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Abstract
Fine-grained image segmentation offers a simplified yet

meaningful representation, but obtaining such representa-
tions for training large-scale models demands consider-
able human effort and cost. Existing strategies aim to pre-
dict these maps with limited or no training image pairs.
When only a few train-label pairs are available, Semi-
Supervised Segmentation (SSS) with the student-teacher
paradigm is employed. Without labels, neural networks are
designed to extract intermediate activation masks for unsu-
pervised learning, mostly confined to 2-class Foreground-
Background (FG-BG) segmentation.

FG-BG unsupervised segmentation typically relies on in-
tricately designed large-scale Generative Adversarial Net-
works (GANs) to generate intermediate activation maps.
Additionally, conditional GANs also are utilised with spa-
tial conditioning maps to generate FG-BG maps for con-
ditional image generations, facilitating the creation of syn-
thetic datasets. Moreover, transferring annotations to real-
world data often requires using another segmentation net-
work trained in a weakly supervised manner.

Considering these multi-step approaches, we introduce
a simple yet effective single-step approach that directly pro-
duces superior conditional FG-BG maps for images using
a reconstruction network. Our proposed encoder-decoder
network reconstructs the original image from slightly noisy
inputs and generates precise conditional attention maps.
These conditional attention maps are created by emulating
the behaviour of deeper generator layers in spatial condi-
tioning GANs and further refined using the student-teacher
paradigm. Our approach stands out for its simplicity and ef-
ficiency compared to intricate multi-step methods or GAN-
based designs.

1. Introduction
Deep learning has significantly advanced computer vision
applications, especially in supervised tasks like classifica-
tion [27, 35, 59, 61], segmentation [10, 11, 40, 46, 74],
and object detection [22, 23, 53]. Real-world datasets

[15, 16, 19, 39] have been crucial for early success by en-
abling large-scale training. Fine-grained datasets [15, 19,
38, 77, 78] have furthered deep learning in various domains
like medical imaging [54], image-to-image translation [33],
and controllable image generation [21, 67, 73]. But, as neu-
ral networks grow exponentially in parameters and com-
plexity [7, 18, 51, 52, 56], training demands vast datasets.
Curating large-scale datasets requires a massive amount of
labour-intensive effort, cost, and time, leading to challenges
in training, thus limiting the complexity and size of large-
scale models. Furthermore, creating fine-grained segmen-
tation datasets at such a large scale poses feasibility issues
due to their effort-intensive nature compared to other tasks
like object detection or classification.

Multiple approaches have been developed to facilitate
neural networks based learning without labels or with few
training pairs for fine-grained segmentation. These methods
include unsupervised learning [41, 55, 69], where seman-
tic maps are produced without labels, and semi-supervised
segmentation [32, 43], which leverages a few training pairs.
These approaches make use of available large-scale unla-
belled data for training.

In SSS learning, the widely adopted method is consis-
tency regularisation [47, 48]. This method requires generat-
ing pseudo-labels on label preserving augmented images for
labelled and unlabelled data and then using them in standard
supervised learning [40]. The generation of pseudo-labels
can be accomplished using large-scale pre-trained segmen-
tation networks [13] or neural networks whose weights are
updated through Exponential Moving Average (EMA) [20].

In the absence of labelled samples, SSS training faces
a challenge known as confirmation bias [5], where mod-
els tend to overfit to incorrectly predicted pseudo-labels.
In contrast, unsupervised learning for segmentation maps
takes a different approach by leveraging the inherent struc-
tures of neural networks for extracting intermediate spatial
activation maps [66] that can be interpreted as segmentation
maps [1, 8, 69]. However, the limitation of such activation
maps is that it result in 2-class segmentation maps, classify-
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Figure 1. Proposed Encoder-Decoder reconstruction network pro-
ducing conditional FG-BG maps while reconstructing image.

ing each pixel as either foreground or background.
Previous methods for FG-BG segmentation have relied

on GraphCut [55] techniques and information maximisation
approaches [12, 57]. While these methods offer faster in-
ference times, they produce lower-quality results than gen-
erative techniques. Current strategies for FG-BG segmenta-
tion involve training GANs [24] to generate intermediate re-
sults for foreground, background, and masks [1, 6, 60, 69].
These masks combine foreground and background to create
images and serve as an auxiliary intermediate output. The
resulting image-mask pairs are utilised for training segmen-
tation networks [11, 54] to predict masks for real images.

Furthermore, conditional GANs are employed in Text-
to-Image synthesis to generate images while producing con-
ditional activation maps, which are interpreted as FG-BG
maps [3, 37]. However, such strategies necessitate exten-
sive GANs and separate segmentation network training, in-
creasing computational complexity and fragmented multi-
stage learning. Additionally, the quality of masks predicted
on real images is influenced by that of images and masks
produced by the generative model.

We propose an end-to-end encoder-decoder reconstruc-
tion network for generating FG-BG maps as shown in Fig-
ure 1 to eliminate the need for multi-stage learning and
extensive generative model training. This network repro-
duces original images from slightly noisy versions while ex-
tracting conditional spatial activation maps. Our approach
mimics the behaviour of deep generator layers of spatial
conditional GANs [68, 70] in the decoder for producing
FG-BG maps. Spatial conditioning GANs utilise distinc-
tive conditioning representations for each spatial location
derived from conditional embeddings in deeper generator
layers. Such conditioning is achieved through attention
[68, 70, 72, 81] or predicted spatial activation maps [3, 37]
for fine-tuning the spatial characteristics of the image at
high resolutions (for creating realistic images). By repli-
cating this spatial conditioning behaviour in the decoder of
the proposed reconstruction network using predicted spatial
activation maps, FG-BG maps are generated.

For introducing conditional aspects in reconstruction
networks decoder, sentence embeddings are used from a
pre-trained text encoder for captions associated with the im-
age. Furthermore, these spatial activation maps undergo re-

finement using the student-teacher training paradigm [63].
Teachers and students possess similar structures, with the
weights of teachers being updated through EMA. Our ap-
proach generates pseudo activation maps for refinement in
a subtle difference to SSS learning. In summary, the contri-
butions of the paper is outlined as follows:
• We propose an image Encoder-Decoder reconstruction

network with shared features between encoder and de-
coder layers. This network is designed to produce FG-
BG maps using spatial conditioning layers in the decoder,
further refined through the student-teacher training ap-
proach. This configuration facilitates direct extraction
of FG-BG semantic maps for images, resulting in faster
and more straightforward training and enhanced quality
of mask.

• We evaluate our approach on Caltech-UCSD birds [65]
(CUB) and Oxford-102 flowers [45] datasets to assess its
performance. The proposed method outperforms other
techniques in FG-BG extraction, demonstrating superior
results.

2. Related Work
This section provides an overview of literature related to the
current paper.
Segmentation: Segmentation networks, explicitly trained
to identify objects in images, often require extensive image-
segmentation pairs for training [10, 11, 40, 46, 74]. Re-
cent advancements have introduced dual-branch segmenta-
tion networks, focusing on spatial structures and contextual
information to enhance predictions and inference efficiency
[14, 30, 31, 49, 64, 71]. Our network uses this dual-branch
design to predict intermediate spatial attention maps with
contextual information and sharper spatial resolution for
FG-BG map prediction through thresholding.
Semi-Supervised Segmentation: Unlabelled data utilisa-
tion is essential for semi-supervised learning [25]. Con-
sistency regularisation is a popular method [47, 48], sig-
nificantly impacted by pseudo-label quality [4, 36]. Pre-
trained networks often generate these labels [13], and mo-
mentum encoders enhance this [75]. Simple EMA models
with strong random intensity augmentation improve perfor-
mance [76]. We employ EMA models with random inten-
sity augmentation for refining spatial maps.
Unsupervised learning for FG-BG maps: Carefully de-
signed GANs are utilised for generating synthetic FG-BG
datasets to train segmentation networks in weak supervi-
sion. For instance, FineGAN [60] employs a hierarchical
tree structural training with bounding boxes to create FG-
BG masks, while OneGAN [6] generates FG-BG maps by
incorporating a reconstruction loss involving pose, style,
and shape vectors from both generators and discriminators.
Labels4Free [1] employs a pre-trained StyleGAN to gen-
erate foreground while generating intermediary mask and
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Figure 2. (a) Encoder-Decoder network with skip connection used in both student and teacher networks. Each UpSampling block is
provided with conditional embeddings to extract attention maps with high activation for objects of interest. Activation maps from the
final UpSampling block are used with thresholding for FG-BG maps. (b) The DownSampling block consists of two convolution blocks
connected using a residual connection. (c) UpSampling blocks are designed to replicate spatial conditioning blocks in Text-to-Image
synthesis GANs with intermediate masks predicted for specific spatial conditioning [37]. (d) Mask predictor uses dual branching to
capture long correlations using contextual branches and preserve spatial structure from spatial branch for sharper mask predictions.

background outputs using separate networks. Yang et al.
[69] and OneGAN [6] function without supervision but use
fine-grained categories in the datasets. Melas-Kyriazi et al.
[41] leverage the latent space of large-scale GAN models
trained on extensive datasets and employ multi-stage learn-
ing for mask generation. SSA-GAN [37], a Text-to-Image
synthesis spatial conditioning model, generates images con-
ditioned on text and produces FG-BG masks from interme-
diate layers. These existing methods often necessitate fine-
grained category information or multi-stage learning, rely-
ing heavily on intensive model training or specific dataset
structures. In contrast, our method stands out operating
unsupervised, requiring solely a conditioning vector repre-
senting the object of interest within the images. This unique
simplicity and freedom from fine-grained categorisation en-
hance adaptability and usability of the method across differ-
ent datasets.

Self-Distillation for Semantic Maps: MoCo [28] has in-
troduced momentum encoder learning representations in
unsupervised learning. This approach relies on having
many negative samples to ensure robust feature learning. In
contrast, BYOL [26] focuses on predicting image represen-
tation from a distinct viewpoint as predicted by the momen-
tum encoder, avoiding use of negative examples. The DINO
[8] approach utilises a Vision Transformer (ViT) [18] to pre-
dict distribution of the momentum encoder while incorpo-
rating a local-to-global view, which allows to produce spa-
tial activation maps from self-attention layers of ViT. When
graph [2] or spectral [42] methods are applied to these self-
attention maps trained via DINO, they enable creation of

semantic maps. Unlike self-distillation on final labels, we
use self-distillation on intermediate activation maps, sig-
nificantly enhancing the performance of predicting spatial
maps.
Open Vocabulary zero-shot image segmentation:
Attend-and-Excite [9] employs a transformer-based cross-
attention between images and words to generate masks
based on textual input in pre-trained models. MaskCLIP
[79] relies on mask pseudo-labels from the vision-language
model to train segmentation networks. ZegCLIP [80] uses
deep prompt training to fine-tune prompts for learning
better text-image matching on fixed CLIP for directly
extending CLIP’s zero-shot prediction capability from
image to pixel-level. ZUTIS [58] generates a selected set
of saliency maps as pseudo-labels for each concept (class)
from the vision-language model to train a segmentation
network. Unlike these approaches, which require text asso-
ciated with each image, our method can work effectively
with text, class labels, and image embeddings.

3. Methodology
This section provides an overview of our architecture (Sec-
tion 3.1), student-teacher paradigm (Section 3.2) and train-
ing approach (Section 3.3). Our method employs a straight-
forward reconstruction network to restore original images
from slightly distorted versions while concurrently gener-
ating conditional spatial activation maps to create FG-BG
maps. For introducing minimal distortions to image, we use
linear noise scheduler [29] for adding noise to images.

Our reconstruction network adopts an encoder-decoder
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Figure 3. This approach adopts a student-teacher training strategy to refine intermediate conditional activation maps generated for images.
Images with random augmentation are fed to student to introduce disagreements in the activation maps, contributing to improved mask
quality [76]. The same conditional embeddings are provided to decoders in both networks. Conditioning loss is employed for information
maximisation between image and conditional embeddings, guiding parts of the image to have higher spatial activation values. A linear
noise scheduler adds minimal noise to images to encourage the network to learn more robust features.

structure, where in the decoder layers resemble the deeper
layers found in spatial conditioning GANs [3, 37, 70, 72].
These layers generate intermediate spatial activation maps
[3, 37] to refine features based on conditioning. Various
representations, such as sentence embeddings for captions,
one-hot vectors for class labels, or encoded global image
representations from pre-trained models, can serve as con-
ditional embeddings. However, these embeddings must ac-
curately reflect the depicted object to elevate activation val-
ues in the spatial maps.
3.1. Network Architecture
The encoder-decoder architecture, illustrated in Figure 2,
features skip connections between its components [54].
This design choice aims to maintain spatial structure, es-
pecially at higher resolutions, as the network is trained to
produce original images by eliminating introduced distor-
tions.

Noise is added to images and projected into a high-
dimensional space using a linear convolutional layer. Then,
downsampling blocks are utilised until the features reach
a size of 8x8. These low-resolution features are then pro-
cessed through upsampling blocks and a linear convolu-
tional layer, converting them into image space.

Drawing inspiration from the concept of dual-branch
segmentation networks [14, 30, 64, 71], which emphasises
on spatial structure preservation and capture of long-range
contextual information, the presented network employs a
dual-branch prediction for attention maps. This is illus-
trated in mask predictor used in each upsampling block, as

shown in Figure 3.
The predicted attention map from mask predictor is em-

ployed within two Spatial Adaptive Instance Normalisation
(AdaIN) blocks. Each spatial AdaIN block utilises the pre-
dicted mask and conditional embeddings to modulate fea-
tures using decoupled spatial conditioning [3]. Decoupled
conditioning uses text to condition the foreground (or object
of interest) and noise for the background using predicted
spatial mask. As we do not use noise as input (given as
input to GANs), for background conditioning, we replace
noise with learnable parameters. The integration of con-
ditioning embedding e and the mask Mask within spatial
AdaIN is executed as follows:

AdaIN(xt | e) = (γc) ·
xt − µ(xt)

σ(xt)
+ (βc) (1)

γf = MLP γf
(concat[e, γ1]) (2)

βf = MLP βf
(concat[e, γ2]) (3)

γb = MLP γb
(γ3) (4)

βb = MLP βb
(γ4) (5)

γc = Mask × γf + (1−Mask)× γb (6)
βc = Mask × βf + (1−Mask)× βb (7)

γ1, γ2, γ3 and γ4 are learnable parameters, and MLP
stands for Multilayer Perceptron.

The spatial branch in mask predictor focuses on pre-
serving structural details within the images, aiding in pre-
dicting sharper attention maps. Simultaneously, the con-
textual branch performs cross-spatial correlation over the



image features that are normalised across channels, captur-
ing long-range relationships. This configuration enables the
integration of local semantics from the spatial branch and
global correlations from the contextual branch. Intermedi-
ate maps are generated by combining local semantics from
the spatial branch and global correlations from the contex-
tual branch, which are further processed through a convo-
lutional block. A sigmoid activation is applied to ensure
meaningful activation values are within a normalised range
of 0 to 1.

3.2. Student-Teacher Paradigm

As depicted in Figure 3, these maps undergo further en-
hancement through activation outputs from a momentum
encoder. Our approach consists of two networks with sim-
ilar structures, initialised with same weights, following the
established student-teacher paradigm [63]. When presented
with an image, the method begins with a random crop and
random horizontal flips. This image is provided to teacher
network to generate activation maps, similar to pseudo la-
bels in SSS learning for subsequent refinement [13]. For
generating activation maps for the student network, firstly,
the image undergoes random intensity-based augmentation
to introduce variations in the resulting activation maps, a
technique shown to improve mask quality [76].

3.3. Training and Loss
Our method requires images and their corresponding noisy
versions to train the reconstruction network. Further, this
approach can even function without any pixel-level distor-
tions. However, adding minimal distortion to images signif-
icantly improves the quality of the resulting FG-BG maps.

To create noisy images, a linear noise scheduler is
utilised [29] to add noise gradually at each time step. It
allows the generation of noisy images xt from the original
image x0 at any specified time step t. The generation of
noisy images is done as follows:

xt =
√
αtx0 +

√
1− αtz, z ∼ N (0, I) (8)

αt =

t∏
s=1

(1− βs) (9)

For the network training, we use βs as a fixed variance
linear scheduler [29, 44] with a maximum number of time-
stamps T = 1000. However, t for distortion is uniformly
chosen within 1 to 10. This selection ensures that generated
images have minimal pixel distortion added to them.

Perceptual loss [34] is used on the student network and
employed on extracted features for reconstructed and orig-
inal images from pre-trained VGGNet [59]. The loss func-
tion is crucial for enforcing image reconstruction while pre-
serving spatial structure during training. The reconstruction
loss (Lrec) can be expressed as follows:

Lrec = ∥φ(x0)−φ(Φs (xt))∥22 (10)

In the context of our method, x0 signifies images without
any added noise, while xt represents images with noise in-
corporated from the linear scheduler at a specific time-step
t. The student network is denoted as Φs, and φ refers to the
pre-trained VGGNet utilised for feature extractions.

The conditioning loss measures the alignment between
the reconstructed image from the student network and the
conditional embeddings. This helps information maximisa-
tion between the image and the conditioning aspect, influ-
encing spatial activation maps to prioritise certain areas of
the image for higher activation values. This directly impacts
the Spatial AdaIN in the decoders, as exact conditional em-
beddings are utilised within this process.

The conditional embeddings employed in determining
the foreground are the descriptive caption associated with
the image. The conditioning loss, using global conditional
embeddings, can be expressed as follows:

Lcond = Lsim(fg, C) (11)
fg = ENCimage(Φs (xt)) (12)
C = ENCcond(text) (13)

We utilise a pre-trained CLIP VIT-B/32 vision trans-
former encoder [18, 50] as our image encoder. We rely
on a pre-trained CLIP sentence encoder for global condi-
tioning embeddings associated with text. We compute sim-
ilarity scores using Cosine Similarity (cos) between con-
ditional embeddings C and global visual features fg as
cos(u, v) = uT v/|u||v|. The temperature hyper-parameter
τ is involved in this computation. Subsequently, we apply
the contrastive loss to maximise information between the
image and global conditioning representations, expressed as
follows:

Lsim (fgi , Ci) = − log
exp (Sim (fgi , Ci))∑N
j=1 exp (Sim (fgi , Cj))

(14)

Sim(fgi , Ci) = cos (fgi , Ci) /τ (15)

We refine spatial maps using binary cross-entropy loss
(Lbce) using the student-teacher paradigm. This loss com-
pares the intermediate mask predicted by the final decoder
layers in the student network (Ms) with activation maps
from the teacher network (Mt), acting as pseudo-labels.
The formulation is as follows:

Lmask = Lbce(Ms,Mt) (16)

The overall training loss to train the student network,
with hyper-parameters λ1, λ2, and λ3 controlling the im-
pact of each loss individually, is given by:

Lstudent = λ1Lrec + λ2Lcond + λ3Lmask (17)

The methodology follows a student-teacher paradigm,
depicted in Figure 3. After each training iteration, the
teacher model weights gradually adapt using a momentum



parameter α set to 0.995, updating based on the students
weights through EMA:

θt ← αθt + (1− α)θs (18)

4. Experiments
This section presents the datasets and evaluation metrics
employed in our experiments. Subsequently, we assess per-
formance of our proposed model on these datasets and com-
pare it with that of existing approaches in the literature. For
detailed training particulars and hyperparameters, supple-
mentary material may be referred.

Datasets: We evaluate our model quantitatively on two
datasets: Caltech-UCSD birds [65] (CUB) and Oxford-102
flowers [45]. These datasets consist of images, captions,
class labels for fine-grained categories of birds and flowers,
and FG-BG segmentation maps. The CUB dataset contains
11,788 images, while the Oxford-102 dataset has 8,189 im-
ages.

Evaluation metrics: Mean Intersection over Union
(mIoU), Intersection over Union (IoU), and per-pixel accu-
racy (ACC) are used to evaluate the quality of FG-BG maps.
The mIoU measures the average intersection over union
of accurately classified foreground and background pixels.
The IoU metric calculates the intersection over union value
specifically for the foreground. Meanwhile, the ACC metric
quantifies the percentage of correctly classified pixels.

Method ACC IoU mIoU

Supervised U-Net 98.0 88.8 93.2

GrabCUT [55] 72.6 36.0 52.3
FineGAN [60] - 44.5 -
OneGAN [6] - 55.5 -
ReDO [12] 84.5 42.6 -

IEM + SegNet [57] 89.3 55.1 71.4
Melas-Kyriazi et al. [41] 92.1 66.1 -

Yang et al. [69] 94.3 69.7 81.7
DSM [42] - - 76.9

DeepCut [2] - - 78.2

Ours 94.2 76.2 84.5

Table 1. Quantitative comparison between our approach and those
of other weak and unsupervised methods on the CUB dataset that
do not use ground-truth segmentation maps. ”-” indicates values
are unreported.

4.1. Results
The comparison in Table 1 showcases the superiority of
our approach in comparision with other methods in unsu-
pervised and weakly supervised FG-BG map generation on
the CUB dataset. Consistent with prior approaches, our
model generates maps at 128 × 128 resolution. Notably,
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Figure 4. Illustration of FG-BG semantic maps generated by our
approach on Oxford-102 and CUB datasets.

Method ACC IoU mIoU

Supervised DeepLabV3 [11] 97.56 79.64 88.47

SSA-GAN [37] 61.6 20.4 39.4
COS-GAN [3] 94.6 73.2 83.3

Ours 94.2 76.2 84.5

Table 2. Quantitative comparison of FG-BG semantic maps pre-
dicted by our approach and those of the Text-to-Image synthesis
GANs producing intermediate masks.

it surpasses GAN-based methods [69] and techniques rely-
ing on DINO features for mask extraction [2, 42]. Impres-
sively, our model achieves this performance with single-
stage training, underscoring the simplicity and efficiency of
our approach in comparison with those of other methods.

To further highlight mask quality and efficiency of our
approach, we have compared our approach with Text-to-
Image synthesis conditional GANs like SSA-GAN [37] and
COS-GAN [3] on the CUB dataset. The comparison, pre-
sented in Table 2 for the standard CUB test split, highlights
the superior performance of our approach without training
of GANs. By emulating spatial conditioning blocks in the
decoder similar to the deeper layers of COS-GAN’s genera-
tor, our method demonstrates the benefits of avoiding multi-
stage learning and reliance on conditional generative mod-
els for synthesising datasets. Figure 4 may be referred for
visual representations of the generated FG-BG maps for the
CUB and Oxford-102 datasets.

Various conditional embeddings reflecting the object of
interest can be used for achieving desired spatial activa-
tions in the proposed model. We have trained the model
with different conditional embeddings, presented the results
in Table 3 and compared with ZUTIS [58], open vocab-
ulary model for segmentation. The embeddings include:
’One-Hot’: Class label as a one-hot vector representation,
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Figure 5. Illustration of missing and incomplete ground truths
(GT) masks on Oxford-102 dataset [45] and FG-BG maps using
our approach. Ground truth masks are available in public domain.

Method Emb Type ACC IoU mIoU

ZUTIS [58] Generic - - 72.5
Name - - 72.6

Ours

One-Hot 92.0 66.0 78.3
Name 92.3 70.6 81.0
Image 92.6 71.9 81.4
Text 94.2 76.2 84.5

Table 3. Quantitative comparison of semantic maps from proposed
model with those of ZUTIS using different conditional embed-
dings.

’Name’: Name of the bird as a caption from CLIP text-
encoder, ’Image’: Global embedding of the image with a
random crop from CLIP VIT-B/32 image-encoder, ’Text’:
Global sentence embedding from CLIP text-encoder for the
caption associated with the image, and ’Generic’: Single
word ’BIRD’ used as a high-level category.

The ’One-Hot’ representation, ’Name’ captions, and
’Generic’ high-level categories may capture less contextual
information than the ’Text’ and ’Image’ embeddings, po-
tentially impacting the model’s ability to recognise fine-
grained details. The model’s superior performance with
sentence embeddings for captions aligns with expectations,
as captions offer richer contextual information about the ob-
jects in the images. This richer context likely aids the model
in better understanding and segmenting the objects of inter-
est.

We have showcased the outcomes of our model on the
Flower dataset in Table 4. Although the increase in IoU
score is marginal, a deeper analysis of the results has un-
veiled an important insight that over 300 images in the
dataset have complete background as the ground truth. Fur-
thermore, numerous images contain incomplete masks that

Method ACC IoU mIoU

Supervised U-Net 95.2 79.5 86.8

GrabCUT [55] 82.0 69.2 -
ReDO [12] 87.9 76.4 -
IEM [57] 88.3 76.8 79.0

IEM + SegNet [57] 89.6 78.9 80.8
COS-GAN [3] 90.9 77.2 81.7

Ours 90.1 79.6 81.9

Table 4. Quantitative comparison of FG-BG semantic maps be-
tween our approach and other models on Oxford-102 dataset [45].

fail to encompass the entirety of the picture, displayed in
Figure 5, emphasising the need for robust models to gen-
erate superior-quality masks with an efficient training strat-
egy.

4.2. Ablation Studies

4.2.1 Contextual and Spatial Branch

We employ a dual-branch setting for intermediate mask pre-
dictions, utilising contextual branches to learn long-range
correlation and spatial branches to produce sharper activa-
tion maps. To assess the impact of each branch on activation
maps, we individually have applied them and summarise
the results in Table 5. When using only spatial components,
strong activation values for high-frequency information like
edges and textures are detailed but failed to capture the en-
tire object. Conversely, using only a contextual branch lim-
its the quality of segmentation maps in preserving sharper
shapes. These findings emphasise the complementary na-
ture of the branches and their collective impact on gener-
ating superior activation maps for segmentation purposes.
Visual results may be found in the supplementary material.

Spatial Contextual ACC IoU mIoU

✓ 91.4 69.2 79.4
✓ 92.9 72.1 81.7

✓ ✓ 94.2 76.2 84.5

Table 5. Quantitative comparison of FG-BG semantic maps us-
ing Contextual and Spatial branches for mask prediction on CUB
Dataset.

4.2.2 Impact of Losses

Our approach uses various loss functions and augmentation
strategies to optimise spatial maps and reconstructed im-
ages. Table 6 provides a comprehensive overview of the
distinct losses employed in the training process. It illus-
trates the influence of each loss and the augmentation strat-
egy utilised. The Reconstruction Loss (RL) emphasises



spatial structure preservation, resulting in sharper spatial at-
tention maps. However, using RL alone, without Condi-
tioning Loss (CL), does not guarantee the generation of the
desired spatial maps. The CL facilitates information max-
imisation between the image and conditioning aspects, im-
posing high spatial activation maps for regions in images
reflecting the embeddings. Additionally, the Random Aug-
mentation (RA) approach, involving label-preserving aug-
mentation on images, allows for further refinement of maps
using Mask Loss (ML). The supplementary material offers
visual insights into these impacts for a more comprehensive
understanding.

RL CL ML RA ACC IoU mIoU

✓ 81.6 50.9 64.1
✓ 91.9 64.6 77.6

✓ ✓ 93.0 70.7 81.2
✓ ✓ ✓ 93.6 74.1 83.1
✓ ✓ ✓ ✓ 94.2 76.2 84.5

Table 6. Impact of losses and Random Augmentation for generat-
ing FG-BG semnatic maps on CUB Dataset.

4.2.3 Image Distortion
Introducing slight noise to generate inputs can effectively
improve FG-BG maps in our proposed framework. Em-
ploying a linear noise scheduler as a data augmentation
technique notably improves the quality of produced FG-BG
maps, as outlined in Table 7. Limiting the distortion ap-
plied to the original image is crucial for improved extraction
of FG-BG masks, as excessive distortion adversely impacts
both reconstruction quality and attention map sharpness, as
observed in Table 8. Visual representations of these find-
ings are available in the supplementary material. Remark-
ably, even without any distortion, this method demonstrates
competitive outcomes.

Method ACC IoU mIoU

No Distortions 92.9 73.4 82.3
Salt and Pepper 93.1 69.9 80.8

Colour Jitter 93.2 70.6 81.3
Gaussian Noise 80.6 43.8 60.5

Linear noise 94.2 76.2 84.5

Table 7. Quantitative comparison of FG-BG semantic maps be-
tween various approaches for introducing distortions in images.

4.2.4 Noise Injection
Using a linear noise scheduler to introduce minimal image
noise from the initial ten steps has proven effective in main-
taining the quality of the generated maps, as highlighted in
Table 8. By comparing this approach with noise addition at

various steps, we have observed that increased noise addi-
tions result in lower map quality, reinforcing our choice of
using noise from the first ten steps.

Time-stamp ACC IoU mIoU

1 93.8 73.8 82.6
5 93.2 70.5 81.2

10 93.0 73.7 82.5
20 91.7 70.4 80.0
50 91.0 68.5 78.8
100 90.1 55.8 72.2

Rand(1,10) 94.2 76.2 84.5

Table 8. Quantitative comparison of FG-BG semantic maps gen-
erated with different time-stamps using a linear scheduler [29] for
adding noise in images on the CUB dataset.

4.2.5 Image and Text Encoders
Using CLIP for text and image encoders in our method, we
demonstrate the flexibility across different encoder choices.
While we utilise a pre-trained Inception-V3 [62] as the im-
age encoder, we conduct experiments with diverse text en-
coder strategies, as detailed in Table 9. Our results show
competitive performance comparable to that of CLIP en-
coders by employing various text encoders. This enhance-
ment in CLIP-based results is attributed to extensive trans-
former training, wherein text embeddings display improved
visual alignment with images.

Text Image ACC IoU mIoU

DAMSM [68] Inception-V3 92.9 69.2 80.4
BERT [17] Inception-V3 93.4 71.3 81.7

CLIP Inception-V3 93.6 74.6 83.4

CLIP CLIP 94.2 76.2 84.5

Table 9. Quantitative comparison of FG-BG semantic maps using
different Text and Image Encoders.

5. Conclusion
Our proposed method uses a reconstruction neural network,
reproducing original images from minimally distorted im-
ages while extracting intermediate conditioning activation
maps and further refining these maps using the student-
teacher paradigm. These intermediate maps are generated
by replicating the behaviour of spatial conditioning blocks
in GANs. A notable advantage of our approach is its sim-
plicity and improvement in predicted mask quality. Unlike
other methods that rely on complex generative models for
synthetic datasets, we work directly with images to extract
semantic maps. This makes our method efficient and effec-
tive without need for extra synthetic data.
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[12] Mickaël Chen, Thierry Artières, and Ludovic Denoyer. Un-
supervised object segmentation by redrawing. In Advances
in Neural Information Processing Systems. Curran Asso-
ciates, Inc., 2019. 2, 6, 7

[13] Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong
Wang. Semi-supervised semantic segmentation with cross
pseudo supervision. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2021. 1, 2, 5

[14] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen
Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-
former: Bridging mobilenet and transformer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5270–5279, 2022. 2, 4

[15] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 1

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 1

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, 2019. Association for
Computational Linguistics. 8

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 1, 3, 5

[19] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. International Journal
of Computer Vision, 111(1):98–136, 2015. 1

[20] Geoff French, Timo Aila, Samuli Laine, Michal Mackiewicz,
and Graham Finlayson. Semi-supervised semantic segmen-
tation needs strong, high-dimensional perturbations, 2020. 1

[21] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
Devi Parikh, and Yaniv Taigman. Make-a-scene: Scene-
based text-to-image generation with human priors, 2022. 1

[22] Ross Girshick. Fast r-cnn. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1440–1448,
2015. 1

[23] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2014. 1



[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, 2014. 2

[25] Yves Grandvalet and Yoshua Bengio. Semi-supervised
learning by entropy minimization. In Advances in Neural
Information Processing Systems. MIT Press, 2004. 2

[26] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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