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Abstract. For an integer d ≥ 1, the d-Cut problem is that of deciding
whether a graph has an edge cut in which each vertex is adjacent to
at most d vertices on the opposite side of the cut. The 1-Cut problem
is the well-known Matching Cut problem. The d-Cut problem has
been extensively studied for H-free graphs. We extend these results to
the probe graph model, where we do not know all the edges of the input
graph. For a graph H, a partitioned probe H-free graph (G,P,N) consists
of a graph G = (V,E), together with a set P ⊆ V of probes and an
independent set N = V \ P of non-probes such that we can change G
into an H-free graph by adding zero or more edges between vertices in
N . For every graph H and every integer d ≥ 1, we completely determine
the complexity of d-Cut on partitioned probe H-free graphs.
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1 Introduction

When studying computationally hard problems for special graph classes, it is
natural to generalize polynomial-time results for certain graph classes to larger
graph classes. In particular, consider a graph H ′ and an induced subgraph H
of H ′. The class of H-free graphs (class of graphs that do not contain H as
an induced subgraph) is contained in the class of H ′-free graphs. Say an NP-
complete problem Π is polynomial-time solvable on H-free graphs. Is Π also
polynomial-time solvable on H ′-free graphs? This question leads to complexity
studies for a wide range of graph problems where the goal is to obtain complexity
dichotomies that tell us for exactly which graphs H a certain NP-complete prob-
lem is polynomial-time solvable, and for which graphs H it stays NP-complete.

We follow this line of research, but also assume that we do not know all the
edges of the input graph. Before explaining the latter in more detail, we first
introduce the problem that we study. Consider a connected graph G = (V,E).
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Fig. 1: A probe P5-free graph G with a set P of probes. The edge of G are shown
in black, whereas the edges in F (which do not belong to G) are shown in purple.
Note that G + F is indeed P5-free and that the red-blue colouring corresponds
to a 2-cut of G.

A subset M ⊆ E is an edge cut of G if it is possible to partition V into two non-
empty sets B (blue vertices) and R (red vertices) in such a way that M is the
set of all edges with one end-vertex in B and the other in R. Now, for an integer
d ≥ 1, if every blue vertex has at most d red neighbours, and every red vertex
has at most d blue neighbours, then the edge cut M is said to be a d-cut of G.
See also Figure 1. The d-Cut problem is that of deciding whether a connected
graph has a d-cut. A 1-cut is also called a matching cut, and the 1-Cut problem
is better known as Matching Cut. For all d ≥ 1, d-Cut is NP-complete [8,
14]. Graphs with matching cuts were introduced in 1970 by Graham [15] in the
context of number theory; for other applications see [2, 9, 11, 25].

Our Focus. We consider the classical probe graph model, which was introduced
by Zhang et al. [27] in 1994 to deal with partial information in genome research.
In this model, the complete set of neighbours is only known for some vertices of
the input graph G. These vertices form the set P of probes. The other vertices
of G form the set N of non-probes. As we do not know the adjacencies between
vertices in N , the set N is an independent set in G. However, in the probe graph
model we also assume there exists a “certifying” set F of edges between (some
of) the non-probes such that G+ F has some known global structure; again see
Figure 1. In our paper, G+ F is H-free. Note that G[P ] is already H-free.

So, a partitioned probe H-free graph (G,P,N) consists of a graph G = (V,E),
a set P ⊆ V of probes and an independent set N = V \ P of non-probes, such
that G + F is H-free for some edge subset F ⊆

(
N
2

)
. Any H-free graph is also

(partitioned) probe H-free: take P = V and N = ∅. Hence, (partitioned) probe
H-free graphs contain all H-free graphs, and any NP-completeness results for
H-free graphs carry over to partitioned probe H-free graphs. We therefore ask:

For which H, does d-Cut stay polynomial-time solvable on probe H-free graphs?

As such, our paper belongs to a recent systematic study of graph problems on
probe H-free graphs. This study was initiated by Brettell et al. [5] for Vertex
Cover, whereas the previous literature on probe graphs aimed to characterize
and recognize classes of probe graphs; see e.g. [3, 6, 7, 12, 13]. For example, if
H = P4, then probe H-free graphs can be recognized in polynomial time [7].
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Fig. 2: The graphs sP1 + P4, K1,3 and H∗
i , from left to right.

However, for most other graphs H, the complexity of recognizing probe H-free
graphs is still unknown. Hence, for our algorithms, we assume that P and N are
part of the input, that is, we will consider partitioned probe H-free graphs.

We will also consider two related problems: Maximum Matching Cut and
Perfect Matching Cut on probe H-free graphs. The first is to decide if a
connected graph has a matching cut of at least k edges for some integer k. The
second is to decide if a connected graph has a perfect matching cut, that is, an
edge cut that is a perfect matching. This problem is also NP-complete [16].

Known Results. For two vertex-disjoint graphs G1 and G2, let G1 + G2 =
(V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We let sG be the disjoint union of s copies
of G. We write G1 ⊆i G2 if G1 is an induced subgraph of G2. Let Cs denote
the cycle on s vertices, Pt the path on t vertices, and K1,r the star on r + 1
vertices. The graph K1,3 is known as the claw. Let H∗

1 be the “H”-graph, which
has vertices u, v, w1, w2, x1, x2 and edges uv, uw1, uw2, vx1, vx2. For i ≥ 2, let
H∗

i be obtained from H∗
1 by subdividing uv exactly i− 1 times. See Figure 2.

In Theorems 1–3 we present the state-of-art for d-Cut, Perfect Matching
Cut and Maximum Matching Cut for H-free graphs. Only Theorem 3 is a
full dichotomy. The references in Theorem 1 are explained in [20] except for the
recent result that 2-Cut is NP-complete for claw-free graphs [1]; note the jump
in complexity from d = 1 to d = 2 for H = 3P2 and H = K1,3. For d ≥ 2, the
only three non-equivalent open cases in Theorem 1 are H = 2P4, H = P6 and
H = P7 (see also [20]). The references in Theorem 2 are explained in [23].

Theorem 1 ([1, 4, 8, 10, 17, 19–22, 24]). Let H be a graph and d ≥ 1.

– If d = 1, then d-Cut on H-free graphs is polynomial-time solvable if H ⊆i

sP3 + S1,1,2, sP3 + P4 + P6, or sP3 + P7 for some s ≥ 0; and NP-complete
if H ⊇i K1,4, P14, 2P7, 3P5, Cr for r ≥ 3, or H∗

i for i ≥ 1.

– If d ≥ 2, then d-Cut on H-free graphs is polynomial-time solvable if H ⊆i

sP1 + P3 + P4 or sP1 + P5 for some s ≥ 0; and NP-complete if H ⊇i K1,3,
3P2, Cr for r ≥ 3, or H∗

i for i ≥ 1.

Theorem 2 ([10, 17, 18, 22]). Perfect Matching Cut on H-free graphs is
polynomial-time solvable if H ⊆i sP4 + S1,2,2 or sP4 + P6 for some s ≥ 0; and
NP-complete if H ⊇i K1,4, P14, 2P7, 3P6, Cr for r ≥ 3 or H∗

j for j ≥ 1.

Theorem 3 ([23]). Maximum Matching Cut on H-free graphs is polynomial-
time solvable if H ⊆i sP2 + P6 for some s ≥ 0; and NP-complete otherwise.
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Our Results. We combine NP-completeness results from Theorems 1–3 with
new polynomial and hardness results (shown in Section 3 and 4, resp.) to prove:

Theorem 4. For a graph H, the following four complete dichotomies hold:

– 1-Cut, Perfect Matching Cut and Maximum Matching Cut on par-
titioned probe H-free graphs are polynomial-time solvable if H ⊆i sP1 + P4

for some s ≥ 0; and NP-complete otherwise;

– for d ≥ 2, d-Cut on partitioned probe H-free graphs is polynomial-time
solvable if H ⊆i P1 + P4; and NP-complete otherwise.

From Theorems 1 and 4, it follows that d-Cut becomes harder for probe H-free
graphs than for H-free graphs (if P ̸= NP) even if H = 2P2 for d ≥ 1 and
H = 4P1 for d ≥ 2.

2 Preliminaries and Basic Results

Throughout the paper, we only consider finite, undirected graphs without mul-
tiple edges and self-loops. We first define some general graph terminology.

Let G = (V,E) be a graph. We let NG(v) = {u ∈ V | uv ∈ E} be the (open)
neighbourhood of v and NG[v] = NG(v) ∪ {v} be the closed neighbourhood of v.
Let S ⊆ V . We write G[S] to denote the subgraph of G induced by S. A vertex
v /∈ S is complete to S if N(v) ⊇ S, and v is anti-complete to S if N(v)∩S = ∅.
Let S′ ⊆ V with S′ ∩ S = ∅. If every vertex of S is complete (anti-complete) to
S′, then S is complete (anti-complete) to S′.

In our paper we also define some other probe graph classes. For example, we
may say that a graph G with a set P of probes and a set N of non-probes is
probe split if there exists a set F ⊆

(
N
2

)
such that G+F is a split graph (a graph

whose vertex set can be partitioned into a clique and an independent set).
We now recall some colouring terminology for d-cuts from [20] that is com-

monly used in the context of matching cuts (see, e.g. [21]). A red-blue colouring
of a graph G colours every vertex of G either red or blue. For d ≥ 1, a red-blue
colouring is a red-blue d-colouring if every blue vertex has at most d red neigh-
bours, every red vertex has at most d blue neighbours, and G has at least one
blue vertex and at least one red vertex. See Figure 1 for red-blue d-colourings
for d = 2 and d = 3. For some d ≥ 1, a red-blue d-colouring is perfect if and only
if every red vertex has exactly d blue neighbours and vice versa. This gives us
the following straightforward observation (in the case of perfectness we focus on
d = 1: a perfect 1-cut is a perfect matching cut).

Observation 5 ([20]) For every d ≥ 1, a connected graph G has a (perfect)
d-cut if and only if G has a (perfect) red-blue d-colouring.

Let d ≥ 1. Let G = (V,E) be a connected graph and X,Y ⊆ V be disjoint
sets. A red-blue (X,Y )-d-colouring of G is a red-blue d-colouring of G that
colours all the vertices of X red and all the vertices of Y blue. We say that
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(X,Y ) is a d-precoloured pair of G. We will usually “guess” such a pair (X,Y )
as the starting point in our algorithms. On a d-precoloured pair (X,Y ) we can
safely apply the following two rules exhaustively.

R1. Return no (i.e. G has no red-blue (X,Y )-d-colouring) if a vertex v ∈ V is
adjacent to d+ 1 vertices in X as well as to d+ 1 vertices in Y .

R1. Let v ∈ V \ (X ∪ Y ). If v is adjacent to d+ 1 vertices in X, then put v in
X, and if v is adjacent to d+ 1 vertices in Y , then put v in Y .

Afterwards, we either returned no, or we obtained two new sets X ′ ⊇ X and
Y ′ ⊇ Y . In the latter case we say that we have colour-processed (X,Y ) into
(X ′, Y ′). By construction, every vertex of V \ (X ′ ∪ Y ′) is adjacent to at most
d vertices of X ′ and to at most d vertices of Y ′. The next lemma shows that we
can work safely with (X ′, Y ′) instead of (X,Y ).

Lemma 6 ([20]). Let G be a connected graph with a precoloured pair (X,Y ).
It is possible, in polynomial time, to either colour-process (X,Y ) into a pair
(X ′, Y ′) such that G has a red-blue (X,Y )-d-colouring if and only if it has a red-
blue (X ′, Y ′)-d-colouring, or to find that G has no red-blue (X,Y )-d-colouring.

3 Polynomial-Time Results

In this section, we show our polynomial-time results for Maximum Matching
Cut, Perfect Matching Cut and d-Cut (d ≥ 1). That is, we show that
Maximum Matching Cut (and thus 1-Cut) and Perfect Matching Cut
are polynomial-time solvable on (sP1 + P4)-free graphs, and d-Cut, for d ≥ 2,
is polynomial-time solvable on (P1 + P4)-free graphs.

Our proofs are based on combining colour-processing with the observation
that we can guess the closed neighbourhood of any set of size at most some
constant c: this will lead to only O(2cncd) branches, due to the fact that any
vertex can have at most d neighbours of the opposite colour. In our algorithm we
choose a constant number of constant-sized sets in such a way that afterwards
the whole input graph is coloured. We show below how we do the above for our
most involved result, which is our algorithm for d-Cut for (P1+P4)-free graphs
for d ≥ 2, and we omit the proof of Theorem 7 due to page restrictions.

Theorem 7. Maximum Matching Cut and Perfect Matching Cut are
polynomial-time solvable on partitioned probe (sP1+P4)-free graphs for all s ≥ 0.

To prove our next result (Theorem 9), we need a lemma whose proof we omit.

Lemma 8. For any red-blue d-colouring of a connected P4-free graph, some
colour class has size at most 2d.

Theorem 9. For every d ≥ 2, d-Cut is polynomial-time solvable on partitioned
probe (P1 + P4)-free graphs.
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Proof. Let d ≥ 2. Let G = (V,E). Let (G,P,N) be a connected partitioned
probe (P1 + P4)-free graph, so there exists an edge subset F ⊆

(
N
2

)
such that

G+ F is (P1 + P4)-free. We show how to find a d-cut of G or that none exists.
Suppose that there is a set Q ⊆ P that induces a P4 in G. Then Q dominates

G, otherwise G contains an induced P1+P4 of which at most one vertex belongs
to N and so G + F also contains an induced P1 + P4. For every red-blue d-
colouring of G, every vertex v ∈ V has at most d neighbours in a different colour
class. That is, there are O(nd) red-blue d-colourings of NG[v]. As |Q| = 4, we
can consider all O(nd) colourings of NG[Q], and, as Q dominates G, this is all
red-blue d-colourings of G; hence, we can solve the problem in polynomial time.

We may now assume that G[P ] is a P4-free graph (cograph) and we consider
three cases according to the number of connected components of G[P ]. As G is
connected and N is an independent set of G, we find that P dominates N , that
is, every vertex of N has a neighbour in P . This means that G has a red-blue d-
colouring that colours every vertex of P blue only if G has a red-blue d-colouring
that colours exactly one vertex of N red and all other vertices of G blue. We
can check this in polynomial time. Hence, from now on, we will assume that in
every red-blue d-colouring of G (if such a colouring exists), there is at least one
red vertex and at least one blue vertex in P .

Case 9.1: G[P ] has exactly one connected component.
By Lemma 8, we may assume that a set X of at most 2d vertices of P is coloured
red. We guess X. As we may assume that P is not monochromatic, we may as-
sume that X is a proper non-empty subset of P . We colour every vertex of P \X
blue. Then we consider all O(n2d) possible red-blue colourings of the neighbour-
hood of X in N . For each of them, we consider the remaining uncoloured vertices
in N . As these only have blue neighbours, we can safely colour them blue. It
remains to check in polynomial time if the obtained colouring of G is indeed a
red-blue d-colouring.

Case 9.2: G[P ] has exactly two connected components.
The proof of this case has been omitted.

Case 9.3: G[P ] has at least three connected components.
Let the connected components of G[P ] have vertex sets C1, . . . , Cr for some
r ≥ 3. We partition N into four types of vertices. Let v ∈ N . If v is complete to
P , then we say that v is of type-A.

Now, suppose that v is not of type-A, but that v has a neighbour in every
component of G[P ]. We say that v is of type-B and make the following observa-
tion. We know that v is not complete to some set Ci, so we can find adjacent
vertices xi and x′

i in Ci such that xi but not x′
i is adjacent to v. Suppose that v

is not complete to another set Cj , so there is a vertex x′
j in Cj not adjacent to v.

Let xk be a vertex adjacent to v in the vertex set of a third component. We now
have that {x′

j}∪{x′
i, xi, v, xk} forms an induced P1+P4 in G, and consequently

in G+F , as it only contains one vertex of N , namely v. Hence, a type-B vertex
is complete to all but one set Ci, in which it has least one neighbour.
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Fig. 3: Illustration of the types described in Case 9.3, specified by vertex label.
A (dashed) purple line between a vertex v ∈ N and some Ci represents that v
is (anti-)complete to Ci. A black (dashed) edge between a vertex v ∈ N and a
vertex in P represents a (non)-edge.

Now, suppose that v is anti-complete to some Ch, so v is neither of type-A
nor of type-B. We say that v is of type-C if v has a neighbour in at least two
other components Ci and Cj . Suppose that v has a non-neighbour in either Ci

or Cj , say in Ci. Let xh ∈ Ch, xi, x
′
i ∈ Ci such that xix

′
i is an edge with only

xi adjacent to v, and let xj ∈ Cj be adjacent to v. Now, {xh} ∪ {x′
i, xi, v, xj}

induces a P1 + P4 in G, and also in G + F as it has only one vertex from N ,
a contradiction as G+ F is (P1 + P4)-free. Hence, v is complete to every Cj in
which it has a neighbour. So, a type-C vertex of N is complete to at least two
and at most r − 1 sets in {C1, . . . , Cr} and anti-complete to all other sets in
{C1, . . . , Cr}.

Finally, if v is neither type-A nor type-B nor type-C, then v is of type-D. As
G is connected, a type-D vertex v has at least one neighbour in one set Ci and is
anti-complete to every other set in {C1, . . . , Cr}. See Figure 3 for an illustration.
We distinguish between the following three cases:

Case 9.3.1 N has a type-A vertex.
Let v ∈ N be of type-A. We colour v blue and we consider all O(nd) possible
red-blue colourings of its neighbourhood N(v) = P . We then find a set Q ⊆ P of
at most d vertices in P that are coloured red. As we already checked whether G
has a red-blue d-colouring in which P is monochromatic, we may assume that Q
is a proper non-empty subset of P . We now consider all possible O(nd2

) possible
red-blue colourings of the neighbourhood of Q in N . For each one of them, the
uncoloured vertices in N only have blue neighbours and form an independent
set, we can safely colour them blue. Note that at least one vertex is red and at
least one is blue. It remains to check whether the obtained colouring of G is a
red-blue d-colouring. If so, we are done, and otherwise we discard the branch.
Hence, as the number of branches is polynomial, and we can process each branch
in polynomial time, this case takes polynomial time.

Case 9.3.2 N has no type-A vertices, but N has a type-B vertex.
Let v ∈ N be of type-B. We assume without loss of generality that v has a
neighbour and a non-neighbour in C1 and is complete to C2, . . . , Cr. We colour v
blue, and we consider all O(nd) options of choosing a set Xv of at most d red
neighbours of v in P . We colour all other neighbours of v in P blue. Hence,
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afterwards part of C1 is coloured, while all vertices of every Ci with i ∈ {2, . . . , r}
are coloured. Moreover, by Lemma 8, we find that any red-blue d-colouring of
G (if one exists) either colours at most 2d vertices of C1 red, or else it colours
at most 2d vertices of C1 blue. Hence, we also consider all O(n2d) options for
choosing a set X ⊆ C1 of size at most 2d that consists of these vertices. We colour
the vertices of C1\X with the opposite colour. We also colour the neighbourhood
of Xv ∪X in N in every possible way. This yields another O(n3d2

) branches. For
each branch, we colour-process. If afterwards we find an uncoloured vertex in N
whose neighbourhood in P is monochromatic, then we give it the unique colour
of the vertices in its neighbourhood in P .

Suppose that afterwards there still exist uncoloured vertices in N . Let b be
an arbitrary uncoloured vertex in N and note that b is adjacent to both a blue
vertex x and a red vertex y in P . As we coloured the neighbourhood of Xv ∪X,
neither x nor y belongs to Xv ∪ X. As Xv contains all red vertices in N(v),
it follows that y belongs to C1 \ N(v), and thus y ∈ C1 \ X. Consequently, all
vertices of X are blue. As x, which is blue, is not in X, and all vertices in C1 \X
are red, x belongs to some set Ci with i ≥ 2. Hence, all uncoloured vertices have
a neighbour in C1 and a neighbour in at least one other Ci. As N has no type-A
vertices, every uncoloured vertex in N is of type-B or of type-C.

First, suppose that N has an uncoloured vertex b that is of type-B. By
definition, b is complete to r − 1 sets in {C1, . . . , Cr}. Let Y be the union of
these r − 1 sets. We recall that b is uncoloured and that all vertices in every
Ci are coloured. Hence, Y must contain at most 2d vertices in total, otherwise
we would have given b a colour during colour-processing. We now consider all
O(n2d2

) possible red-blue colourings of the neighbourhood of Y in N . Afterwards,
there are no uncoloured vertices left, as every uncoloured vertex was of type-B
or of type-C and thus must have a neighbour in Y . It remains to check whether
the obtained colouring of G is a red-blue d-colouring. If so, we are done, and
otherwise we discard the branch.

So we can now assume that all uncoloured vertices are of type-C. Let b again
denote an uncoloured vertex in N . From the definition of type-C, it follows that
b is either complete or anti-complete to every set Ci. Recall that all uncoloured
vertices of N , and thus b, have a neighbour in C1. Hence, b is complete to C1.
Note that b is anti-complete to X, as otherwise b would have been coloured. This
means that X = ∅, and thus every vertex of C1 is coloured red. As b is uncoloured
and we have colour-processed, this means that C1 has size at most d. Hence, we
can consider all O(nd2

) possible red-blue colourings of the neighbourhood of C1

in N . Afterwards, all uncoloured vertices in N have received a colour (as they
were all complete to C1). It remains to check whether the obtained colouring of
G is a red-blue d-colouring. If so, we are done, otherwise we discard the branch.

As the number of branches is polynomial, and we can process each branch in
polynomial time, our algorithm takes polynomial time if this case occurs.

Case 9.3.3 N has no type-A and no type-B vertices.
As G is connected and r ≥ 3, G must have vertices that are adjacent to at least
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u v

P

N

C1 Cr

Fig. 4: A P -dominating pair {u, v}.

two sets Ci. As G has no vertices of type-A or type-B, all of these vertices must
be of type-C.

We now make a useful observation. Let u and v be two type-C vertices, such
that the following holds:

(i) u is complete to some Ch, but anti-complete to Ci;
(ii) v is anti-complete to Ch, but complete to Ci; and
(iii) u and v are both complete to some Cj .

In this case, we claim that {u, v} is a P -dominating pair, that is, every Ci is
complete to a least one of u, v; see Figure 4. For a contradiction, suppose that
neither u nor v is complete to some Ck (so both are anti-complete to Ck as they
are of type-C). Let z ∈ Ck. If uv /∈ E(F ), then a vertex of Ch, u, a vertex of Cj

and v form, together with z, an induced P1 +P4 in G+F . If uv ∈ E(F ), then a
vertex of Ch, u, v and a vertex of Ci, together with z, form an induced P1 + P4

in G+ F . So, in both cases, we derive a contradiction.
We now continue with the description of our algorithm. We choose a type-C

vertex v ∈ N such that v is complete to a maximum number of sets Ci over all
type-C vertices of N . We say that v is of maximum type-C. From the definition
of type-C, it follows that v is anti-complete to at least one set in {C1, . . . , Cr}.
Let Ch be such a set. As G is connected, G contains a path from v to the vertices
in Ch. Hence, without loss of generality, there exists a type-C vertex u ∈ N that
is complete to Ch and to at least one other Cj to which v is also complete. As v
is of maximum type-C and v is not complete to Ch, to which u is complete, we
find that u is also anti-complete to some set Ci to which v is complete. Hence,
{u, v} satisfies (i)–(iii), so {u, v} is a P -dominating pair.

As {u, v} is a P -dominating pair, we can colour P as follows. First suppose u
and v are coloured alike, say both are coloured blue. We proceed in exactly the
same way as in Case 9.1. As u and v can each have at most d red neighbours, we
may assume that a set X of at most 2d vertices of P is coloured red. We guess
X. As we already checked whether G has a red-blue d-colouring in which P is
monochromatic, we may assume that X is a proper non-empty subset of P . We
colour every vertex of P \ X red. Afterwards, we consider all O(n2d) possible
red-blue colourings of the neighbourhood of X in N . For each one of them, we
consider the uncoloured vertices in N . As these only have blue neighbours, we
can safely colour them blue. Note that at least one vertex is red and at least
one vertex is blue. It remains to check in polynomial time whether the obtained
colouring of G is indeed a red-blue d-colouring.
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Now suppose u is coloured red and v is coloured blue. We guess a set Xu of
at most d blue neighbours of u in P . We colour all other neighbours of u in P
red. Similarly, we guess a set Xv of at most d blue neighbours of v in P . We
colour all other neighbours of v in P red. This gives us O(n2d) branches. We
note that every vertex of P has been coloured, as {u, v} is a P -dominating pair.
We now colour the neighbourhood of Xu ∪Xv in N in every possible way. This
gives us a further O(n2d2

) branches.

We let C∗
1 , . . . , C

∗
q be those sets Ci that contain a vertex of Xu ∪Xv. We let

Cu
1 , . . . , C

u
s be those sets Ci that contain no vertex of Xu ∪Xv and are coloured

red. We let Cv
1 , . . . , C

v
t be those sets Ci that contain no vertex of Xu ∪Xv and

are coloured blue. Note that every Ci belongs to one of these three families of
sets, but some of these families might be empty.

As v is coloured blue, its neighbours not in Xv are blue. Hence, v is anti-
complete to every Cu

i . Similarly, u is anti-complete to every Cv
j . Recall that

{u, v} is a P -dominating pair and that each of u, v, being of type-C, is either
complete or anti-complete to a set Ci. Consequently, u is complete to every Cu

i

and v is complete to every Cv
i .

If Cu
1 exists, then we select an arbitrary vertex x1 ∈ Cu

1 , and we colour the
neighbourhood of x1 in N in every possible way. This leads to O(nd) additional
branches. We do the same if Cv

1 exists, leading to another O(nd) branches. We
now colour-process. Afterwards, we colour any vertex in N with monochromatic
neighbourhood in P with the unique colour of its neighbours in P .

We claim that every vertex of type-D has now been coloured. For a contra-
diction, suppose z ∈ N is of type-D and has no colour yet. We recall that all
Cu

i and Cv
j are monochromatic and that z, being type-D, only has neighbours

in exactly one Ci. This means that z must have both a blue neighbour and a
red neighbour in some C∗

i . However, one of these two neighbours of z belongs to
Xu ∪Xv, meaning z would have been coloured.

Hence, the only vertices of G that are possibly still uncoloured are type-C
vertices in N . Let b ∈ N be an uncoloured vertex of type-C. This means that b
has both a red neighbour and a blue neighbour in P . By definition, b is either
complete or anti-complete to Ci for every i ∈ {1, . . . , r}. This means that b is
anti-complete to every C∗

h, as we coloured the neighbourhood of C∗
h∩ (Xu∪Xv),

which is a non-empty set by definition. Hence, the red neighbour of b must
be some zu ∈ Cu

i , and the blue neighbour of b must be some zv ∈ Cv
j . From

the above, we find that b is anti-complete to Cu
1 and Cv

1 (as we coloured the
neighbourhood of one of the vertices in them). Hence, we have i ≥ 2 and j ≥ 2.
Let yu ∈ Cu

1 and yv ∈ Cv
1 . If bv /∈ F , then {yu}∪ {zu, b, zv, v} induces a P1 +P4

in G + F . If bv ∈ F , then {yu} ∪ {zu, b, v, yv} induces a P1 + P4 in G + F . See
Figure 5 for an illustration. In both cases, we obtain a contradiction.

From the above, we conclude that there are no uncoloured vertices, and we
have obtained a red-blue colouring of G. It now remains to check in polynomial
time whether this is a red-blue d-colouring. If so, then we are done. Otherwise, we
discard this branch and move on to the next branch. As the number of branches
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yu
zu yv

zvCu
1 Cu

i Cv
1 Cv

j

u v b

P

N

yu
zu yv

zv

u v b

Fig. 5: Illustration of Case 9.3, where there is a P -dominating pair {u, v} made
of vertices of type-C and another type-C vertex b that has not been coloured
yet. The graph G+F contains an induced P1+P4 (highlighted by large vertices
and thick edges) regardless of whether there is an edge between v and b or not.

is polynomial, and we can process each branch in polynomial time, our algorithm
runs in polynomial time (its correctness follows from its description). ⊓⊔

4 NP-Completeness Results

To finish the proof of Theorem 4, we must show that 1-Cut and Perfect
Matching Cut are NP-complete on probe 2P2-free graphs and probe K1,3-free
graphs and that for d ≥ 2, d-Cut is NP-complete on probe 2P2-free graphs and
probe 4P1-free graphs. All other NP-completeness results follow directly from
the corresponding NP-completeness results in Theorems 2 and 3.

We start with the following result, which we recall is in contrast to the
polynomial-time result of 1-Cut for K1,3-free graphs due to Bonsma [4]. We
omit its proof which is based on an observation of Moshi [24].

Theorem 10. 1-Cut is NP-complete on probe K1,3-free graphs.

The diamond 2P1 + P2 is obtained from taking the complement of 2P1 + P2, or
equivalently, from the K4 after removing an edge. A graph is subcubic if it has
maximum degree at most 3. We omit the proof of our next result as well, as it
is similar to a corresponding result for Vertex Cover from [5] except that we
reduce from a different known NP-complete problem.

Theorem 11. Perfect Matching Cut is NP-complete on the class of probe
(K1,3, 2P1 + P2)-free subcubic planar graphs (and thus on probe K1,3-free graphs).

We recall that a graph is split if and only if it is (2P2, C4, C5)-free, and we show:

Theorem 12. For every d ≥ 1, d-Cut and Perfect Matching Cut are
NP-complete on probe split graphs (and thus on probe 2P2-free graphs).

Proof. It is known that for every d ≥ 1, d-Cut and Perfect Matching Cut
are NP-complete for bipartite graphs. The former statement was shown in [24]
for d = 1 and in [10] for d ≥ 2. The latter statement was shown in [18].

Let G be a connected bipartite graph. Let N be one of the two bipartition
classes. Note that N is an independent set. Let F consist of all the edges between
vertices of N . Then G+ F is a split graph. Hence, the theorem follows. ⊓⊔
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The proof of our final result is similar to the proof of Lucke et al. [20] for showing
that d-Cut is NP-complete for 3P2-free graphs for every d ≥ 2.

Theorem 13. For every d ≥ 2, d-Cut is NP-complete on probe 4P1-free graphs.

5 Conclusions

We precisely identified those graphs H, for which polynomial-time results for the
problems d-Cut (d ≥ 1), Perfect Matching Cut and Maximum Matching
Cut can be extended from H-free graphs to probe H-free graphs. This yielded
complete complexity dichotomies for all three problems on probe H-free graphs.
Note such a dichotomy remains unknown for H-free graphs, with Theorems 1
and 2 still containing open cases.

We conclude that, despite our new polynomial-time results, these problems
are harder for probe H-free graphs than for H-free graphs (if P ̸= NP) even for
small graphs H. Moreover, we propose to study other graph problems on probe
H-free graphs; so far, systematic studies have only been performed for Vertex
Cover [5], Colouring [26] and the problems in this paper.
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