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Abstract

Segmentation of enhancing tumours or lesions from MRI is important for detecting new
disease activity in many clinical contexts. However, accurate segmentation requires the
inclusion of medical images (e.g., T1 post-contrast MRI) acquired after injecting patients
with a contrast agent (e.g., Gadolinium), a process no longer thought to be safe. Although
a number of modality-agnostic segmentation networks have been developed over the past
few years, they have been met with limited success in the context of enhancing pathology
segmentation. In this work, we present HAD-Net, a novel offline adversarial knowledge
distillation (KD) technique, whereby a pre-trained teacher segmentation network, with
access to all MRI sequences, teaches a student network, via hierarchical adversarial training,
to better overcome the large domain shift presented when crucial images are absent during
inference. In particular, we apply HAD-Net to the challenging task of enhancing tumour
segmentation when access to post-contrast imaging is not available. The proposed network
is trained and tested on the BraTS 2019 brain tumour segmentation challenge dataset,
where it achieves performance improvements in the ranges of 16% - 26% over (a) recent
modality-agnostic segmentation methods (U-HeMIS, U-HVED), (b) KD-Net adapted to
this problem, (c) the pre-trained student network and (d) a non-hierarchical version of the
network (AD-Net), in terms of Dice scores for enhancing tumour (ET). The network also
shows improvements in tumour core (TC) Dice scores. Finally, the network outperforms
both the baseline student network and AD-Net in terms of uncertainty quantification for
enhancing tumour segmentation based on the BraTS 2019 uncertainty challenge metrics.
Our code is publicly available at: https://github.com/SaverioVad/HAD_Net

Keywords: Knowledge Distillation, Adversarial, Discriminator, Hierarchical, Enhancing
tumour, Missing Sequence, Contrast Enhancement

1. Introduction

The inclusion of different MRI sequences (e.g. T1, T2, FLAIR) (Van Tulder and de Brui-
jne, 2015; Bakas et al., 2018) greatly improves the performance of automatic tumour or
lesion segmentation from magnetic resonance imaging (MRI). In particular, the presence
of contrast enhanced T1-weighted (T1ce) MRI has been shown to play a crucial role in
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automatic segmentation of enhancing tumours or lesions from MRI, and therefore is impor-
tant for determining treatment efficacy, patient prognosis (Pallud et al., 2009) and tumour
grading (Upadhyay and Waldman, 2011). However, acquiring T1ce images involves inject-
ing a patient with a contrast agent (e.g. Gadolinium), a process that is invasive and no
longer thought to be safe for patients (Perazella, 2008). Although challenging, an automatic
segmentation technique that can accurately segment enhancing tumour or lesions reliably
without requiring T1ce images would have an enormous impact on patient care.

Recently, a few deep learning techniques have been introduced to address the problem of
tumour segmentation with missing MRI sequences, however none have specifically focused
on missing T1ce. This includes networks designed to synthesize the missing MRI sequences
using a Generative Adversarial Network (GAN) (Sharma and Hamarneh, 2019) or a Convo-
lutional Neural Network (CNN) (Mehta and Arbel, 2018), and then use them to improve the
downstream segmentations (Van Tulder and de Bruijne, 2015). Several modality-invariant
techniques, such as U-HeMIS (Havaei et al., 2016) and U-HVED (Dorent et al., 2019), were
developed to segment tumour sub-tissues given any combination of available MR sequences.
However, the performance of these models in segmenting enhancing tumours degrades sub-
stantially when T1ce is missing. Additionally, a recent knowledge distillation (KD) network
KD-Net (Hu et al., 2020) has shown some success in segmenting brain tumours when only
one MR sequence (e.g., T1ce) is provided during inference.

In this paper, we introduce HAD-Net, a novel hierarchical adversarial KD network,
where a pre-trained teacher, with access to all images, is used to teach a student network to
better perform segmentation when crucial information, here T1ce, is absent during inference.
This is achieved through a hierarchical discriminator which distills the latent information
encoded in the teacher’s feature maps to the student at different resolution scales. While hi-
erarchical discriminators exist, they can only be found in the generative modeling literature
(e.g. GAN), without KD (Karnewar and Wang, 2019; Valvano et al., 2020). Furthermore,
while adversarial KD techniques already exist, they are not hierarchical in nature (Zhang
et al., 2020; Chung et al., 2020). Therefore, to the best of our knowledge HAD-Net is the
first method to effectively combine these two components to permit KD to better overcome
the large domain shift arising from the absence of crucial information during inference.

We evaluate our method on the Brain Tumour Segmentation (BraTS) 2019 challenge
dataset (Menze et al., 2014), where HAD-Net achieves performance improvements over
modality-agnostic segmentation methods such as U-HeMIS and U-HVED in terms of Dice
scores for enhancing tumour (ET), by 18.9% and 26.0% respectively, as well as improvements
of 17.2% over KD-Net+, a variant of KD-Net adapted to this context (see section 3.1). Our
network also shows improvements in ET Dice scores over both the baseline student network
(without the teacher) and a non-hierarchical version of the network (AD-Net), by 16.2%, and
18.7% respectively. In addition, HAD-Net also shows some relatively smaller improvements
in tumour core (TC) Dice scores. Finally, HAD-Net shows improvements in quantifying
uncertainty in the resulting ET segmentations over the pre-trained student network and
AD-Net, based on the metric from the BraTS 2019 uncertainty quantification challenge
(Mehta et al., 2020).
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Figure 1: Diagram of HAD-Net (A), and several competing variants (B-E). Note that for
HAD-Net, AD-Net, and KD-Net+, the teacher network is frozen during training, and only
the student network is used during inference.

2. HAD-Net

2.1. Method

The HAD-Net (Hierarchical Adversarial Distillation Network) architecture consists of three
main components: (1) the teacher network, (2) the student network, and (3) the hierarchical
discriminator (HD). A diagram of the architecture is shown in Figure 1(A).

In this work, we focus on multi-class tumour segmentation. In this context, the teacher
network has access to all available MRI sequences as input (e.g., T1ce, T1, T2, and FLAIR),
while the student network only has access to the pre-contrast MRI sequences, Xpre (e.g. T1,
T2, FLAIR). The HD component attempts to bridge the domain gap between the student
and the teacher by mapping their segmentations (Sseg and Tseg) as well as their multi-scale
feature maps (Slatents and Tlatents) to a common space. This is done by concatenating
the HD’s features with the corresponding multi-scale feature maps from either the student
or the teacher network, which is demonstrated in Figure 1(A). This is in contrast to the
more common, non-hierarchical adversarial distillation network, henceforth denoted AD-
Net, which only provides the student and teacher final segmentations as inputs to the
Discriminator (see Figure 1(B)). By forwarding the hierarchical latent representations to the
HD, global and local information is distilled. Furthermore, a pathway is created between
the discriminator and the student network that facilitates gradient flow. This helps to
address the issue of vanishing gradients, a problem which plagues many modern adversarial
networks (Wiatrak et al., 2019; Barnett, 2018).

The role of the HD is to try to distinguish the teacher’s segmentations and intermediate
latent representations from the student’s. In classical terminology popular in the GAN
literature (Goodfellow et al., 2014), the student acts as the generator, generating “fake”
data, the teacher’s segmentations and intermediate latent representations act as the “real”
data, and the HD attempts to distinguish between the “real” and “fake” data samples.
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Through the classical adversarial game, the domain shift is addressed as the student learns
to bring its segmentation and underlying latent representations closer to those of the teacher.

Prior to training HAD-Net, both the student (Figure 1(D)) and the teacher (Figure 1(E))
networks are pre-trained on the task of multi-class tumour segmentations 1. During the
training of HAD-Net, the teacher network is frozen, while the weights of the student net-
work and the HD are updated. During inference, the student performs multi-class tumour
segmentations without contrast-enhanced images (eg. T1ce). Although there will likely be
some loss of accuracy when compared to the segmentation results of the teacher, it is an-
ticipated that learning from the teacher will lead to significant improvements over baseline
methods.

2.2. Network Architecture

The student and the teacher networks are 3D U-nets (Çiçek et al., 2016) adapted from the
No New-Net model (Isensee et al., 2018). The Hierarchical Discriminator (HD) is a fully
convolutional hierarchical patch-based discriminator (Isola et al., 2017; Cirillo et al., 2020)2.

2.3. Loss

The student network is trained using the student loss, denoted as LS , which consists of the
weighted combination of two terms: (1) a weighted cross-entropy (CE) loss term between
the student network segmentation, Sseg, and the ground truth segmentation, ŷ, and (2)
a Mean Squared Error (MSE) adversarial loss term (Mao et al., 2017)(see Equation 1).
The overall LS loss ensures that the student and teacher network outputs and features
are mapped to a common representation, and that this ultimately translates to improved
segmentation performance for the student network.

LS = CE[Sseg, ŷ] + λ ∗MSE[HD(Xpre,Sseg,Slatent),1] (1)

The HD is trained using the LS-GAN (Mao et al., 2017) loss, denoted as LHD. It is made
up of two Mean Squared Error (MSE) loss terms (see Equation 2). One term is between
the HD output, after being passed a “fake” data sample from the student, and a tensor of
all zeros (Isola et al., 2017). The other term is the MSE loss between the HD output, after
being passed a “real” data sample from the teacher, and a tensor of all ones. The overall
LHD loss ensures that the HD is able to properly distinguish the student’s output and
multi-scale features from those of the teacher, which ultimately allows for the distillation
of meaningful information to the student network via the adversarial component of LS .

LHD = MSE[HD(Xpre,Sseg,Slatent),0] +MSE[HD(Xpre,Tseg,Tlatent),1] (2)

3. Experiments and Results

3.1. Experiments

In this paper, our experiments are focused on brain tumour sub-structure segmentation from
MRI without post-contrast T1 images (T1ce). The specific objectives of the experiments

1. The details of the pre-training procedure can be found in Appendix B.
2. Additional architectural details pertaining to each component of HAD-Net can be found in Appendix A.
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Model Teacher
Pre-Trained

HAD-Net AD-Net KD-Net+ U-HeMIS U-HVED
Student

WT 89.6 ± 08.0 87.9 ± 12.4 87.5 ± 07.6 88.1 ± 09.4 88.9 ± 08.2 86.9 ± 11.7 86.9 ± 11.9
TC 79.1 ± 20.7 62.5 ± 21.9 66.7 ± 19.7* 64.5 ± 17.2 63.3 ± 17.2 64.3 ± 18.3 61.5 ± 21.0
ET 73.3 ± 30.2 34.3 ± 25.3 39.8 ± 26.9** 33.5 ± 22.2 33.9 ± 22.9 33.5 ± 23.3 31.6 ± 20.9

Table 1: Table showcasing the percentage (%) Dice scores (mean ± std) achieved by each
method on the BraTS 2019 Validation set for whole tumour (WT - ), tumour core (TC -

), and enhancing tumour (ET - ). (*) and (**) denote a statistically significant difference
(p < 0.05 and p < 0.001) between HAD-Net and all other methods, determined using a two-
sided paired t-test. Note that only the Teacher network had access to the T1ce sequence,
and therefore performed the best. Also, note that all methods (aside from the teacher)
performed similarly for WT segmentation, with no statistically significant differences.

are to show improvements in segmenting enhancing tumour, a problem that is yet to show
good results and whose clinical implications are important in a number of domains, while
maintaining or improving the segmentation results for the other structures. To that end,
we compare HAD-Net to the modality-agnostic methods, U-HeMIS and U-HVED 3. We
also compare to KD-Net+ (Figure 1(C)), a baseline which maintains the original KD-Net’s
KD framework but, for a fair comparison, replaces its student and teacher networks with
HAD-Net’s. To evaluate the advantages of a hierarchical discriminator, we compare HAD-
Net with a non-hierarchical adversarial distillation network, AD-Net (Figure 1(B)). Results
from the pre-trained student (Figure 1(D)) and teacher networks (Figure 1(E)) act as lower
and upper bounds for performance comparisons. In addition to traditional Dice measures,
we also examine the performance of the proposed method in the context of uncertainty
quantification, specifically exploring if the model is correct when it is confident, and more
uncertain when it is incorrect (Mehta et al., 2020) 4.

3.2. Dataset

For our experiments, all methods make use of the MICCAI BraTS 2019 challenge training
and validation datasets (Menze et al., 2014; Bakas et al., 2018). The training set consists
of 335 cases (259 High-Grade Glioma (HGG), and 76 Low-Grade Glioma (LGG) patients),
while the validation set consists of 125 cases. Four MRI sequences are available for each
patient: T1, T1ce, T2, and FLAIR. The challenge provides labels for only the training
dataset in the form of segmentation maps depicting 3 tumour sub-tissues: necrotic non-
enhancing tumour core ( ), peritumoral edema ( ), and GD-enhancing tumour ( ) , and the
background ( ). In order to provide a qualitative analysis and comparison of the methods,
the training set was randomly split into a training, validation, and testing set (200:66:69
split). The HGG and LGG samples were split proportionally between these sets5.

We evaluated the quantitative performance of HAD-Net and the competing methods
by uploading the segmentation maps produced on the BraTS 2019 validation set. Quanti-
tative assessment was provided by the organizers, thus permitting objective assessment of

3. We used the publicly available code for U-HeMIS and U-HVED provided by the authors:
https://github.com/ReubenDo/U-HVED.

4. See appendix D for more details on the implementation of the competing methods.
5. More information outlining the data pre-processing procedure can be found in Appendix C.
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Figure 2: Qualitative comparison of different network outputs for MRI slices from 4
different cases belonging to the local testing set.

competing methods on a dataset where no manual segmentations are provided. Metrics for
success are based on the segmentation of whole tumour (WT - ), tumour core (TC -

), and enhancing tumour (ET - ).

3.3. Quantitative Results

Table 1 shows the provided Dice coefficients for the proposed HAD-Net as well as the
competing methods. As expected, the teacher, with access to all MRI sequences, has
the highest Dice scores. However, HAD-Net outperforms all other competing methods
in segmenting TC and ET. The overall effectiveness of knowledge distillation in this domain
is depicted in its overall improvements over the pre-trained student network of 16.2% and
6.7% in Dice scores for ET and TC, respectively. HAD-Net also shows similar performance
improvements over AD-Net, 18.7% for ET Dice and 3.3% for TC Dice, indicating the pivotal
importance of the hierarchical component of the knowledge distillation. The proposed HAD-
Net also shows statistically significant Dice performance gains over KD-Net+, U-HeMIS, and
U-HVED by 17.2%, 18.9%, and 26.0%, respectively, for ET, and by 5.4%, 3.6%, and 8.4%,
respectively, for TC. In fact, the paired t-tests between HAD-Net’s Dice scores and those of
the other methods showed p-values of less than 0.001 for the ET Dice scores, and 0.05 for
the TC Dice scores. This is evidence that HAD-Net is able to successfully distill meaningful
information from the teacher to the student, ultimately allowing for better segmentation
when contrast-enhanced images (T1ce) are unavailable. All methods performed similarly
in terms of segmenting WT (no statistically significant difference), therefore HAD-Net’s
gains in ET and TC segmentation performance were not attained at the expense of WT
segmentation accuracy.

3.4. Qualitative Results

Although Dice scores provide a unified, objective measure for assessing the relative per-
formances of different multi-class tumour segmentation models on the same dataset, they
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HAD-Net AD-Net
Pre-Trained

Student

Uncertainty Metric (↑) 0.6084 * 0.5894 0.5137

Table 2: Comparison of quantified uncertainty for enhancing tumour between HAD-Net,
AD-Net, and pre-trained student output using the BraTS 2019 uncertainty quantification
challenge metric (Mehta et al., 2020). (*) denotes statistically significant differences, where
p < 0.01, between HAD-Net and all other methods, using a two-sided paired t-test.

do not convey the entire story. Qualitative comparisons of the results produced by vari-
ous models permit examination of the subtle differences that can potentially have serious
clinical implications. To that end, Figure 2 depicts the segmentation results produced by
various models on 4 patient cases from the local testing set, where the slices of interest were
chosen based on how clearly they depict the prominence of enhancing tumours. From these
examples, HAD-Net clearly produces segmentation outputs that are most near to those of
the teacher network and to ground truth (GT), as compared to other methods, particularly
for enhancing tumour and necrotic core. In the example in the third row of Figure 2, in
particular, only HAD-Net is able to correctly identify the absence of necrotic core, while all
other competing methods incorrectly classify the center of the tumour as necrotic core. In
the last row, one can see that the competing methods severely over-segment necrotic core,
a mistake that is less pronounced for HAD-Net’s output. That being said, this case does
indicate that there is still room for improvement in the proposed model, as HAD-Net still
confuses edema and necrotic core in some areas. This indicates that additional information
remains to be learned from the teacher in order to avoid these types of errors.

3.5. Uncertainty Quantification

As expected, HAD-Net did not perform as well on enhancing tumour segmentation as
the Teacher network, which has access to all MRI sequences. As such, it is important to
quantify the uncertainties in the segmentation results to permit both downstream tasks and
clinicians to assess the confidence of the system in the outputs. Therefore, it is essential that
the uncertainties convey that when the system is confident in its assertions, it is correct, and
that when it is not correct, it is less certain. Given this desired outcome, we now compare
the quality of the uncertainties produced by HAD-Net with other competing models. To
this end, we adopt the metrics used in the BraTS 2019 Uncertainty Quantification Challenge
(Mehta et al., 2020).

Given that HAD-Net, AD-Net, and the pre-trained student network are trained using
Dropout, Monte-Carlo-Dropout (Gal and Ghahramani, 2016) is used at test time to gener-
ate an uncertainty measure associated with their outputs6. The outputs are sampled 100
times, and entropies (Gal et al., 2017) are computed at each voxel. As the main drop in
performance occurs in the segmentation of enhancing tumour when T1ce is not provided,
focus is placed on the resulting uncertainties for this structure. To be consistent with the
challenge, the uncertainties are normalized to lie between 0-100. Voxels are then filtered out

6. Please note that Dropout was not used in U-HeMIS nor for U-HVED and therefore they could not be
used for comparison.
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Figure 3: Comparisons of uncertainty thresholding on a example slice for enhancing tu-
mour segmentation for HAD-Net, AD-Net and the pre-trained student: (a) T1ce MRI, (b)
”Ground truth” label, (c) Prediction, (d) Prediction without filtering (T=100), and (e)-(g)
Filtering with uncertainty thresholds (T) of 75, 50 and 25.

at different uncertainty thresholds (T=100, 75, 50, 25), such that all voxels with uncertainty
values above T take on a new class value of uncertain and are removed from consideration
in the segmentation metrics. The desired outcome is that once more uncertain voxels are
filtered out, the segmentation performance on the remaining voxels should increase.

Table 2 shows the results comparing the uncertainty scores from the challenge for HAD-
Net, AD-Net and the pre-trained student network. The scores range from 0-1, where a higher
value is better (Mehta et al., 2020). HAD-Net shows statistically significant improvements
over the other models. Figure 3 shows qualitative results on a case with one large enhanced
tumour. As the uncertainty threshold is decreased (T=100, 75, 50, 25), HAD-Net’s more
false negative voxels are marked as uncertain compared to true positive voxels. This leads
to better performance on the remaining voxels. This is in contrast with AD-Net and the
pre-trained student network, where, with the decrease in T, more true positive voxels are
marked as uncertain compared to false negative voxels. This implies that HAD-Net is more
confident in its correct assertions and more uncertain in its incorrect assertions.

4. Conclusions

In this paper, we introduced HAD-Net, a novel adversarial knowledge distillation network,
where the teacher network teaches the student network, via hierarchical adversarial learn-
ing, how to better overcome the domain shift presented when key images are not available
during inference. We applied the method to the open problem of brain tumour sub-tissue
segmentation, where we showed significant performance improvements in segmenting en-
hancing tumours without T1ce over baseline methods, including recent modality-agnostic
methods and knowledge distillation networks. The effect of the remaining errors was par-
tially mitigated through uncertainty measures that reflected that the system is correct when
confident and more uncertain when incorrect. The problem of segmenting enhancing tu-
mours or lesions in medical images without contrast enhancing images is important in many
clinical contexts, and there is room for further performance improvements. Future work will
adapt HAD-Net to other cancers and neuro-degenerative diseases.
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Figure 4: Diagram of the proposed HAD-Net. Note that components surrounded with a
red border are frozen during training, and that only the components surrounded by a blue
border are used during inference/testing.

Appendix A. Network Architecture Details

As mentioned previously, the architectures of both the teacher network and the student
network are adapted from the No New-Net model (Isensee et al., 2018). They each consist
of four scales of encoder and decoder blocks, with a center block at the bottleneck of the U-
Net (Çiçek et al., 2016) and an output block present after the final decoder block. The inner
components of the encoder blocks, the decoder blocks, and the center block are identical.
Each block, except the first encoder block, begins with a dropout layer (Srivastava et al.,
2014) that has dropout probability p. This is followed by two CIL layers, where a CIL
layer refers to the cascaded combination of a convolution layer, an instance norm layer
(Ulyanov et al., 2016), and a leaky ReLU activation layer (Maas, Andrew L and Hannun,
Awni Y and Ng, Andrew Y, 2013). In each block, convolution layers utilize a kernel size
of 3x3x3 with k ∗ 2n filters, where n denotes the scale in which the block resides. The
only difference between the three block types is the operations performed on their outputs.
Encoder block outputs are passed through a maxpooling layer, with a kernel size of 2, prior
to being forwarded to the next encoder block. On the other hand, decoder block and center
block outputs are upsampled, via nearest neighbour interpolation, prior to being passed
to the next decoder block. Finally, the aforementioned output block consists of a single
convolutional layer with a kernel size of 1x1x1.

The HD consists of 4 discriminator blocks and a final output layer. The first discrim-
inator block consists of a convolution layer and a leaky ReLU activation layer. The next
3 discriminator blocks consist of a convolution layer, an instance norm layer, and a leaky
ReLU activation layer. In each of the discriminator blocks, the convolution layers utilize
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a kernel size of 4x4x4 and a stride of 2, with k ∗ (2n + 1) filters. Lastly, the final output
layer consists of a convolutional layer with a kernel size of 4x4x4 and a stride of 1. Unlike
most discriminators, the HD does not assign a single label to classify the origin of the input
segmentation and hierarchical latent features, instead it outputs a 3D patch label with a
size relative to that of the input data. Notably, the HD does not utilize any pooling layers,
rather, the stride lengths of the convolutional layers are used to downsample the outputs of
a particular block to be half the size of its inputs. These dimensionality reductions ensure
that the shape of the HD’s feature maps match those of the segmentation networks at each
scale. Ultimately, this allows for the hierarchical nature of the HD.

Appendix B. Implementation Details

The pre-training procedure for the teacher and student networks are identical (with dif-
ferent input), with each training for a total of 400 epochs using a batch size of 1, using
the same split as described in section 3.2. Both networks utilize data augmentation, where
input modalities are randomly flipped and altered via random affine transformations. Fur-
thermore, both networks have their initial number of filters, k, set to 32, their dropout
probabilities, p, set to 0.2, and their leaky ReLU negative slopes set to 0.01. Moreover,
they both utilize the same weighted CE loss functions, the same used in the LS loss func-
tion. It is important to note that the weights used for the CE loss are decayed by a factor
of 0.98 after every epoch, until the weighted CE loss regresses to its unweighted form. Ad-
ditionally, both networks use the same learning rate, which is initially set to a value of
0.0002. Also, both networks employ an AdamW (Loshchilov, Ilya and Hutter, Frank, 2017)
optimizer with β1 = 0.9, β2 = 0.999, ε = 10−8, and a weight decay of 10−5. Finally, both
networks utilize LR scheduling, where their respective learning rates are halved if they are
unable to improve upon their best segmentation performance on the validation set, for 30
consecutive epochs.

Once pre-training is complete, the models that achieved the best performance on the
local (held-out) validation set are selected to be used as the initial student and teacher
networks in the training of HAD-Net. The training procedure for HAD-Net consists of
training the student network and the HD for 800 epochs, using a batch size of 1. Unlike in
the pre-training procedure, HAD-Net’s training procedure does not utilize data augmenta-
tion, as empirically we found that training with data augmentation negatively affects the
convergence of the student network. Therefore, we solely rely on dropout to provide suffi-
cient regularization without adversely affecting convergence. Furthermore, HAD-Net does
not utilize an LR scheduler to adjust the learning rate of the student network or the HD.
Instead, both have a fixed learning of 0.0002. Adam (Kingma and Ba, 2014) optimizers
are used for both the student network and the HD, with β1 = 0.5, β2 = 0.999, ε = 10−8,
and a weight decay of 0. Note that these hyper-parameters are identical to those outlined
in (Cirillo et al., 2020). For the student’s loss function presented in Equation 1, we chose to
use λ = 0.2, which we found to properly balance the CE and adversarial loss terms. In order
to prevent the HD from becoming over-confident, the HD’s parameters are not updated as
often as the student. More specifically, for a given iteration, if the accuracy of the HD’s
labelling is above a certain threshold, the HD is not updated for that iteration (i.e., the
LHD loss is not back-propagated).
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Appendix C. Data Pre-Processing

The training, validation, and testing images were pre-processed prior to being fed to the
segmentation models. For HAD-Net, AD-Net, KD-Net+, the pre-trained student, and the
pre-trained teacher, the images were first center cropped to be of size 160x192x160. Then,
for each MRI sequence, the mean and standard deviation of the brain region was computed.
Next, each sequence was normalized by subtracting the mean and dividing by the standard
deviation. Finally, the volume outside the brain region was set to 0. For U-HeMIS and
U-HVED, the images were pre-processed according to the steps outlined in their respective
papers (Havaei et al., 2016; Dorent et al., 2019).

Appendix D. Implementation Details for Competing Methods

In our work, we compare HAD-Net to several other methods: the teacher network (Fig-
ure 1(E)), the pre-trained student network (Figure 1(D)), AD-Net (Figure 1(B)), KD-Net+
(Figure 1(C)), U-HeMIS, and U-HVED. Each of these methods were both trained (from
scratch) and validated on the BraTS 2019 dataset, using exactly the same split as described
in section 3.2.

• Teacher: The teacher network used for these comparisons is the same teacher used
in HAD-Net to distill knowledge to the student network (i.e., the teacher network
resulting from the pre-training procedure described in Appendix B).

• Pre-trained student: The pre-trained student network is simply the student net-
work used at the very start of HAD-Net’s training (i.e., the student network resulting
from the pre-training procedure described in Appendix B).

• AD-Net: AD-Net is nearly identical to HAD-Net, with the only exception being that
it utilizes a non-hierarchical discriminator, as opposed the hierarchical discriminator
used by HAD-Net (i.e., it is a non-hierarchical version of HAD-Net). Consequently,
AD-Net’s training procedure is exactly identical to that of HAD-Net (as described in
Appendix B).

• KD-Net+: KD-Net+ is a version of KD-Net (Hu et al., 2020) which we adapted to
this context. More specifically, in KD-Net+, we apply the KD framework originally
presented in the KD-Net paper to the student and teacher networks used in HAD-
Net, by combining the loss functions and training procedure described in the original
KD-Net paper with the student and teacher network architectures for HAD-Net. In
order to train KD-Net+, we followed the training procedure detailed in the original
paper (Hu et al., 2020); consequently, for this model, we used a frozen pre-trained
teacher network and a randomly initialized student network.

• U-HeMIS and U-HVED: Finally, for our comparisons with U-HeMIS and U-
HVED, we used the code made publicly available by the authors (GitHub Link).
In order to be consisted with the proposed methods, we did not make any alterations
to the code provided. These methods were trained (from scratch) and evaluated on
the BraTS 2019 dataset but without additional hyper-parameter tuning.
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