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Abstract

Recent works have shown that neural networks optimized by gradient-based meth-1

ods can adapt to sparse or low-dimensional target functions through feature learn-2

ing; an often studied target is classification of the sparse parity function on the unit3

hypercube. However, such isotropic data setting does not capture the anisotropy4

and low intrinsic dimensionality exhibited in realistic datasets. In this work, we5

address this shortcoming by studying how feature learning interacts with struc-6

tured (anisotropic) input data: we consider the classification of sparse parity on7

high-dimensional orthotope where the feature coordinates have varying magni-8

tudes. Specifically, we analyze the learning complexity of the mean-field Langevin9

dynamics (MFLD), which describes the noisy gradient descent update on two-layer10

neural network, and show that the statistical complexity (i.e. sample size) and11

computational complexity (i.e. network width) of MFLD can both be improved12

when prominent directions of the anisotropic input data aligns with the support13

of the target function. Moreover, we demonstrate the benefit of feature learning14

by establishing a kernel lower bound on the classification error, which applies to15

neural networks in the lazy regime.16

1 Introduction17

We consider the learning of a two-layer nonlinear neural network (NN) with N neurons:18

f(z) =
1

N

N∑
i=1

hx(i)(z), z ∈ Rd, hx(i)(z) : Rd → R, (1)

where hx(i)(z) represents one neuron in the network with some trainable parameters x(i) ∈ Rd19

and activation function σ : R → R. One crucial benefit of the model (1) is the ability to learn20

representation that adapts to the learning problem, such as sparsity and low-dimensional structures.21

Indeed, recent works have shown that this feature learning ability enables NNs trained with gradient-22

based algorithms to outperform non-adaptive methods such as kernel models in learning various23

low-dimensional target functions (Abbe et al., 2022; Ba et al., 2022; Damian et al., 2022; Bietti et al.,24

2022; Mousavi-Hosseini et al., 2022; Abbe et al., 2023).25

A noticeable example of low-dimensional problem is the classification of k-sparse parity, where the26

target label is defined as the sign of the product of k ≪ d coordinates: f∗(zi) = sign
(∏k

i=1 zi
)
,27

where zi denotes the i-th coordinate of vector z. Note that the XOR problem corresponds to the28

case where k = 2 and input on the unit hypercube. Efficiently learning this target function requires29

the first-layer parameters of the NN to identify the relevant k-dimensional subspace, which can be30

achieved via gradient-based feature learning (Daniely and Malach, 2020; Refinetti et al., 2021; Frei31

et al., 2022; Barak et al., 2022; Ben Arous et al., 2022).32
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data result type regime/method sample size width iterations authors
NTK/SGD d2/ϵ d8 d2/ϵ Ji and Telgarsky (2019)

two-phase SGD dk+1/ϵ2 O(1) d/ϵ2 Barak et al. (2022)
mean-field/GF d/ϵ ∞ ∞ Wei et al. (2019)
mean-field/GF d/ϵ dd/2 ∞ Telgarsky (2023)

MFLD d/ϵ exp(d) exp(d) Suzuki et al. (2023b)
random features – dk – Barak et al. (2022)

MFLD dα
′
/ϵ exp(dα

′
) exp(dα

′
) Theorem 1

MFLD (transformed) dα
′k + 1/ϵ d O(1) Theorem 3

kernel dα
′k – – Theorem 2

Isotropic
upper bound

lower bound

Anisotropic
upper bound

lower bound

Table 1: Learning complexity for the k-sparse parity problem, omitting polylogarithmic terms. For the
anisotropic bounds, we states the bounds for the spiked covariance model where the input magnitude in signal
directions is dα times larger than that in others, and define α′ = 1− 2α ≤ 1. Wei et al. (2019); Telgarsky
(2023) do not cover the general k-parity setting, so we state the complexity for the 2-parity (XOR). For the RF
lower bound, we restate (Barak et al., 2022, Theorem 5) for bounded norm random features predictor.

One particularly relevant feature learning paradigm for the parity problem is the mean-field analysis,33

which lifts the optimization problem into the space of probability distribution of trainable parameters34

(Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden,35

2018). In the setting of isotropic data (zi ∈ {−1/
√
d, 1/
√
d}), it has been shown that mean-field NN36

can learn the parity function with linear sample complexity. Specifically, Wei et al. (2019); Chizat37

and Bach (2020); Telgarsky (2023) proved a O(d/n) classification error. Very recently, Suzuki et al.38

(2023b) considered a noisy variant of gradient descent termed the mean-field Langevin dynamics39

(MFLD), and showed that the O(d/n) error rate is achieved for the isotropic k-parity problem40

for dimension-free k. While the computational complexity is demanding due to the exponential41

network width required in the mean-field analysis, one remarkable feature is the statistical complexity42

decouples the degree k from the exponent in the dimension dependence; this contrasts the NTK43

analysis where a sample size of n = Ω(dk) is typically needed to learn a degree-k polynomial44

(Ghorbani et al., 2019; Mei et al., 2022), and thus demonstrates the benefit of feature learning.45

Feature learning under structured data. However, most existing analyses on the parity problem46

are restricted to the isotropic setting, where the input features do not provide any information of47

the support of the target function. On the other hand, realistic datasets are often structured, and48

different feature directions may have different magnitudes that guide the training algorithm towards49

more efficient learning. Recent works have indeed illustrated that in certain regression settings50

with low-dimensional target, structured data with a spiked covariance structure can improve the51

performance of both kernel methods and optimized NNs (Ghorbani et al., 2020; Ba et al., 2023;52

Mousavi-Hosseini et al., 2023). However, these regression analyses do not directly translate to the53

binary classification setting which the k-parity problem belongs to.54

Therefore, our goal is to investigate the interplay between structured data and feature learning in the55

problem setting of classifying k-sparse parity function on anisotropic input data with mean-field NN.56

1.1 Our Contributions57

We study the statistical and computational complexity of the mean-field Langevin dynamics in58

learning a k-sparse parity target function on anisotropic input data. In particular, we show that59

• When the feature directions of z with large magnitude align with the support of the target function60

Ik, then MFLD can achieve better statistical complexity (required sample size) and computational61

complexity (required network width) compared to the isotropic setting in Suzuki et al. (2023b). This62

highlights the role of structured data in the feature learning process. (Section 3 and Appendix C.1)63

• If we apply a coordinate transform on the input data based on the gradient covariance matrix, then64

the required width can be made dimension-free, i.e., the problem can be learned by a constant65

width NN. This is equivalent to an anisotropic weight decay regularization, and we prove that the66

weighting matrix can be efficiently estimated from the first gradient descent step. (Appendix C.2)67

• We prove the first lower bound on the classification error of kernel methods for general k-sparse68

parity problems, which is valid not only to the isotropic input but also to a spiked covariance69

model. The result shows that kernel methods requires larger sample size than the mean-field neural70

network, thus demonstrating the benefit of feature learning. (Section 4)71

Due to space limitation, we defer the coordinate transform analysis to Appendix C.2.72
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In Table 1 we summarize and compare our results against prior works on learning sparse parity73

functions. To clearly illustrate the improved dimension dependence, we state our rates for a simple74

spiked covariance model analogous to the setting considered in Ghorbani et al. (2020); Ba et al. (2023):75

the data-label pairs (z, y) are generated as = sign
(∏k

i=1 zi
)

for k = Od(1), zi ∈ {±dα−
1
2 } (i =76

1, · · · , k) for 0 ≤ α ≤ 1
2 , zi ∈ {±d−

1
2 } (i = k + 1, · · · , d). In this example setting, larger α77

corresponds to stronger anisotropy, which facilities feature learning due to the alignment between the78

low-dimensional structure and the target function. This benefit is evident in both the original MFLD79

algorithm and after the coordinate transform (or anisotropic weight decay regularization).80

2 Problem Setting81

k-sparse parity classification. The input random variable Z and the label Y are generated as82

Z = diag(s1, · · · , sd)Z̃, Y = sign
(∏

i∈Ik
Z̃i

)
,

where Z̃ follows the uniform distribution on {±1/
√
d}d. We assume si > 0 and

∑d
i=1 s

2
i ≲ 1.83

Mean-field two-layer network. Let hx(·) : Rd → R be one neuron associated with parameter84

x = (x1, x2, x3) ∈ Rd+1+1 in a two-layer neural network: given an input z ∈ Rd,85

hx(z) = R̄[tanh(z⊤x1 + x2) + 2 tanh(x3)]/3, (2)

where R̄ ∈ R is an output scale of the network, and tanh for the bias x3 ∈ R is placed to guarantee86

the boundedness following Suzuki et al. (2023b). Let P be the set of Borel probability measures on87

Rd̄ where d̄ = d+ 2 and Pp be the subset of P with the finite p-th moment. The mean-field neural88

network is defined by integrating infinitely many neurons hx over Rd̄ with the distribution µ ∈ P:89

fµ(·) =
∫
hx(·)µ(dx), We consider the logistic loss function ℓ(f, y) = log(1 + exp(−yf)). We90

also denote ℓ(yf) = ℓ(f, y). Then, the regularized empirical risk of fµ are defined as91

L(µ) := 1

n

n∑
i=1

ℓ(yifµ(zi)) + +λ(λ1EX∼µ[∥X∥2] + Ent(µ)), (3)

with the regularization parameters λ, λ1 ≥ 0. EX∼µ[∥X∥2] is the L2 regularization and Ent(µ) =92 ∫
logµdµ is the entropy regularization. A remarkable advantage of this setting is that the above93

objectives become convex functional with respect to the distribution µ since µ linearly acts on fµ.94

Mean-field Langevin dynamics. MFLD corresponds to the noisy gradient descent, where a95

Gaussian perturbation is added at each gradient step (Mei et al. (2018); Hu et al. (2019)). Let96

Xτ = (Xi
τ )

N
i=1 ⊂ Rd̄ be N neurons at the τ -th update, and define µτ = 1

N

∑N
i=1 δXi

τ
. Then, time-97

and space-discretized version of MFLD with step size η and N neurons is written as the following98

stochastic differential equation:99

Xi
0 ∼ µ0 = N(0, I/(2λ1)), Xi

τ+1 = Xi
τ − η∇δF (µτ )

δµ
(Xi

τ ) +
√

2ληξiτ , (4)

where ξiτ is an i.i.d. standard normal random variable ξiτ ∼ N(0, I), and δF (µt)
δµ is the first variation100

of F , which, in our setting, is written as δF (µ)
δµ (x) = 1

n

∑n
i=1 ℓ

′(yifµ(zi))yihx(zi) + λ(λ1∥x∥2).101

Logarithmic Sobolev Inequality. Convergence of MFLD crucially depends on the property of102

the proximal Gibbs distribution pµ associated with µ ∈ P Nitanda et al. (2022); Chizat (2022). The103

density of pµ is given by pµ(X) ∝ exp
(
− 1

λ
δF (µ)
δµ (X)

)
. The key in our proof lies in controlling a104

constant in the following logarithmic Sobolev inequality (LSI) on the Gibbs measure by making use105

of anisotropy and extending Suzuki et al. (2023a,b). If we can find a good µ∗ that achieves small loss106

and that KL(µ0||µ∗) is small, then we can have a small LSI constant, which yields better convergence107

and generalization results. For more details of the analysis, please refer to the appendix.108

Definition 1 (Logarithmic Sobolev inequality). Let µ be a Borel probability measure on Rd. We say
µ satisfies the LSI with a constant α > 0 if for any smooth function ϕ : Rd → R with Eµ[ϕ

2] <∞,

Eµ[ϕ
2 log(ϕ2)]− Eµ[ϕ

2] log(Eµ[ϕ
2]) ≤ 2

α
Eµ[∥∇ϕ∥22].
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3 Statistical and Computational Complexity for Anisotropic Data109

We have the following result on the anisotropic k-sparse parity setting.110

Theorem 1 (k-sparse parity setting). Define S2
Ik

:=
∑

j∈Ik
s−2
j . We may take R̄ = k and λ =

O(1/(S2
Ik

log(k)2)) so that the classification error is bounded by

P (Y fµ[λ]
< 0) ≤ O

(
kS2

Ik
log(k)2

n
(log(1/δ) + log log(n))

)
,

with probability 1−δ. Moreover, if n = Ω(k4S4
Ik

log(k)4), then P (Y fµ[λ]
≤ 0) = 0 with probability

1− exp[−Ω(n/(k4S4
Ik

log(k)4))].

For the computational cost, it suffices to take the number of iterations T and network width N as

T = O(S2
Ik

log(k)2n log(nd) exp[O(kS2
Ik

log(k)2)]), N = O(n2 exp(O(kS2
Ik

log(k)2)))),

respectively, to achieve the same statistical complexity as described above.111

Notably, for sufficiently anisotropic data such that S2
Ik

= k2, the computational complexity becomes112

completely polynomial order with respect to the dimension d; this is in stark contrast to the isotropic113

setting, where the complexity has exponential order with respect to d.114

We provide two examples of covariance structure that allows us to smoothly interpolate between the115

isotropic and anisotropic setting:116

• Power-law decay. We set Ik = {1, . . . , k} and s2i = cdi
−α where cd = Θ(d1−α) for α ∈ [0, 1).117

Then, in this setting, we have that S2
Ik

= O(d1−α). This interpolates between the isotropic and the118

completely anisotropic setting S2
Ik

= k2 by adjusting α between (0, 1).119

• Spiked covariance. We set si = dα−1/2 for i ∈ Ik, and si = d−1/2 otherwise, for α ∈ [0, 1]. In120

this case we have S2
Ik

= O(d1−2α), which becomes dimension-free when α approaches 1
2 . We121

verify Corollary 1 for this spiked covariance setting by conducting experiment in Appendix D.122

4 Kernel lower bound for the anisotropic parity problem123

To emphasize the benefit of feature learning, we prove a classification lower bound for kernel methods124

on the k-parity problem in the above spiked covariance setting. We remark that most existing kernel125

lower bounds are only valid for the regression setting, with the exception of Wei et al. (2019) which126

only handles the k = 2 case with the isotropic input.127

Specifically, we consider an inner-product kernel, which is assumed to be expressed as128

K(z, z′) =

∞∑
l=0

αl

(
z⊤z′

)l
, {α0}∞l=0 : positive and bounded.

Based on n i.i.d. training samples, we construct the kernel estimator fβ(z) with β ∈ Rn chosen129

arbitrarily: fβ(z) =
∑n

i=1 βiK(z, zi). For this fβ , we have the following lower bound.130

Theorem 2. Fix δ > 0 arbitrarily. For sufficiently large d, draw n ≲ d⌊(1−2α)k⌋−δ sample. Then,131

with probability at least 0.99 over the sample, for all choices of β ∈ Rn, fβ =
∑n

i=1 βiK(z, zi) will132

predict the sign of y wrong Ω(1) fraction of the time:133

Pz∼PZ
[fβ(z)y < 0] = Ω(1).

The proof can be found in Appendix G. First, we lower bound the failure probability by the probability134

when |fβ(z)| is large, by extending Wei et al. (2019) based on finer evaluation on the correlation135

yK(z, zi). Then, we reduce the problem into lower bounding the smallest eigenvalue of some kernel136

matrix, where we make use of the more refined characterization in Misiakiewicz (2022).137
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—————————– Appendix —————————–229

The appendix is organized as follows. First, Appendices A and B complement the problem setting230

presented in the main text. Especially, Appendix B presents technical foundations of our analysis.231

Then, Appendix C discusses the upper bounds in detail: additional discussion on Section 3 can232

be found in Appendix C.1, and our second contribution on the significant improvement of the233

computational and statistical complexity utilizing the gradient covariance matrix is presented in234

Appendix C.2. We validate our theory by conducting a numerical experiment in Appendix D, which235

considers learning the 3-sparse parity in the spiked covariance setting. As for the proofs, Appendix E236

proves Section 3 and Appendix C.1, Appendix F provides the proof for Appendix C.2, and finally,237

Appendix G proves the kernel lower bound.238

A Supplement for the Problem Setting239

Here we recall the problem setting and provide additional explanations. We discuss the mean-field240

Langevin dynamics in the subsequent separate section.241

k-sparse parity classification. We consider the binary classification problem where the labels are242

generated from a k-parity target function as follows. The following definition extends the one in the243

main text, that only referred to the axis-aligned case.244

Definition 2 (k-sparse parity problem under linear transformation). The input random variable Z245

and the corresponding label Y are generated as246

Z = AZ̃, Y = sign
(∏

i∈Ik
Z̃i

)
,

where A is an invertible matrix and Z̃ is distributed from the uniform distribution on {±1/
√
d}d. We247

also assume ∥Z∥ = ∥AZ̃∥ ≲ 1 almost surely.248

Note that this definition includes the well-studied XOR problem (Wei et al., 2019; Telgarsky, 2023)249

as a special case.250

Example 1 (Isotropic XOR). We take A = Id and Y = sign(Z̃1Z̃2) (k = 2).251

Similarly, the extension to k parity on isotropic data (Barak et al., 2022; Suzuki et al., 2023b) is also252

covered by our general definition.253

The example that we considered in the main text is the following anisotropic and axis-aligned setting254

with A = Id and Ik = [k]. In this anisotropic setting the coordinates are independent but may have255

different magnitudes.256

Example 2 (Axis-aligned anisotropic k parity). There exist positive reals si > 0 (i = 1, . . . , d) such257

that the support of PZ (the distribution of Z) is given by S := {±s1} × {±s2} × · · · × {±sd}, i.e.,258

any element z = (z1, . . . , zd) ∈ supp(PZ) satisfies zi ∈ {±si} (i = 1, . . . , d). We also assume259

(zi)
d
i=1 are mutually independent and P (zi = si) = P (zi = −si) = 1/2. The k-sparse parity label260

corresponds to the sign of the product of k-indices Ik ⊂ {1, . . . , d}.261

Mean-field two-layer network. Let hx(·) : Rd → R be one neuron associated with parameter262

x = (x1, x2, x3) ∈ Rd+1+1 in a two-layer neural network: given an input z ∈ Rd,263

hx(z) = R̄[tanh(z⊤x1 + x2) + 2 tanh(x3)]/3, (5)

where R̄ ∈ R is an output scale of the network and an extra tanh activation for the bias term x3 ∈ R
is placed to make the function bounded following Suzuki et al. (2023b). Let P be the set of Borel
probability measures on Rd̄ where d̄ = d + 2 and Pp be the subset of P with finite p-th moment:
Eµ[∥X∥p] <∞ (µ ∈ P). The mean-field neural network is defined by integrating infinitely many
neurons hx over Rd̄ with the distribution µ ∈ P ,

fµ(·) =
∫

hx(·)µ(dx),

7



Let ℓ(·, ·) : R×R→ R≥0 be a smooth and convex loss function for the binary classification. Typically,
we consider the logistic loss function ℓ(f, y) = log(1 + exp(−yf)) where f ∈ R, y ∈ {±1}. We
also denote ℓ(yf) = ℓ(f, y) Then, the empirical risk and the population risk of fµ are defined as

L(µ) :=
1

n

n∑
i=1

ℓ(yifµ(zi)), L̄(µ) := E[ℓ(Y fµ(Z))].

To avoid overfitting, we consider a regularized empirical risk F (µ) := L(µ) + λEX∼µ[λ1∥X∥2]264

with the regularization parameters λ, λ1 ≥ 0. In addition, we introduce the entropy regularized risk:265

L(µ) = F (µ) + λEnt(µ). (6)

We can immediately see that L is equivalent to L(µ) + λKL(ν, µ) up to constant, where KL(ν, µ) =266 ∫
log(µ/ν)dµ is the KL-divergence between ν and µ, and ν is the Gaussian distribution with267

mean 0 and variance I/(2λ1), i.e., ν = N(0, I/(2λ1)). A remarkable advantage of mean-field268

parameterization is that the above objectives become convex functional with respect to the distribution269

µ since µ linearly acts on fµ.270

B Mean-field Langevin dynamics271

This section introduces tean-field Langevin dynamics in detail. In recent years, the theory of MFLD272

has been well established and it has been shown to optimize the functional L. MFLD is defined by273

the following stochastic differential equation: X0 ∼ µ0,274

dXt = −∇
δF (µt)

δµ
(Xt)dt+

√
2λdWt, µt = Law(Xt), (7)

where (Wt)t≥0 is the d-dimensional standard Brownian motion, and δF (µt)
δµ is the first variation of275

F , which, in our setting, is written as δF (µ)
δµ (x) = 1

n

∑n
i=1 ℓ

′(yifµ(zi))yihx(zi) + λ(λ1∥x∥2). The276

Fokker-Planck equation of SDE (7) is given by1277

∂tµt = λ∆µt +∇ ·
[
µt∇ δF (µt)

δν

]
= ∇ ·

[
µt∇

(
λ log(µt) +

δF (µt)
δν

)]
. (8)

Then, several studies (Mei et al., 2018; Hu et al., 2019; Nitanda et al., 2022; Chizat, 2022) showed278

the convergence L(µt)→ L(µ[λ]), where µ[λ] := argminµ∈P L(µ).279

For a practical algorithm, we need to consider a space- and time-discretized version of the MFLD,280

that is, we approximate the solution µt by an empirical measure µX = 1
N

∑N
i=1 δXi

corresponding281

to a set of finite particles X = (Xi)Ni=1 ⊂ Rd̄. Let Xτ = (Xi
τ )

N
i=1 ⊂ Rd̄ be N particles at the τ -th282

update (τ ∈ {0, 1, 2, . . . }), and define µτ = µXτ
as a finite particle approximation of the population283

counterpart. Then, the discretized MFLD is defined as follows: Xi
0 ∼ µ0, and Xτ is updated as284

Xi
τ+1 = Xi

τ − η∇δF (µτ )

δµ
(Xi

τ ) +
√

2ληξiτ , (9)

where η > 0 is the step size, ξiτ is an i.i.d. standard normal random variable ξiτ ∼ N(0, I). Note that285

in the context of mean-field neural network (1), the discretized update (9) simply corresponds to the286

noisy gradient descent algorithm, where a Gaussian perturbation is added at each gradient step. We287

write fX := fµX for simplicity of notation.288

B.1 Logarithmic Sobolev inequality289

Nitanda et al. (2022); Chizat (2022) have established the exponential convergence of MFLD by
exploiting the proximal Gibbs distribution pµ associated with µ ∈ P . The density of pµ is given by

pµ(X) ∝ exp

(
− 1

λ

δF (µ)

δµ
(X)

)
.

1This should be interpreted in a weak sense, that is, for any continuously differentiable function ϕ with a
compact support,

∫
ϕdµt −

∫
ϕdµs = −

∫ t

s

∫
∇ϕ · (∇ log(µt)−∇ δF (µt)

δν
)dµτdτ .
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The smoothness of the loss function and the tanh activation guarantee the existence of the unique290

minimizer µ∗ of L , which also solves the equation: µ = pµ (see Proposition 2.5 of Hu et al. (2019)).291

The key in their proofs is to show a logarithmic Sobolev inequality (LSI) on the Gibbs measure pµ292

(see Definition 1). We can apply the classical Bakry-Emery and Holley-Stroock arguments (Bakry293

and Émery, 1985; Holley and Stroock, 1987) (Corollary 5.7.2 and 5.1.7 of Bakry et al. (2014)) to294

derive the LSI constant on the Gibbs distribution whose potential is the sum of the strongly convex295

function and bounded function. If ∥ δL(µ)
δµ ∥∞ ≤ B, the proximal Gibbs distributions fall into this296

case and we can establish the LSI with α ≥ λ1 exp (−4B/λ) . In our case, since the logistic loss is297

employed and each neuron hx is bounded by R̄, we have B = R̄ and therefore298

α ≥ λ1 exp
(
−4R̄/λ

)
. (10)

B.2 Quantitative Analysis of MFLD299

Convergence guarantee. As shown in Chen et al. (2022); Suzuki et al. (2022), the LSI constant
determines not only the rate of convergence, but also the number of particles (i.e., width of the neural
network) to approximate the mean-field limit. Let us consider the linear functional of a distribution
µ(N) of N particles X = (Xi)Ni=1 ⊂ Rd̄ defined by

LN (µ(N)) = NEX ∼µ(N) [F (µX )] + λEnt(µ(N)).

Let µ(N)
τ be the distribution of particles Xτ = (Xi

τ )
N
i=1 at the τ -th iteration, and define ∆τ =300

1
NL

N (µ
(N)
τ )− L(µ[λ]). Suzuki et al. (2023a) established the convergence rate of MFLD as follows.301

Proposition 1. Let B̄2 := E[∥Xi
0∥2]+ 1

λλ1

[(
1
4 + 1

λλ1

)
R̄2+λd

]
and δη := C1L̄

2(η2 + λη), where302

L̄ = 2R̄ + λλ1 and C1 = 8(R̄2 + λλ1B̄
2 + d) = O(d+ λ−1). Then, if λαη ≤ 1/4 and η ≤ 1/4,303

then the neural network trained by MFLD converges to the optimal network f[λ] as304

E
Xτ∼µ

(N)
τ

[
sup

z∈supp(PZ)

(fXτ
(z)− fµ[λ]

(z))2

]
≤ 4L̄2

λα ∆τ +
2

N
R̄2,

where ∆τ is further bounded by ∆τ ≤ exp (−λαητ/2)∆0+
2
λα L̄

2C1

(
λη + η2

)
+ 4Cλ

λαN .305

In particular, for a given ϵ∗ > 0, the right hand side can be bounded by ϵ∗ + 2R̄2

N after T =306

O
(

1
λαη log(1/ϵ∗)

)
iterations with the step size η = O

(
λα2ϵ∗/C1 + λα

√
ϵ∗/C1

)
. In terms of307

generalization error (Proposition 2), the optimization error can be set as ϵ∗ = O(1/(nλ)2). Then, the308

required total number of iteration T and the number of particles N can be bounded by309

T ≤ O
(
(d+ λ−1)n2 exp(16R̄/λ) log(nλ)

)
, N ≤ O((ϵ∗λα)−2) = O

(
n2 exp(8R̄/λ)

)
. (11)

From this evaluation, it is crucial to carefully select the strength of regularization parameter λ to310

obtain a sufficiently small loss. In the following section, we evaluate λ and then investigate how311

structured data affects its value.312

Generalization error bound. Now we state the classification error bound of the neural network313

optimized by MFLD. For this purpose, we introduce the following assumption which will be verified314

later on for the anisotropic parity setting.315

Assumption 1. There exists c0 > 0 and R > 0 such that the following conditions are satisfied:316

• There exists µ∗ ∈ P such that KL(ν||µ∗) ≤ R and L(µ∗) ≤ ℓ(0)− c0.317

• For any λ < c0/R, the risk minimizer µ[λ] of L(µ) satisfies Y fµ[λ]
(X) ≥ c0 almost surely.318

Here c0 plays a margin for a solution µ∗ and R controls “difficulty” of the problem. Indeed, if319

larger R is required, the Bayes optimal solution should be far away from the prior ν, a Gaussian320

distribution. Hence, it is expected that obtaining a good classifier is more difficult. Let µ̂ be an321

approximately optimal solution of L with ϵ∗ accuracy: L(µ̂) ≤ minµ∈P L(µ) + ϵ∗; we have the322

following generalization error bounds.323
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Proposition 2 (Suzuki et al. (2023b)). Let M0 = (ϵ∗ + 2(R̄+ 1))/λ and suppose that λ < c0/R.324

(i) If the sample size n satisfies

n > C
R̄2

c20λ
2

[
λ

(
R̄+

λ

R̄2n

)
+ R̄2(1 + log log2(n

2M0R̄)) + nλϵ∗
]
=: S,

with an absolute constant C, then fµ̂ satisfies P (Y fµ̂(Z) ≤ 0) = 0 (the Bayes optimal classifier)325

with probability 1− exp(− nλ2

32R̄4 (c
2
0 − S/n)).326

(ii) When the sample size does not satisfy the condition n > S, we still have that there exists an
absolute constant C > 0 such that

P (Y fµ̂(Z) ≤ 0) ≤ Cβ(c0)

[
R̄2

nλ

(
1 + t+ log log2(n

2M0R̄)
)
+

1

n

(
R̄+

λ

R̄2n

)
+ ϵ∗

]
,

with probability 1− exp(−t), where β(c0) := 1/[ℓ(0)− (ℓ(c0)− c0ℓ
′(c0))].327

This result states that if we take the regularization parameter λ sufficiently small as λ < O(1/R), then328

for sufficiently large sample size such that n > S = Ω(1/λ2), we have an exponential convergence329

of the expected classification error as EDn [P (Y fµ̂(Z) ≤ 0)] ≤ exp(−Ω(nλ2)); otherwise, we sill330

have EDn [P (Y fµ̂(Z) ≤ 0)] = O(1/(nλ)). Hence, the classification error and its convergence rate331

is almost completely characterized by R through the choice of λ = O(1/R): for a problem with332

large R, we need to pay greater sample complexity.333

It is also worth noting that the value of R affects not only the statistical complexity but also the compu-334

tational complexity. Remember that the number of iterations T and the network width N also depend335

on λ through Eq. (11). Indeed, by taking λ = c0/R, we arrive at T = O(exp(16R̄R/c0) log(n))336

and N = O(exp(8R̄R/c0)), which has exponential dependence on R.337

Therefore, the goal of the subsequent analysis is to answer the following question in the affirmative:338

Can we utilize the anisotropy of input data to reduce the value of R,339

hence improving the statistical and computational complexity of MFLD?340

C Learning under Structured Data341

C.1 Statistical and computational complexity for anisotropic data342

This subsection explains how to obtain the result in Section 3. We analyze how the anisotropic343

property of the input affects the generalization error and the computational complexity through344

the aforementioned measure of problem difficulty R. We first present a framework for the general345

problem setting in Definition 2. Let ϕ̃ = (ϕ̃1, . . . , ϕ̃d)
⊤ ∈ Rd as346

ϕ̃i =

{√
d (i ∈ Ik),

0 (i ̸∈ Ik).
(12)

Then, we have the following proposition that controls R in terms of the transformation matrix A.347

Proposition 3. Define ϕ := A−1ϕ̃ where ϕ̃ is defined by Eq. (12). For R̄ = k, there exists µ∗ ∈ P
and R such that

KL(ν||µ∗) ≤ R = c1(∥ϕ∥2 + k2) log(k)2,

and L(µ∗) ≤ ℓ(0)− c2, where c1, c2 > 0 are absolute constants.348

Under this conditions in this proposition, we can show that the minimizer of the MFLD objective349

achieves the Bayes optimal classifier with a positive margin as follows.350

Proposition 4. Assume that there exists µ∗ ∈ P such that the conditions in Proposition 3 is satisfied
with R and R̄ in the statement. Then, if we choose the regulaization parameter λ as λ < c2/(2R),
then the minimizer µ[λ] of the MFLD objective satisfies

max{L̄(µ[λ]), L(µ[λ])} < ℓ(0)− c2
2 ,

and fµ[λ]
is a perfect classifier with margin c2, i.e., Y fµ[λ]

(Z) ≥ c2
2 almost surely.351
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The proofs of both propositions can be found in Appendix E in the appendix. These general results352

state that Assumption 1 is satisfied for the general problem setting in Definition 2. Now we consider353

special cases where concrete sample complexity and computational complexity can be derived. For354

example, we have the following evaluation for the k-sparse parity with anisotropic covariance.355

Example: Anisotropic k-sparse parity. In the k-parity setting (Example 2), Assumption 1 is356

satisfied with constants specified in the following propositions, which follow from Proposition 4.357

Corollary 1 (Anisotropic k-sparse parity). Suppose that (Z, Y ) is generated from the anisotropic k
parity problem (Example 2). Then, for R̄ = k, there exists µ∗ ∈ P satisfying KL(ν||µ∗) ≤ R where

R = c1

(∑
i∈Ik

s−2
i

)
log(k)2,

and L(µ∗) ≤ ℓ(0)− c2, where c1, c2 > 0 are absolute constants.358

This result highlights the benefit of structured data. Observe that isotropic covariance corresponds to359

si = 1/
√
d (i = 1, . . . , d), where R needs to be Õ(kd), which then leads to exponential dimension360

dependency in the computational complexity, and also dimension-dependent sample complexity, as361

shown in Suzuki et al. (2023b). On the other hand, if the input covariance is anisotropic so that362

s2j > Ω(1/k) for j ∈ Ik (i.e., the input Zj is large for the informative coordinates j ∈ Ik and other363

coordinates are small), then the value of R becomes dimension-free: R = O(k2 log(k)2).364

Substituting the values of R and R̄ to the generalization error and computational complexity bounds,365

we obtain the Corollary 1.366

C.2 Utilizing Anisotropy via Coordinate Transform367

This section explains our third contribution, i.e., a coordinate transform that enables learning even the368

isotropic k-sparse parity problem with a dimension-free constant width network.369

From the previous analysis, we see that anisotropic data can indeed improve both the statistical and370

computational complexity. This being said, it is worth noting that unless the problem is sufficiently371

anisotropic such that R becomes cost, the computational cost would still be super-polynomial in372

terms of dimension dependence. The goal of this section is to show that the computational complexity373

can be further improved by exploiting the anisotropy of the learning problem. Specifically, we utilize374

the gradient covariance matrix to estimate the informative subspace, similar to the one-step gradient375

feature learning procedure studied in Ba et al. (2022); Damian et al. (2022); Barak et al. (2022).376

Let σ(w⊤z) = hx(z) for (x1, x2, x3) = (w, b1, b2) for fixed b1 and b2. We initialize the particles
X0 = {(wl, b1, b2)}N/2

l=1 ∪ {(−wl,−b1,−b2)}N/2
l=1 by generating wl from the uniform distribution

U(Bc0) on the ball with sufficiently radius c0 > 0. The gradient for each neuron is given as

g(wl) =
1

n

n∑
i=1

ℓ′(yifX0(zi))yizσ
′(w⊤

l z).

Note that we have fX0(Z) = 0 almost surely. We then calculate the covariance as

G = 1
N

∑N
l=1 g(wl)g(wl)

⊤,

to estimate the informative subspace. Define the “regularized covariance" Ĝ = G+ λ̂0I . For this
choice of Ĝ, we apply coordinate transform of the input Z as

Ẑ ← cAĜ
1/2Z,

where cA is a scaling parameter so that ∥Ẑ∥ ≤ 1 almost surely. We denote by ẑi = cAĜ
1/2zi377

accordingly. After this coordinate transform, we train the neural network through MFLD; that378

is, we optimize the objective µ 7→ 1
n

∑n
i=1 ℓ(fµ(ẑi)yi) + λ(λ1Eµ[∥X∥2] + Ent(µ)). Intuitively,379

this coordinate transform tries to amplify the informative coordinates (j ∈ Ik) and suppress the380

non-informative coordinates (j ∈ Ick). More specifically, the covariance of the input becomes more381

well-specified to the target signal Y leading to a better LSI constant. We remark that such coordinate382
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transformation is equivalent to employing an anisotropic weight decay regularization on the weight383

parameters r(x) = ∥x∥2
Ĝ−1

.384

Taken into account the sample complexity to estimate the gradient covariance, we obtain the following385

evaluation of the KL-divergence between the prior distribution ν and a Bayes optimal solution µ∗.386

Theorem 3. Suppose that c0 is taken sufficiently small such that
∑d

j=1 w
2
j s

2
j ≤ 1 almost surely387

for w ∼ U(Bc0) and E[wj ] = Θ(1), and the regularization parameter λ̂0 is set to be λ̂0 =388 ∏
j′∈Ik

s2j′ ·maxj′∈Ic
k
s2j′ . We assume that the sample size n and the number of particles N satisfies389

n ≥ Ck
k2R̄2 log(2N/δ)2∏

j′∈Ik
s2j′

, N ≥ Ck
d log(d/δ)

maxj′ ̸∈Ik s
4
j′
, (13)

for given δ ∈ (0, 1), where Ck is a constant depending on k. Then, for R̄ = k and sufficiently small
Ck, there exists µ∗ ∈ P such that L(µ∗) ≤ ℓ(0)− c2 and KL(ν||µ∗) ≤ R where

R = c1

(
k
maxj′∈[d] s

2
j′

minj′∈Ik s
2
j′

+ k2

)
log(k)2,

for a constant c1 independent of the dimensionality d, with probability 1− δ. Here, the probability is390

with respect to the randomness of training data and generating the initial parameters (wl)
N
l=1.391

We make the following remarks on the theorem.392

• This theorem implies a significant improvement on the LSI constant since R is independent of d as393

long as
maxj′∈[d] s

2
j′

minj′∈Ik
s2
j′

= O(1), which is satisfied even for the isotropic setting. The dimension-free394

R then implies that no exponential dependence is present in the computational complexity.395

• In order to accurately estimate the gradient matrix, there is an additional cost in the statistical396

complexity. For the isotropic setting, (13) implies a sample complexity of n = Ω(dk), which397

matches the sample size to achieve nontrivial gradient concentration as in Barak et al. (2022).398

• On the other hand, if the input is anisotropic so that
∏

j′∈Ik
s2j′ ≫ d−k (the most extreme case399

is
∏

j′∈Ik
s2j′ = Ω(1)), then the sample complexity to estimate the informative direction is also400

improved. Indeed, if the signal is well-specified by the principle components of the input (i.e.,401

denominator is Ω(1)), then the sample complexity is Õ(k2), and hence we avoid the dimension402

dependence. This observation also demonstrates the benefit of structured data in feature learning.403

Tradeoff between statistical and computational complexity. By comparing the complexity de-404

rived in Corollary 1 and Theorem 3, we observe a “tradeoff” between the statistical and computational405

complexity: estimating the gradient covariance matrix requires additional samples, but consequently406

the required width and iterations of the MFLD significantly decrease. An interesting question is407

whether such tradeoff naturally occurs in more general data settings and feature learning procedures.408

D Experiment409

We validate our theoretical analysis by numerical experiments. We considered an anisotropic d-410

dimensional 3-sparse parity problem: y = z1z2z3, s1 = s2 = s3 = α/
√
d, and s4 = · · · = sd =411

1/
√
d (note that α is not defined as an exponent of the signal-to-noise ratio, s1/s4 = dα, but is412

defined just as the ratio s1/s4 = α). Here α controls the alignment of the distribution to the feature,413

or the signal-to-noise ratio. We fixed the dimension d to 300, and varied n and α. We trained the414

neural network (2) with R̄ = 15. Specifically, we employed the width N = 2000 as a finite neuron415

approximation, and initialized neurons so that each of them followed the standard normal distribution416

(and thus the network was rotation invariant at the initialization). By using the logistic loss, we417

updated the network by the discretized MLFD (4) by setting η = 0.25, λ1 = 0.1, and λ = 0.1α2/d418

(fixed during the training) by following Corollary 1, until T = 10000. We ran the experiment 5 times419

with different seeds and plotted the mean for each n and α.420
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Figure 1: Test accuracy of NN trained by MFLD to
learn the anisotropic d-dimensional 3-parity problem.

In Figure 1 we plot the test accuracy as a func-421

tion of the sample size n and α, which con-422

trols the level of anisotropy. As clearly seen,423

increasing α enables smaller the model to learn424

the problem with smaller sample complexity n,425

which demonstrates how anisotropy helps learn-426

ing. Moreover, let us focus on the “phase transi-427

tion” boundary between yellow and blue regions.428

According to Corollary 1, the classification error429

is bounded by
∑

j∈Ik
s−2
j /n = α−2d/n up to430

a constant, which predicts that there would be431

a boundary around α2 = Θ(n), as indicated by432

the red line in the figure. We therefore conclude433

that the empirical findings match the theoretical434

result in Corollary 1.435

E Proofs of436

Propositions 3 and 4 and Corollary 1437

Proof of Proposition 3. We follow the proof strategy from Suzuki et al. (2023b). Remember that

hx(z) = R̄[tanh(z⊤x1 + x2) + 2 tanh(x3)]/3.

Let bi = 2i−k for i = 0, . . . , k, let ζ > 0 be the positive real such that Eu∼N(0,1)[2 tanh(ζ+u)] = 1
(note that, this also yields Eu∼N(0,1)[2 tanh(−ζ + u)] = −1 by the symmetric property of tanh and
the Gaussian distribution). Let

Σ :=

(
I/(2λ1) 0 0

0 1/(2λ1) 0
0 0 1

)
∈ R(d+1+1)×(d+1+1),

and ρ > 1 be a constant which will be adjusted later on. Then, for ξ2j := [log(ρk)ϕ⊤,− log(ρk)(bj−
1), ζ]⊤ ∈ Rd̄ and ξ2j+1 := −[log(ρk)ϕ⊤,− log(ρk)(bj + 1), ζ]⊤ ∈ Rd̄ for j = 0, . . . , k, we define

µ̂2j := N(ξ2j ,Σ), µ̂2j+1 := N(ξ2j+1,Σ).

Then, by noticing that for z ∈ supp(PZ) there exists z̃ ∈ {±1/
√
d}d such that z = Az̃, we can see

that
Ex∼µ̂2j

[hx(z)] = R̄Eu∼N(0,1/λ1){tanh[log(ρk)(⟨ϕ̃, z̃⟩ − (bj − 1)) + u] + 1}/3
because we have438

⟨x1, z⟩+ x2 = log(ρk)(⟨ϕ, z⟩ − (bj − 1)) +

d∑
i=1

uizi + ud+1

= log(ρk)(⟨A−1ϕ̃, Az̃⟩ − (bj − 1)) +

d∑
i=1

uizi + ud+1,

for x ∼ N([ϕ⊤, (bj − 1)]⊤, I/(2λ1)) where ui ∼ N(0, 1/(2λ1)) (i.i.d.) and
∑d

i=1 uizi + ud+1

obeys the Gaussian distribution with mean 0 and variance 1
2λ1
∥z∥2 + 1

2λ1
= 1

2λ1

(
1 + ∥z∥2

)
= 1

λ1

for all z ∈ supp(PZ), where we used the assumption on A. In the same vein, we also have

Ex∼µ̂2j+1
[hx(z)] = −R̄Eu∼N(0,1/λ1){tanh[log(ρk)(⟨ϕ̃, z̃⟩ − (bj + 1)) + u] + 1}/3.

Here, define |z̃| := |{i ∈ Ik | z̃i > 0}| for z̃ ∈ supp(PZ̃) which is the number of positive elements439

of z in the informative index set Ik. For a fixed number j ∈ {0, . . . , k}, we let440

f1(z;u) = {tanh[log(ρk)(⟨ϕ̃, z̃⟩ − (bj − 1)) + u] + 1}/3,
f2(z;u) = {tanh[log(ρk)(⟨ϕ̃, z̃⟩ − (bj + 1)) + u] + 1}/3,
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then we can see that

f1(z; 0) =

{
O(1/(ρk)) (|z̃| < j),

1−O(1/(ρk)) (|z̃| ≥ j),

and

f2(z; 0) =

{
O(1/(ρk)) (|z̃| < j + 1),

1−O(1/(ρk)) (|z̃| ≥ j + 1),

because ⟨ϕ̃, z̃⟩ − bj =
∑k

j′=1 sign(z̃j′)− bj = 2|z̃| − k − bj = 2(|z̃| − j). Hence, we have that

f(z;u) := f1(z;u)− f2(z;u) =

{
Ω(1) (|z̃| = j),

O(1/(ρk)) (otherwise),

and f(z;u) > 0 for |z̃| = j. Then, since tanh(u) + 1 = eu−e−u

eu+e−u + 1 = 2
1+e−2u , if |z̃| = j and

|u| ≤ 1/λ1,
f(z;u) ≥ Ω(1),

and if |z̃| ≠ j and |u| ≤ log(ρk)/2,

f(z;u) ≤ O(1/(ρk)).

Therefore, when |z̃| = j,

Eu∼N(0,1/λ1)[f(z;u)] ≥
∫ 1/λ1

−1/λ1

f(z;u)g(u)du > Ω(1).

where g is the density function of N(0, 1/λ1), and when |z̃| ≠ j,441

Eu∼N(0,1/λ1)[f(z;u)] ≤
∫ log(ρk)/2

− log(ρk)/2

f(z;u)g(u)du+

∫
|u|≥log(ρk)/2

f(z;u)g(u)dz

≤ O(1/(ρk)) +O

(
exp(−λ1 log(ρk)

2/2)

log(ρk)

)
= O(1/(ρk)),

where we used the upper-tail inequality of the Gaussian distribution in the second inequality. Hence,
it holds that

f̂i(z) := Ex∼µ̂2i
[hx(z)] + Ex∼µ̂2i+1

[hx(z)] =

{
Ω(k) (|z̃| = j),

O(1/ρ) (otherwise),

because R̄ = k. Therefore, by taking ρ > 1 sufficiently large, we also have

f̂(z) :=
1

2(k + 1)

k∑
i=0

(−1)if̂i(z) =
{
Ω(1) (|z̃| is even),
−Ω(1) (|z̃| is odd),

where the constant hidden in Ω(·) is uniform over any |z̃|. Hence, there exists c′2 > 0 such that
Y f̂(Z) > c′2 almost surely. Then, if we let µ⟨a⟩(B) := µ(aB) for a ∈ R, a probability measure µ

and a measurable set B, then we can see that f̂ is represented as

f̂(·) = Ex∼µ∗ [hx(·)],
where

µ∗ =
1

2(k + 1)

k∑
i=0

(µ̂2i,⟨(−1)i⟩ + µ̂2i+1,⟨(−1)i⟩).

Then, by letting c2 = ℓ(0)− ℓ(c′2), we have

L(µ∗) ≤ ℓ(0)− c2.

Next, we bound the KL-divergence between ν and µ∗. Notice that the convexity of KL-divergence442

yields that443

KL(ν, µ∗) ≤ 1

2(k + 1)

k∑
i=0

(KL(ν, µ̂2i) + KL(ν, µ̂2i+1))
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≤ λ1 log(ρk)
2[∥ϕ∥2 + (max

j
|bj |+ 1)2] + log(1/(2λ1)) + λ1(1 + ζ2)

= O
(
log(k)2

(
∥ϕ∥2 + k2

))
.

This gives the assertion.444

Next, we prove Proposition 4.445

Proof of Proposition 4. The proof of this statement resembles Proposition 4 of Suzuki et al. (2023b).
The key step in their proof is to show that the optimal solution satisfies

|fµ[λ](z)| = |fµ[λ](z′)|

for any z, z′ ∈ supp(PZ). We prove that this still holds in our general setting. Let TA : Rd̄ → R be

TAx = (Ax1, x2, x3),

where x = (x1, x2, x3) for x1 ∈ Rd, x2 ∈ R and x3 ∈ R. Then, we can see that

fµ(z) = fTA#µ(z̃)

for µ ∈ P and TA# is the push-forward with respect to TA, and z = Az̃. Based on this coordinate
transform, we can reduce the problem to the standard parity setting where the input obeys the
uniform distribution on {±1/

√
d}d. According to this coordinate transform, the prior distribution

ν is transformed to νA := TA#ν, which is again a normal distribution with mean 0 and variance
AA⊤/(2λ1). We also let Tj be the map which flips the sign of the i-th coordinate. Then, the key
argument in the proof of Suzuki et al. (2023b) is to show that

KL(νA||µ) = K(νA||Tj#µ)

for a measure µ ∈ P (which is supposed to be TA#µ̂ for a population risk minimizer µ̂). This equality
is true because the normal distribution is point symmetric. Indeed, we have

KL(νA||µ) = KL(Tj#νA||Tj#µ) = KL(νA||Tj#µ),

where the first equality is by the invariance of the KL-divergence against any bijective coordinate446

transform and the second equality is by the point symmetricity of the normal distribution. Then,447

following the same argument to Suzuki et al. (2023b), we obtain the assertion.448

Then, Proposition 1 can be obtained as a corollary of Proposition 3 where we set A =

diag
(
s1
√
d, s2
√
d, . . . , sd

√
d
)

. For this setting, we can easily see that

∥ϕ∥2 =
∑
j∈Ik

s−2
j .

Combining with this evaluation and the fact

k =
∑
i∈Ik

1 =
∑
i∈Ik

sis
−1
i ≤

√∑
i∈Ik

s2i

√∑
i∈Ik

s−2
i ≤

√∑
i∈Ik

s−2
i

we obtain the assertion.449

F Estimating the information matrix450

Without loss of generality, we may take Ik = {1, . . . , k}. Let σ(w⊤z) = hx(z) for (x1, x2, x3) =
(w, b1, b2) for a fixed b1 and b2. Then,

σ(w⊤z) =

∞∑
ℓ=0

1

ℓ!
σ(ℓ)(0)︸ ︷︷ ︸
=:cℓ

(w⊤z)ℓ.

Note that the gradient of the loss with respect to wj can be written as

gj(w) =
1

n

n∑
i=1

ℓ′(yifµ0
(zi))yizjσ

′(w⊤z).
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Suppose that fµ0(zi) = 0, then noticing that Y =
∏

j∈Ik
(s−1

j Zj), its expectation can be expressed
as

ḡj(w) := E

 ∏
j′∈Ik

(s−1
j′ Zj′)Zjσ

′(w⊤Z)

 .

(1) If j ∈ Ik, then we have that

ḡj(w) := sj
∏

j′∈Ik\j

s−1
j′ E

 ∏
j′∈Ik\j

Zj′σ
′(w⊤Z)

 .

Then, by the Taylor expansion of σ, it holds that451

ḡj(w) =sj
∏

j′∈Ik\j

s−1
j′

k−1∑
ℓ=0

1

ℓ!
∂
(ℓ)

θ̃
E

 ∏
j′∈Ik\j

Zj′σ
′((θ̃w)⊤Z)

 ∣∣∣∣∣
θ̃=0

+

∞∑
ℓ=k

1

ℓ!
∂
(ℓ)

θ̃
E

 ∏
j′∈Ik\j

Zj′σ
′((θ̃w)⊤Z)

 ∣∣∣∣∣
θ̃=0


= sj

∏
j′∈Ik\j

s−1
j′

E

 ∏
j′∈Ik\j

Zj′
ck

(k − 1)!
(w⊤Z)k−1


+

∞∑
ℓ=k

E

 ∏
j′∈Ik\j

Zj′ ·
cℓ+1

ℓ!
(w⊤Z)ℓ


= sj

∏
j′∈Ik\j

s−1
j′

 ∏
j′∈Ik\j

s2j′
ck

(k − 1)!
(k − 1)!

∏
j′∈Ik\j

wj′ + (higher order term)︸ ︷︷ ︸
=:(a)


= ck ·

∏
j′∈Ik

sj′ ·
∏

j′∈Ik\j

wj′ + (higher order term).

The higher order term (a) in the above expression can be evaluated as452

∞∑
ℓ=k

E

 ∏
j′∈Ik\j

Zj′ ·
cℓ+1

ℓ!
(w⊤Z)ℓ


=

∞∑
ℓ=k

E

 ∏
j′∈Ik\j

Zj′ ·
cℓ+1

ℓ!

 ℓ!

(k − 1)!(ℓ− k + 1)!
(k − 1)!

∏
j′∈Ik\j

wj′ ·
∏

j′∈Ik\j

Zj′ · (w⊤Z)ℓ−k+1

+ (the terms orthogonal to
∏

j′∈Ik\j Zj′)

)]

=

∞∑
ℓ=k

1

(ℓ− k + 1)!
E


 ∏

j′∈Ik\j

Zj′

2

· cℓ+1

∏
j′∈Ik\j

wj′ · (w⊤Z)ℓ−k+1


=

∏
j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

wj′ ·
∞∑
ℓ=k

1

(ℓ− k + 1)!
cℓ+1E

[
(w⊤Z)ℓ−k+1

]
≤

∏
j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

wj′ ·
∞∑
ℓ=k

cℓ+1(c∥w ⊙ s∥)ℓ−k+1K
(ℓ− k + 1)(ℓ−k+1)/2

(ℓ− k + 1)!
,

where we used the moment bound of sub-Gaussian random variables in the last inequality by noting453

that w⊤Z is a sub-Gaussian random variable with parameter ∥w ⊙ s∥2, that is, a sub-Gaussian454
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random variable X with a parameter s satisfied E[|X|ℓ] ≤ (cs)ℓℓℓ/2 with an absolute constant c (see455

Proposition 2.5.2 of Vershynin (2020), for example). Then, by the Stirling’s formula, the absolute456

value of the right hand side can be bounded by457

K
∏

j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

|wj′ | ·
∞∑
ℓ=k

cℓ+1∥w ⊙ s∥ℓ−k+1 (ℓ− k + 1)(ℓ−k+1)/2

√
2π(ℓ− k + 1)ℓ−k+1+1/2e−(ℓ−k+1)

=K
∏

j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

|wj′ | ·
∞∑
ℓ=k

cℓ+1∥w ⊙ s∥ℓ−k+1 1√
2π

(
e

(ℓ− k + 1)1/2

)ℓ−k+1
1

(ℓ− k + 1)1/2

≤ck
2

∏
j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

|wj′ |,

where we used the assumption ∥w ⊙ s∥ is sufficiently small such that
∑∞

ℓ=k cℓ+1(c∥w ⊙458

s∥)ℓ−k+1 1√
2π

(
e

(ℓ−k+1)1/2

)ℓ−k+1
1

(ℓ−k+1)1/2
≤ ck

2 . Therefore, we can see that459

ḡj(w) = ck ·
∏
j′∈Ik

sj′ ·
∏

j′∈Ik\j

wj′ + (higher order term),

|ḡj(w)| ≥
ck
2
·
∏
j′∈Ik

sj′ ·
∏

j′∈Ik\j

|wj′ |,

|ḡj(w)| ≤
3

2
ck ·

∏
j′∈Ik

sj′ ·
∏

j′∈Ik\j

|wj′ |. (14)

(2) In the same vein, we also have for j ̸∈ Ik, we have that460

ḡj(w) = ck+2 ·
∏

j′∈Ik∪j

sj′ ·
∏

j′∈Ik∪j

wj′ + (higher order term),

|ḡj(w)| ≤ 2ck+2 ·
∏

j′∈Ik∪j

sj′ ·
∏

j′∈Ik∪j

|wj′ |. (15)

Next, we show the concentration of the empirical gradient gj(w) around its expectation. We observe461

that462

sup
Y,Z
|ℓ′(Y fµ0

(Z))Y Zjσ
′(w⊤Z)| ≤ R̄sj ,

VarY,Z [ℓ
′(Y fµ0(Z))Y Zjσ

′(w⊤Z)] ≤ R̄2s2j .

Therefore, by the Bernstein’s inequality, we obtain that

P

(
|gj(w)− ḡj(w)| ≥

4R̄sj√
n

log(2/δ)

)
≤ δ

for any δ ∈ (0, 1). Hence, if we let n

n ≥ 16k2R̄2 log(2N/δ)2(
C0ck ·

∏
j′∈Ik

sj′
)2 ,

for a sufficiently small constant C0, then we have that463

|gj(wl)− ḡj(wl)| ≤ C0ck
∏
j′∈Ik

sj′ · sj , (16)

uniformly over l = 1, . . . , N with probability δ.464

For that purpose, we evaluate the expectations of gj1(w)gj2(w) carefully. Let H(w) =465 ∑∞
ℓ=k

cℓ+1

(ℓ−k+1)!EZ

[
(w⊤Z)ℓ−k+1

]
= 1

2∥w ⊙ s∥2 +
∑∞

ℓ=0
ck+4+2ℓ

(4+2ℓ)! EZ

[
(w⊤Z)4+2ℓ

]
. We evaluate466

for each condition on j1 and j2.467
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(a) If j1 = j2 ∈ Ik, then it holds that468

EW [gj1(W )gj1(W )] = c2k
∏
j′∈Ik

s2j′EW

 ∏
j′∈Ik\j1

W 2
j′(1 +H(W ))2


= Ω

 ∏
j′∈Ik

s2j′

 .

(b) If j1 ̸= j2 and j1, j2 ∈ Ik, then it holds that

EW [gj1(W )gj2(W )] = c2k
∏

j′∈Ik
s2j′E

[∏
j′∈Ik\{j1,j2} W

2
j′ ·Wj1Wj2(1 +H(W ))2

]
= 0,

where we used that the distribution of W is symmetric and H(W ) satisfies H(W ) = H(−W ).469

(c) If j1 ̸= j2 and j1 ∈ Ik and j2 ̸∈ Ik, then

EW [gj1(W )gj2(W )] = ckck+2

∏
j′∈Ik

s2j′sj2E

 ∏
j′∈Ik\j1

W 2
j′ ·Wj2(1 +H(W ))2

 = 0.

(d) If j1 ̸∈ Ik and j2 ̸∈ Ik, then470

EW [gj1(W )gj2(W )] = c2k+2

∏
j′∈Ik

s2j′sj1sj2E

 ∏
j′∈Ik

W 2
j′ ·Wj1Wj2(1 +H(W ))2


=

{
0 (j1 ̸= j2),

O(
∏

j′∈Ik∪j1
s2j′) (j1 = j2).

Summarizing these evaluations, we can see that Ḡ = (Ḡj1,j2)
d,d
j1=1,j2=1 ∈ Rd×d defined by

Ḡj1,j2 = EW [gj1(W )gj2(W )]

is a diagonal matrix where Ḡj1,j1 for j1 ∈ Ik has larger values than that for j1 ̸∈ Ik. We define its
empirical average version G = (Gj1,j2)

d,d
j1=1,j2=1 ∈ Rd×d as

Gj1,j2 =
1

N

N∑
l=1

gi(wl)gj(wl).

Now, we show the concentration of G around its population version Ḡ. Note that471

1

N

N∑
l=1

gj1(wl)gj2(wl) =
1

N

N∑
l=1

(gj1(wl)− ḡj1(wl) + ḡj1(wl))(gj2(wl)− ḡj2(wl) + ḡj2(wl))

=
1

N

N∑
l=1

(gj1(wl)− ḡj1(wl))(gj2(wl)− ḡj2(wl))

+
1

N

N∑
l=1

(gj1(wl)− ḡj1(wl))ḡj2(wl)

+
1

N

N∑
l=1

(gj2(wl)− ḡj2(wl))ḡj1(wl)

+
1

N

N∑
l=1

ḡj1(wl)ḡj2(wl).
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Then, by the concentration bound (16) and the bounds (14) and (15) of ḡj(w), ∆Gj1,j2 = Gj1,j2 −472

Ḡj1,j2 satisfies473

∆Gj1,j2 =
1

N

N∑
l=1

ḡj1(wl)ḡj2(wl)− Ḡj1,j2

+


O
(
C0

1
k

∏
j′∈Ik

s2j′ ·maxj′∈Ik sj′
)

(j1, j2 ∈ Ik),

O
(
C0

∏
j′∈Ik

s2j′ · s2j2
)

(j1 ∈ Ik, j2 ̸∈ Ik),

O
(
C0

∏
j′∈Ik

s2j′ ·maxj′∈Ic
k
sj′ max{sj1 , sj2}

)
(j1, j2 ̸∈ Ik).

In addition to that, if we write Ĝj1,j2 = 1
N

∑N
l=1 ḡj1(wl)ḡj2(wl), then the matrix Bernstein’s474

inequality yields that475

P

[
∥Ĝ− Ḡ∥op ≥ K

(√
Q2(t+ log(d))

N
+

(t+ log(d))Q

N

)]
≤ exp(−t),

where K is an absolute constant and Q = d
∏

j′∈Ik
s2j′ because ∥ḡ(wl)ḡ

⊤(wl)∥op ≤ O(Q). There-
fore, N = Ω(d log(d/δ)/(C0 maxj′ ̸∈Ik s

4
j′)) for sufficiently small C0 yields that

∥G− Ḡ∥op = O

C0

∏
j′∈Ik

s2j′ · max
j′ ̸∈Ik

s2j′

 ,

with probability 1− δ.476

Therefore, if we let Q1 =
∏

j′∈Ik
s2j′ and Q2 =

∏
j′∈Ik

s2j′ ·maxj′ ̸∈Ik s
2
j′ , then it holds that

Gj1,j1 =

{
Θ(Q1) (ji ∈ Ik),

O(Q2) (j1 ̸∈ Ik).

If we let Q̌1 = 1
k

∏
j′∈Ik

s2j′ ·maxj′∈Ic
k
sj′ , and Q̌2 = 1

k

∏
j′∈Ik

s2j′ ·maxj′∈Ic
k
s2j′ , then, for j1 ̸= j2,

it holds that

Gj1,j2 =

{
O(C0Q̌1) (j1 ∈ Ik and j2 ∈ Ik),

O(C0Q̌2) (otherwise).

Then, by modifying the objective as

L(µ) + λ1Eµ[∥X∥2(G+λ̂0I)−1 ]

with a regularization parameter λ̂0 = Q̌2. This is equivalent to the alternative objective L(µ) +

λ1Eµ[∥X∥2] where the input is transformed as Z ← AZ̃ where A = cA
√
G+ λ̂0IB with B =

diag
(
s1
√
d, . . . , sd

√
d
)

and a constant cA = O(Q̌−1/2
1 (maxj′ sj′)

−1) such that ∥AZ̃∥ ≤ 1. Then,
we can see that

∥A−1ϕ̃∥2 = c−2
A ϕ̃⊤B−1(G+ λ̂0I)

−1B−1ϕ̃ = c−2
A ζ⊤s (G+ λ̂0I)

−1ζs,

for ζs = (s−1
1 , . . . , s−1

k , 0, . . . , 0)⊤. Now, let

G+ λ̂0 =

(
G[1,1] G[1,2]

G[2,1] G[2,2]

)
.

Then, we can see that

(G+ λ̂0)
−1 =

(
(G[1,1] −G[1,2]G

−1
[2,2]G[2,1])

−1 ∗
∗ ∗

)
.

We know that ∥G−1
[2,2]∥op ≤ Q̌−1

2 and ∥G[1,2]∥op ≤ C0

√
kQ̌2

1 + (d− k)Q̌2
2 ≤

√
dmaxj′∈Ic

k
s2j′Q̌1 =

√
dQ̌2. Hence, we can see that

G[1,1] −G[1,2]G
−1
[2,2]G[2,1] ≿ Q̌1 −O(C0dQ̌2).
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Hence, by taking C0 sufficiently small and under the assumption that dmaxj′∈Ic
k
s2j′ = O(1), we

have that
(G[1,1] −G[1,2]G

−1
[2,2]G[2,1])

−1 ≾ Q̌−1
1 I.

Therefore, we finally arrive at477

∥A−1ϕ̃∥2 ≤ c−2
A ∥ζs∥

2∥(G[1,1] −G[1,2]G
−1
[2,2]G[2,1])

−1∥op

≲ k

(
min
j′∈Ik

s2j′

)−1

Q̌−1
1 Q̌1

(
max
j′

s2j′

)
= k

maxj′∈[d] s
2
j′

minj′∈Ik s
2
j′
.

G Kernel lower bound478

In this section, we derive the kernel lower bound for the k-parity classification problem (Example 2)479

with the spiked covariance setting. Before beginning the proof, we slightly change the notation. We480

assume y = y(z) = sign(
∏k

i=1 zi), each zi is independent, and P[zi = ±dα] = 1
2 (i = 1, · · · , k) or481

P[zi = ±1] = 1
2 (i = k + 1, · · · , d) for 0 ≤ α < 1

2 . This definition multiplies
√
d to z compared to482

the original definition of the spiked covariance setting in the main text. This is because we intend to483

make the notation match to the previous literature on the kernel lower bounds like Wei et al. (2019)484

and Misiakiewicz (2022).485

We consider the following inner-product Kernel, with positive and bounded coefficients {α0}∞l=0.486

K(z, z′) =

∞∑
l=0

αl

(
z⊤z′

d

)l

Based on the randomly drawn n sample, we construct the estimator fβ(z) with β ∈ Rn.487

fβ(z) =

n∑
i=1

βiK(z, zi)

Then, the following lower bound on the accuracy of fβ can be obtained.488

Theorem 2. Fix δ > 0 arbitrarily. For sufficiently large d, draw n ≲ d⌊(1−2α)k⌋−δ sample. Then,489

with probability at least 0.99 over the sample, for all choices of β ∈ Rn, fβ =
∑n

i=1 βiK(z, zi) will490

predict the sign of y wrong Ω(1) fraction of the time:491

Pz∼PZ
[fβ(z)y < 0] = Ω(1).

The proof is divided into two steps. First, we translate the event when prediction fails into when492

the value of |fβ(z)| is away from zero. We combine the proof for 2-parity (Wei et al., 2019) and an493

additional observation that K(z, zi) have d−k correlation to y, to get the tighter bound for general494

higher order parities than (Wei et al., 2019). Then, we show that the probability of that event is495

evaluated by the the smallest eigenvalue of some other Kernel matrix defined in Lemma 3. Finally,496

we apply the lower bound of the smallest eigenvalue using (Misiakiewicz, 2022).497

Note that, proving Theorem 2 for 1
2 −

2
2k < α ≤ 1

2 means nothing. Thus in the following we assume498

1
2 − α is not to small so that d(1−2α) ≳ log2k+1(d).499

Lemma 1. For n ≤ d(1−2α)k, with probability 1 − exp(−Ω(d)) over the random draws of the500

training sample, we have501

Pz∼PZ
[fβ(z)y < 0] ≳ Pz∼PZ

[
|fβ(z)| ≥

c

d(1−2α)k

n∑
i=1

|βi|

]
− 1/d,

where c is a constant depending on k and {αl}l.502

Proof. Randomly draw zk+1:d, and fix it for the moment. Suppose fβ(z)y(z) ≥ 0 for all choices of503

z1:k and |fβ(z)| ≳ c
d(1−2α)k

∑n
i=1 |βi| for some z1:k to show contradiction (with high probability).504

Then, consider the average of K(z, zi)y over the choices of z1:k as follows:505

Ez1:k

[
K(z, zi)y(z)

∣∣ zk+1:d

]
= Ez1:k

[ ∞∑
l=0

αl

(
z⊤zi

d

)l

y(z)

∣∣∣∣∣ zk+1:d

]
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=

∞∑
l=k

αlEz1:k

(z⊤zi

d

)l k∏
j′=1

zj′

∣∣∣∣∣∣ zk+1:d

 (17)

Let us evaluate Ez1:k [(
z⊤zi

d )l
∏k

j′=1 zj′ |zk+1:d]. For k ≤ l ≤ 2k, we expand ( z
⊤zi

d )l =506

(
∑d

i=j

zjz
i
j

d )l to see507

Ez1:k

(z⊤zi

d

)l k∏
j′=1

zj′

∣∣∣∣∣∣ zk+1:d

 ≤ l∑
l′=k

lCl′k
l′(d− k)l−l′

︸ ︷︷ ︸
consider terms containing each z1, · · · , zk more than or equal to once

(
d2α

d

)l′ (
1

d

)l−l′

≲ d−(1−2α)k.

For l ≥ 2k + 1, we have | z
⊤zi

d | ≲ d−(1−2α)/2
√
log d with probability 1 − 1/d(1−2α)k+1 over the508

choice of zk+1:d, and therefore
∑∞

l=2k+1 Ez1:k [| z
⊤zi

d |
l|zk+1:d] ≲ d−(1−2α)k. By using them for509

(17), we have510

Ez1:k

[
K(z, zi)y(z)

∣∣ zk+1:d

]
= Ez1:k

[ ∞∑
l=0

αl

(
z⊤zi

d

)l

y(z)

∣∣∣∣∣ zk+1:d

]
≲ d−(1−2α)k

for randomly drawn zk+1:d, with probability more than 1− 1/d(1−2α)k+1. Therefore,511

Ez1:k [fβ(z)y(z)| zk+1:d] = Ez1:k

[∑
i

βiK(z, zi)y(z)

∣∣∣∣∣ zk+1:d

]
≲

1

d(1−2α)k

n∑
i=1

|βi| (18)

with probability more than 1− 1/d.512

On the other hand, if fβ(z)y(z) ≥ 0 for all z1:k and |fβ(z)| ≳ c
d1−2α

∑n
i=1 |βi| for some z1:k, we513

have514

Ez1:k [fβ(z)y(z)| zk+1:d] =
1

2k

∑
z1:k

fβ(z)y(z) ≥
1

2k
· c

d(1−2α)k

n∑
i=1

|βi|. (19)

By comparing (18) and (19), we have the contradiction for more than 1 − 1/d probability of the515

choice of zk+1:d by taking c sufficiently large. Therefore, if |fβ(z)| ≳ c
d(1−2α)k

∑n
i=1 |βi| for some516

z1:k, there exists some z1:k that yields fβ(z)y < 0, for zk+1:d that is drawn with probability more517

than 1− 1/d, which yields the conclusion.518

From now, we evaluate the probability Pz∼PZ
[|fβ(z)| ≥ c

d(1−2α)k

∑n
i=1 |βi|]. However, fβ(z) can519

have very high order term, so we approximate fβ(z) as follows.520

Lemma 2. Let us define g1 : [−1, 1]→ R as521

g1(t) =

2k∑
l=0

αlt
l.

Suppose n ≤ d(1−2α)k. Then,522

Pz∼PZ

[
∃i ∈ [n],

∣∣∣∣K(z, zi)− g1

(
z⊤zi

d

)∣∣∣∣ ≤ d−(1−2α)k

]
≥ 1− 1/d.

Proof. First, we note523 ∣∣∣∣K(z, zi)− g1

(
z⊤zi

d

)∣∣∣∣ =
∣∣∣∣∣
∞∑
l=0

αl

(
z⊤zi

d

)
−

2k∑
l=0

αl

(
z⊤zi

d

)∣∣∣∣∣ =
∞∑

2k+1

αl

∣∣∣∣z⊤zid

∣∣∣∣ . (20)

With probability 1− 1/d(1−2α)k+1,
∣∣∣ z⊤zi

d

∣∣∣ ≲ d−(1−2α)/2
√
log d. This means that (20) is bounded524

by ≲
(

log d
d1−2α

)(2k+1)/2

≤ d−(1−2α)k for sufficiently large d. By taking the uniform bound over all i,525

we get the assertion.526
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Because of this lemma, all we need is to bound Pz∼PZ
[|
∑n

i=1 βig1(
z⊤zi

d )| ≥ c
d(1−2α)k

∑n
i=1 |βi|]527

by Ω(1), because528

Pz∼PZ

[
|fβ(z)| ≥

c

d(1−2α)k

n∑
i=1

|βi|

]
≥ Pz∼PZ

[∣∣∣∣∣
n∑

i=1

βig1

(
z⊤zi

d

)∣∣∣∣∣ ≥ c+ 1

d(1−2α)k

n∑
i=1

|βi|

]
− 1/d.

For this, we lower bound the second moment, which captures variation of fβ .529

Lemma 3. Suppose al are all positive and define K2 ∈ Rn×n as530

(K2)i,j =

k∑
l=0

(
zik+1:d

⊤
zjk+1:d

d− k

)l

.

Then, for sufficiently large d, we have531

Ez

( n∑
i=1

βig1

(
z⊤zi

d

))2
 ≳ d−⌊(1−2α)k⌋β⊤K2β.

The proof requires several auxiliary lemmas as follows. We defer the proofs of them after the proof532

of Lemma 3.533

Lemma 4. For any integers p, g ≥ 0,534

Ez

[(
n∑

i=1

βi(z
⊤zi)p

)(
n∑

i=1

βi(z
⊤zi)q

)]

≥ Ezk+1:d

[(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

p

)(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

q

)]
≥ 0

Lemma 5. Let zi, zj ∈ {−1, 1}d, z ∈ {−1, 1}d be a vector sampled uniformly from the hypercube,535

and let l be any integer. Then, we can expand the expectation as536

Ez

[(
z⊤zi

d

)l(
z⊤zj

d

)l
]
=

l∑
l′=0

d−lcd,l,l′

(
zi

⊤
zj

d

)l′

.

Furthermore, for sufficiently large d, cd,l,l′ ≥ 0 and especially cd,l,l = (l!)2.537

Proof of Lemma 3. Let us first expand the target:538

Ez

( n∑
i=1

βig1

(
z⊤zi

d

))2


= Ez

( n∑
i=1

βi

2k∑
l=0

αl

(
z⊤zi

d

)l
)2


= Ez

( 2k∑
l=0

αl

n∑
i=1

βi

(
z⊤zi

d

)l
)2


=
∑

0≤l1,l2≤2k

αl1αl2Ez

[(
n∑

i=1

βi

(
z⊤zi

d

)l1
)(

n∑
i=1

βi

(
z⊤zi

d

)l2
)]

(21)

From Lemma 4 and αl1 , αl2 > 0, each term is non-negative and (21) is lower bounded by539

2k∑
l=0

α2
lEzk+1:d


 n∑

i=1

βi

(
z⊤k+1:dz

i
k+1:d

d

)l
2
 (22)
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≳
2k∑
l=0

α2
lEzk+1:d


 n∑

i=1

βi

(
z⊤k+1:dz

i
k+1:d

d− k

)l
2
 . (23)

Let us define a matrix K1 ∈ Rn×n so that (23) is equal to β⊤K1β. For that, we define540

(K1)i,j =

2k∑
l=0

a2lEzk+1:d

(z⊤k+1:dz
i
k+1:d

d− k

)l(
z⊤k+1:dz

j
k+1:d

d− k

)l
 .

According to Lemma 5,541

(K1)i,j =

2k∑
l=0

a2l

l∑
l′=0

(d− k)−lcd−k,l,l′

(
zik+1:d

⊤
zjk+1:d

d

)l′

=

2k∑
l=0

(
2k∑

l′′=l

a2l′′(d− k)−l′′cd−k,l′′,l

)(
zik+1:d

⊤
zjk+1:d

d− k

)l

.

Because cd−k,l′′,l ≥ 0 and cd−k,l,l = (l!)2, (d− k)−lcl :=
(∑2k

l′′=l a
2
l′′(d− k)−l′′cd−k,l′′,l

)
≳ d−l542

holds. Thus, we have (d− k)−lcl ≥ d−⌊(1−2α)k⌋c for all l ≤ ⌊(1− 2α)k⌋ for sufficiently small c,543

and by defining K2,K3 ∈ Rn×n as544

(K2)i,j =

⌊(1−2α)k⌋∑
l=0

(
zik+1:d

⊤
zj

d− k

)l

(K3)i,j =

⌊(1−2α)k⌋−1∑
l=0

((d− k)−lcl − d−(⌊(1−2α)k⌋−1)c)

(
zik+1:d

⊤
zjk+1:d

d− k

)l

+

2k∑
l=⌊(1−2α)k⌋+1

(d− k)−lcl

(
zik+1:d

⊤
zjk+1:d

d− k

)l

,

we have K1 = cd−⌊(1−2α)k⌋K2 +K3. Moreover, K3 is positive semi-definite because K3 is written545

as a sum of polynomial kernels with positive coefficients. Thus, we can lower bound β⊤K1β by546

d−⌊(1−2α)k⌋β⊤K2β (up to a constant factor).547

Proof of Lemma 4. The basic idea comes from Lemma B.9. of Wei et al. (2019). For a set S ⊆ [k],548

we let zS =
∏k

i=1 zi, and for a set T ⊆ [d] \ [k], we let zT =
∏k

i=1 zi. Expand (z⊤zi)p as549

(z⊤zi)p =

 d∑
j=1

zjz
i
j

p

=
∑
S,T

C|S|,|T |,pz
SzT (zi)S(zi)T ,

where c|S|,|T |,p ≥ 0 depends only on |S|, T , and p considering the symmetry. Also, we let550

(z⊤k+1:dz
i
k+1:d)

p =
∑
T

C̄|T |,pz
S
k+1:dz

T
k+1:d(z

i
k+1:d)

S(zik+1:d)
T .

Note that C0,|T |,p ≥ C̄|T |,p ≥ 0, because C0,|T |,p considers the case where zi(i ∈ [k]) is multiplied551

even times.552

As basic fact in the boolean function analysis, we have Ez[z
SzT zS

′
zT

′
] = 0 unless S = S′ and553

T = T ′. Therefore,554

Ez

[(
n∑

i=1

βi(z
⊤zi)p

)(
n∑

i=1

βi(z
⊤zi)q

)]
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= Ez

 n∑
i=1

βi

∑
S,T

C|S|,|T |,pz
SzT (zi)S(zi)T

 n∑
i=1

βi

∑
S,T

C|S|,|T |,qz
SzT (zi)S(zi)T


=
∑
S,T

Ez

[(
n∑

i=1

βiC|S|,|T |,p(z
i)S(zi)T

)(
n∑

i=1

βiC|S|,|T |,qz
SzT (zi)S(zi)T

)]

=
∑
S,T

d2|S|αC|S|,|T |,pC|S|,|T |,q

(
n∑

i=1

βi

)2

≥
∑
T

C0,|T |,pC0,|T |,q

(
n∑

i=1

βi

)2

(24)

Where we used C|S|,|T |,p, C|S|,|T |,q ≥ 0. On the other hand,555

Ezk+1:d

[(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

p

)(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

q

)]
=
∑
T

C̄|T |,pC̄|T |,q

(
n∑

i=1

βi

)2

≥ 0.

(25)

Because c|S|,|T |,p ≥ C̄T,p and c|S|,|T |,q ≥ C̄T,q , comparing (24) and (25) yields556

Ez

[(
n∑

i=1

βi(z
⊤zi)p

)(
n∑

i=1

βi(z
⊤zi)q

)]

≥ Ezk+1:d

[(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

p

)(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

q

)]
≥ 0,

which concludes the proof.557

Proof of Lemma 5. LHS is determined by how many coordinates are different between zi and zj ,558

which is captured by zi
⊤
zj . Thus, LHS is the polynomial of zi⊤zj . Moreover, its degree is at most559

l because the degrees of z⊤zi and z⊤zj are at most l in LHS. Thus, we now find that LHS can560

be written as
∑l

l′=0 cd,l,l′(
zi⊤zj

d2 )l
′
. Note that, when l is even, LHS is invariant to the replacement561

zj 7→ −zj , and therefore cd,l,l′ = 0 for odd l′. On the other hand, when l is odd, cd,l,l′ = 0 for even562

l′.563

Let us evaluate cd,l,l′ . By multiplying dl for both sides, we have564

Ez

[(
z⊤zi√

d

)l(
z⊤zj√

d

)l
]
=

l∑
l′=0

cd,l,l′

(
zi

⊤
zj

d

)l′

.

By taking d→∞ (while fixing the angle zi⊤zj

d ), LHS will converge into565

Eg

[(
g⊤zi√

d

)l(
g⊤zj√

d

)l
]
, (26)

here g follows Sd−1(
√
d).566

Consider the Hermite expansion of tl =
∑l

l′=0 cl,l′Hel′(t). If l is even, cl,l′ = 1

2
l−l′
2 ( l−l′

2 )!l!
> 0 for567

even l′ and cl,l′ = 0 for odd l′. If l is odd, cl,l′ = 1

2
l−l′
2 ( l−l′

2 )!l!
> 0 for odd l′ and cl,l′ = 0 for even568

l′. By using these Hermite coefficients, (26) is equal to569

l′∑
l′=0

c2l,l′

(
zi

⊤
zj

d

)l′

.
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Note that, as a function of the angle zi⊤zj

d ∈ [−1, 1], the convergence is uniform. Therefore, we get570

d−lcd,l,l′ → c2l,l′ (d→∞)

for all l and l′. When c2l,l′ = 0, cd,l,l′ = 0 for all d as we saw above. When c2l,l′ > 0, there exists d571

such that cd′,l,l′ > 0 for all d′ ≥ d. Therefore, for sufficiently large d, we have cd,l,l′ ≥ 0. Moreover,572

by direct calculation, cd,l,l = (l!)2.573

After obtained Lemma 3 we would like to bound d−⌊(1−2α)k⌋β⊤K2β. For this, we use the lower574

bound the smallest eigenvalue of K2.575

Let K(d) (d = 1, 2, · · · ) be a sequence of inner-product kernels with K(d)(z, z
′) = h(d)(

z⊤z′

d ).576

Consider the case when each K(d) is associated with the same Kernel function h : [−1, 1] → R,577

so that h(d) = h holds for all z, z′ ∈ {−1, 1}d. Suppose that h is a degree-k polynomial and its578

coefficients are positive for all degrees. Note that K2 satisfies these conditions. Then, we have the579

following.580

Lemma 6 (Misiakiewicz (2022)). Assume the following conditions hold:581

(a) h(k′)(0) > 0 for k′ = 0, · · · , k − 1582

(b) h(k)(0) > 0583

(c) h(t) is k-times differentiable584

They are Assumption 1 of Misiakiewicz (2022) for the case of hd = h at l = k − 1, but are trivially585

true for a degree-k polynomial with positive coefficients. Also, fix δ > 0 arbitrarily, and assume that586

d≫ 1 and n ≲ dke−ad

√
log d for some {ad} with ad →∞(d→∞).587

Draw n i.i.d. sample {zi}ni=1 from PZ to construct a Kernel matrix K ∈ Rn×n as (K(d))i,j =588

h( z
i⊤zj

d ). Then, for the Kernel matrix K(d) is decomposed into two positive semi-definite Kernel589

K>k−1 and K≤k−1, and the spectrum of K>k−1 is bounded by590

E{zi}n
i=1

[
∥K>k−1 − h(k)(0)I∥2op

]
→ 0 (d→∞).

Proof. See Section 3.2 of Misiakiewicz (2022), where we take κ = k − δ.591

Therefore, by fixing δ > 0 arbitrarily, for d ≫ 1 and n ≲ d⌊(1−2α)k⌋−δ, all the assumptions are592

satisfied for K2 with k = ⌊(1 − 2α)k⌋ (if we regard K2 as a kernel in Rd−k × Rd−k). Note that593

we can take ad = (log d)
1
4 so that and dke−ad

√
log d ≳ dk−δ. Then, the smallest eigenvalue of594

K>k−1 is lower bounded by Ω(1) with probability at least 0.99 over the randomly drawn sample, for595

sufficiently large d. This immediately implies that the smallest eigenvalue of K2 is bounded by Ω(1)596

with probability at least 0.99.597

Now we finalize the proof of Theorem 2.598

Proof of Theorem 2. According to Lemmas 3 and 6, for all choices of β, with probability at least599

0.99 over the randomly drawn sample, we have600

Ez

( n∑
i=1

βig1

(
z⊤zi

d

))2
 ≳ d−⌊(1−2α)k⌋

n∑
i=1

β2
i (27)

≥ 1

d⌊(1−2α)k⌋n

(
n∑

i=1

|βi|

)2

(28)

≳
1

d2⌊(1−2α)k⌋−δ

(
n∑

i=1

|βi|

)2

. (29)
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Because g1 is the degree-2k polynomial, Bonami’s Lemma (e.g., Theorem 9.21 of (O’Donnell, 2014))601

yields602

Ez

( n∑
i=1

βig1

(
z⊤zi

d

))4
 ≥ 1

(2k − 1)4k
Ez

( n∑
i=1

βig1

(
z⊤zi

d

))2
2

As a result, the Paley–Zygmund inequality (see Theorem 9.4 of (O’Donnell, 2014)) yields603

Pz

∣∣∣∣∣
n∑

i=1

βig1

(
z⊤zi

d

)∣∣∣∣∣ ≥ tEz

( n∑
i=1

βig1

(
z⊤zi

d

))2
 1

2

 ≥ (1− t2)2

(2k − 1)4k
(30)

for all 0 ≤ t ≤ 1.604

Combining (27) and (30), with probabilty 0.99 over the sample, we have605 ∣∣∣∣∣
n∑

i=1

βig1

(
z⊤zi

d

)∣∣∣∣∣ ≳ 1

d⌊(1−2α)k⌋−δ/2

n∑
i=1

|βi|.

with probability larger than Ω(1) over the choice of z. By taking sufficiently large d, 1
d⌊(1−2α)k⌋−δ/2606

is larger than 1+c
d⌊(1−2α)k⌋ (c is a constant from Lemma 1). Thus, using Lemma 2, we get607

Pz∼PZ

[
|fβ(z)| ≥

c

d⌊(1−2α)k⌋

n∑
i=1

|βi|

]
≳ 1− 1/d.

Now we apply Lemma 1 and finally get608

Pz∼PZ
[fβ(z)y < 0] ≳ 1− 2/d,

which concludes the proof.609
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