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Abstract001

We introduce a modified sequence tagging ar-002
chitecture, proposed in (Omelianchuk et al.,003
2020), for the Grammatical Error Correction of004
the Russian language. We propose language-005
specific operation set and preprocessing al-006
gorithm as well as a classification scheme007
which makes distinct predictions for insertions008
and other operations. The best versions of our009
models outperform previous approaches and010
set new SOTA on the two Russian GEC bench-011
marks – RU-Lang8 and GERA, while achieve012
competitive performance on RULEC-GEC.013

1 Introduction014

Grammatical Error Correction (GEC) is the task of015

converting a source text to its correct variant so that016

it does not contain any grammatical, punctuation,017

spelling and lexical errors. Several types of mod-018

els have been suggested as solutions for this task.019

Earlier studies concentrated on the most common020

error types in non-native English texts, e.g. incor-021

rect choice of prepositions or determiners, and built022

error-specific classifiers (Chodorow et al., 2007;023

De Felice and Pulman, 2008). The development024

of deep learning and the invention of Transformer025

(Vaswani et al., 2017) led to a paradigm shift, and026

researchers began treating grammatical error cor-027

rection, being a text-to-text task, as translation from028

the “language with errors” to the “grammatically029

correct language”. Consequently, standard models030

for machine translation (MT), such as Transformer,031

were used for GEC task without adaptation. These032

models were trained on large corpora of parallel033

data, containing pairs of source sentences and their034

corrected versions (Grundkiewicz et al., 2019; Ná-035

plava and Straka, 2019).036

Despite being fruitful and successful, especially037

during the BEA-2019 Shared Task for the Eng-038

lish language (Bryant et al., 2019), this approach039

does not take into account the crucial difference040

between GEC and machine translation: in case of 041

MT, source and target texts are not superficially re- 042

lated. These texts may even use different alphabets. 043

However, the correspondence between initial texts 044

and target texts in GEC is less arbitrary. Most of 045

the words remain the same during the correction 046

and the ones subject to modification often do not 047

change their positions. 048

Moreover, single word edits are also restricted. 049

For example, in case of morphological errors the 050

correct word form belongs to the same lexeme and 051

may be selected from the finite list of the source 052

word inflections. Given all of this, the ability of 053

sequence-to-sequence models to generate arbitrary 054

texts is redundant during the GEC task and may 055

even be detrimental due to the changes in the mean- 056

ing of the text. Besides, machine translation mod- 057

els require large quantities of training data and are 058

completely uninterpretable without external tools, 059

which makes it complicated to apply them for edu- 060

cational purposes (Bryant et al., 2023). 061

Due to these considerations, it might be benefi- 062

cial to formalize GEC as a sequence labeling task as 063

opposed to the sequence transduction task. Instead 064

of generating the target text, the sequence labeling 065

model predicts individual word edits that transform 066

the original sequence of words into the correct 067

one. This approach was proposed in the seminal 068

GECToR paper (Omelianchuk et al., 2020) for the 069

English language, achieving the state-of-the-art per- 070

formance at the time of publication (2020). In ad- 071

dition to its high quality, the GECToR approach 072

has other benefits: sequence labeling is much faster 073

than sequence transduction and requires less data 074

to converge during the training. It is also more 075

interpretable than the conventional sequence gen- 076

eration as individual edit operations correspond to 077

common error patterns, such as choosing a wrong 078

word form or an incorrect preposition. 079

Unfortunately, this interpretability does not 080

come for free: the more complex is the morpho- 081
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logy of the language, the more labour is required082

to design the label system reflecting it. Because083

of this, we know few equivalents of GECTOR084

for other languages than English: Chinese (Zhang085

et al., 2022), Ukrainian (Bondarenko et al., 2023),086

Arabic (Kwon et al., 2023) and Turkish (Kara et al.,087

2023).088

We fill this gap by creating a GECToR-like089

model for Russian and demonstrate state-of-the-art090

performance on the two Russian GEC benchmarks091

out of three. We make our code available1. Our092

main contributions are as follows:093

• We develop the label inventory and preproces-094

sion that take into account the complexity of095

Russian morphology.096

• We present a modified classification schema097

which makes a distinction between insertions098

and other types of corrections. Moreover, we099

adopt a Large Language model for spelling100

correction.101

• We conduct several experiments varying en-102

coders, the size of synthetic data during the103

pretraining stage and the presence of token104

type embeddings, and achieve state-of-the-105

art results on the two Russian benchmarks:106

RU-Lang8 (Trinh and Rozovskaya, 2021) and107

GERA (Sorokin and Nasyrova, 2025), as well108

as competitive performance on the remaining109

one – RULEC-GEC (Rozovskaya and Roth,110

2019).111

2 Related Work112

One of the first approaches to GEC was to design113

error-specific classifiers, for example, for the114

choice of prepositions, articles, verb or noun forms115

(Han et al., 2006; Chodorow et al., 2007; De Felice116

and Pulman, 2008; Tajiri et al., 2012; Rozovskaya117

et al., 2014; Berend et al., 2013; van den Bosch118

and Berck, 2013). These error types implied finite119

confusion sets, so it was relatively convenient to120

model them as classification among the corrections121

known in advance (Bryant et al., 2023). However,122

the classifiers for narrow domains were not able123

to correct other error types. They also could not124

be built for cases that did not have limited lists125

of corrections, for example, lexical choice errors,126

and relied excessively on the local context (Bryant127

et al., 2023).128

Some of these limitations have been overcome129

by MT models which generated corrected texts130

1The link will be added in the final version of the paper.

based on their incorrect versions. Machine Trans- 131

lation GEC models were able to correct several 132

error types simultaneously as well as interacting er- 133

rors2. Initially, statistical machine translation mod- 134

els were implemented (Felice et al., 2014; Junczys- 135

Dowmunt and Grundkiewicz, 2014). The intro- 136

duction of Transformer (Vaswani et al., 2017) has 137

become an impetus for the development of neural 138

machine translation (NMT), resulting in the suc- 139

cess of NMT approach (Grundkiewicz et al., 2019) 140

during the BEA-2019 Shared Task on Grammatical 141

Error Correction (Bryant et al., 2019). However, 142

the main shortcoming of MT models remained even 143

in neural approaches – their dependency on the size 144

and quality of training data. In (Náplava and Straka, 145

2019) machine translation models were considered 146

for low-resource GEC: in Czech, German and Rus- 147

sian. The authors achieved higher performance 148

in the two former settings because of the larger 149

quantity of annotated data for these languages, than 150

for Russian, despite pretraining on the same size 151

of synthetic data for all three languages, which 152

proves the crucial role of the size of data for MT 153

approaches. Besides, MT models lack interpretab- 154

ility, it is difficult to comprehend why they do and 155

do not correct certain errors and, consequently, use 156

them in education (Bryant et al., 2023). 157

Sequence labeling architecture GECToR pro- 158

posed in (Omelianchuk et al., 2020) is a much more 159

efficient and interpretable solution than MT meth- 160

ods. According to GECToR, each token is assigned 161

an operation label, so that after all operations are 162

implemented, the correct version of a sentence is 163

obtained. This approach highlights the global dif- 164

ference between GEC and MT, which is that most 165

tokens in a sentence remain unchanged after the 166

correction. Moreover, operation labels which cor- 167

respond to common corrections, e.g. ‘convert the 168

noun to its plural form’, are accessible and transpar- 169

ent. The operations consist of word-level edits, cor- 170

responding to insertion, deletion and replacement 171

operations. In addition to these basic transform- 172

ations, there are task-specific g-transformations. 173

They include noun number and verb form changes. 174

Recent approaches to GEC also involve Large 175

Language Models (LLMs). Their abilities were 176

studied in zero-shot and few-shot settings (Wu 177

et al., 2023; Fang et al., 2023; Loem et al., 2023) as 178

well as after instruction-tuning on the grammatical 179

2For example, in some languages when a preposition is
corrected, the case of the noun, which is governed by it, also
has to be corrected.
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error correction task (Kaneko and Okazaki, 2023;180

Omelianchuk et al., 2024). According to (Omelian-181

chuk et al., 2024), LLMs and conventional methods182

appear complementary, so the best solution for Eng-183

lish GEC now is to combine them in ensembles.184

3 GECToR for Russian185

3.1 Preprocession186

Since grammatical error correction in GECToR
(Omelianchuk et al., 2020) is formalized as a se-
quence labeling task, the initial step is to prepro-
cess annotated data so that all tokens in a sentence
– words or punctuation marks – are assigned an edit
label. The standard format for GEC data is .M2,
consisting of a tokenized source sentence and er-
ror annotations which contain offsets of erroneous
sequences, error types and corrections (see ex.1)3.

(1)187
S He have driven car yesterday .188

A 1 3|||Verb:form|||drove189

A 3 3|||Det|||a190

As errors and corrections in annotations may con-191

sist of multiple words, we cannot achieve a one-to-192

one correspondence between erroneous tokens and193

corrections based on just the annotation. Moreover,194

different corpora adopt distinct error type labels,195

so they cannot be used as operation labels and a196

universal preprocession algorithm is required. We197

refer to the Figure 1 for the description of label198

extraction. To implement it, we develop an al-199

gorithm of linguistic alignment, which is a modi-200

fication of Levenshtein distance algorithm that has201

penalties for different lemmas and parts of speech202

and also accounts for merged-separate-hyphenated203

spelling of words. In order to obtain lemmas,204

parts of speech and morphological features, Deep-205

Pavlov/morpho_ru_syntagrus_bert4 is used, being206

a high-quality morphosyntactic parser for Russian.207

We follow (Omelianchuk et al., 2020) and con-208

struct a set of operation labels. However, for our209

model we create a modified label inventory to210

tackle the morphological complexity of Russian, as211

for a language with a large number of grammatical212

categories the number of g-transformations grows213

exponentially. Besides, in the English GECToR214

3There are other fields in .M2, but they are omitted for
illustrative purposes and are not pertinent to the description.

4https://docs.deeppavlov.ai/en/0.17.0/
features/models/morphotagger.html#

model a relatively large label set of 5000 opera- 215

tions is used, the majority of which represents re- 216

placements, corresponding to spelling errors. To 217

reduce vocabulary size and make model training 218

easier, we follow (Mesham et al., 2023) and predict 219

a dedicated SPELL tag for spelling errors. Their cor- 220

rections are generated in the postprocessing phase, 221

see subsection 3.2.2 below. 222

3.2 Model 223

3.2.1 Classification 224

The original GECToR model cannot handle word 225

modification and inserting another word after it in 226

one step, that is why the authors adopt an iterative 227

approach (Omelianchuk et al., 2020), with most 228

corrections being done during the first two itera- 229

tions. We will also study iterative editing in C.2. 230

However, we also differentiate the prediction of 231

insertions (in place of spaces) and other operations 232

(pertaining to words) to manage several operations 233

for one token. 234

Our scheme is illustrated in the Figure 2. More 235

precisely, we modify the conventional token classi- 236

fication task so that labels would be predicted not 237

only for subtokens5, but also for spaces between 238

them. Several decisions had to be made for it to be 239

possible. 240

Firstly, determining how to represent tokens and 241

spaces. It is not evident, at first glance, whether 242

using the first or the last subtoken of tokens would 243

be the optimal way to represent them in GEC, as 244

various error types may occur both in the beginning 245

and in the end of the word form, e.g. spelling er- 246

rors are frequently made within the stem, whereas 247

grammatical errors primarily affect inflections. For 248

implementation considerations and by following 249

(Omelianchuk et al., 2020), we decide to use the 250

embeddings of first subtokens as the representa- 251

tions of tokens. As for the spaces between the 252

tokens, we choose as their representation the av- 253

erage of the immediate preceding and following 254

embeddings. 255

Secondly, finding a convenient way of imple- 256

menting this approach. We adopted the following 257

strategy: after the tokenization, two numeral masks 258

are created. The process is reflected as step 2 in Fig- 259

ure 2: the light yellow mask (left-mask or LM) and 260

light purple mask (right-mask or RM). They have 261

the same length of 2n + 1, where n is a number 262

5We use subtokens for units after the tokenization, as they
may represent parts of tokens – symbols, word forms or punc-
tuation marks.
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Figure 1: Our preprocessing pipeline. 1. Collecting a grammatical variant of source sentence, using error indices
and corrections from annotation units. Source sentence is highlighted with light red, while target sentence – with
light green. 2. Both sentences are passed through the morphological parser and linguistic alignment algorithm.
As a result, pairs of corresponding tokens are gathered (word columns highlighted with emerald) as well as their
morphological features and lemmas. 3. Adopting the information collected during the step 2, rules assign each token
in the source text an operation label, so that if all operations are implemented, the source text would be transformed
into the target sentence. E.g. in the given sentence only three non-KEEP operations are required: correcting a
spelling error in prectavleniya ‘insight’, inserting o ‘into’ after it and changing the case of noun dyr ‘holes’ to
locative. N.B. KEEP is replaced with OK in the figure for illustrative purposes.

Figure 2: Our model pipeline.
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of tokens in a source sentence. It accounts for all263

tokens, spaces after them and a space in the begin-264

ning as an insertion may be there as well. Numbers265

in dark green font represent spaces, whereas others266

(in dark brown font) – tokens. LM contains indices267

of first subtokens of tokens and of spaces’ immedi-268

ate preceding subtokens. RM consists of the former269

and of spaces’ immediate following subtokens. For270

each of the 2n + 1 spaces and tokens, a pair of271

left index and right index would become available:272

for tokens they would be expressed by the same273

number, whereas for spaces – by the indices of274

surrounding left and right subtokens. Afterwards,275

when a tokenized sentence is passed through an276

encoder and subtoken embeddings are obtained277

(step 3), masks are used to select only the embed-278

dings of corresponding subtokens, consequently,279

there are two sets of embeddings: for subtokens 1)280

from LM and 2) from RM, which are then being281

averaged (step 4). As a result, 2n+ 1 embeddings282

are extracted, every second one corresponds to the283

token in a source text, others – to the spaces for284

insertions. Token embeddings are first subtoken285

embeddings, while space embeddings are the aver-286

ages of surrounding subtokens’ embeddings.287

Thirdly, our preliminary research showed that288

models tend to confuse labels for spaces with la-289

bels for tokens, that is why we decide to add train-290

able embeddings of token type, representing spaces291

or tokens, and combine them (step 5) with sub-292

token embeddings from the previous step, effect-293

ively solving the issue.294

3.2.2 Edit postprocessing295

After predicting the labels, the corresponding out-296

put words are inferred. Most transformations are297

implemented with the help of rules. For gram-298

matical labels we utilize the pymorphy2 library299

(Korobov, 2015) and its inflect method that allows300

to predict any inflected form of a word given the301

morphological features of the inflected word. In302

order to apply this function, we manually convert303

CoNLL-U morphological labels predicted by the304

DeepPavlov parser to the Pymorphy format.305

For spelling labels we use the external API,306

namely YandexGPT6. We replace the words, pre-307

liminarily labeled with SPELL by the SPELL token308

and pass both source and the tagged sentence using309

the prompt given in the Figure 3. We decide to use310

a large language model instead of local spellcheck-311

6https://yandex.cloud/ru/docs/
foundation-models/concepts/yandexgpt/models

ers since one needs to select among several possible 312

corrections and traditional models do not provide 313

such possibility. The LLM’s response is verified 314

and edited so that it complies with the following 315

conditions: 1) The number of corrections corres- 316

ponds to the number of submitted words with typos. 317

2) Corrections are close in Levenshtein distance 318

and length to the source words. Otherwise, the 319

source word remains unchanged. 3) Corrections do 320

not contain unnecessary characters, such as arrows 321

or brackets. 4) There are no markdown7 elements, 322

for example, ** to highlight in bold. 323

4 Model Evaluation 324

4.1 Data 325

Five existing Russian GEC datasets were used in 326

the experiments: RULEC-GEC(Rozovskaya and 327

Roth, 2019), RU-Lang8(Trinh and Rozovskaya, 328

2021), GERA(Sorokin and Nasyrova, 2025), RLC- 329

GEC and RLC-Crowd((Kosakin et al., 2024)). 330

• RULEC-GEC is a subset of the RULEC Cor- 331

pus(Alsufieva et al., 2012) that contains essays 332

of 12 learners of Russian as a foreign language 333

and 5 heritage speakers. 334

• RU-Lang8 is the Russian learner subset of 335

Lang-8 Corpus(Mizumoto et al., 2012), which 336

includes small texts produced by speakers of 337

more than 34 languages. Only validation and 338

test samples of RU-Lang8 were manually re- 339

annotated, while training data remains noisy, 340

so the usage of this corpus in our experiments 341

is reduced to these partitions. 342

• GERA is based on Russian middle school es- 343

says, representing the only source of Russian 344

native speakers’ errors. 345

• RLC-GEC and RLC-Crowd are derived from 346

the Russian Learner Corpus (RLC)(Rakhilina 347

et al., 2016), consisting of texts written by 348

college and university learners of the Russian 349

language from different countries. The former 350

dataset is the subset of RLC which contains 351

annotated corrections, whereas the latter con- 352

sists of crowdsourced annotations. 353

Datasets vary greatly in error distribution and size, 354

see Table 1. While spelling errors are the most 355

prominent in RULEC-GEC and RU-Lang8, in 356

GERA corrections of punctuation form the largest 357

share. The RLC dataset is the only one that has 358

7http://daringfireball.net/projects/markdown/
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“Дорогая модель, тебе будут даны слова с опечатками, в скобках будет указано пред-
ложение, в котором они встретились. Пожалуйста, выведи исправления этих слов в
том же порядке, но без предложения в скобках и каких-либо комментариев, начиная со
слова "Ответ:".”
‘Dear model, you will be given words with spelling errors, the sentence where they were encountered
will appear in the brackets. Please, print the corrections for these words in the same order, but with
no sentence in the brackets and any comments, starting with the word "Answer:".’

Figure 3: The prompt for spelling correction.

lexical choice errors as most common, and, unlike359

others, has a much larger fraction of syntactic er-360

rors than other corpora. We report the distribution361

of top-7 operation labels (after the preprocession362

from 3.1) in training collections in Appendix A.363

We test our models on the test partitions of364

RULEC-GEC, RU-Lang8 and GERA.365

4.2 Training366

We train several models, varying the following367

conditions: the type of encoder, the addition of368

token type embeddings (TTE), and the size of syn-369

thetic data during the pretraining. We use either370

ruRoberta-large8 or FRED-T5-1.7B9 as an encoder-371

model (Zmitrovich et al., 2024). We choose these372

models because they are open-source and demon-373

strate great performance on benchmarks for the374

Russian language, such as Russian SuperGlue375

(Shavrina et al., 2020), which contains various376

tasks on general language understanding, RuCoLA377

(Mikhailov et al., 2022), a dataset of sentences with378

their binary acceptability judgements, as well as on379

the task of inappropriateness identification (Zmitro-380

vich et al., 2024). Besides, training of these models381

is possible with our computational resources.382

Following (Sorokin, 2022), we conduct training383

in two stages: firstly, we pretrain the models on a384

large amount of data (training samples of RULEC-385

GEC and GERA, validation partition of RU-Lang8,386

RLC-based datasets and synthetic data from (Sor-387

okin, 2022)), then we finetune the model on the388

training sample (or validation in case of RU-Lang8)389

of the dataset in question and evaluate the model390

on its test partition. We investigate the effect of the391

number of synthetic sentences during the pretrain-392

ing on performance: 20K, 100K, and 234K, since393

they have a more uniform error distribution than394

8https://huggingface.co/ai-forever/
ruRoberta-large

9https://huggingface.co/ai-forever/FRED-T5-1.
7B

natural data, so it is not evident whether the largest 395

number would be optimal. 396

Based on the training data, a dictionary of labels 397

for classification is compiled. It contains operations 398

that occur at least 5 times. 399

We report the optimal values of hyperparameters 400

in the Appendix B. 401

4.3 Evaluation 402

4.3.1 Metrics 403

The models are evaluated using the M2scorer script 404

(Dahlmeier and Ng, 2012), which extracts the edits 405

from the tokenized system outputs that have the 406

maximum overlap with gold-standard annotations 407

and calculates F0.5-score which is a conventional 408

evaluation metric for the GEC task since (Ng et al., 409

2014), where precision is considered more signific- 410

ant than recall because omitting a correction is not 411

as harmful as proposing an erroneous correction. 412

4.3.2 Models 413

We compare our models with systems from previ- 414

ous works. 415

• Transformer (Náplava and Straka, 2019; Trinh 416

and Rozovskaya, 2021): a fully trained MT 417

encoder-decoder model. 418

• finetuned ruGPT-large 10 (Sorokin, 2022; Sor- 419

okin and Nasyrova, 2025) 420

• ruGPT+ranker (Sorokin, 2022; Sorokin and 421

Nasyrova, 2025): an architecture consisting 422

of a correction generation with a language 423

model and a correction ranking model based 424

on ruRoberta-large11 425

• rules+ranker (Sorokin, 2022; Sorokin and 426

Nasyrova, 2025): A model similar to the pre- 427

vious one, but it uses rules for correction gen- 428

10https://huggingface.co/ai-forever/
rugpt3large_based_on_gpt2

11https://huggingface.co/ai-forever/
ruRoberta-large
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RULEC-GEC
(learners)

RULEC-GEC
(heritage)

RU-Lang8 GERA RLC dataset

Spell (18.6) Spell (42.4) Spell (19.2) Punct (42.5) Lex. (19.7)
Noun:Case (14.0) Punct (22.9) Noun:Case (12.6) Spell (23.6) Spell (15.8)
Lex. (13.3) Noun:Case (7.8) Lex. (11.6) Lex (13.6) Syntax (13.8)
Lack (8.9) Lex. (5.5) Punct (10.3) Noun:Case (5.1) Noun:Case (8.3)

12,480 4,412 6,681 31,519 (GEC),
34,150 (Crowd)

Table 1: Top-4 most common errors in Russian GEC datasets and numbers of sentences in each of the datasets. The
data for the first three columns is obtained from (Trinh and Rozovskaya, 2021), statistics for GERA and the RLC
dataset are adopted from (Sorokin and Nasyrova, 2025) and (Kosakin et al., 2024), respectively. “Lex.” stands for
lexical choice errors.

eration. This model and the previous one are429

state-of-the-art Russian GEC models.430

In addition, we present as baselines the results431

of two instruction-tuned large language models:432

• Qwen-2.5-7B-Instruct12: An open-source433

instruction-tuned model. It shows high-434

quality performance, especially among mod-435

els of its size, on various leaderboards that436

evaluate the ability of models to solve a wide437

range of tasks, for example, on MERA13438

(Fenogenova et al., 2024).439

• T-lite 1.014: the Qwen-2.5-7B-Instruct model440

adapted to the Russian language with the help441

of additional training. This model demon-442

strates even higher quality on benchmarks for443

Russian in MERA than its predecessor.444

Both LLMs were instruction-tuned for GEC on445

the same training collections as our models, using446

learning rate of 1e-5 and batch size of 32 during447

the pretraining and learning rate of 1e-6 while fine-448

tuning.449

4.3.3 Results450

The results of our experiments are presented in the451

Table 2. Firstly, state-of-the-art quality is achieved452

using the best version of GECToR for the case453

on two benchmarks out of three (RU-Lang8 and454

GERA), while on RULEC-GEC GECToR demon-455

strates comparable performance with LLMs and456

ruGPT+rerank pipeline. The most reliable correc-457

tions, reflected in maximum precision for two data-458

sets, are predicted by rules+rerank model.459

12https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

13https://mera.a-ai.ru/ru/leaderboard
14https://huggingface.co/t-tech/T-lite-it-1.0

According to the recall metric, large language 460

models appear optimal for RULEC-GEC and RU- 461

Lang8, which comes as no surprise as they modify 462

the text more freely than GECToR, whose correc- 463

tions are limited to operations included in the dic- 464

tionary during the training. However, it should be 465

noted that the recall of GECToR models on GERA 466

is comparable to the one of language models, and 467

even exceeds it with iterative application. Since 468

punctuation errors prevail in GERA, we can as- 469

sume that language models have no advantage over 470

GECToR in their detection. 471

Continuing the analysis of the results, we ob- 472

serve an ambiguous effect of the increase in syn- 473

thetic data quantity. For RULEC-GEC and RU- 474

Lang8 100K synthetic sentences are optimal, while 475

on GERA for some models additional data im- 476

proves the quality even further. 477

As for the type of encoder, on RU-Lang8 478

ruRoberta-large is more successful than FRED-T5. 479

This result is less clear on GERA: models without 480

the addition of token type embeddings consist- 481

ently show lower quality with the ruRoberta-large 482

encoder than with FRED-T5, while TTE models 483

based on ruRoberta-large, on the contrary, have an 484

advantage over similar systems based on FRED-T5. 485

On RULEC-GEC ruRoberta-large surpasses FRED- 486

T5 in most cases. We suggest that representations 487

from ruRoberta-large are more suitable for classi- 488

fication, because it is initially an encoder model, 489

unlike the encoder-decoder FRED-T5, whose en- 490

coder blocks are extracted for classification. 491

As was mentioned above, we also varied the 492

addition of TTE. On GERA their presence signi- 493

ficantly improves the quality of the models. On 494

other corpora, their impact is inconsistent: if the 495

encoder is ruRoberta-large, it is almost always pos- 496

itive, whereas in case FRED-T5 – only in half of 497
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Synthetic Data RULEC-GEC GERA RU-Lang8

Model (only for GECToR) P R F0.5 P R F0.5 P R F0.5

Transformer - 63.3 27.5 50.21 NA 55.3 28.5 46.52

ruGPT - 65.7 27.4 51.33 73.4 23.4 51.44 NA

ruGPT+rerank - 73.7 27.3 55.03 78.4 44.4 68.04 NA

rules+ranker - 66.5 28.6 52.64 86.1 42.9 71.64 70.5 29.1 54.84

Qwen 7B - 60.2 32.6 51.5 74.3 48.2 67.1 60.2 36.7 53.4

T-lite - 61.0 35.2 53.2 76.3 49.4 68.8 62.5 40.4 56.3

GECToR Adaptations

ruRoberta synth20K 66.6 23.8 49.0 69.1 30.0 54.8 61.5 26.4 48.6

ruRobertaTTE synth20K 64.8 23.1 47.6 75.0 50.2 68.3 61.2 31.7 51.6

FRED-T5 synth20K 64.7 18.6 43.2 70.4 34.4 58.2 58.2 24.9 45.9

FRED-T5TTE synth20K 60.6 14.7 37.3 68.6 42.4 61.1 50.7 23.5 41.2

ruRoberta synth100K 60.7 21.6 44.6 71.0 34.9 58.8 60.3 26.6 48.1

ruRobertaTTE synth100K 65.3 26.4 50.4 75.8 49.8 68.6 62.4 32.9 53.0

FRED-T5 synth100K 64.4 21.0 45.5 73.5 35.5 60.5 60.7 23.7 46.3

FRED-T5TTE synth100K 56.6 27.0 46.4 72.9 50.4 66.9 56.5 32.7 49.3

ruRoberta synth234K 61.1 25.8 48.0 69.0 34.9 57.7 63.0 29.0 51.0

ruRobertaTTE synth234K 68.3 22.6 48.7 78.2 49.1 69.9 62.9 31.3 52.3

FRED-T5 synth234K 65.4 21.5 46.4 73.4 33.4 59.2 58.7 27.5 47.8

FRED-T5TTE synth234K 57.9 24.3 45.4 73.6 49.4 67.0 57.6 28.5 47.8

Iterative implementation of the best GECToR version for each corpus

Iteration #2 67.0 28.4 52.6 80.4 51.4 72.2 65.0 36.5 56.2

Iteration #3 67.2 28.7 53.0 80.5 52.2 72.7 65.4 37.4 56.9

Table 2: Main results. Best results are highlighted in bold, the highest metrics in different experimental setups are in italics, the
best GECToR results for each corpus are underlined. Suffix TTE denotes addition of token type embeddings. Previous results are
obtained from: 1–(Náplava and Straka, 2019), 2– (Trinh and Rozovskaya, 2021), 3–(Sorokin, 2022), 4–(Sorokin and Nasyrova,
2025).

the case. We assume that it depends on the fraction498

of insertion errors in the corpus.499

Following (Omelianchuk et al., 2020), we apply500

the best versions of our model iteratively and find501

that after the second iteration the quality improves502

even further. However, after the third application503

the increase in quality is less prominent.504

5 Conclusion505

We adapt sequence tagging architecture from (Om-506

elianchuk et al., 2020) to the Russian language.507

To do this, we create a language-specific prepro-508

cessing algorithm and operation inventory; in addi-509

tion, we propose a modified architecture for classi-510

fication, distinguishing the prediction of operations511

for tokens and insertion operations, we also intro-512

duce label decoding using a large language model.513

We conduct several experiments, varying the514

encoder model, the amount of synthetic data in515

pretraining, and the presence of token type em-516

beddings, and find that the optimal encoder is517

ruRoberta-large, size of synthetic data – 100K sen-518

tences, and adding TTE is useful for corpora with a 519

large fraction of insertions. On the two out of three 520

Russian GEC benchmarks, the best versions of 521

our models, applied iteratively, surpass the results 522

of previous approaches, SOTA models and LLMs, 523

which confirms the effectiveness of the GECToR 524

approach for the Russian language as well. 525

We conduct an error analysis and ablation study 526

in C. 527

Limitations 528

Our research is limited to the Russian language 529

and we do not evaluate the effect of added modi- 530

fications on the English GECToR. Moreover, the 531

quality of our models significantly depends on the 532

quality of classification, which suffers from under- 533

representation of certain operations (e.g. lexical 534

replacements) in the training data, which may be 535

handled by generating more diverse synthetic sen- 536

tences in the future. 537
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A The distribution of top-7 most common803

operations in the pretraining data.804

We present the description in the Figure 4.805

B Optimal Hyperparameter Values for806

GECToR training807

The values are given in the Table 4. Despite808

the general number of epochs in the Table, we809

save and evaluate the checkpoint with the op-810

timal value of sent_accuracy on the validation data.811

Sent_accuracy denotes the percentage of sentences812

which were fully classified correctly.813

GERA: ruRobertaTTE+synth234K
Error Type P R F0.5

spelling 88.5 63.7 82.1

punctuation 79.0 65.0 75.7

lexical choice 37.0 8.2 21.7

noun:case 69.2 41.5 61.1

RU-Lang8: ruRobertaTTE+synth100K
Error Type P R F0.5

spelling 60.0 53.3 58.6

punctuation 55.4 67.5 57.5

lexical choice 36.1 9.8 23.5

noun:case 71.2 51.9 66.2

RULEC-GEC: ruRobertaTTE+synth100K
Error Type P R F0.5

spelling 70.9 54.7 67.0

punctuation 65.3 11.1 33.0

lexical choice 47.2 6.6 21.2

noun:case 66.1 55.5 63.7

Table 3: Quality of the best GECToR adaptations on the
main error categories.

C Error Analysis and Ablation study 814

C.1 Error Analysis 815

We evaluate the best versions of GECToR for each 816

corpus with the help of RLC-ERRANT15 (Kosakin 817

et al., 2024) tool on the main error types in the 818

Table 3. 819

C.2 Iterations 820

We evaluate the best versions of GECToR after the 821

first and the second iterations in the Table 5. The 822

correction improves for the vast majority of error 823

types after the second iteration, as this helps the 824

model to recognize a greater number of violations 825

in the text, as well as to refine the already predicted 826

modifications, which makes corrections in the text 827

more consistent and reliable. 828

C.3 Token Type Embeddings 829

We select two models with the most prominent 830

contrast in results between the basic configuration 831

and the setup with the addition of TTE to learn 832

which types of errors they affect the most. 833

The first model is FRED-T5+synth20K on 834

RULES-GEC: its quality decreases by 5.9 points 835

with TTE. The second model is ruRoberta- 836

large+synth20K on GERA: its quality, on the con- 837

15https://github.com/Russian-Learner-Corpus/
annotator
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Figure 4: Top-7 most common operations in the samples which were used for training.
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Hyperparameter
Encoder

ruRoberta-large FRED-T5 1.7B
# epochs 3 (pretrain)/7 (finetune)

batch_size 16
learning rate 1e-05 1e-04

optimizer AdamW

Table 4: Optimal values of hyperparameters from our experiments.

GERA: ruRobertaTTE+synth234K Iteration #2
Error Type P R F0.5 P R F0.5

spelling 88.5 63.7 82.1 89.7 67.4 84.1
punctuation 79.0 65.0 75.7 80.2 67.2 77.2

lexical choice 37.0 8.2 21.7 47.9 11.1 28.8
noun:case 69.2 41.5 61.1 69.1 44.6 62.2

RU-Lang8: ruRobertaTTE+synth100K Iteration #2
Error Type P R F0.5 P R F0.5

spelling 60.0 53.3 58.6 66.2 57.1 64.2
punctuation 55.4 67.5 57.5 52.7 69.3 55.3

lexical choice 36.1 9.8 23.5 39.3 12.9 27.8
noun:case 71.2 51.9 66.2 70.5 57.0 67.3

RULEC-GEC: ruRobertaTTE+synth100K Iteration #2
Error Type P R F0.5 P R F0.5

spelling 70.9 54.7 67.0 72.8 56.8 68.9
punctuation 65.3 11.1 33.0 62.9 12.7 35.1

lexical choice 47.2 6.6 21.2 47.3 7.6 23.1
noun:case 66.1 55.5 63.7 66.2 58.7 64.6

Table 5: The comparison of the best models after the first and the second iterations. Improved results are highlighted
in bold.

trary, increases by 13.5 points when they are ad-838

ded. A comparison of the models is shown in the839

Table 6.840

D Classification841

We calculate standard classification metrics for842

main operation types in the Table 7.843

RULEC-GEC FRED-T5 FRED-T5TTE

Error Type P R F0.5 P R F0.5

spelling 73.9 52.1 68.2 74.3 50.3 67.8

punctuation 29.0 1.9 7.5 56.9 13.5 34.7
lexical choice 48.3 6.1 20.3 46.5 5.9 19.6

noun:case 69.2 31.5 55.8 45.7 16.0 33.3

GERA ruRoberta ruRobertaTTE

Error Type P R F0.5 P R F0.5

spelling 83.7 61.1 77.9 80.5 62.2 76.1

punctuation 62.7 21.0 44.9 75.6 68.4 74.0
lexical choice 27.5 5.3 15.0 34.8 7.7 20.5

noun:case 63.6 43.1 58.1 64.4 44.6 59.2

Table 6: Comparison of models with and without TTE.
The best results are highlighted in bold.
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RULEC-GEC
Operation Type P R F1

Delete 45.1 7.3 12.6
Gram 54.7 52.9 50.2
ReplaceFunc 62.2 39.2 44.3
ReplaceWord 0.0 0.0 0.0
ReplacePunct 0.0 0.0 0.0
Spell 69.3 42.1 51.7
Keep 97.9 99.7 98.8
Join 93.8 49.2 64.5
UpperCase 20.0 18.2 19.0
LowerCase 0.0 0.0 0.0
NullToHyphen 0.0 0.0 0.0
HyphenToNull 0.0 0.0 0.0
Insert, 82.6 12.9 22.3
Insertion 58.1 28.3 33.7

RU-Lang8
Operation Type P R F1

Delete 54.5 19.6 28.8
Gram 58.7 58.5 57.1
ReplaceFunc 61.3 58.6 55.7
ReplaceWord 0.0 0.0 0.0
ReplacePunct 100.0 100.0 100.0
Spell 58.8 43.3 48.9
Keep 97.2 99.4 98.3
Join 56.2 47.4 51.4
UpperCase 35.4 68.0 46.6
LowerCase 78.9 57.7 66.7
NullToHyphen 0.0 0.0 0.0
HyphenToNull 0.0 0.0 0.0
Insert, 61.8 71.1 66.1
Insertion 63.6 35.4 36.0

GERA
Operation Type P R F1

Delete 73.4 37.4 49.5
Gram 66.3 56.8 57.5
ReplaceFunc 100.0 33.3 50.0
ReplaceWord 0.0 0.0 0.0
ReplacePunct 33.3 25.0 28.6
Spell 75.9 43.5 54.9
Keep 98.6 99.8 99.2
Join 71.4 62.5 66.7
UpperCase 85.0 54.8 66.7
LowerCase 94.4 56.7 70.8
NullToHyphen 66.7 33.3 44.4
HyphenToNull 0.0 0.0 0.0
Insert, 85.7 82.2 83.9
Insertion 71.1 55.1 60.3

Table 7: Classification evaluation of the main operation
types for the best GECToR models.
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