A to be bounded). What concerns the evaluation
of the prior, the reward corresponding to given Q-function
parameters can be expressed using the continuous Bellman
equation as

R(s, a) = QθQ

(
ϕ(s), a

)
− γEs′,a′|s,a

[
QθQ

(
ϕ(s′), a′

)]
on any subset of states and actions.

In general, the integral in Es′,a′|s,a[QθQ(ϕ(s
′, a′)] =∫

s′∈S p(s′|s, a)maxa′∈A QθQ(ϕ(s
′), a′) needs to be ap-

proximated, for which any of a number of numerical meth-
ods can be used, from grid sampling to Monte Carlo meth-
ods, to more sophisticated techniques like probabilistic nu-
merics [Hennig et al., 2022]. For most of these methods,
we approximate the integral using a discrete set of candid-
ate successor states Ssucc(s, a) =

{
s ∼ q(·|s, a)

}
sampled

from some proposal distribution q and then approximate the
integral by

1

|Ssucc|
∑

s′∈Ssucc

p(s′|s, a)
q(s′|s, a)

max
a′∈A

QθQ(ϕ(s
′), a′). (6)

The variant of the approximation we choose depends of
what information we have at our disposal:

• If we have access to a probabilistic model p̂ of the en-
vironment (which can either represent the true environ-
ment dynamics, if we know them, or our best inferred
model of the dynamics including any epistemic uncer-
tainty) that we can sample from, we can simply sample
Ssucc(s, a) = {s′ ∼ p̂(·|s, a)} and drop the importance
weight.

• If we can evaluate the density p̂ we can directly use
the importance sampling equation 6 with q being a
proposal distribution ideally close to p̂.

• If all we have is a static set of trajectories D+ – either
just the expert ones D, or also additional ones sampled
from another, possibly random, policy – we can crudely
approximate the reward for a transition s, a, s′ ∈ D+

using a singleton Ssucc(s, a) = {s′}. This is an approx-
imation made by the baseline AVRIL algorithm, so to

Algorithm 2: Calculation of the unnormalized posterior
probability with continuous state representations for a
single proposed parameter value θQ (performed in each
step of MCMC). The returned candidate reward samples
are accepted or rejected by the outer MCMC algorithm
together with the candidate parameters θQ.
Data: candidate parameters of the Q-function θQ, a set

of expert demonstarations D, a set of evaluation
locations Deval, prior over rewards pR

1 Initialize empty sequence Rcand of candidate reward
samples ;

2 for (s, a) ∈ Deval do
3 Sample a set of successor states

Ssucc = {s′′ ∼ p̂(·|s, a)};
4 R(s, a) = QθQ(ϕ(s), a)−

γ 1
|Ssucc|

∑
s′∈Ssucc

maxa′∈A QθQ(s
′, a′);

5 Append Rt to Rcand;
6 end
7 Use samples to evaluate the prior pR(Deval,Rcand) ;
8 Use demonstrations to evaluate the likelihood L(D|θQ)

per equation (5) ;
Result: unnormalized approximate posterior

p(θQ|D) ∝ pR(Deval,Rcand)p(D|θQ);
candidate reward samples Rcand.

match, we use it for the experiments in Section 4.3.
In that case we require that Deval ⊆ D+, and for
s, a, s′ ∈ D+ we can define an empirical transition
model p̂(s′′|s, a) = δs′(s

′′) to be used within the al-
gorithm.

The corresponding continuous version of the algorithm is
presented in Algorithm 2.

We can store both the Q function parameters θQ and the
corresponding reward samples depending on downstream
needs. We can then fit a warped Gaussian process to the
posterior reward samples to get a posterior reward distri-
bution over the whole state space. This can then be used
together with an algorithm for RL (or safe RL in particular)
to find an apprentice policy from the reward. Alternatively,
as a shortcut, the posterior over Q-functions can be used to
define an apprentice policy directly.

3.3 CONTINUOUS ACTIONS

The algorithm can be extended to continuous actions, repla-
cing the sum in the Boltzmann likelihood (5 by an integral,
and again, in turn, approximating it by a discrete set of
samples from the action space. Simple discretizations (such
as uniform sampling) can work well for low-dimensional
action spaces (as we illustrate in our safe navigation ex-
periment in the next section) but suffer from the curse of
dimensionality, so a more sophisticated scheme would be
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Table 1: Speed comparison. Samples per second produced
by PolicyWalk and ValueWalk on a 3x3, 6x6, and 12x12
gridworld respectively.

Num states PolicyWalk ValueWalk

9 5.84 28.83
36 0.46 13.75
144 0.26 4.85

needed for higher-dimensional action spaces. We leave that
for future work.

4 EXPERIMENTS

We tested our method on a small gridworld (for illustration
and to compare the speed to PolicyWalk [Ramachandran
and Amir, 2007], which our method builds upon but which
is restricted to such small finite-space settings) and on 4
simulated control tasks with continuous states.

4.1 GRIDWORLD

For an illustration of the method with easily interpretable
and visualizable features, we first test it on a simple grid-
world environment shown in Figure 1. We have generated
a fixed set of 50 demonstration steps in the environment
and used our method, ValueWalk (including the environ-
ment dynamics), the original PolicyWalk [Ramachandran
and Amir, 2007], and AVRIL [Chan and van der Schaar,
2021] (which does not use environment dynamics, making
the comparison unfair but illustrative of inherent limitations
of such model-free methods) to recover a posterior over
rewards from an independent normal prior with mean 0 and
standard deviation of 10. With the two MCMC methods,
we took a total of 10,000 MCMC samples spread across
5 parallel chains using HMC+NUTS with 1000 warm-up
steps per chain, which lead to R̂ ≤ 1.01 on each dimension
(where R̂ is the potential scale reduction factor [Gelman and
Rubin, 1992], a commonly used indicator that the chains
have mixed well). We then also run the methods on a 6x6
and 12x12 version of the gridworld to examine how the
compute times scale.

4.1.1 Results

Both PolicyWalk and ValueWalk (our algorithm) resulted in
matching posterior reward samples as expected (confimed
by two-sample Kolmogorov-Smirnov at α = 0.001; com-
parison of their essentially same cdfs can be found in the
supplement). The speed comparison of the two methods can
be found in Table 1, showing ValueWalk indeed runs faster
than the baseline PolicyWalk algorithm.

We also ran AVRIL on this simple grid world (which took
43s to converege). In terms of the resulting posterior, there
are 3 things to note (see Figure 1 centre and right). Firstly,
the posteriors are much tighter – the x-axis is zoomed in
about 5x relative to the ValueWalk histograms. This is due
to the fact that AVRIL does not model the uncertainty in
the Q-function, instead learning only a point estimate. The
reward posterior is then pegged to this Q-function point
estimate thus significantly reducing its variance. As a result,
both the reward of the obstacle and of the goal are extremely
unlikely under the posterior.

Secondly, we can observe that the posterior reward for the
obstacle is not any lower than that for most other states.
This is because this state is never visited in demonstrations,
and AVRIL – not taking the environment dynamics into
account – consequently does not update this value. This
illustrates an important downsides faced by methods without
an environment model. (Note that the model-free version of
ValueWalk would face the same issue.)

Finally, we can see that while the true posterior differs con-
siderably from normal (see especially the strong skew of
the negative-reward top middle cell), AVRIL is limited by
its normal variational distribution. While in theory, AVRIL
could be used with any variational family, we first need
to determine which family may be suitable, for which an
MCMC-based method such as ours is a useful instrument.

4.2 2D SAFE NAVIGATION ENVIRONMENT

To illustrate the potential of the full posterior over Q-values
for synthesizing safe policies in a continuous-space environ-
ment, we also test our method on a simple 2D safe naviga-
tion environment. The state consists of a 2D position within
the [−10, 10]2 box, and the agent has a 2D continuous ac-
tion at its disposal within an action space of [−1, 1]2, which
moves it by the given vector perturbed by white noise with
standard deviation of 0.1. The region [−9, 10] is a terminal
goal state with a reward of 1; however, there is also a hazard-
ous obstacle [4, 6]2 with a penalty of -10. We collected 10
demonstration trajectories with α = 20 and then ran Value-
Walk and AVRIL on these demonstrations. We then used
the two methods’ estimates of the optimal Q-function to
synthesize an apprentice policy. In AVRIL, we use the point
estimate that the method learns. For ValueWalk, we tried
policies optimizing the mean or the median of the Q-value
estimates, but also a conservative policy maximizing the 0.1
quantile intended to have lower risk of low rewards.

4.2.1 Results

Figure 2 illustrates the demonstrations used and the learnt
apprentice policies. Firstly, note that while the demonstra-
tions are highly stochastic, the methods learn estimates of
the optimal Q-function, thus possibly allowing them to pro-
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Figure 1: Left: Illustrative 3x3 gridworld. The agent always starts in the top left corner. The top right corner yields a reward
of 10 and is terminal. The top centre tile represents an unsafe state that should be avoided and yields a reward of -20. Centre:
Histograms of the samples from the posterior over rewards recovered by our ValueWalk corresponding to the 9 states of the
gridworld. Right: Density functions of the posterior over rewards recovered by AVRIL.
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Figure 2: Left: The 10 demonstrations used in the continuous 2D environment. Right: Trajectories of policies derived from
AVRIL and ValueWalk using an argmax of the inferred Q-values in each state. For AVRIL the Q-function point estimate is
used. For ValueWalk, median and 0.1 quantile of the posterior distribution over optimal Q-values are used.
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Figure 3: The test performance of an apprentice agent for ValueWalk and 3 baseline methods for different numbers of
demonstration trajectories. The ValueWalk apprentice agent takes the action that maximizes the median of the posterior
Q-value samples. The line shows mean performance across 10 runs with different sets of expert demonstrations; the shaded
region shows mean±std.

duce apprentice policies with performance superior to that
of the expert. Secondly, even to a human eye, the demon-
strations leave it ambiguous whether there may be an unsafe
region that the expert is avoiding, or whether the said area
was missed by chance. While both the AVRIL apprentice
policy, and the ValueWalk policies maximizing the mean
and median of the Q-value distribution tend to go straight to
the goal region (hitting the hazardous obstacle between 68
and 81% of cases), the 0.1-quantile-maximizing policy tends
to avoid the region (hitting it in only 13% of cases across
100 sampled trajectories). This illustrates an important bene-
fit of recovering a full posterior – it allows producing similar
conservative policies based on statistics of the posterior dis-
tribution other than the usual mean.

4.3 CLASSIC CONTROL ENVIRONMENTS

To allow for direct comparison, we also evaluated Value-
Walk on three classic control environments that were used
to evaluate AVRIL by its authors: CartPole, where the goal
is to balance an inverted pendulum by controling a cart un-
derneath it, Acrobot, where the goal is to swing up a double
pendulum using an actuated joint, and LunarLander, where
the goal is to safely land a simulated lander on the surface of
the moon. We used the same setup as was used for AVRIL to
study the performance of an apprentice agent as a function
of the number of demonstration trajectories for 1, 3, 7, 10,
and 15 trajectories. The apprentice agent was evaluated on
300 test episodes and the mean reward is reported. We also
compare against energy-based distribution matching (EDM;
Jarrett et al. [2020]) – a successful method for strictly batch
imitation learning – and plain behavioural cloning (BC) as
a simple baseline. Baseline results were taken from Chan
and van der Schaar [2021].

4.3.1 Results

The results are plotted in Figure 3. While both agents do
close to expert-level when provided with 15 expert traject-
ories, our agent reaches this level with much fewer expert
demonstrations. We hypothesize that this is due to treating
the Q-function in a Bayesian way, as opposed to a point
estimate in AVRIL, leveraging the advantages of a fully
Bayesian treatment in the low data regime.

To support this, we can look at the log likelihoods of the
action predictions on a hold-out set of 100 test trajector-
ies and the entropies of the predictive posterior shown in
Figure 4. For ValueWalk, the log likelihood increases as
the method is given more trajectories, while the prediction
entropy either decreases or stays about level as we would
expect from a Bayesian method given increasing amounts
of information. On the other hand, we do not consistently
see similar behaviour in AVRIL. The test log likelihood
consistently increases only in the case of the LunarLander
environment, where it, however, starts from extremely low
levels (the initial mean log probability of -18.0 would cor-
respond to a probability of 10−8, suggesting the method
has been putting practically 0 probability on actions taken
by the expert among only 4 possible actions). Also, the
prediction entropy of AVRIL tends to increase with seeing
more trajectories. That suggests that AVRIL may be exhib-
iting overfitting behaviour in the low data regimes, which
Bayesian methods should generally avoid.

The ValueWalk experiments were run until we get a well
mixed chain, which can take between 4 and 38 hours of
wall time on a single Nvidia RTX 3090 GPU2 where AVRIL

2Experiments with fewer trajectories were run on a CPU.
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Figure 4: The log likelihood on a hold-out set of 100 test demonstrations and the entropy of the action predictions produced
by ValueWalk and AVRIL.

takes 1-5 minutes to converge.

5 DISCUSSION

We presented a method that allows us to apply MCMC-
based Bayesian inverse reinforcement learning to continu-
ous environments. The method maintains the attractive prop-
erties of MCMC methods: it is agnostic to the shape of
the posterior (where variational methods assume a partic-
ular parameterized distribution family) and given enough
compute, produces samples from the true posterior. This
comes at a large computational cost relative to cheaper meth-
ods, such as variational inference. However, we still think
MCMC-methods do have a role to play in the Bayesian IRL
ecosystem.

Firstly, we have shown that staying true to the Bayesian pos-
terior does bring benefits in terms of superior performance
on imitation learning tasks. Furthermore, the computational
cost is paid in the learning phase, with inference at deploy-
ment being fast (sub millisecond per step in all cases, which
would be sufficient for real-time control in most possible
use cases and could be further optimized).

Secondly, we think that having a method that can draw
samples from the true posterior can be extremely important
in the process of developing other, faster or easier to scale
methods, since it allows us to assess how their approxima-
tion deviates from the true posterior and how it impacts their
performance. Also, variational methods in particular require
a pre-specified family of distributions over which the optim-
ization is subsequently run. ValueWalk can be used in an
exploratory phase to determine what family of distributions
may be appropriate for the problem at hand, before possibly
using the advantages of variational methods to scale up.

Thus, despite their steep computational cost, we think
MCMC methods have their place in Bayesian inverse re-
inforcement learning, and our method is a sizable step in
extending them up to a wider range of settings.
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A UNKNOWN TRANSITION PROBABILITIES

Section 3.1 presents a version of the ValueWalk algorithm for finite state and action spaces that assumes known transition
probabilities. However, the key trick used in ValueWalk extends to unknown transition probabilities as well.

One simplified option to handle unknown transitions, also employed in the continuous-state case in Section 3.2 matching the
setting used by AVRIL, is replacing the transition probabilities with their empirical estimate p̂(s′|s, a) = ξ(s, a, s′)/ξ(s, a)
where ξ(s, a, s′), ξ(s, a) are the numbers of occurrences in the set of demonstration set of the transition (s, a, s′) and
state-action pair (s, a). In the finite-state, this would mean limiting the evaluation of the prior in Algorithm 3 to only those
state-action pairs that do occur in the data (i.e. replacing vectors and matrices on lines 3-6 by the appropriate sub-vectors
and sub-matrices).

A more principled Bayesian alternative is of course using full Bayesian inference also over transitions – in that case, we can
perform the MCMC sampling jointly over both the transitions and the Q function parameters, recovering samples from the
full joint posterior. The changes needed are (1) treating parameters of the transition model as inputs in the algorithm, (2)
adding a prior over those parameters (so the joint prior will be a product of the Q-parameter prior and the transition-parameter
prior), and (3) including transition probabilities in the likelihood. Here is the adaptation of the finite-space algorithm to this
case of unknown probabilities:

Algorithm 3: Calculation of the unnormalized posterior for finite S and A with unknown transition probabilities
(performed in each step of HMC). The resulting candidate reward sample R̄ is then accepted/rejected together with the
corresponding Q and P.
Data: a candidate matrix of Q values, a candidate transition matrix P , set of expert demonstrations D, prior over

rewards pR, prior over transitions pP
1 for s, s′ ∈ S, a, a′ ∈ A do
2 π(a|s) = exp(ᾱQ(s, a))/

∑
a′∈A exp(ᾱQ(s, a′));

3 P̄ (s, a; s′, a′) = P (s′|s, a)π(a′|s′) ;
4 end
5 R̄ = (I − γP̄ )Q̄ where R̄, Q̄ are flattened vector versions of the reward and Q-value matrices ;
6 pQ(Q) = pR(R̄) det(I − γP̄ ) ;
7 p(D|Q) =

∏
(s,a,s′)∈D P (s′|s, a) exp(αQ(s, a))/

∑
a′∈A exp(αQ(s, a′)) ;

Result: p(Q,P |D) ∝ pP (P )pQ(Q)p(D|Q,P ); candidate sample R̄
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B PROOF OF SOUNDNESS OF THE ALGORITHM

Theorem 1. Assume that the transition kernel qQ satisfies the detailed balance condition

qQ(Q
′|Q)

qQ(Q|Q′)
=

pQ(Q
′|D)

pQ(Q|D)

with respect to the posterior over Q values defined in Algorithm 1. Then the associated implicit Markov chain over rewards
also satisfies the detailed balance condition with respect to the posterior pR(R|D).

Proof. Let qQ be the transition kernel over Q-values that satisfies the detailed balance condition with respect to the posterior
pQ(Q|D) as assumed in the theorem statement.

The implicit transition kernel qR over rewards induced by qQ can be expressed as

qR(R
′|R) = qQ(Q(R′)|Q(R))

∣∣∣∣det(∂Q(R′)

∂R′

)∣∣∣∣ (7)

where Q(R) = (I − γP̄ )−1R is the Q-value corresponding to reward R as used in Algorithm 1. The determinant term
accounts for the change of variables from Q to R.

The posterior over rewards can be expressed in terms of the posterior over Q-values as

pR(R|D) = pQ(Q(R)|D)

∣∣∣∣det(∂Q(R)

∂R

)∣∣∣∣ = pQ(Q(R)|D)
∣∣det(I − γP̄ )−1

∣∣ . (8)

Now consider the ratio of the implicit transition kernel:

qR(R
′|R)

qR(R|R′)
=

qQ(Q(R′)|Q(R))

qQ(Q(R)|Q(R′))

∣∣∣det(∂Q(R′)
∂R′

)∣∣∣∣∣∣det(∂Q(R)
∂R

)∣∣∣ =
pQ(Q(R′)|D)

pQ(Q(R)|D)

∣∣∣det(∂Q(R′)
∂R′

)∣∣∣∣∣∣det(∂Q(R)
∂R

)∣∣∣ =

pR(R
′|D) det((I − γP̄ ′)−1)

pR(R|D) det((I − γP̄ )−1)

det(I − γP̄ ′)

det(I − γP̄ )
=

pR(R
′|D)

pR(R|D)
(9)

where the second equality follows from the assumed detailed balance condition on qQ, the last equality follows from the
expression for pR(R|D) derived above, and P̄ ′ are the joint state-action transitions corresponding to Q′. Thus, the implicit
Markov chain over rewards induced by the transition kernel qQ satisfies detailed balance with respect to the posterior
pR(R|D), as claimed.

The theorem establishes an important property of the ValueWalk method, namely that the implicit Markov chain over
rewards induced by the HMC-based sampling of Q-values satisfies detailed balance with respect to the true posterior over
rewards given the demonstrations, pR(R|D). This property is crucial for the soundness of the method.

Detailed balance is a sufficient condition for the Markov chain to have a stationary distribution equal to the target distribution,
in this case pR(R|D). This means that, assuming the chain is ergodic, the samples of rewards obtained from the ValueWalk
method will asymptotically follow the true posterior distribution, regardless of the initial distribution. In other words, the
theorem guarantees that, given enough samples, ValueWalk will correctly characterize the posterior uncertainty over rewards,
which is a key goal of Bayesian inverse reinforcement learning.

C CONTINUOUS AVRIL

We are comparing ValueWalk with AVRIL Chan and van der Schaar [2021], which was originally designed to work with
discrete actions. When we are comparing our method to AVRIL on continuous-action environments, we use the following
continuous extension of AVRIL:

1. The original Boltzman likelihood 1 is replaced by its continuous version 5, which, in practice, gets calculated using the
same approximation as our method.

2. Instead of taking the state as input and producing an output for each of the discrete actions, the Q function and the
variational distribution for the reward now takes in a state-action pair (or a batch of those) and produces a single
Q-value for those or a single set of variational distribution parameters.
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D EXPERIMENT DETAILS

For the gridworld experiments, we used a version of AVRIL learning a Q-value for each state-action pair and a mean and
variance value for the reward in each state. We use a matching setup for both ValueWalk and PolicyWalk.

In the continuous state space environments, for the 3 continuous baseline methods, we match the setup from Chan and
van der Schaar [2021] and use neural network models with 2 hidden layers of 64 units and an ELU activation function. For
our experiments, we scale up the network size with the complexity of the problem: we use one hidden layer with 8 units for
the 2D safe navigation task and Cartpole, 1 layer of 16 units for Acrobot, and 2 layers of 32 units for LunarLander. In each
case, we also tried running AVRIL with a matching network size but in each case it performed similarly or usually worse
than the default 2x64 setup for which results are reported.

With ValueWalk, we use the Pyro [Bingham et al., 2018] implementation of HMC+NUTS, which we ran with 2,000 warm-up
steps and 20,000 inference steps. We automatically tune the step size during warm-up but do not tune the mass matrix.

In the continuous environments, we use a Gaussian process prior with an RBF kernel with fixed scale of 1 and fixed
lengthscale of 0.2 for Cartpole and Acrobot and 0.05 for Lunar Lander (chosen manually based on the distribution of features
in each environment).

In Cartpole, Acrobot, and Lunar Lander, we reuse the demonstration sets provided by the authors of AVRIL. Each contains
1000 demonstration trajectories, from which we randomly chose a set of 100 test trajectories and then randomly sampled the
reported numbers of train trajectories. We reran most experiments 10 times with different random sets of training trajectories
and different random initializations.

Unless otherwise stated, we use a Boltzmann rationality coefficient of 1.

E ADDITIONAL DETAILS OF RESULTS

E.1 GRIDWORLD EXPERIMENTS

Figure 5 shows the empirical cumulative distribution functions of the 10,000 posterior reward samples collected by
PolicyWalk and ValueWalk and confirms both methods track the same posterior.

Figure 6 shows 2-D histograms of pairwise joint posteriors over rewards of the 9 states of the gridworld. Two aspects of the
expert’s behaviour are captured by this plot and may not be obvious from the simple histograms in Figure 1. Firstly, the
agent heading to the terminal top right corner can be explained either by the reward there being positive, or by the reward
in other states (especially the initial state) being negative and thus the agent using the terminal state as a way to escape
incurring further negative rewards. Secondly, note that practically all of the probability mass is placed on the reward of the
obstacle tile being lower than that of the two tiles below, thus explaining the expert avoiding the obstacle tile.

The plot also clearly shows that the posterior is non-Gaussian (note especially the sharp edge expressing high confidence
that the ratio of the two values does not cross a certain threshold) and thus could not be captured by the Gaussian-assuming
variational prior.

Note that this plot was produced with a prior standard deviation of 33 and an obstacle reward of -100.
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Figure 5: Cumulative distribution functions of the posterior distributions over rewards recovered by PolicyWalk and
ValueWalk in the 3x3 gridworld, illustrating that the two methods recover the same posterior.
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Figure 6: 2-D histograms representing the joint posteriors of the rewards associated with the 9 states of the gridworld
(enumerated left-to-right, top-to-bottom, so state 3 is the goal state in the top right corner.
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