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ABSTRACT

Hyperparameter Optimization (HPO) is essential for building high-performing
ML/DL models, yet conventional optimizers often struggle in high-dimensional
spaces where evaluations are costly and progress is diluted across many low-
impact variables. We propose Greedy Importance First (GIF), an importance-
aware scheduling strategy that uses a small-sample warm start to estimate per-
hyperparameter importance, forms importance-driven groups, allocates budget
proportionally, and retains a full-space fallback. Under fixed evaluation budgets,
we study GIF on diverse benchmarks—five anisotropic high-dimensional analytic
functions (d∈{5, 10, 30, 50}), Bayesmark, and NAS-Bench-301 (33D). GIF con-
sistently attains faster convergence and stronger final incumbents than baselines
(TPE, BOHB, Random Search, and Sequential Grouping) in higher-dimensional
settings; on Bayesmark, where the effective dimensionality is smaller, GIF re-
mains competitive, but the margins are modest. Ablations confirm the value of im-
portance estimates, proportional allocation, and the full-space fallback. Our Hy-
perparameter Importance Assessment (HIA) also recovers the intended anisotropy
on those anisotropic analytic functions. Overall, GIF offers a simple, plug-
compatible approach for more sample-efficient HPO in high-dimensional spaces,
with potential relevance to deep-model tuning and large-scale AutoML.

1 INTRODUCTION

Hyperparameter optimization (HPO) is a critical stage in modern ML/DL pipelines: it governs
robustness, stability, and generalization. Despite a mature toolbox—Bayesian optimization (e.g.,
TPE (Bergstra et al., 2011), BOHB (Falkner et al., 2018)), evolutionary (Loshchilov & Hutter,
2016), and bandit methods (Li et al., 2018)—efficiency often degrades as dimensionality grows:
each evaluation becomes costlier and surrogates become harder to fit and less informative (Bischl
et al., 2023). Crucially, the obstacle is not dimensionality alone but the strongly uneven influence
of hyperparameters (Probst et al., 2019). In many models, a small subset of settings accounts for
most performance variation, while others contribute marginally. Yet most optimizers advance all
coordinates in lockstep each iteration, effectively enforcing uniform scheduling. This induces a di-
mensionality bottleneck: treating all hyperparameters equally dilutes the budget and delays progress,
especially under tight evaluation limits.

Hyperparameter importance assessment (HIA) provides a principled foundation for addressing this
bottleneck: from a small set of trials, it estimates each hyperparameter’s marginal contribution
to performance—and, when needed, pairwise interactions. However, despite the availability of
estimators such as N-RReliefF (Wang et al., 2024), fANOVA (Hutter et al., 2014), and PED-
ANOVA (Watanabe et al., 2023), there is no widely adopted strategy that operationalizes these
estimates into concrete scheduling decisions. As a result, HIA methods are underutilized in prac-
tice.

This paper introduces Greedy Importance-First (GIF), an importance-aware HPO strategy that
turns HIA insights into an explicit, budgeted search plan. As illustrated in Fig. 1, GIF (i) per-
forms a small-sample warm start to collect initial trials and produce insights interactively with
HIA algorithms; (ii) orders hyperparameters by estimated importance and groups them accord-
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ingly; (iii) allocates budgets proportionally to group importance and optimizes each group while
fixing other variables at the current incumbent, warm-starting from the accumulated history; and

Warm start
optimization HIA

Importance-
sorted

grouping

Allocate trials
by group

importance
weights

Group-wise
optimization

Full-space
fallback

if no gain

Outputs
(hbest,ybest)

and
(H,Y)

Figure 1: GIF Pipeline: High-level workflow of the proposed Greedy Impor-
tance First strategy.

(iv) when a round yields
no improvement, falls back
to joint optimization to
restore global exploration.
This design concentrates
the budget where it mat-
ters most, while the fall-
back to joint optimization
provides a principled es-
cape from local stagna-
tion. We evaluate GIF
under fixed budgets on
controlled anisotropic ana-
lytic functions, Bayesmark
tasks (Turner & Eriksson, 2019), and NAS-Bench-301 (Zela et al., 2020). Ablations disentangle the
effect of each component, and we further verify that HIA can recover the ground-truth anisotropy
on the analytic benchmarks—even with limited evaluations, it correctly highlights the few dominant
coordinates while suppressing negligible ones.

Contributions:

• We propose Greedy Importance First (GIF), which turns HIA into a concrete search plan:
importance-sorted grouping, importance-proportional allocation, and a safeguarded full-space
fallback.

• We verify that lightweight HIA (N-RReliefF) recovers the intended anisotropy on controlled func-
tions, supporting its use as a reliable prior under tight budgets.

• Under fixed budgets, GIF is consistently competitive and often superior in higher dimensions
(weighted analytic functions, NAS-Bench-301), while remaining competitive on mid-dimensional
Bayesmark; ablations confirm each component’s contribution.

2 RELATED WORK

High-dimensional BO. High dimensionality stresses both surrogate modeling and acquisition op-
timization. Prior work mitigates this via (i) subspace or variable-selection assumptions (Wang
et al., 2016; Letham et al., 2020; Nayebi et al., 2019), (ii) additive kernel decompositions (Ngo
et al., 2025), and (iii) local/trust-region BO (Eriksson et al., 2019b), all of which effectively reduce
model complexity. A recent reassessment argues that a principal failure mode of “vanilla BO” in
high-dimensional settings is excess assumed complexity, and shows that simple length-scale prior
scaling can render standard BO strongly competitive without imposing structural low-dimensional
assumptions (Hvarfner et al., 2024). Our approach is orthogonal: rather than constraining the func-
tion class or geometry, GIF reallocates evaluation budget using empirically inferred (HIA-based)
hyperparameter importance, and retains a full-space fallback to preserve global exploration.

Hyperparameter Importance Assessment (HIA). Understanding which hyperparameters “matter”
has long supported post-hoc analysis and space design; for example, Weights & Biases (W&B)
Sweeps provide importance plots from trial histories (Weights & Biases, 2025), while libraries such
as Optuna and SMAC3 expose fANOVA-based importance tools (Akiba et al., 2019; Lindauer et al.,
2022). Methodologically, fANOVA remains a standard variance-decomposition approach (Hutter
et al., 2014); PED-ANOVA generalizes it with a Pearson-divergence–based closed form that enables
efficient local importance on arbitrary subspaces (e.g., top-performing regions) (Watanabe et al.,
2023). Complementary to fANOVA-style decompositions, N-RReliefF adapts ReliefF to continuous
responses and quantifies both marginal and pairwise interaction importance from HPO histories,
offering a lightweight, data-driven estimator under tight budgets (Wang et al., 2024).

Gray-box and uncertainty-aware HPO. Gray-box approaches enrich BO surrogates with interme-
diate training signals (e.g., learning curves, checkpoint features, or partial-fidelity measurements),
and uncertainty-aware schedulers couple candidate selection with budget allocation to avoid prema-
ture discarding under early-stage noise (Liu et al., 2024; Mehta et al., 2024; Falkner et al., 2018).
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While these methods exploit richer signals across candidates, GIF serves as a lightweight alloca-
tor across hyperparameters: it uses HIA from small warm-starts to reweight search effort across
hyperparameters and can plug into BOHB/TPE-style optimizers as the inner engine.

Resource allocation, warm starts, and scheduling. Many HPO systems exploit warm starts (e.g.,
transferring priors or surrogate states), parallel scheduling, or multi-fidelity allocation across can-
didates and tasks (Wistuba et al., 2018; Falkner et al., 2018; Li et al., 2018; Swersky et al., 2013;
Wang et al., 2025). However, they typically retain uniform treatment across hyperparameters within
an iteration. GIF breaks this per-iteration uniformity by fixing non-targeted hyperparameters to
the current incumbent and concentrating trials on the most important groups. This increases the
signal-to-noise ratio per evaluation in high-dimensional regimes. A per-round full-space fallback
then provides a principled escape hatch from local plateaus.

In sum, GIF turns early HIA into a concrete search plan: importance-ordered grouping, importance-
proportional allocation, warm-started subspace search, and a safeguarded full-space fallback. This
yields a plug-compatible route to sample-efficient HPO in high-dimensional settings, complemen-
tary to structural high-dimensional BO (subspace/variable-selection assumptions and local/trust-
region BO), gray-box surrogates, and uncertainty-aware schedulers.

3 PROBLEM SETUP

We consider HPO on a fixed dataset D and hyperparameter search space Θ = Θ1 × · · · × Θd,
where each Θi is the domain of hyperparameter Hi. A configuration is h = (h1, . . . , hd) ∈ Θ.
The black-box objective is fD : Θ → R,h 7→ fD(h), which returns a scalar performance (e.g.,
validation accuracy to maximize). The goal of HPO is h⋆ ∈ argmaxh∈Θ fD(h), y

⋆ = fD(h
⋆),

subject to a limited evaluation (or wall-clock) budget Btotal. After t evaluations, the history is
H = {h(1), . . . ,h(t)} and Y = {y(1), . . . , y(t)} with y(i) = fD(h

(i)). The incumbent (best-so-far)
configuration is (hbest, ybest) where ybest = maxi≤t y

(i). An optimizer Aopt proposes new candi-
dates conditioned on (H,Y), evaluates them, and appends results until Btotal is exhausted. Standard
outputs are the final incumbent (hbest, ybest) and the complete trace (H,Y).
Representative baseline. TPE (Bergstra et al., 2011) partitions the history (H,Y) by a score
threshold y0 (e.g., the γ-quantile), and fits conditional densities l(h) = p(h | y ≥ y0) and
g(h) = p(h | y < y0). New candidates maximize l(h)/g(h), a proxy for expected improvement.
In practice, l and g are estimated via Parzen windows with the factorization p(h) ≈

∏d
j=1 p(hj).

The iterative loop is: fit densities→ sample h(t+1)→ evaluate fD(h
(t+1))→ update the history.

Typical bottlenecks in High Dimensions. For the representative optimizer TPE, as the dimen-
sionality d of the search space increases, several limitations arise under tight evaluation budgets
Btotal: (i) The independence assumption p(h) ≈

∏
j p(hj) neglects coordinate interactions. In high-

dimensional hyperparameter spaces, many variables only matter through their joint effects. Ignoring
such dependencies causes both l(h) and g(h) to appear nearly uniform across most coordinates,
offering little guidance for exploration. (ii) In higher dimensions, density estimation becomes in-
creasingly noisy because the effective sample size per coordinate shrinks. With limited evaluations,
each marginal distribution is poorly supported, so l(h) and g(h) fluctuate heavily, yielding unsta-
ble search guidance. (iii) As d increases, contributions of coordinates to f are highly imbalanced;
the presence of many low-impact dimensions reduces the effective signal-to-noise in each sampled
evaluation, leading to slower improvement over iterations. These effects explain why traditional BO
(here represented by TPE) struggles in high dimensions, motivating importance-aware reallocation
strategies. To address the high-dimensional bottlenecks of standard BO, we introduce hyperparam-
eter importance assessment (HIA) as guiding insights, which GIF leverages to order, group, and
allocate evaluation budgets more effectively.

4 THE GIF ALGORITHM

4.1 PIPELINE OVERVIEW

Algorithm 1 formalizes how the key components of GIF are orchestrated into a single scheduling
strategy.
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Algorithm 1 GIF Main Strategy

Require: Search space Θ, objective fD, subsample ratio α, initial budget Binit, step size Bstep,
total budget Btotal, max group size k, importance evaluator Aimp, optimizer Aopt, fallback
ratio ρ

Ensure: Incumbent (hbest, ybest), the complete evaluation trace (H,Y)
1: (H,Y), (hbest, ybest)← warm-start(Θ, fD, α,Binit,Aopt) (see Alg. 3)
2: Tused ← Binit, Tfull used ← 0, Bfull total ← ρBtotal

3: while Tused < Btotal do
4: I ← Aimp(H,Y) {importance weights {Ii}di=1}
5: FormGroups: sort indices by I (desc.), then partition into groups G = {Gj} with |Gj | ≤ k
6: Bcur ← min

(
Bstep, Btotal − Tused

)
7: b← AllocateBudget(G, I, Bcur) (see Alg. 4)
8: (H,Y, hbest, ybest, Tused, improved)←

GroupOpt(G,b,H,Y, hbest, ybest, Tused,Aopt) (see Alg. 5)
9: if not improved and Tfull used < Bfull total and Tused < Btotal then

10: R←
⌊
Btotal−Tused

Bstep

⌋
+ 1

11: Bfull ← min
(⌊

Bfull total−Tfull used

R

⌋
, Btotal − Tused

)
12: (H,Y, hbest, ybest, Tused, Tfull used)← FullSpaceOpt(Θ, fD, Bfull,H,Y, hbest, ybest,

Tused, Tfull used,Aopt) (see Alg. 6)
13: end if
14: end while
15: return (hbest, ybest) and (H,Y)

4.2 WARM START

Inputs: Search space Θ, dataset D (size |D|), objective fD : Θ → R, subsample ratio α ∈ (0, 1],
warm-start budget Binit, inner optimizer Aopt. Outputs: Initial history (H,Y) with |H| = |Y| =
Binit, and incumbent (hbest, ybest). We randomly subsample the dataset to obtain Dinit of size
α|D| and run Aopt for Binit evaluations on Θ (using Dinit), producing (H,Y) and initializing
(hbest, ybest) as the best in this history. This warm start expends a small budget to gather optimizer-
guided (rather than purely random) configurations—reducing wall-clock cost via subsampling while
providing a more diverse, informative basis for subsequent importance estimation under small bud-
gets. Further pseudocode is given in App. B, Alg. 3.

4.3 HYPERPARAMETER IMPORTANCE ASSESSMENT (HIA)

Inputs: Optimization history (H,Y); evaluator Aimp. Outputs: Normalized importance profile
{Ii}di=1 assigning a nonnegative weight to each hyperparameter Hi.

In general, HIA methods assign weights I1, . . . , Id estimating each hyperparameter’s marginal con-
tribution to performance, providing interpretable insights about “what matters” and informing down-
stream scheduling or search-space design. Representative techniques include fANOVA (Hutter et al.,
2014), PED-ANOVA (Watanabe et al., 2023), and N-RReliefF (Wang et al., 2024). In GIF, we em-
ploy N-RReliefF as our default importance evaluator. Given history (H,Y), N-RReliefF treats each
configuration as a reference point, compares it with its nearest neighbors in configuration space, and
accumulates per-dimension covariation weighted by the performance difference between neighbors.
This produces raw scores Îi, which are then mapped into positive, comparable importances via a
softplus normalization and re-scaled so that

∑
i Ii = 1 (see details in App. A). In this way, dimen-

sions where small input changes consistently lead to large performance shifts are assigned higher
weights, which in turn underpin ordering and grouping in GIF.

4.4 GROUPING AND ALLOCATION

Key Inputs: Importance weights {Ii}di=1; maximum group size k; per-round step size Bstep; total
budget Btotal; used trials Tused. Outputs: A partition of hyperparameter indices into groups G =
{Gj} with |Gj | ≤ k, and per-group trials allocations b = [b1, . . . , b|G|]. We first set the current
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round budget Bcur = min
(
Bstep, Btotal − Tused

)
. Based on {Ii}, we sort hyperparameters by

descending weight and partition them into groups of size at most k. For each group Gj , we compute

its total weight Ij =
∑

i∈Gj
Ii and allocate trials proportionally: bj = max

(
1,

⌊
Ij∑
g Ig

Bcur

⌋)
.

Enforcing bj ≥ 1 guarantees at least one trial per group; the final allocations b are then passed to
the group-wise optimization stage.

4.5 GROUP-WISE OPTIMIZATION

Key Inputs: Groups G = {Gj}, per-group allocations b = [b1, . . . , b|G|], current history (H,Y),
incumbent (hbest, ybest), and inner optimizer Aopt. Outputs: Updated history (H,Y), updated
incumbent (hbest, ybest), and updated trial counter Tused.

For each group Gj , we fix all hyperparameters outside Gj to their values in the current incum-
bent hbest. We then invoke the inner optimizer Aopt for bj evaluations restricted to Gj , with
warm-start from the existing history (H,Y). The resulting evaluations (Hj ,Yj) are appended to
the history, and Tused is incremented by bj . After each group is optimized, we update the incumbent
if a better configuration is discovered. If all groups fail to improve the incumbent, the round is con-
sidered unsuccessful, potentially triggering the full-space fallback (4.6). Otherwise, the algorithm
proceeds with the next round using the updated history and incumbent.

4.6 FULL-SPACE FALLBACK

Key Inputs: Remaining trials Tleft = Btotal−Tused; full-space reserved quota Bfull total = ρBtotal;
cumulative full-space trials used Tfull used (i.e., trials already spent on full-space fallback); step
size Bstep. Outputs: updated evaluation history (H,Y) and updated incumbent (hbest, ybest). To
guard against subspace stagnation while balancing exploration–exploitation, GIF triggers a full-
space step only when an entire group-wise round yields no improvement. Given Tleft, define the
remaining full-space quota Tfull left = max

(
0, Bfull total − Tfull used

)
, and the estimated num-

ber of future rounds nround =
⌊

Tleft

Bstep

⌋
+ 1. Allocate a per-round fallback budget Bfull =

min
( ⌊

Tfull left/nround

⌋
, Tleft

)
. Run the inner optimizer on the full space Θ for Bfull evaluations

with warm-start (H,Y), obtain (Hfull,Yfull), and update (hbest, ybest), Tused ← Tused + Bfull,
Tfull used ← Tfull used + Bfull. If group-wise optimization keeps improving, the fallback is never
activated; the algorithm continues with the standard per-round budget until Tused = Btotal, and any
unused full-space quota remains unspent.

Implementation Note The inner routineAopt can be any standard HPO method (e.g., TPE, BOHB)
that supports warm starts. All calls reuse the cumulative history (H,Y), enabling consistent impor-
tance estimation and avoiding redundant random initialization. In our experiments, we focus on the
scheduling strategy itself and therefore adopt TPE as the default Aopt unless otherwise specified.

5 EXPERIMENTS

We evaluated GIF under fixed budgets on three classes of test cases: (1) anisotropic analytic func-
tions designed to stress high-dimensional search, (2) Bayesmark tabular tasks with multiple models
and datasets, and (3) NAS-Bench-301 (33D) neural architecture tuning. Unless otherwise stated,
each run used a total budget of 500 evaluations across 5 independent seeds, with the initial warm-
start budget Binit=100 counted toward the total budget. The optimizer Aopt was TPE (Akiba et al.,
2019), and the importance evaluatorAimp was N-RReliefF (Wang et al., 2024). For GIF, we adopted
a practical default configuration: sample ratio α=0.6, step size Bstep=d evaluations per round,
maximum group size k=⌊d/3⌋, and a full-space fallback ratio ρ=0.2. These values were chosen as
reasonable defaults for consistency across benchmarks, though other settings could also be applied
in practice.
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5.1 ANISOTROPIC ANALYTIC FUNCTION BENCHMARKS

We selected five classic black-box optimization functions widely used in HPO benchmarking:
Sphere, Rosenbrock, Ackley (Ackley, 2012), Griewank (Griewank, 1985), and Rastrigin (Rastri-
gin, 1974). Each function was instantiated at dimensions d ∈ {5, 10, 30, 50}.
Anisotropic Variable Transformation. To induce anisotropy, we applied a diagonal scaling w =

(w1, . . . , wd) with wi = exp
(
−α (i− 1)

)
, α = − log(10−3)

d−1 , so that wd/w1 = exp
(
−α(d− 1)

)
=

10−3. This stylized construction creates a known, non-uniform sensitivity profile across coordinates.
It is intended to provide a clean and controlled testbed for evaluating importance-aware schedulers
under heterogeneous influence.

Function Formula

Anisotropic Sphere f(x) = −
∑d

i=1(wixi)
2

Anisotropic Rosenbrock f(x) = −
∑d−1

i=1

[
100

(
wi+1xi+1 − (wixi)

2
)2

+ (1− wixi)
2
]

Anisotropic Ackley f(x) = −
(
− 20 exp

(
− 0.2

√
1
d

∑
(wixi)2

)
− exp

(
1
d

∑
cos(2πwixi)

)
+ 20 + e

)
Anisotropic Griewank f(x) = −

(
1 + 1

4000

∑
(wixi)

2 −
∏d

i=1 cos
(
wixi√

i

))
Anisotropic Rastrigin f(x) = −

∑d
i=1

[
(wixi)

2 − 10 cos(2πwixi) + 10
]

Table 1: Weighted analytic benchmark functions with anisotropic scaling. Domains: [−5, 5]d for Sphere,
Rosenbrock, Ackley, and Griewank; [−5.12, 5.12]d for Rastrigin. We negate the standard minimization forms
to adopt a maximization convention. For Sphere, Ackley, Griewank, and Rastrigin, the global maximizer is
x = 0 with maximum 0. For Rosenbrock, the unconstrained maximizer under our scaling satisfies wixi = 1
for all i, yielding value 0.

Baselines. We compared GIF against Sequential Grouping (SG) (Wang et al., 2025), Bayesian
Optimization based on Tree-structured Parzen Estimator (TPE), Bayesian Optimization based on
Gaussian Process (GP), Bayesian Optimization with Hyperband (BOHB) (Falkner et al., 2018), and
Random Search. All competitors used the identical box domains in Table 1, the same total evaluation
budget (500) and seeds, and — where appropriate — the same warm-start history.

Verification of Importance Estimation. We verified that N-RReliefF could serve as an importance
analyzer by testing whether it recovered the coordinate-wise anisotropy of each benchmark function.
For every function and each d ∈ {5, 10, 30, 50}, we drew 500 i.i.d. samples x ∼ U([−1, 1]d), eval-
uated y = f(x), estimated per-coordinate importances {Ii}, and compared them with the ground-
truth weights {wi} after max-normalization. Recovery was assessed by visually overlaying the two
normalized curves and by reporting the Pearson correlation between {wi} and {Ii}.

5.1.1 ABLATION STUDIES

To isolate the contribution of each design component in GIF, we conducted ablations on the same
anisotropic analytic benchmarks as Table 1, using the identical protocol and budgets as in the pre-
vious subsection. Variant A — Randomized Importance (RandImp): We replaced the impor-
tance evaluator with random per–coordinate weights to test whether gains arose from meaningful
importance estimation rather than staged optimization alone; Variant B — Uniform Allocation
(UniAlloc): We retained true importances for grouping but allocated an equal number of trials
to each group (no importance weighting) to probe the necessity of importance-weighted budgeting;
Variant C — No Full-Space Fallback (NoFB): We disabled the joint full-space optimization step
to evaluate the fallback’s role in escaping local plateaus and maintaining robustness.

For all the experiments on the anisotropic analytic benchmarks, we aggregated across all five func-
tions and d ∈ {5, 10, 30, 50}, and reported: (i) best-objective convergence curves vs. evaluations
(mean ± sem over 5 seeds; App. D); (ii) final best values at 500 trials summarized in a per-function
heatmap (mean ± std across seeds; Fig. 11); and (iii) normalized regret AUC (lower is better; Ta-
ble 3).

5.2 BAYESMARK

Bayesmark is an open-source benchmark for comparing Bayesian optimization methods via a unified
API, standardized search spaces, and consistent evaluation (Turner & Eriksson, 2019). We ran
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the official benchmark on four datasets (breast, digits, iris, wine) and four models (RF,
DT, MLP-adam, MLP-sgd). Because GIF targets higher-dimensional HPO, we focused on the
Bayesmark tasks with the highest dimensionalities within the suite (d ≈ 6–10; see Table 6 for
exact dimensionalities). For consistency across tasks, we use accuracy throughout. Train/validation
splits and hyperparameter ranges followed Bayesmark defaults for all optimizers. We summarized
performance via task-wise normalized final best scores (Perf. Norm), Avg. Rank, Time Rank, and
Win Rate in Table 4 (see formulation in App. E.5). And App. E.4 provides a compact task-level
table comparing GIF to the strongest baseline per dataset–model pair (mean accuracy over 5 seeds),
along with Score Gain and Time Saved.

Baselines. We included Bayesmark’s default optimizers: HyperOpt, OpenTuner-BanditA,
OpenTuner-GA, OpenTuner-GA-DE, PySOT, RandomSearch, Scikit-GBRT-Hedge, Scikit-GP-
Hedge, Scikit-GP-LCB. To ensure fairness, all baselines and GIF ran with identical search spaces,
budgets, seeds, and splits; when applicable, we reused the same warm-start history. The descriptions
of each baseline optimizer are provided in App. E.1.

5.3 NAS-BENCH-301

Unlike the fully tabular NAS benchmarks 101 and 201 (Ying et al., 2019; Dong & Yang, 2020),
NAS-Bench-301 (NB301)(Zela et al., 2020) is a surrogate benchmark that emulates the Differen-
tiable Architecture Search (DARTS) (Liu et al., 2018) search space and yields fast, approximate eval-
uations in a realistic high-dimensional regime. Concretely, NB301 is built on the DARTS cell space
trained on CIFAR-10 and provides learned regressors that map an architecture encoding to predicted
validation accuracy (and a separate regressor for runtime), enabling faithful anytime comparisons
without re-training each architecture. In this work, we used the official SNB-DARTS-XGB-v1.0
release (Zela et al., 2020): an XGBoost-based surrogate trained on DARTS+CIFAR-10 with strati-
fied train/val/test splits over data gathered from multiple NAS optimizers. We kept the benchmark’s
33-dimensional architecture encoding and queried the surrogate-predicted validation accuracy as the
objective; for wall-clock plots we used the benchmark’s runtime surrogate to accumulate simulated
time. We evaluated GIF against TPE, BOHB, Random, and SG on darts-xgb-v1.0. We re-
ported: (i) best validation score vs. evaluations; (ii) best validation score vs. simulated wall-clock
time; and (iii) a Pareto view (score vs. time) that summarizes the quality–time trade-off (Fig. 5).

6 RESULTS

6.1 VERIFICATION OF IMPORTANCE ESTIMATION

Figure 2: Weighted Ackley: ground truth weights wi vs. estimated weights Ii

d = 5 d = 10 d = 30 d = 50

Weighted Ackley 0.995 0.986 0.959 0.941
Weighted Griewank 0.985 0.896 0.670 0.547
Weighted Rastrigin 0.990 0.854 0.696 0.717
Weighted Rosenbrock 0.993 0.982 0.831 0.791
Weighted Sphere 0.987 0.917 0.819 0.805

Mean ± Std 0.990± 0.004 0.927± 0.057 0.795± 0.116 0.760± 0.144

Table 2: Pearson correlation between ground-truth weights
wi and HIA score estimates Ii.

Before applying GIF to real HPO tasks,
we verify that N-RReliefF produces
hyperparameter-importance scores {Ii}
that align with the generating anisotropy
weights {wi} on weighted analytic bench-
marks. Table 2 reports Pearson correla-
tions between {Ii} and {wi} across di-
mensions d ∈ {5, 10, 30, 50}: alignment
is very strong in low dimensions (mean
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r ≈ 0.95–0.99). And as the dimensionality grows, the effective data per dimension shrinks under
a fixed budget, leading to noisier importance estimates and hence lower correlations. But they still
remain consistently above 0.7 on average. As a representative illustration, Fig. 2 overlays {wi} and
{Ii} for the weighted Ackley function; it shows the best case in terms of Pearson’s linear correlation
(near-perfect at d = 5, 10 with r ≈ 0.99, and only slight drops at d = 30, 50 with r = 0.96, 0.94).
Other benchmarks also exhibit similar monotone relationships between {Ii} and {wi}, though their
Pearson correlations are not as high as in the Ackley case. See App. C for the full grid of plots.

6.2 ANALYTIC BENCHMARKS AND ABLATIONS

Figure 3: Convergence on Weighted
Ackley (50D).

We benchmark GIF on five anisotropic analytic functions at
d ∈ {5, 10, 30, 50} against TPE, BOHB, GP, RS, and SG (pro-
tocol in Sec. 5.1, ablation setup in Sec. 5.1.1). Under the
normalized regret AUC metric (see App. D.3), GIF is com-
parable to TPE at d=5 (small spaces yield limited benefit
from importance-aware scheduling) and becomes consistently
stronger for d≥10: relative to the best baseline it reduces regret
AUC by 35% at d=10 (vs. BOHB), 31% at d=30 (vs. TPE),
and 33% at d=50 (vs. GP). Fig. 3 illustrates a typical 50D case
(Weighted Ackley), where GIF maintains a consistently higher
best-so-far curve at matched evaluation counts.

Ablations in Table 3 show each component matters: replacing
learned importance with random weights (RandImp) or using

uniform per-group allocation (UniAlloc) degrades AUC, confirming the value of (i) stable impor-
tance ordering and (ii) proportional budgeting; removing the full-space fallback (NoFB) hurts most
in high-d, evidencing the need for periodic global exploration to escape misleading subspaces. Per-
function convergence and variability heatmaps are in App. D; on Rosenbrock the margin narrows
due to strong inter-variable coupling, but GIF remains competitive overall.

Dim BOHB GP RS SG TPE GIF-win

5 4.90 ± 2.07 10.40 ± 3.27 7.01 ± 2.55 9.57 ± 1.36 2.71 ± 0.64 20%
10 11.36 ± 3.16 20.35 ± 6.23 21.41 ± 2.72 25.36 ± 5.01 8.06 ± 2.00 60%
30 35.09 ± 3.42 30.89 ± 4.52 39.75 ± 6.01 40.14 ± 5.42 21.34 ± 2.84 100%
50 44.23 ± 3.57 42.88 ± 2.26 48.36 ± 4.28 47.08 ± 6.15 29.35 ± 2.54 100%

Dim GIF RandImp UniAlloc NoFB GIF-win

5 3.20 ± 0.81 3.24 ± 2.65 3.28 ± 2.63 3.26 ± 2.68 0%
10 7.36 ± 0.96 6.96 ± 2.55 7.95 ± 2.68 7.19 ± 2.51 60%
30 14.75 ± 2.55 18.46 ± 3.98 21.01 ± 5.71 17.62 ± 4.39 100%
50 19.18 ± 1.56 24.07 ± 3.07 24.70 ± 2.97 23.33 ± 2.54 100%

Table 3: Normalized regret AUC (lower is better) for anisotropic
analytic benchmarks. Top: baselines vs. GIF. Bottom: ablations.
GIF-win = fraction of seeds with the best AUC.

Opt. Avg. Rank ↓ Time Rank ↓ Perf. Norm ↑ Win Rate ↑

GIF 2.72 5.13 0.811 0.750
RS 6.28 1.66 0.189 0.063
HOpt 4.56 5.84 0.354 0.094
PySOT 4.47 6.03 0.371 0.156
GP-H 3.47 10.0 0.401 0.125
OT-B 5.28 3.78 0.274 0.094
GBRT 4.78 7.94 0.314 0.125
OT-GD 5.50 2.94 0.234 0.063
GP-LCB 4.09 9.00 0.370 0.219
OT-GA 5.75 2.69 0.220 0.063

Table 4: Bayesmark summary. Opti-
mizer abbreviations follow App. E.1.

6.3 BAYESMARK (MID-DIMENSIONAL EVALUATION)

Figure 4: Pareto trade-off between final score and time
(lightweight methods).

Having established GIF’s behavior on
anisotropic analytic functions, we next
turn to a mid-dimensional, real-world suite:
Bayesmark. Table 4 reports several aggregate
metrics whose detailed definitions are given
in App. E.5. Briefly, (i) Perf. Norm = mean
normalized final score across tasks (per-task
scores are min–max normalized after seed
averaging); (ii) Avg. Rank and Time Rank =
average rank across tasks by performance and
runtime; (iii) Win Rate = fraction of task–seed
instances where an optimizer achieves the top
score. Under these definitions, GIF attains the
highest normalized performance (0.811) and win rate (0.750), with the best average rank (2.72). In
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Fig. 4, we omit GP-LCB, GP-Hedge, and GBRT-Hedge since their wall-clock times are dominated
by the cost of repeatedly training large surrogate models. GP-LCB and GP-Hedge update a full
Gaussian process after every trial, which scales cubically in the number of observations and quickly
becomes prohibitive. GBRT-Hedge trains ensembles of regression trees at each iteration, which
similarly incurs non-negligible overhead. Including them would push the x-axis far to the right,
squashing the remaining points into a narrow cluster and obscuring the score–time trade-offs. Con-
sequently, the figure focuses on lightweight methods to reveal the Pareto structure. Taken together,
the Bayesmark experiments confirm that GIF consistently converts its evaluation efficiency into
higher normalized performance and win rate, while maintaining relatively competitive wall-clock
times.

6.4 NASBENCH 301 (HIGH-DIMENSIONAL EVALUATION)

We now shift to a genuinely high-dimensional setting: NAS-Bench-301 (33D, DARTS-XGB sur-
rogate). Figure 5 summarizes convergence in evaluations (left), wall-clock time (middle), and the
score–time Pareto view (right). In evaluations, GIF keeps improving after other methods flatten out;
around 340 evaluations, it overtakes all baselines. This indicates that the importance-guided sched-
uler continues to discover productive subspaces late in the run, and the warm-started full-space
fallback helps it escape plateaus. In wall-clock time, GIF uses the budget efficiently: it reaches the
top accuracy without being the slowest; SG is faster but stalls at a lower ceiling, and GP is slowest at
the same budget. The Pareto panel makes the trade-off explicit: GIF and SG define the frontier—SG
at the “faster but lower score” end, GIF at the “higher score at similar time” end—while GP, TPE,
BOHB, and Random are dominated (either slower for similar accuracy or less accurate at similar
time). As a result, in high dimensions, focusing trials on the most important groups while retaining
periodic full-space search yields stronger final incumbents and higher accuracy for the time spent.

Figure 5: Convergence and Pareto analysis on NAS-Bench-301 (DARTS-XGB surrogate, 33D)

7 CONCLUSION

Our study introduces GREEDY IMPORTANCE FIRST (GIF), an importance-aware strategy that trans-
lates early hyperparameter-importance estimates into concrete scheduling decisions—grouping by
importance, proportional allocation, and a safeguarded full-space fallback. Across diverse bench-
marks, a consistent pattern emerges: GIF is most effective in high-dimensional regimes. On
weighted analytic functions and NAS-Bench-301, it achieves both faster convergence and stronger
final incumbents than strong baselines. On Bayesmark, where the effective dimensionality is
smaller, GIF remains competitive, but its margins are limited on simpler models and become most
pronounced on the MLPs—reflecting that importance-guided scheduling yields the biggest gains
when many low-impact variables dilute progress and the landscape exhibits stronger anisotropy.
In summary, GIF provides a simple, plug-compatible pathway to sample-efficient HPO in high di-
mensions; by reweighting effort toward important subspaces while maintaining a robust fallback, it
offers practical utility for deep learning model tuning, and lays a foundation for future research on
importance-aware AutoML systems.

9
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ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. We did not collect new data, use human subjects,
or process personally identifiable information. All datasets and benchmarks are publicly available
under their respective licenses, and we followed their usage guidelines. The method is optimizer-
agnostic and could be applied to high-stakes domains; in such cases, deployers should conduct
problem-specific safety, privacy, and fairness assessments (e.g., dataset documentation, bias audits,
and model risk evaluation) before use. The authors are unaware of any conflicts of interest that
would unduly influence the reported results.

REPRODUCIBILITY STATEMENT

We took several steps to enable reproducibility. Algorithmic components and scheduling logic are
specified in Secs. 4.1–4.6, with pseudocode for all routines in App. B (Algorithms 1–6). The im-
portance estimator (N-RReliefF) and its normalization are detailed in App. A (Alg. 2). Experimen-
tal settings—including budgets, seeds, default GIF hyperparameters (α=0.6, Bstep=d, k=⌊d/3⌋,
ρ=0.2), and optimizer choices (TPE for Aopt)—are described in Sec. 5. The anisotropic ana-
lytic functions, domains, and transformations are provided in Sec. 5.1 and Table 1. Bayesmark
tasks, datasets, and model search spaces are specified in Sec. 6.3 and Apps. E.2–E.3, with base-
line descriptions in App. E.1. NAS-Bench-301 details (the SNB-DARTS-XGB-v1.0 surrogate)
appear in Sec. 6. Our primary metric (normalized regret AUC) is precisely defined in App. D.3;
verification plots for importance recovery are in App. C and additional convergence summaries in
App. D. We will include an anonymized code archive in the supplementary materials with config-
uration files, fixed random seeds, and scripts to regenerate tables and figures, as well as raw logs
for the reported runs, to facilitate independent reproduction. Anonymous repository is available at
https://anonymous.4open.science/r/ICLR_GIF-F175/.
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A DETAILS OF HIA (N-RRELIEFF)

As a lineage, N-RReliefF (Wang et al., 2024) descends from the original ReliefF feature-weighting
algorithm and its regression/continuous-output extensions (Kononenko, 1994; Robnik-Šikonja &
Kononenko, 2003). We instantiate HIA with N -RReliefF, treating each tried configuration h(r) =

(h
(r)
1 , . . . , h

(r)
d ) as an instance and its score p(r) as the target. A mixed distance between two con-

figurations h,h′ is computed as

dist(h,h′) =

d∑
i=1

diffi(hi, h
′
i), diffi(hi, h

′
i) =


|hi − h′

i|
range(Θi)

if Hi is continuous,

1[hi ̸= h′
i] if Hi is categorical,

0 if Hi is inactive (conditional).

Performance values are min–max normalized on the set of observed performance values P to [0, 1]
before use. Let nref be the number of reference trials and nnbr the number of nearest neighbors per
reference (in configuration space). For each reference r and its neighbor set N (r) with |N (r)| =
nnbr, we accumulate per-dimension covariation:

Îi =
1

nref nnbr

∑nref

r=1

∑
n∈N (r) diffi

(
h
(r)
i , h

(n)
i

)
ϕ
(
p(r), p(n)

)
, ϕ(p, p′) = |p− p′|.

Finally, we map raw scores to positive, comparable importances via temperature-controlled softplus
normalization:

Ī = 1
d

∑d
j=1 Îj , sτ (z) = τ log(1 + ez/τ ), τ > 0, Ii =

sτ (Îi − Ī)∑d
j=1 sτ (Îj − Ī)

.
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By default we set nref = min{200, t}, where t = |H| is the current number of evaluated trials,
and use nnbr = 10 neighbors. Pairwise scores Îi,j for analysis can be obtained by replacing diffi(·)
with diffi(·)diffj(·) and normalizing analogously. Unless otherwise stated, GIF uses only {Ii} for
grouped scheduling.

Algorithm 2 N-RReliefF for Hyperparameter Importance

Require: Evaluated trials D = {(h(r), p(r))}tr=1, number of references nref , number of neighbors
nnbr

Ensure: Normalized importance scores {Ii}di=1 (and optionally pairwise scores {Ii,j})
1: Initialize raw scores Îi ← 0 for all i = 1, . . . , d
2: for r = 1 to nref do
3: Sample reference (h(r), p(r)) from D
4: Find nnbr nearest neighbors N (r) of h(r)

5: for all n ∈ N (r) do
6: for i = 1 to d do
7: Îi ← Îi + diffi(h

(r)
i , h

(n)
i ) · |p(r) − p(n)|

8: Optionally: Îi,j ← Îi,j + diffi(·) diffj(·) |p(r) − p(n)|
9: end for

10: end for
11: end for
12: Normalize Îi ← 1

nref nnbr
Îi for each i

13: Compute Ī = 1
d

∑d
j=1 Îj

14: for i = 1 to d do

15: Ii ←
sτ (Îi − Ī)∑d
j=1 sτ (Îj − Ī)

with sτ (z) = τ log(1 + ez/τ )

16: end for
17: return {Ii} (and optionally {Ii,j})

B PSEUDOCODE OF GIF KEY COMPONENTS

Algorithm 3 warm-start

Require: Search space Θ, objective fD, subsample ratio α ∈ (0, 1], init budget Binit, optimizer
Aopt

Ensure: Initial history (H,Y), incumbent (hbest, ybest)
1: Dinit ← randomly subsample D by ratio α
2: (H,Y)← Aopt(fD,Θ,Dinit, Binit)
3: (hbest, ybest)← argmax(h,y)∈(H,Y) y
4: return (H,Y), (hbest, ybest)
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Algorithm 4 AllocateBudget

Require: Groups G = {G1, . . . ,Gm}, per-HP importances {Ii}di=1, round budget B
Ensure: Group allocations b = [b1, . . . , bm],

∑
j bj ≤ B

1: Itotal ←
∑d

i=1 Ii
2: for j = 1 to m do
3: Ij ←

∑
i∈Gj

Ii

4: bj ←
⌊

Ij
Itotal

B
⌋

5: bj ← max(1, bj) {ensure nonzero coverage; can be disabled if skipping is allowed}
6: end for
7: S ←

∑m
j=1 bj , d← B − S

8: if d > 0 then
9: t← argmax1≤j≤m Ij {give remainder to most important group}

10: bt ← bt + d
11: end if
12: return b

Algorithm 5 GroupOptimization

Require: Groups G = {Gj}, allocations b = [b1, . . . , b|G|], history (H,Y),
incumbent (hbest, ybest), current trials Tused, optimizer Aopt, total budget Btotal

Ensure: Updated (H,Y), (hbest, ybest), Tused, flag improved
1: improved← False
2: for j = 1 to |G| do
3: Fix all hyperparameters outside Gj to their values in hbest

4: (Hnew,Ynew)← Aopt(fD, Gj , bj , fixed = hbest−Gj , warm− start = (H,Y))
5: H ← H∪Hnew, Y ← Y ∪ Ynew {append to history if order matters}
6: Tused ← Tused + bj
7: (h∗, y∗)← argmax(h,y)∈(H,Y) y
8: if y∗ > ybest then
9: (hbest, ybest)← (h∗, y∗); improved← True

10: end if
11: if Tused ≥ Btotal then
12: break
13: end if
14: end for
15: return (H,Y), (hbest, ybest), Tused, improved

Algorithm 6 FullSpaceOptimization

Require: Search space Θ, objective fD, budget Bfull, history (H,Y), incumbent (hbest, ybest),
current trials Tused, used fallback quota Tfull used, optimizer Aopt

Ensure: Updated (H,Y), (hbest, ybest), Tused, Tfull used

1: (Hfull,Yfull)← Aopt(fD,Θ, Bfull, warm− start = (H,Y))
2: H ← H∪Hfull, Y ← Y ∪ Yfull
3: Tused ← Tused +Bfull; Tfull used ← Tfull used +Bfull

4: (h∗, y∗)← argmax(h,y)∈(H,Y) y
5: if y∗ > ybest then
6: (hbest, ybest)← (h∗, y∗)
7: end if
8: return (H,Y), (hbest, ybest), Tused, Tfull used

14
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C PEARSON CORRELATION VERIFICATION OF ANISOTROPY ON ALL
ANISOTROPIC ANALYTIC FUNCTIONS

Figure 6: Anisotropy verification across five anisotropic analytic benchmark functions. Rows are functions
and columns are d ∈ {5, 10, 30, 50}. Blue: normalized ground-truth weights; orange: normalized N-RReliefF
estimates; panels show Pearson r.

Across all functions, N-RReliefF tracks the overall decay pattern of the true weights well in low
dimensions (d = 5, 10), yielding high correlations (r ≳ 0.9). As d increases (d = 30, 50), corre-
lations decrease due to high-dimensional sparsity, which weakens nearest-neighbor estimates that
N-RReliefF relies on. Importantly, despite this drop in r, the estimated importance curves still
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clearly preserve the expected monotonic decay: large-weight coordinates remain dominant and
small-weight coordinates remain negligible, so the anisotropy structure is still recoverable. Among
functions, Weighted Ackley remains the most robust (e.g., r ≈ 0.94 at d = 50), Weighted Sphere
is also stable thanks to its convex, single-peaked landscape; Weighted Rosenbrock degrades mod-
erately due to curved valleys and cross-dimensional dependencies; Weighted Rastrigin drops more
with d because multimodality injects noise into local neighborhoods; and Weighted Griewank is the
most challenging in high dimensions due to oscillatory product terms that induce nonlocal inter-
actions. Overall, these results indicate that (i) anisotropy is accurately captured in small/medium
d, (ii) robustness depends on landscape complexity, and (iii) even when r declines at large d, the
qualitative decay trend of importance is retained.

D ADDITIONAL RESULTS FOR ANALYTIC BENCHMARKS AND ABLATIONS

Figures 7–10 plot best objective (maximization) vs. evaluations for each of the five weighted ana-
lytic functions under d=5, 10, 30, 50 (symlog y-axis; shaded areas are±SEM over seeds). Figure 11
summarizes, per function and method, the rank (top text) and the final best mean across seeds (bot-
tom text), with color encoding std across seeds (darker = higher variability). Across dimensions,
GIF generally improves faster and reaches stronger final incumbents than baselines, with variability
comparable to or lower than alternatives, especially for d≥30.

D.1 WHY GIF IS LESS DOMINANT AT LOW DIMENSIONS.

We observe that at d=5–10 (Figures 7, 8), classical model-based optimizers (e.g., TPE) often close
the gap to GIF on most functions. This is expected for three reasons: (i) Diminished benefit of
importance estimation. With few dimensions, anisotropy is easier to explore directly; the gain
from HIA and forming importance-sorted groups is small because the search already covers the full
space frequently. (ii) Overhead vs. budget. GIF spends part of the per-round budget on warm-
start sampling, HIA (N -RReliefF), grouping and a full-space fallback. Under a small effective
dimensionality, this coordination overhead yields less net advantage than in high-d where focusing
evaluations pays off. (iii) Noise in early HIA. Early HIA could be noisier, occasionally suggesting
near-ties among variables or even failing to correctly estimate their relative weights. In such cases,
TPE’s direct modeling of the full space can perform better, which matches the tighter ranks and
smaller GIF win rate at d=5–10 in Table 3.

D.2 WHY THE MARGIN ON ROSENBROCK IS SMALLER AT HIGH DIMENSIONS.

On the weighted Rosenbrock, even for d=30–50 (Figures 9, 10), GIF’s lead is narrower than on
Ackley/Griewank/Rastrigin. Mechanistically: Rosenbrock features a narrow, curved valley with
high parameter interactions. Progress requires coordinated multi-dim moves along the ridge. GIF’s
grouping improves sample allocation but, by construction, emphasizes variables by marginal im-
portance; when interactions dominate, importance ordering is less separable and the benefit of
importance-sorted, proportionally allocated subspaces is reduced.

Takeaways. (1) In low-d, GIF’s coordination overhead and weaker need for importance-guided
focus reduce its advantage; strong baselines already explore sufficiently. (2) In high-d, anisotropy
and sparsity of useful directions make importance sorting + proportional allocation + fallback syn-
ergistic, producing larger gains and stable seeds. (3) On interaction-heavy landscapes like Rosen-
brock, margins shrink because success hinges on coupled updates that are only partially captured
by marginal-importance grouping; nevertheless, GIF remains competitive and typically top-ranked
with reduced variability.
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Figure 7: Best objective vs. evaluations on weighted analytic functions (d=5).

Figure 8: Best objective vs. evaluations on weighted analytic functions (d=10).

Figure 9: Best objective vs. evaluations on weighted analytic functions (d=30).

Figure 10: Best objective vs. evaluations on weighted analytic functions (d=50).
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Figure 11: Performance summary of GIF and baselines on weighted analytic benchmarks.

Figure 11 indicates that at low dimensions (d=5), GIF’s advantage is less pronounced (TPE and
GP occasionally outperforms GIF), but as d grows, GIF maintains strong incumbents while several
baselines degrade or become unstable, especially on challenging functions such as Rosenbrock.

D.3 EVALUATION METRIC: AGGREGATED REGRET AUC

In table 3, the score is assessed using the normalized regret area under the curve (regret AUC). For
each trial t, regret is defined as

rt = f⋆ −max
s≤t

f(h(s)),

where f⋆ denotes a known upper bound of the maximization form (0 for our weighted analytic suite.
The regret trajectory is then summarized by

Regret-AUC =
1

r0 · T

∫ T

0

rt dt,

where T is the evaluation budget. For each (f, dim, seed), the initial regret r0 is computed at
trial 0, with the mean objective score across functions to provide a common baseline. Then, for
each method, the regret trajectory on that function is integrated and divided by r0 · T , yielding a
normalized regret AUC. Finally, normalized AUCs are averaged across the five functions at each
dimension. This procedure eliminates scale discrepancies between functions (e.g., Sphere vs. Ras-
trigin), ensuring that no single function dominates the aggregated regret AUC due to its numerical
range.

This aggregated regret AUC has been used in prior HPO work for comparing optimizers across
heterogeneous tasks (Klein et al., 2017).

E ADDITIONAL DETAILS FOR BAYESMARK

E.1 THE USED BASELINE OPTIMIZERS

• HyperOpt (HOpt): Tree-structured Parzen Estimator (TPE) Bayesian optimization; it models
p(x | y) with Parzen density estimators and chooses x to maximize the density ratio l(x)/g(x)
where l and g split observations by a quantile of y (Bergstra et al., 2011). TPE handles mixed
continuous/categorical spaces and conditionals natively and is robust with small initial designs.
Key knobs: algo (tpe.suggest/rand.suggest/atpe.suggest), γ (good–bad split,
e.g., 0.15–0.25), KDE bandwidths, n startup jobs. Strengths: strong any-time performance;
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scales to high-/discrete-dimensional spaces. Limitations: density estimation can degrade with
heavily multi-modal/noisy objectives.

• OpenTuner-BanditA (OT-B): OpenTuner’s technique portfolio coordinated by a multi-armed ban-
dit that allocates budget to competing search operators based on observed payoffs (Ansel et al.,
2014). Operators include Nelder–Mead, PSO-like moves, GA-style mutations, and local search;
BanditA adapts selection online. Pros: very adaptive across heterogeneous problems; no strict sur-
rogate assumptions. Cons: more evaluations needed to identify winning operators; reproducibility
depends on operator mix and seeds.

• OpenTuner-GA (OT-GA): OpenTuner instantiated with genetic algorithm operators (selec-
tion/crossover/mutation) as primary movers (Ansel et al., 2014). Typical settings: population
size, tournament size, crossover/mutation rates, and elitism; supports categorical/mixed spaces
naturally. Works well when useful schemata exist or good configurations are recombinable; may
struggle on deceptive/weakly heritable landscapes without auxiliary local search.

• OpenTuner-GA-DE (OT-GD): Hybridizing genetic operators with differential evolution (DE)
steps inside OpenTuner (Ansel et al., 2014). DE brings vector-based proposals (e.g.,
DE/rand/1/bin) helpful for continuous subspaces; GA maintains diversity for categorical
parts. Pros: good balance of exploration/exploitation in mixed spaces. Cons: extra hyperpa-
rameters (F, CR, strategy) and interactions to tune.

• PySOT (PySOT): Surrogate-assisted global optimization using RBF/GP/POU surrogates with
adaptive sampling such as DYCORS and expected improvement tailored for expensive black
boxes (Eriksson et al., 2019a). Supports parallel suggestion and trust-region style safeguards;
good for smooth objectives under tight budgets. Pros: sample efficiency and principled infill;
Cons: categorical handling requires encoding; performance depends on surrogate fit and scaling.

• RandomSearch (RS): Uniform i.i.d. sampling over the search space; tuning-free baseline. Sur-
prisingly competitive for very short budgets or heavily rugged/misaligned spaces where models
mislead. Provides a variance floor for statistical comparisons and is used to sanity-check opti-
mization plumbing.

• Scikit-GP-Hedge (GP-H): scikit-optimize GP surrogate with HEDGE to adaptively mix
multiple acquisitions (e.g., EI, LCB, PI) (Head et al., 2018). Automatically balances explo-
ration/exploitation by tracking per-acquisition gains; typical knobs: kernel (Matern ν), κ/ξ, jit-
ter, and acquisition weights learning rate. Pros: safer across tasks than committing to a single
acquisition; Cons: overhead of meta-selection and sensitivity to GP hyperpriors in noisy settings.

• Scikit-GP-LCB (GP-LC): scikit-optimize GP with the Lower Confidence Bound acquisi-
tion µ(x) − κσ(x) (Head et al., 2018). LCB offers an explicit exploration dial via κ (static or
time-varying), often preferable under non-stationarity or when EI is too myopic. Pros: simple,
stable, and theoretically grounded; Cons: GP assumptions and scaling (categoricals via encoding;
O(n3) regression) can limit high-n or high-d cases.

• Scikit-GBRT-Hedge (GBRT): scikit-optimize GBRT surrogate with HEDGE over acquisi-
tions (Head et al., 2018). Tree ensembles handle non-linearities, heteroskedasticity, and mixed
types better than GP; supports larger n with modest cost. Pros: robust on tabular/mixed spaces;
Cons: partial dependence can be coarse in very sparse regions; needs careful feature scal-
ing/encoding.

E.2 DATASETS USED IN BAYESMARK EXPERIMENTS

All four datasets are the canonical versions distributed with SCIKIT-LEARN (Pedregosa et al., 2011)
(loaded via sklearn.datasets).

Dataset #Samples #Features #Classes Feature type / Notes

breast 569 30 2 Continuous; Breast Cancer (binary)
digits 1,797 64 10 Integer pixels (8×8), multiclass
iris 150 4 3 Continuous sepal/petal, multiclass
wine 178 13 3 Continuous physicochemical, multiclass

Table 5: Bayesmark datasets used in our experiments.
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E.3 SEARCH SPACES OF EVALUATED MODELS

Model Hyperparameter Type Scale Range / Meaning

Decision Tree (DT)

max depth int linear [1,15]
min samples split real logit (0.01,0.99)
min samples leaf real logit (0.01,0.49)
min weight fraction leaf real logit (0.01,0.49)
max features real logit (0.01,0.99)
min impurity decrease real linear [0,0.5]

Random Forest (RF)

max depth int linear [1,15]
max features real logit (0.01,0.99)
min samples split real logit (0.01,0.99)
min samples leaf real logit (0.01,0.49)
min weight fraction leaf real logit (0.01,0.49)
min impurity decrease real linear [0,0.5]

MLP (Adam)

hidden layer sizes int linear [50,200]
alpha real log 10−5–101
batch size int linear [10,250]
learning rate init real log 10−5–10−1

tol real log 10−5–10−1

validation fraction real logit (0.1,0.9)
beta 1 real logit (0.5,0.99)
beta 2 real logit (0.9, 1−10−6)
epsilon real log 10−9–10−6

MLP (SGD)

hidden layer sizes int linear [50,200]
alpha real log 10−5–101
batch size int linear [10,250]
learning rate init real log 10−5–10−1

power t real logit (0.1,0.9)
tol real log 10−5–10−1

momentum real logit (0.001,0.999)
validation fraction real logit (0.1,0.9)

Table 6: Search spaces of evaluated Bayesmark models. Each row lists a tunable hyperparameter with
its type, sampling scale, and range. Dimensionality per model: DT (d=6), RF (d=6), MLP–Adam (d=9),
MLP–SGD (d=8). Scale conventions: linear = uniform, log = log-uniform, logit = uniform in the logit domain.

E.4 PER-DATASET ANALYSIS OF BAYESMARK RESULTS

Table 7 reports a task-level breakdown of GIF against the strongest baseline per dataset–model pair.
Scores are averaged across 5 seeds, and we also report relative score gain and time saved.

breast. On MLP-adam and MLP-sgd, GIF outperforms the best baseline both in final accuracy
(+4.4% and +5.4%) and in time-to-solution (76–99% faster), confirming its scheduling advantage
on more complex neural models. In contrast, on DT and RF, the baselines remain slightly stronger
(up to +4% higher final accuracy), since the tasks are simple and saturate early.

digits. GIF achieves modest but consistent gains on the MLP models (up to +2.8%), while saving
time on MLP-sgd. On DT and especially RF, variance is higher: baselines such as PySOT or GP-
LCB occasionally edge out GIF in final score, though at the cost of much slower runtime. Here,
GIF’s strength lies in efficiency rather than absolute score.

iris. This dataset is trivial, with all methods quickly approaching near-perfect accuracy. Conse-
quently, margins are negligible: GIF is statistically tied with the best baselines (within ±1.5% gain)
and sometimes slower in wall-clock time. This confirms that when the effective search space is
low-dimensional and easy, the advantage of importance-aware scheduling diminishes.

wine. GIF shows clear benefits on the MLP models: on MLP-sgd it improves accuracy by +5.2%
while cutting time by nearly 100%, and also brings +4.1% gain on MLP-adam. On tree models
(DT/RF), however, strong baselines such as PySOT and TPE remain competitive, sometimes yielding
slightly better scores.

Takeaways. The per-dataset breakdown illustrates two key points: (1) On easy tasks (e.g., iris,
or tree models on breast), GIF offers little additional benefit, as all optimizers saturate rapidly.
(2) On harder tasks with higher effective dimensionality (notably MLP-sgd and MLP-adam on
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breast/wine), GIF consistently achieves higher final scores while being markedly faster. As
foreshadowed by Table 4, overall gains are driven primarily by the neural models, while baselines
close the gap as they optimize for the tree-based model on the simpler tasks.

Dataset Model Best Baseline (score) GIF Score Score Gain (%) Time Saved (%)

breast MLP-adam GBRT-Hedge (0.941) 0.983 4.40 76.0
digits MLP-adam TPE (0.970) 0.981 1.17 35.3
iris MLP-adam TPE (0.980) 0.983 0.27 -4.6
wine MLP-adam TPE (0.952) 0.991 4.08 42.1
breast MLP-sgd GP-Hedge (0.931) 0.981 5.43 98.8
digits MLP-sgd PySOT (0.964) 0.991 2.79 16.4
iris MLP-sgd TPE (0.980) 0.965 1.50 -8.6
wine MLP-sgd GP-Hedge (0.936) 0.984 5.23 99.5
breast DT GP-LCB (0.968) 0.929 -4.04 99.8
digits DT PySOT (0.788) 0.799 1.38 -3.3
iris DT PySOT (0.980) 0.961 -1.90 -6.5
wine DT PySOT (0.952) 0.912 -4.25 -4.1
breast RF OT-BanditA (0.966) 0.941 -2.55 0.3
digits RF GP-LCB (0.919) 0.847 -7.78 99.1
iris RF TPE (0.980) 0.971 -0.95 -3.8
wine RF TPE (0.980) 0.973 -0.69 1.8

Table 7: Comparison of GIF with the best baseline per dataset-model pair. Scores are averaged over 5 seeds.

E.5 METRIC COMPUTATION.

We follow Bayesmark’s reporting protocol for cross-task aggregation and comparability Turner &
Eriksson (2019).

Perf. Normal Let S be the set of seeds and T the set of tasks (dataset+model+metric). For each
task τ ∈ T and optimizer o, let bo,τ,s be the final best score of seed s at budget T (after harmonizing
all metrics to a maximization convention). We first average across seeds:

bo,τ =
1

|S|
∑
s∈S

bo,τ,s.

Then we min–max normalize within the task. Define

bmax
τ = max

o
bo,τ , bmin

τ = min
o

bo,τ ,

and set

po,τ =
bo,τ − bmin

τ

bmax
τ − bmin

τ

Finally, the Perf. Norm. for optimizer o is the taskwise average:

PerfNorm(o) =
1

|T |
∑
τ∈T

po,τ .

This normalization makes heterogeneous tasks comparable so that no single task dominates the
average.

Avg. Rank: rank b̄o,τ within each task (higher is better, rank 1 best), then average ranks over tasks.

Time Rank: per task, take the median final wall-clock time over seeds for each optimizer, rank
ascending (lower is better), then average over tasks.

Win Rate: across all (task, seed), count 1 for an optimizer that attains the best bo,τ,s (ties split
evenly), then divide by the total number of (task, seed) pairs.

F LARGE LANGUAGE MODEL USAGE DISCLOSURE

In accordance with the ICLR policy on LLM usage, we disclose that we used a large language model
(ChatGPT) only for:
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(i) Language polishing and rewording for clarity.

(ii) Debugging assistance, including interpreting error messages (e.g., syntax/API issues) and sug-
gesting fixes.

All research ideas, method design, theoretical analysis, implementation, experiment setup, data pro-
cessing, result generation, and interpretation were conducted by the authors. No text, figures, tables,
code, or analysis produced by the LLM was used verbatim without author verification; the final code
and manuscript were authored and validated by the authors.
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