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Abstract—Designing effective update strategies is vital to
the success of metaheuristic algorithms. Traditional methods
often depend on manually designed rules and empirical tuning,
which restrict their adaptability and scalability across different
optimization problems. To overcome this limitation, a novel
framework named GP-MAs is proposed, which integrates Genetic
Programming (GP) into metaheuristics to automatically evolve
and optimize their update equations. In this framework, GP
dynamically constructs learning rules within the search process,
allowing the algorithm to adapt to varying problem landscapes.
The framework is implemented on the Growth Optimizer (GO),
forming a hybrid variant called GPbasedGO. Experimental
evaluations on the CEC2022 benchmark suite demonstrate that
GPbasedGO achieves superior convergence speed, robustness,
and generalization ability compared with several state-of-the-art
algorithms. The proposed GP-MAs framework offers a flexible
and automated paradigm for metaheuristic design, enabling the
generation of adaptive update strategies suitable for complex
optimization tasks and real-world applications.

Index Terms—Metaheuristic optimization, Genetic Program-
ming, Adaptive update strategy

“

I. INTRODUCTION

With the rapid advancement of artificial intelligence (AI),
applications in healthcare, transportation, and manufacturing
have grown substantially. However, challenges such as tech-
nical bottlenecks, data heterogeneity, and scenario-specific
constraints persist. Real-world problems often exhibit non-
linear, non-differentiable, and complex characteristics. Meta-
heuristic algorithms (MAs) have emerged as powerful tools for
global optimization, providing flexible, structure-independent
solutions [1], [2]. Unlike traditional optimization, MAs explore
complex search spaces probabilistically, often simulating nat-
ural, biological, or physical processes, and exploit problem-
specific knowledge to find high-quality solutions. Recent ap-
plications include wireless sensor networks (WSNs) [3], [4],
cloud resource allocation [5], communication security [6],
intelligent manufacturing [7], machine learning [8], and AI
tasks [9], [10].

MAs are taxonomically classified based on inspiration
mechanisms [11], [12], as summarized in Fig. 1.

Classification: 1) Evolutionary-based: Genetic Algorithm



Fig. 1: A brief classification of metaheuristic algorithms.

(GA) [13], Differential Evolution (DE) [14], Evolution Strat-
egy (ES) [15], Biogeography-Based Optimization (BBO) [16],
Immunization Algorithm (IA) [17]; 2) Swarm intelligence:
PSO [18], ACO [19], ABC [20], GWO [21], WOA [22],
MGO [23]; 3) Physics-based: Simulated Annealing (SA) [24],
Gravitational Search Algorithm (GSA) [25], Sine Cosine Al-
gorithm (SCA) [26], Multi-Verse Optimization (MVO) [27]; 4)
Human behavior-inspired: TLBO [28], Harmony Search (HS)
[29], Social Group Optimization (SGO) [30], Special Forces
Algorithm (SFA) [31].

Research in MAs follows three main directions: (i) propos-
ing new algorithms, e.g., Gannet Optimization Algorithm
(GOA) [32] and Status-based Optimization (SBO) [33]; (ii)
hybridization of algorithms, e.g., IMPAEO [34] and HADEFP
[35]; (iii) enhancing performance through new strategies or
parameter tuning [36].

Despite their diversity, MAs rely heavily on manually
designed update rules, often requiring empirical tuning. Lim-
itations include:
• Empirical dependence: strategies are problem-specific,

leading to performance fluctuations;
• Lack of adaptability: static rules cannot dynamically

adjust to changing landscapes;
• High resource consumption: redesigning or hybridizing

formulas requires substantial time and computation.
To overcome these issues, Genetic Programming (GP) pro-

vides a hyper-heuristic approach to automatically generate
update strategies [37], [38]. GP evolves formulas from basic
components to match problem characteristics, reducing manual
effort and enhancing generalization.

This study proposes the GP-MAs framework, using GP to
automate MA update rules. Candidate formulas are encoded
via syntax trees and evaluated with respect to an objec-
tive function based on performance metrics. The framework
enables offline evolution of high-performance update rules,
minimizing human intervention and accelerating algorithm
design.

The Growth Optimizer (GO) algorithm [39], inspired by
human learning and reflection, is adopted as a test case.
Integrating GP-MAs into GO’s learning phase yields GP-

basedGO, which dynamically discovers strategies and balances
exploration and convergence. Benchmark evaluations on the
CEC2022 suite verify its improved accuracy and robustness.

The remainder of the paper is structured as follows: Sec-
tion II reviews GO and GP methodologies; Section III intro-
duces the GP-MAs framework and GPbasedGO; Section IV
presents experimental results; Section V concludes and dis-
cusses future directions.

II. RELATED WORK

This chapter systematically reviews the theoretical founda-
tions and techniques closely related to this research, mainly in-
cluding Growth Optimizer (GO), Genetic Programming (GP),
and key techniques for multispectral and panchromatic image
fusion. These provide theoretical support for the subsequent
methodology and experiments.

A. Growth Optimizer

The GO algorithm is an emerging intelligent optimiza-
tion algorithm simulating the human “learning-reflection-self-
improvement” process. It features strong global search capabil-
ity and adaptability. This section introduces its basic structure,
including initialization, learning mechanism, and reflection
phase.

1) Initialization: The initial population consists of 0th

generation individuals. For the i-th individual Xi(0), the j-
th component xi,j(0) lies within [xmin

i,j , xmax
i,j ], where xmin

i,j

and xmax
i,j are the lower and upper bounds. Population size

is Np and dimension number is D. Initialization uses uniform
distribution:

xi,j(0) = xmin
i,j + rand(0, 1) · (xmax

i,j − xmin
i,j ) (1)

2) Learning Phase: Individuals learn from gaps between
themselves and others. Four gap types are defined:

Gap1 = ~xbest − ~xbetter

Gap2 = ~xbest − ~xworse

Gap3 = ~xbetter − ~xworse

Gap4 = ~xL1 − ~xL2

(2)

The learning factor (LFk) measures the influence of each
gap:

LFk =
‖Gapk‖∑4
k=1 ‖Gapk‖

, k = 1, 2, 3, 4 (3)

Self-perception factor (SF ) evaluates an individual’s state:

SF =
GR

GRmax
(4)

Knowledge acquisition from each gap:

~KAk = SF · LFk · ~Gapk, k = 1, 2, 3, 4 (5)

Position update:



Fig. 2: Sample diagram of crossover operation.

~xIt+1
i = ~xIt

i +

4∑
k=1

~KAk (6)

Update verification ensures genuine improvement:

~xit+1
i =


~xit+1
i if f(~xit+1

i ) < f(~xit
i ){

~xit+1
i r1 < P2

~xit
i else

otherwise
(7)

3) Reflection Phase: Reflection updates each dimension as:

~xit+1
i,j =


lb+ r4 · (ub− lb) r3 < AF

~xit
i,j + r5 · (Rj − ~xit

i,j) r2 < P3

~xit
i,j otherwise

(8)

AF = 0.01 + 0.99 ·
(
1− FEs

MaxFEs

)
(9)

B. Genetic Programming

Genetic programming (GP) automatically generates pro-
gram structures via evolution. Individuals are represented as
trees with function nodes F = {f1, ..., fn} and terminal nodes
T = {t1, ..., tm}. Initialization methods include:

Full Method: Functions fill all non-leaf nodes; terminals
occupy leaves. Grow Method: Functions or terminals are ran-
domly assigned to nodes. Ramped Half-and-Half: Combines
both methods to ensure structural diversity.

Basic GP operations include:
(1) Selection: Chooses individuals for reproduction. Strate-

gies include Roulette Wheel, Tournament, and Rank selection.
(2) Crossover: Swaps randomly selected subtrees between

two parents to produce offspring (Fig. 2).
(3) Mutation: Introduces structural changes. Subtree mu-

tation replaces a subtree with a random one; point mutation
randomly alters a node (Fig. 3).

III. GP-MAS FRAMEWORK AND GO ALGORITHM BASED
ON THE GP-MAS FRAMEWORK

This chapter introduces the GP-MAs framework and its
integration into the Growth Optimizer (GO). It outlines the
framework’s architecture, parameter design, and the specific
update mechanisms developed for GO.

A. Overall Structure

Fig. 4 shows the architecture of the GP-MAs-GO frame-
work, with red lines indicating data flow. The original GO
serves as the base algorithm, while the GP-MAs module is
embedded only in the learning phase to dynamically evolve
learning strategies. The reflection phase and overall GO struc-
ture remain unchanged.

Step 1: Define the function set, terminal set, and objective
function for evaluating evolved learning formulas, then ini-
tialize a GP population encoding candidate formulas. Through
selection, crossover, and mutation, superior strategies are re-
tained and inferior ones discarded.

Each GP individual is evaluated by integrating its formula
into GO’s learning phase, replacing the original update rule.
The modified GO is run on benchmark functions, and the
resulting optimization performance serves as the individual’s
fitness.

Step 2: Replace GO’s original manual formula with the
best-evolved formula from GP-MAs, yielding GPbasedGO.
Unlike conventional GO, GPbasedGO dynamically adapts its
learning strategy to different problem landscapes and evolu-
tionary stages. Since GP-MAs evolution is offline, the best
formula can be reused across tasks, reducing manual design
effort and improving adaptability.

B. The GP-MAs Framework

The GP-MAs (Genetic Programming-based Metaheuristic
Algorithms) framework uses genetic programming to automat-
ically construct update strategies for metaheuristic algorithms.
By encoding search behaviors as evolvable mathematical ex-
pressions, the framework iteratively refines these strategies to
improve optimization performance. Table I summarizes the
GP-MAs parameter settings.

TABLE I: Parameter settings of the GP-EAs framework

Parameter Value

Population size (PS) 100
Initialization method Half depth-first, half breadth-first
Maximum iterations (MAXIT) 200
Tree depth (MAXD / MIND) 7 / 9
Elitism rate 20%
Crossover / Mutation probability 0.8 / 0.2

The detailed steps of the GP-MAs framework are as follows:
1) Initialization: A population of individuals is randomly

initialized using a predefined set of functions and ter-
minals. To enhance structural diversity, half of the indi-
viduals are generated using a depth-first growth method,
while the remaining half use breadth-first construction.



Fig. 3: Sample diagram of mutation operation.

Fig. 4: System framework diagram.

2) Expression Construction and Evaluation: Each in-
dividual encodes a candidate metaheuristic component
(e.g., an update rule or control policy) as a tree structure.
These individuals are converted into executable expres-
sions via in-order traversal and then embedded into a
target metaheuristic algorithm, where their performance
is evaluated using a predefined objective function.

3) Elitism: The top-performing individuals, based on fit-
ness scores, are preserved in the next generation to
ensure the retention of high-quality solutions.

4) Variation Operators: The remaining individuals un-

dergo variation through crossover and mutation, with
parent selection guided by a roulette-wheel selection
mechanism. Structural constraints are applied to main-
tain the syntactic and semantic validity of the expres-
sions.

5) Fitness Evaluation: The fitness of the new individuals
is recalculated by integrating them into the algorithm
and re-evaluating their performance.

6) Termination: Steps 2 to 5 are repeated until the stopping
criterion is met, such as reaching the maximum number
of generations or achieving a satisfactory performance
level.

Algorithm 1 outlines the workflow of the GP-MAs frame-
work. Inspired by prior studies on evolutionary formula gener-
ation in metaheuristics, this approach ensures structural diver-
sity at initialization via a balanced tree construction strategy.
Each individual, represented as a candidate metaheuristic rule,
is transformed into an executable formula and evaluated within
a host algorithm. Top individuals are retained via elitism, while
the remaining ones undergo crossover and mutation under
structural constraints. The evolution proceeds iteratively until
convergence or reaching the iteration limit.

To quantitatively assess the performance of evolved formu-
las, a customized evaluation function F is designed for the GP-
MAs framework. Considering the heterogeneity of real-world
optimization problems, four representative test functions are
selected from the CEC2022 benchmark suite: F1 (unimodal),
F3 (basic multimodal), F7 (hybrid), and F10 (composition).
Each evolved formula is integrated into a metaheuristic al-
gorithm variant, referred to as new-MAs, and tested on these
functions.

Let fitj be the mean result of new-MAs on function j
over five independent runs, and fit∗j denote the known global
optimum. The overall fitness score is computed as:

Fitness =
∑

j∈{1,3,7,10}

fitj
fit∗j

(10)

This aggregated metric reflects the generalization capacity
of evolved strategies across a diverse problem set, thus pro-



Algorithm 1 GP-MAs: Genetic Programming-based Meta-
heuristic Automation

1: Input: PS, MAXD, MAXIT , Evaluation function F ,
Function set, Terminal set

2: Output: Optimal evolved update rule
3: Initialization:
4: -population POP 0 of size PS:
5: - 50% via depth-first tree generation
6: - 50% via breadth-first tree generation
7: - Nodes drawn from function and terminal sets
8: Parse individuals (in-order) → executable expressions
9: Evaluate fitness of each individual using F

10: iter ← 1
11: while iter ≤MAXIT do
12: Preserve top 20% of POP iter into POP iter+1

(elitism)
13: Select parents via hybrid (roulette + tournament) se-

lection
14: crossover: subtree swapping
15: mutation:
16: - Node mutation
17: - Subtree mutation
18: evaluate offspring using F
19: Add valid offspring to POP iter+1 until |POP | = PS
20: iter ← iter + 1
21: end while
22: Return: Best-performing individual in final generation

viding an indirect yet robust assessment of their effectiveness
and adaptability.

C. The GP-GO Algorithm

This paper proposes GPbasedGO, an enhanced variant
of the Growth Optimizer (GO) algorithm optimized through
the GP-MAs framework. Within this framework, GP-MAs
autonomously evolve the learning rule. The evaluation function
F is configured with a dimension of 10. Consistent with
established methodologies, four representative functions (F1,
F3, F7, F10) from the CEC2022 benchmark are selected for
evaluation.lm

The terminal set T and function set F critically determine
GP performance. For GO optimization, these sets are designed
as:{
T = {Gap1, Gap2, Gap3, Gap4, SF}
F = {+,−,×,÷, norm, sin, cos, tan}

T encodes social hierarchy dynamics: Gap1−4 quantify
rank disparities (e.g., leader-elite, elite-lower, random pairs)
to guide knowledge acquisition through hierarchical learning
mechanisms. SF (self-perception factor) dynamically scales
learning intensity via growth resistance (GR), balancing local
refinement (SF � 1) and global exploration (SF � 1). This
adaptive scaling mirrors parameter self-adaptation strategies in
differential evolution.

F integrates arithmetic operators for evolutionary recom-
bination and norm for numerical stability. Trigonometric
functions inject nonlinear perturbations to escape local op-
tima while maintaining diversity. This hybrid design bal-
ances deterministic hierarchical learning with stochastic ex-
ploration, accelerating cnvergence while preserving solution
diversity. Embedded self-adaptive components reduce param-
eter sensitivity while maintaining evolutionary pressure toward
optimal regions, aligning with the ”learning-reflection-self-
improvement” philosophy of human-inspired optimization.

The update rule for this process can be expressed as follows:

Term1 =
∥∥Gap1

∥∥ · Gap1 +
∥∥Gap2

∥∥ · Gap2,
Term2 = ‖Gap3‖ · Gap3

+ ‖ (Gap1 − Gap1)− (SF · SF ) ‖ · Gap4

The numerator of the update formula can then be written
as:

Numerator = SF · (Term1 + Term2) . (11)

The denominator is given by:

Denominator1 =
∥∥ cos ( tan ( cos(‖Gap1‖)

))∥∥+ ∥∥Gap2

∥∥,
Denominator2 =

∥∥Gap3

∥∥+ ∥∥ sin (‖ cos(Gap3 − Gap2)‖
)∥∥,
(12)

Thus, the complete update equation becomes:

Update =
Numerator

Denominator1 + Denominator2
. (13)

Compared with the original formulation, the new equation
is evolved automatically through Genetic Programming (GP),
thereby exhibiting notable advantages in terms of structural
complexity, adaptability, and information integration. First,
the new equation incorporates multiple nonlinear operators
(e.g., trigonometric functions, nested norms, and difference
operations), which substantially enhance its representational
capacity to capture intricate relationships among different
gaps. Second, the GP-evolved structure autonomously deter-
mines the selection and combination of operators, enabling
dynamic adaptability to various optimization tasks without
manual redesign. Moreover, the formulation integrates inter-
action information among gaps, not only exploiting individual
gap measures but also leveraging higher-order features such
as the differences between gaps, thereby enriching the learn-
ing information sources. Finally, the inclusion of nonlinear
transformations increases the diversity of search directions
and step sizes, which helps to avoid premature convergence
and better balance exploration and exploitation. Overall, the
new equation demonstrates superior convergence performance,
enhanced global search ability, and reduced human design bias
compared to the original formulation, offering a more flexible
and efficient learning mechanism for complex optimization
problems.

IV. EXPERIMENTAL RESULTS

This section details the experimental framework for eval-
uating the proposed GPbasedGO algorithm. Representative



benchmark functions from the CEC2022 test suite are em-
ployed to assess optimization performance in complex scenar-
ios.

A. Experimental Setup

Ten comparative algorithms are evaluated, including PSO,
GA, ASO, BOA, SA, CSO, GWO, DE, CRO, and GO.
To ensure a fair comparison, all algorithms are executed
with identical population sizes and fixed fitness evaluations
(FES). Each algorithm is independently run 30 times on every
benchmark function to reduce the impact of initialization
randomness on solution accuracy. The performance is assessed
in terms of the mean and standard deviation of the solutions,
as well as Wilson?s rank sum test.

To evaluate the performance of the proposed GPbasedGO
algorithm, the standard CEC2022 benchmark suite was uti-
lized. This test set comprises four categories of functions:
unimodal, basic multimodal, hybrid, and composition func-
tions. The unimodal function (F1) is specifically designed to
assess the algorithm?s local search capability and convergence
accuracy, as it contains only a single global optimum.

The basic multimodal functions (F2–F5) present a large
number of local optima, which are intended to evaluate the
algorithm?s global exploration ability and its competence
in avoiding premature convergence to local minima. These
functions pose a significant challenge by requiring an effective
balance between exploration and exploitation.

The hybrid functions (F6–F8) are constructed by combining
multiple basic functions with diverse characteristics, resulting
in more intricate and deceptive landscapes. These functions are
used to examine the algorithm?s robustness and adaptability
in dynamic and heterogeneous optimization environments.

Finally, the composition functions (F9–F12) represent the
most complex category. They are formulated by blending
several hybrid or basic functions with various biases, rota-
tions, and scaling transformations. These functions introduce
significant levels of nonlinearity, modality, and search space
irregularity, thereby providing a rigorous testbed for assess-
ing the algorithm?s ability to locate and transition between
multiple distinct regions in the search space.

Through comprehensive experimentation across this diverse
set of benchmark functions, the effectiveness and generaliza-
tion capability of the GPbasedGO algorithm can be thoroughly
evaluated in optimization problems of varying difficulty and
landscape complexity.

B. Analysis of experimental results

1) Analysis of 10-dimensional results: Tables II and III
present comparative results on 10-dimensional problems be-
tween the GPbasedGO algorithm and other optimization algo-
rithms. The comparison of mean values reveals the superior
overall performance of GPbasedGO. The data indicate that
GPbasedGO generally achieves better results, with its mean
metric showing statistically significant improvements over
other algorithms on specific test functions such as F1, F4,
F6, and F11. However, on certain functions such as F3 and

F7, other algorithms may perform comparably to or slightly
better than GPbasedGO.

When comparing GPbasedGO with various algorithms (e.g.,
PSO, GA, DE), its unique advantages become evident. As
shown in the tables, GPbasedGO achieves superior results in
several test cases. Compared to PSO, GPbasedGO exhibits
smaller mean values across all functions, demonstrating en-
hanced performance in optimizing high-dimensional complex
functions. When compared to GA, the standard deviation of
GPbasedGO is significantly smaller, indicating greater sta-
bility and reduced sensitivity to initial conditions and ran-
dom factors. Against DE and similar algorithms, GPbasedGO
shows stronger search capabilities on multimodal functions.
Furthermore, its advantages over algorithms like GWO and
CSO primarily lie in balancing unimodal and multimodal
optimization, highlighting its robust problem-solving ability
for complex tasks.

Fig. 5 displays the convergence curves of various algorithms
in 10-dimensional space. The figure illustrates representative
segments of convergence behavior, with subplot titles indi-
cating the corresponding benchmark functions. It is evident
that GPbasedGO exhibits strong optimization capabilities on
most functions, ultimately outperforming nearly all other al-
gorithms. In the first 500 evaluations, all algorithms converge
rapidly except on functions like F12 and F18, where algo-
rithms such as CSO and CRO stagnate. GPbasedGO, however,
effectively balances local exploitation and global exploration?a
critical feature for optimizing complex functions. This equi-
librium prevents premature convergence to local optima while
efficiently exploring the entire search space.

2) Analysis of 20-dimensional results: Tables IV and V
present the 20-dimensional comparison results of the GP-
basedGO algorithm against other algorithms. The average
values in the tables indicate the overall superiority of GP-
basedGO. Specifically, GPbasedGO demonstrates significantly
improved average value metrics compared to other algorithms
on certain test functions like F1, F2, F8, and F12. However,
on some functions such as F10, other algorithms may perform
comparably or slightly better than GPbasedGO.

When compared to other algorithms, including PSO, GA,
DE, GWO, and GO, GPbasedGO exhibits unique advantages.
Among the listed algorithms, GPbasedGO achieves better
results in several test cases. Compared to PSO, GPbasedGO
has lower average values on most functions, and in terms of
convergence speed, GPbasedGO also shows faster convergence
in the initial stage. In high-dimensional complex function opti-
mization, GPbasedGO shows better average values. Relative to
GA, GPbasedGO has a smaller standard deviation, indicating
more stable results with less influence from initial conditions
and random factors. Compared to DE, GPbasedGO exhibits
stronger search abilities for multimodal functions. Moreover,
GPbasedGO outperforms other algorithms like GWO and GO,
particularly in the combination of unimodal and multimodal
functions, demonstrating its strong ability to solve complex
problems.

Fig. 6 illustrates the convergence curves of various algo-



TABLE II: 10-Dimensional comparison results(Part 1).

Func Num Mean PSO R Mean GA R Mean DE R Mean GWO R Mean GO R Mean GPbasedGO

1 8828.213 + 7178.107 + 4653.567 + 5883.246 + 2070.409 + 761.238
2 481.4768 + 891.4384 + 421.6076 + 443.5214 + 408.641 + 403.9103
3 622.0307 + 641.7936 + 608.4225 + 602.7519 + 601.6679 = 601.4074
4 856.9073 + 841.992 + 850.7588 + 822.5716 = 838.2599 + 821.5802
5 1274.636 + 1237.221 + 938.7871 + 946.3514 = 926.8552 + 914.3811
6 4344257 + 56128305 + 17187.74 + 21769.89 + 28638.76 + 4487.426
7 2070.12 + 2078.786 + 2052.423 + 2049.472 + 2035.152 + 2023.685
8 2237.394 + 2248.042 + 2231.638 + 2263.761 + 2228.674 + 2224.31
9 2587.122 + 2704.782 + 2506.232 = 2593.41 + 2529.35 + 2501.057

10 2624.657 + 2547.583 = 2546.931 = 2591.171 = 2547.91 = 2557.738
11 2995.133 + 3080.935 + 2828.305 + 2828.417 = 2689.166 = 2749.009
12 2875.162 + 3001.373 + 2862.248 + 2869.924 + 2863.979 + 2860.399

Win 12 11 11 8 9

TABLE III: 10-Dimensional comparison results(Part 2).

Func Num Mean ASO R Mean BOA R Mean SA R Mean CS R Mean CRO R Mean GPbasedGO

1 11718.16 + 14424.11 + 10635.12 + 20780.83 + 2331248 + 761.238
2 489.1466 + 2221.291 + 526.9067 + 1651.528 + 4592.578 + 403.9103
3 620.5264 + 668.0617 + 649.047 + 668.4357 + 699.9431 + 601.4074
4 838.7514 + 875.0021 + 874.2788 + 890.413 + 928.6312 + 821.5802
5 1041.59 + 1787.522 + 1528.244 + 2680.351 + 4934.607 + 914.3811
6 1004955 + 2.58E+08 + 4323.045 = 1.56E+08 + 1.62E+09 + 4487.426
7 2087.336 + 2123.092 + 2106.302 + 2144.093 + 2274.834 + 2023.685
8 2240.496 + 2317.531 + 2249.618 + 2313.266 + 3270.592 + 2224.31
9 2652.427 + 2823.84 + 2724.674 + 2819.166 + 3176.525 + 2501.057
10 2517.251 = 2859.451 + 2756.895 + 2738.914 + 4144.509 + 2557.738
11 2796.109 + 3811.853 + 3111.818 + 3743.182 + 5064.099 + 2749.009
12 2927.294 + 3085.632 + 2963.107 + 2977.527 + 3238.392 + 2860.399

Win 11 12 11 12 12

rithms in 10-dimensional space. We show only representative
parts of the convergence graphs here, with the subplot titles
indicating the corresponding benchmark functions. It is evident
that GPbasedGO shows strong optimization ability on most
functions and outperforms almost all other algorithms in the
final results. During the first 500 evaluations, all algorithms
converge rapidly, except for some, like CS and CRO, for
certain functions. GPbasedGO alternates between two phases
with a growth cycle during iteration, allowing it to balance
local and global exploration effectively. This helps prevent
premature convergence to local optima and enables better
search space exploration. In the seedling growth phase, the
population update method slows down and stabilizes the search
space exploration process. This approach maintains a certain
degree of exploration of new regions while focusing more on
the in-depth development of the surrounding environment.

V. CONCLUSION

This paper introduces a novel computational framework,
GP-MAs, which harnesses the power of Genetic Programming
(GP) to autonomously design and optimize update strategies
within metaheuristic algorithms. By decoupling the update rule
construction from manual design and embedding it within an
evolutionary paradigm, the proposed approach addresses key

limitations of traditional metaheuristics—namely, empirical
dependency, lack of adaptivity, and poor generalizability. The
GP-MAs framework not only reduces human intervention and
design overhead but also enhances algorithmic robustness by
evolving dynamic and problem-specific update mechanisms.
To validate the effectiveness of this framework, the Growth
Optimizer (GO) algorithm was selected as a case study
and enhanced through the integration of GP-driven strategy
generation, resulting in the GPbasedGO algorithm. Extensive
experiments were conducted on the CEC2022 benchmark
suite, where GPbasedGO demonstrated superior performance
in terms of convergence accuracy and robustness, particularly
in complex and multimodal landscapes. Overall, the proposed
GP-MAs framework provides a promising pathway for achiev-
ing automated, adaptive, and generalizable optimization in
metaheuristic algorithm design.



(a) F1 (b) F2

(c) F8 (d) F12

Fig. 5: 10-dimensional convergence plots of the algorithm.

TABLE IV: 20-Dimensional comparison results(Part 1).

Func Num Mean PSO R Mean GA R Mean DE R Mean GWO R Mean GO R Mean GPbasedGO

1 52904.89 + 38427.22 + 54598.73 + 30783.65 + 19378.57 = 18987.99
2 791.1697 + 1435.08 + 616.9638 + 531.2367 + 473.6368 = 471.8706
3 636.9382 + 675.4038 + 630.5062 + 614.387 = 609.4576 = 611.4177
4 968.9801 + 949.5482 + 957.3419 + 864.6567 = 932.2348 + 868.1742
5 3389.725 + 3130.209 + 2040.769 + 1514.343 = 1447.686 = 1371.278
6 3.16E+08 + 7.93E+08 + 25570941 + 3841266 + 2683454 + 146310.6
7 2196.214 + 2180.967 + 2225.742 + 2118.254 = 2134.449 + 2095.174
8 2334.213 + 2429.743 + 2317.251 + 2275.405 + 2251.454 + 2244.28
9 2620.435 + 3059.033 + 2519.274 + 2561.716 + 2484.558 + 2474.834

10 5862.466 + 3977.858 = 5745.673 + 4394.218 + 3732.7 = 3577.976
11 4637.618 + 7291.082 + 4381.296 + 4010.602 + 3239.342 = 3267.323
12 3097.133 + 3753.875 + 2900.005 - 3027.249 + 2961.031 + 2915.146

Win 12 11 11 8 6



TABLE V: 20-Dimensional comparison results(Part 2).

Func Num Mean ASO R Mean BOA R Mean SA R Mean CS R Mean CRO R Mean GPbasedGO

1 47506.21 + 99751.94 + 56751.55 + 82307.3 + 1.28E+09 + 18987.99
2 704.7262 + 3692.529 + 1069.681 + 5435.199 + 8923.236 + 471.8706
3 644.7519 + 697.827 + 692.8078 + 708.7662 + 738.0695 + 611.4177
4 927.8916 + 1020.596 + 1025.24 + 1064.253 + 1108.797 + 868.1742
5 2416.787 + 5299.146 + 3482.977 + 9737.955 + 14244.68 + 1371.278
6 11609227 + 2.75E+09 + 7888.752 - 3.44E+09 + 8.79E+09 + 146310.6
7 2242.773 + 2301.811 + 2227.635 + 2320.135 + 2535.034 + 2095.174
8 2359.021 + 2909.087 + 2324.389 + 2903.279 + 31644.07 + 2244.28
9 2688.301 + 3675.949 + 2892.854 + 3409.789 + 4881.742 + 2474.834

10 4580.649 = 6886.978 + 4959.543 + 6572.561 + 8394.181 + 3577.976
11 4633.79 + 9374.592 + 7549.17 + 11243.98 + 15367.25 + 3267.323
12 3479.162 + 4029.731 + 3527.145 + 3676.27 + 4493.905 + 2915.146

Win 11 12 11 12 12

(a) F1 (b) F2

(c) F8 (d) F12

Fig. 6: 20-dimensional convergence plots of the algorithm.
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