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Abstract

Diffusion model-based inverse problem solvers have shown impressive perfor-
mance, but are limited in speed, mostly as they require reverse diffusion sampling
starting from noise. Several recent works have tried to alleviate this problem by
building a diffusion process, directly bridging the clean and the corrupted for
specific inverse problems. In this paper, we first unify these existing works under
the name Direct Diffusion Bridges (DDB), showing that while motivated by dif-
ferent theories, the resulting algorithms only differ in the choice of parameters.
Then, we highlight a critical limitation of the current DDB framework, namely
that it does not ensure data consistency. To address this problem, we propose
a modified inference procedure that imposes data consistency without the need
for fine-tuning. We term the resulting method data Consistent DDB (CDDB),
which outperforms its inconsistent counterpart in terms of both perception and
distortion metrics, thereby effectively pushing the Pareto-frontier toward the opti-
mum. Our proposed method achieves state-of-the-art results on both evaluation
criteria, showcasing its superiority over existing methods. Code is open-sourced at
https://github.com/HJ-harry/CDDB

1 Introduction

Diffusion models [[15] 38] have become the de facto standard of recent vision foundation models [32,
31,133]]. Among their capabilities is the use of diffusion models as generative priors that can serve
as plug-and-play building blocks for solving inverse problems in imaging [18 38, 21} 5]]. Diffusion
model-based inverse problem solvers (DIS) have shown remarkable performance and versatility, as
one can leverage the powerful generative prior regardless of the given problem at hand, scaling to
linear [18} (38} 21]], non-linear [5,36]], and noisy problems [21} 5].

Although there are many advantages of DIS, one natural limitation is its slow inference. Namely, the
overall process of inference—starting from Gaussian noise and being repeatedly denoised to form
a clean image—is kept the same, although there are marginal changes made to keep the sampling
process consistent with respect to the given measurement. In such cases, the distance between the
reference Gaussian distribution and the data distribution remains large, requiring inevitably a large
number of sampling steps to achieve superior sample quality. On the other hand, the distribution
of the measurements is much more closely related to the distribution of the clean images. Thus,
intuitively, it would cost us much less compute if we were allowed to start the sampling process
directly from the measurement, as in the usual method of direct inversion in supervised learning
schemes.

Interestingly, several recent works aimed to tackle this problem under several different theoretical
motivations: 1) Schrodinger bridge with paired data [26], 2) a new formulation of the diffusion process
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Figure 1: Quantitative metric of I?SB [26] (denoted DDB) vs. proposed CDDB on sr4x-bicubic task.

via constant-speed continual degradation [9], and 3) Ornstein-Uhlenbeck stochastic differential
equation (OU-SDE) [28]]. While developed from distinct motivations, the resulting algorithms can
be understood in a unifying framework with minor variations: we define this new class of methods
as Direct Diffusion Bridges (DDB; Section . In essence, DDB defines the diffusion process
from the clean image distribution in ¢ = 0 to the measurement distribution in ¢ = 1 as the convex
combination between the paired data, such that the samples x; goes through continual degradation as
t = 0 — 1. In training, one trains a time-conditional neural network Gy that learns a mapping to g
for all timesteps, resulting in an iterative sampling procedure that reverts the measurement process.

Using such an iterative sampling process, one can flexibly choose the number of neural function
evaluations (NFE) to generate reconstructions that meet the desiderata: with low NFE, less distortion
can be achieved as the reconstruction regresses towards the mean [9]]; with high NFE, one can opt
for high perceptual quality at the expense of some distortion from the ground truth. This intriguing
property of DDB creates a Pareto-frontier of reconstruction quality, where our desire would be to
maximally pull the plot towards high perception and low distortion (bottom right corner of Fig. [Ic).

In this work, we assert that DDB is missing a crucial component of data consistency, and devise
methods to make the models consistent with respect to the given measurement by only modifying
the sampling algorithm, without any fine-tuning of the pre-trained model. We refer to this new
class of models as data Consistent Direct Diffusion Bridge (CDDB; Section , and show that
CDDB is capable of pushing the Pareto-frontier further towards the optima (lower distortion: Fig.
higher perception: Fig.[Tb] overall trend: Fig. across a variety of tasks. Theoretically, we show
that CDDB is a generalization of DDS (Decomposed Diffusion Sampling) [6], a recently proposed
method tailored for DIS with Gaussian diffusion, which guarantees stable and fast sampling. We then
propose another variation, CDDB-deep, which can be derived as the DDB analogue of the DPS [5] by
considering deeper gradients, which even further boosts the performance for certain tasks and enables
the application to nonlinear problems where one cannot compute gradients in the usual manner (e.g.
JPEG restoration). In the experiments, we showcase the strengths of each algorithm and show how
one can flexibly construct and leverage the algorithms depending on the circumstances.

2 Background

2.1 Diffusion models
Diffusion models [L15}[38] 22, [19] defines the forward data noising process p(x;|xg) as

T, = oqxo + oz, z ~ N(0,1) for t € [0,1], (1)
where oy, o, controls the signal component and the noise component, respectively, and are usually
designed such that a? + o7 = 1 [13,22]]. Starting from the data distribution pgat, := p(o), the
noising process in (I)) gradually maps p(x;) towards isotropic Gaussian distribution as ¢ — 1, i.e.

p(x1) =~ N (0, I). Training a neural network to reverse the process amounts to training a residual
denoiser

. t
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such that e((f*) (xy) ~ ”“'t_g":‘w" . Furthermore, it can be shown that epsilon matching is equivalent to the

denoising score matching (DSM) [16,137]] objective up to a constant with different parameterization

Win B, . 185 (@0) = Vi, log plailo) 3] 3)

such that sgi) () ~ —B=ge®o = fe((f*)(mt) /o+. Moreover, for optimal 6* and under regularity

conditions, S« () = Vg, logp(x:). Then, sampling from the distribution can be performed by
solving the reverse-time generative SDE/ODE [38| [19] governed by the score function. It is also
worth mentioning that the posterior mean, or the so-called denoised estimate can be computed via
Tweedie’s formula [[13]]

(@ + 028 (). @

2|~
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2ot = Ep(ao|a) [TolT] = a—(wt + 02V, logp(xt)) ~
t
In practice, DDPM/DDIM solvers [15[35] work by iteratively refining these denoised estimates.

2.2 Diffusion model-based inverse problem solving with gradient guidance

Suppose now that we are given a measurement y obtained through some Gaussian linear measurement
process A, where our goal is to sample from the posterior distribution p(x|y). Starting from the
sampling process of running the reverse SDE/ODE to sample from the prior distribution, one can
modify the score function to adapt it for posterior sampling [38]5]]. By Bayes rule, V, log p(x:|y) =
Vaz, logp(x:) + Vg, logp(y|x:), where Vg, logp(x:) =~ sg«(x:). However, V, log p(y|x:) is
intractable. Several methods have been proposed to approximate this time-dependent likelihood,
two of the most widely used being DPS [5] and IIGDM [36]. DPS proposes the following Jensen
approximatio

(DPS) R 3ﬁ80\t 3||A§30|t - y||§ 3ﬁ30|t T .
x| ~ z 1 = - = A - A , (5
Ve, log p(y|z:) Va, log p(y|Zo|:) D Do) D (y Zope), (S)
" v

of which the chain rule is based on the denominator layout notation [41]]. Here, we see that the gradient
term can be represented as the Jacobian (J) vector (V) product (JVP). In the original implementation
of DPS, the two terms are not computed separately, but computed directly as Vg, ||y — Az, 13,
where the whole term can be handled with backpropagation. By this choice, DPS can also handle
non-linear operators when the gradients can be computed, e.g. phase retrieval, forward model given
as a neural network. On the other hand, IIGDM proposes

(IIGDM) A ox .
Ve, logp(ylz:) =~ " N(Azg, AAT + I = Tolt AT(y — Azg,), (6)
—_—

Tt

\%
J

where AT := AT (AAT )~ 1 is the Moore-Penrose pseudo-inverse. Using the JVP for implementation,
it is no longer required that the whole term is differentiable. For this reason, IIGDM can be applied to
cases where we have non-differentiable, non-linear measurements given that an operation analogous
to pseudo-inverse can be derived, e.g. JPEG restoration. Notably, the update step of DPS can
be achieved by simply pre-conditioning IIGDM with AT A, Implementing DIS with DPS (3)) or
IIGDM (6) amounts to augmenting the gradient descent steps in between the ancestral sampling
iterations.

While these methods are effective and outperforms the prior projection-based approaches 38, 21]],
they also have several drawbacks. Namely, the incorporation of the U-Net Jacobian is slow, compute-
heavy, and often unstable [12} [34]]. For example, when applied to MRI reconstruction in medical
imaging, DPS results in noisy reconstructions [6] possibly due to unstable incorporation of the
Wirtinger derivatives [23]], and IIGDM is hard to use as it is non-trivial to compute AT In order to
circumvent these issues, DDS [[6] proposed to use numerical optimization (i.e. conjugate gradients;
CQG) in the clean image domain, bypassing the need to compute J. Consequently, DDS achieves fast
and stable reconstructions for inverse problems in medical imaging.
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Table 1: Comparison between different types of DDB. 84 := Bmax — Bmin. Further details are given
in Appendix

3 Main Contributions

3.1 Direct Diffusion Bridge

We consider the case where we can sample xg := « ~ p(x), and x; : =y ~ p(y|m)ﬂ, i.e. paired
data for training. Adopting the formulation of I2SB [26] we define the posterior of x; to be the
product of Gaussians N (x;; ©o,vZ) and N (z; 1, 77), such that

52 2 252
p(xi|xo, 1) = N (mt; %grjf 52 o + %2,:? ;thwh vgt-:t’ytzl) - (N
Note that the sampling of &, from (7)) can be done by the reparametrization trick
x = (1 — a)xo + ey + 02, 2z ~ N(0,I), (8)
2._ it

where o := , Of 1= This diffusion bridge introduces a continual degradation process

Vi
V477 VA7
by taking a convex combination of (xg,x1), starting from the clean image at ¢ = 0 to maximal
degradation at t = 1, with additional stochasticity induced by the noise component ;. Our goal is to
train a time-dependent neural network that maps any x; to x( that recovers the clean image. The

training objective for I?’SB [26]] analogous to denoising score matching (DSM) [[16]] reads
. Ty — T
min By p(yjz), op(a), t~U(0,1) [IISe(th) - = o HE ©)

which is also equivalent to training a residual network Gy with ming E[||Gg(x;) — @0]|3]. For
brevity, we simply denote the trained networks as Gy~ even if it is parametrized otherwise. Once the
network is trained, we can reconstruct x starting from x; by, for example, using DDPM ancestral
sampling [15], where the posterior for s < ¢ reads

2 2 2
p(®s|zo, ) = N(zs; (1 — of))z0 + o5, 0, D), (10)
2 2_ .2 2 . . . .
with afl = YTZ 0'3‘ = w At inference, x is replaced with a neural network-estimated
; %, 0

t
Zo to yield ¢, ~ p(xq|Zop, T¢).

However, when the motivation is to introduce 1) a tractable training objective that learns to recover
the clean image along the degradation trajectory, and 2) devise a sampling method to gradually revert
the degradation process, we find that the choices made for the parameters in (8),(7) can be arbitrary,
as long as the marginal can be retrieved in the sampling process (I0). In Table[I] we summarize the

'We ignore scaling constants that are related to the measurement noise for simplicity. For implementation,
this can be absorbed into the choice of step sizes.

2For cases where there is a dimensionality mismatch, we use 2, = A'y. We keep this notation for simplicity.

3Hereafter, we override the definition of signal, noise coefficients o, o, that was first defined in Eq. (E])



Algorithm 1 CDDB Algorithm 2 CDDB (deep)

Require: G9*7w1,ai,ai,afflwaffw,pi Require: Ge*#ﬂl,041',01’»0%271\1',01271\1',Pi
1: fori: = N —1to0do 1: fori=N —1to0do
2: Zo|; <+ Go= (1) 2: Zoj; + Gox (1)
3: z~N(0,I) 3: z,~N(0,I) , A
4: x;_ <+ (1— affl\i)«’iou 4: xi_q (1 — O‘ifl\i)m()\i
+ ol i+ 015z + ol i+ 015z
50 g+ Al(y— Agzg)) 5. g 20 AT(y — Ady))
6: Tio1 & Ti_1 + pi-1g 6: Tii1 T |+ pioig
7: end for 7: end for
8: return xo 8: return

choices made in [9, 26] to emphasize that the difference stems mostly from the parameter choices
and not something fundamental. Concretely, sampling @, from paired data can always be represented
as (B): a convex combination of &y and &, with some additional noise. Reverse diffusion at inference
can be represented as (I0): a convex combination of & and x; with some stochasticity. We define
the methods that belong to this category as Direct Diffusion Bridge (DDB) henceforth. Below, we
formally state the equivalence between the algorithms, with proofs given in Appendix [A]

2 =2
Theorem 1. Let the parameters of InDI [|9] in Tablebe ti= s, €2 = j{—é(’yf +42). Then,
t

Y+’
InDI and I>SB are equivalent.

The equivalence relation will be useful when we derive our CDDB algorithm in Section. Asa
final note, IR-SDE [28]] does not strictly fall into this category as the sampling process is derived from
running the reverse SDE. However, the diffusion process can still be represented as (&) by setting

ap=1—e?, o2 =31 - e =20 ), and the only difference comes from the sampling procedure.

3.2 Data Consistent Direct Diffusion Bridge

Motivation Regardless of the choice in constructing DDB, there is a crucial component that is
missing from the framework. While the sampling process (I0) starts directly from the measurement
(or equivalent), as the predictions &g, = Gg(x;) are imperfect and are never guaranteed to preserve
the measurement condition y = A, the trajectory can easily deviate from the desired path, while
the residual blows up. Consequently, this may result in inferior sample quality, especially in terms of
distortion. In order to mitigate this downside, our strategy is to keep the DDB sampling strategy (T0)
intact and augment the steps to constantly guide the trajectory to satisfy the data consistency, similar
in spirit to gradient guidance in DIS. Here, we focus on the fact that the clean image estimates
Zo|; is produced at every iteration, which can be used to compute the residual with respect to the
measurement y. Taking a gradient step that minimizes this residual after every sampling step results
in Algorithm[I] which we name data Consistent DDB (CDDB). In the following, we elaborate on
how the proposed method generalizes DDS which was developed for DIS.

CDDB as a generalization of DDS [6] Rewriting (I0) with reparameterization trick

xo = dop  +al,(@—@op) toguz,  Eop = Gor () (11)
~~ —_—
Denoise(x+) Noise(x+)

we see that the iteration decomposes into three terms: the denoised component, the deterministic
noise, and the stochastic noise. The key observation of DDIM [35] is that if the score network is fully
expressive, then the deterministic noise term x; — &, becomes Gaussian such that it satisfies the
total variance condition

2
<a§‘tat) + Uflt = Uf, (12)

allowing (TT) to restore the correct marginal N (z; ©o, 02). Under this condition, DDS showed that
using a few step of numerical optimization ensure the updates from the denoised image &|; remain
on the clean manifold. Furthermore, subsequent noising process using deterministic and stochastic
noises can then be used to ensure the transition to the correct noisy manifold [6].



Under this view, our algorithm can be written concisely as

Ts < fﬁo|t + PAT(y - Aiio\t) + a?\t(ﬂft - i’O\t) +04t2, (13)

CDenoise(x+) Noise(x¢)

where we make the update step only to the clean denoised component, and leave the other components
as is. In order to achieve proper sampling that obeys the marginals, it is important to show that the
remaining components constitute the correct noise variance and the condition assuming Gaussianity
should be (12). In the following, we show that this is indeed satisfied for the two cases of direction
diffusion bridge (DDB):

Theorem 2. The total variance condition (12)) is satisfied for both I*SB and InDI.
Proof. For InDI, considering the noise variance oy = te; in Table[T]
2 2 2 00 2.2 o 2 2 2
(as‘tat) +o5 = t—Qt €; + s°(e5 —€;) = s”€e; = 0%, (14)

Due to the equivalence in Theorem the condition is automatically satisfied in I>SB. We show that
this is indeed the case in Appendix [A] O

In other words, given that the gradient descent update step in CDenoise(x ) does not leave the clean
data manifold, it is guaranteed that the intermediate samples generated by (I3)) will stay on the correct
noisy manifold [6]. In this regard, CDDB can be thought of as the DDB-generalized version of
DDS. Similar to DDS, CDDB does not require the computation of heavy U-Net Jacobians and hence
introduces negligible computation cost to the inference procedure, while being robust in the choice of
step size.

CDDB-deep Asshown in DPS and IIGDM, taking deeper gradients by considering U-Net Jacobians
is often beneficial for reconstruction performance. Moreover, it even provides way to impose data
consistency for non-linear inverse problems, where standard gradient methods are not feasible. In
order to devise an analogous method, we take inspiration from DPS, and propose to augment the
solver with a gradient step that maximizes the time-dependent likelihood (w.r.t. the measurement)
p(ylx:). Specifically, we use the Jensen approximation from [5]]

plylze) = / p(ylzo)p(ole:) dzo 0

= Ep(aolan) [P(Y|T0)] =~ p(y|E[zo|2:]) = P(Y|Z0)),

where the last equality is naturally satisfied from the training objective (9). Using the approximation
used in (I3), the correcting step under the Gaussian measurement model yields

Va, logp(y|z:) = Va, [y — AZop|3. (16)

Implementing in the place of the shallow gradient update step of Algorithm |l} we achieve

CDDB-deep (see Algorithm . From our initial experiments, we find that preconditioning with AT
as in IIGDM improves performance by a small margin, and hence use this setting as default.

4 Experiments

4.1 Setup

Model, Dataset For a representative DDB, we choose 12SB [26] along with the pre-trained model
weights for the following reasons: 1) it is open—sourcecﬂ 2) it stands as the current state-of-the-art,
3) the model architecture is based on ADM [11], which induces fair comparison against other DIS
methods. All experiments are based on ImageNet 256 x256 [[10]], a benchmark that is considered to
be much more challenging for inverse problem solving based on generative models [5], compared to
more focused datasets such as FFHQ [20]. We follow the standards of [26] and test our method on
the following degradations: sr4x-{bicubic, pool}, deblur-{uniform, gauss}, and JPEG restoration
with 1k validation images.

*https://github.com/NVlabs/I2SB
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Degraded Ground Truth PnP-ADMM DPS 1’sB CDDB (ours) CDDB-deep (ours)

Figure 2: SR(x4)-bicubic reconstruction results. CDDB/CDDB-deep corrects details wrongly
captured in I2SB: line texture in 1°* row, color/texture errors in 2°¢ row, topology of wings in 3™
row (see arrows).

SR(x4) Deblur
bicubic pool gauss uniform
Method PSNR 1 SSIM 1 LPIPS | FID | PSNR 1 SSIM 1T LPIPS | FID | PSNR 1 SSIM 1 LPIPS | FID | PSNR 1 SSIM 1 LPIPS | FID |
CDDB (ours) 2641 0.860 0.198 19.88 26.36 0.855 0.184 17.79 37.02 0.978 0.059 5.007 31.26 0.927 0.193 23.15
I’SB 2522 0.802 0.260 24.13 25.08 0.800 0258 23.53 36.01 0973 0.067 5.800 30.75 0919 0.198 23.01
DPS 19.89 0498 0384 63.37 21.01 0562 0326 4934 2721 0766 0.244 3458 2251 0.565 0.357 60.00

1IGDM 2620 0.850 0.252 29.36 26.07 0.849 0256 2697 - - - - - - - -
DDRM [21] 26.05 0.838 0270 4649 2554 0848 0257 4040 3673 0975 0.071 4.346 29.21 0.901 0210 19.97
DDNM 2641 0.801 0230 38.63 26.04 0.792 0218 33.15 - - - - - - - -
DDS 2641 0.801 0.230 38.64 26.04 0.792 0218 33.15 3327 0945 0.057 6.442 27.88 0.829 0.193 26.07
PnP-ADMM [4] 26.16  0.788 0.350  74.06 25.85 0.733 0372 72.63 28.18 0.800 0.325 60.27 2547 0.701 0.416 83.76
ADMM-TV 2255 0.595 0493 1227 2231 0574 0512 1194 2467 0.773 0324 50.74 21.72  0.600 0.491 98.15

Table 2: Quantitative evaluation of SR, deblur task on ImageNet 256 x256-1k. Bold: Best, under:
second best. Colored: DDB methods.

Baselines, Evaluation Along with the most important comparison against I2SB, we also include
comparisons with state-of-the-art DIS methods including DDRM [21]], DPS [5], IIGDM [36]],
DDNM [40Q], and DDS [6]. For choosing the NFE and the hyper-parameters for each method,
we closely abide to the original advised implementation: DDRM (20 NFE), DPS (1000
NFE), IIGDM (100 NFE), DDNM (100 NFE), DDS (100 NFE). We find that increasing the NFE for
methods other than DPS does not induce performance gain. We also note that we exclude IIGDM and
DDNM for the baseline comparison in the deblurring problem, as directly leveraging the pseudo-
inverse matrix may result in unfair boost in performance [29]. We additionally perform comparisons
against PnP-ADMM [4]] and ADMM-TV, which are methods tailored towards higher SNR. For I?SB
along with the proposed method, we choose 100 NFE for JPEG restoration as we found it to be the
most stable, and choose 1000 NFE for all other tasks. Further details on the experimental setup can
be found in Appendix [C]

4.2 Results

Comparison against baselines Throughout the experiments, we thoroughly analyze both distortion
and perception of the reconstructions obtained through our method against other DDB, DIS, and
iterative optimization methods. Note that for the recent diffusion-based methods, analysis has been
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Figure 3: Results on inpainting (Left) and deblurring (Right). For inpainting, boundaries are corrected
(row 1) and artifacts are corrected/removed (row 2,3). For deblurring, halo artifacts are corrected, and
grid patterns from the background are alleviated.

mainly focused on perceptual metrics [} [26], mainly because these methods excel on these
metrics, but often compromising distortion metrics. DDB methods often take this to the extreme,
where one can achieve the best PSNR with very little NFE, and the PSNR consistently degrades as one
increases the NFE [9] 26]] (See Fig.[Ic). Despite this fact, the standard setting in DDB methods is to
set a high NFE as one can achieve much improved perceptual quality. On the other hand, conventional
iterative methods are often highly optimized for less distortion, albeit with low perceptual quality.
While this trade-off may seem imperative, we show that CDDB can improve both aspects, putting
it in the place of the state-of-the-art on most experiments (See Tab. 2] 3). A similar trend can be
observed in Fig. 2] where we see that CDDB greatly improves the performance of DDB, while also
outperforming DIS and iterative optimization methods.

CDDB pushes forward the Pareto-frontier It is widely
known that there exists an inevitable trade-off of distortion Method PSNR 1 SSIM 1 LPIPS | FID |

when aiming for higher perceptual quality [3, 24]. This CDDB (ours) 2634 0837 0263 1948

phenomenon has been reconfirmed consistently in the re- I’SB[26] 26.12 0.832 0266 2035
cent DIS [3][36] and DDS [9] 26] methods. For DDB, one TIGDM 2609 0842 0282 3027
can flexibly control this trade-off by simply choosing dif- =~ DDRM 21l 26.33 0.829 0330 47.02

ferent NFE values, creating a Pareto-frontier with higher Table 3: Quantitative evaluation of the
NFE tailored towards perceptual quality. While this prop- : . N

L, . . . . JPEG restoration (QF = 10) task.
erty is intriguing, the gain we achieve when increasing the
NFE decreases exponentially, and eventually reaches a bound when NFE > 1000. In contrast, we
show in Fig. [T]that CDDB pushes the bound further towards the optima. Specifically, 20 NFE CDDB
outperforms 1000 NFE DDB in PSNR by > 2 db, while having lower FID (i.e. better perceptual
quality). To this point, CDDB induces dramatic acceleration (> 50x) to DDB.

CDDB vs. CDDB-deep The two algorithms Degraded I'SB CDDB (ours) _ _ Ground Truth
presented in this work share the same spirit but | & o - o y

have different advantages. CDDB generally has
higher speed and stability, possibly due to guar-
anteed convergence. As a result, it robustly in-
creases the performance of SR and deblurring.
In contrast, considering the case of inpainting
and JPEG restoration, CDDB cannot improve
the performance of DDB. For inpainting, the
default setting of I?SB ensures consistency by it-
eratively applying replacement, as implemented
in [40]. As the measurement stays in the pixel
space, the gradients cannot impose any con-
straint on the missing pixel values. CDDB-deep
is useful in such a situation, as the U-Net Jaco-
bian has a global effect on all the pixels, improv-

Figure 4: Results on JPEG restoration (QF=10).
CDDB recovers texture details (row 1,3), and color
details (row 2).
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ing the performance by inducing coherence. CDDB-deep also enables the extension to nonlinear
inverse problems where one cannot take standard gradient steps. This is illustrated for the case of
JPEG restoration in Tab. [3|and Fig.[d] where we see overall improvement in performance compared
to I2SB.

CDDB (ours) Ground Truth

Noise robustness DIS methods are often de- _Noiw(e=0015
signed such that they are robust to measurement
noise [3)]. In contrast, this is not the case for
DDB as they are trained in a supervised fashion:
If not explicitly trained with synthetic adding of
noise, the method does not generalize well to
noisy measurements, as can be seen in Fig. [3] e T L e
On the other hand, note that with CDDB, we are by SN RN
essentially incorporating a Gaussian likelihood - = : - =
model, which naturally enhances the robustness g = . _ £ _gn
to noise. As a result, while I?SB tends to propa- Figure 5: Results on noisy SRx4 reconstruc-
gate noise (best seen in the background), we do  tion. I?SB propagates noise to the reconstruction.
not observe such artifacts when using CDDB.  CDDB effectively removes noise.

5 Discussion

Extension to other related works Going beyond the paired inverse problem setting and considering
the Schrodinger Bridge (SB) problem [25, [8]], or more generally transport mapping problems
between the two unmatched distributions, it is often desirable to control the deviation from the start of
sampling. A concrete example would be the case of image-to-image translation where one does
not want to alter the content of the image. As CDDB can be thought of as a regularization method
that penalizes the deviation from the starting point, the application is general and can be extended to
such SB problems at inference time by using the gradients that minimize the distance from the start
point. We leave this direction for future work.

Data consistency in supervised learning frameworks The first applications of supervised deep
learning to solve inverse problems in medical imaging (e.g. CT [17], MRI reconstruction [39]) mostly
involved directly inverting the measurement signal without considering the measurement constraints.
The works that followed [} [14] naturally extended the algorithms by incorporating measurement
consistency steps in between the forward passes through the neural network. Analogously, CDDB is
a natural extension of DDB but with high flexibility, as we do not have to pre-determine the number
of forward passes [[1]] or modify the training algorithm [14]].

6 Conclusion

In this work, we unify the seemingly different algorithms under the class of direct diffusion bridges
(DDB) and identify the crucial missing part of the current methods: data consistency. Our train-free
modified inference procedure named consistent DDB (CDDB) fixes this problem by incorporating
consistency-imposing gradient steps in between the reverse diffusion steps, analogous to the recent
DIS methods. We show that CDDB can be seen as a generalization of representative DIS methods
(DDS, DPS) in the DDB framework. We validate the superiority of our method with extensive
experiments on diverse inverse problems, achieving state-of-the-art sample quality in both distortion
and perception. Consequently, we show that CDDB can push the Pareto-frontier of the reconstruction
toward the desired optimum.

Limitations and societal impact The proposed method assumes prior knowledge of the forward
operator. While we limit our scope to non-blind inverse problems, the extension of CDDB to blind
inverse problems [7, 30] will be a possible direction of research. Moreover, for certain inverse
problems (e.g. inpainting), even when do observe improvements in qualitative results, the quantitative
metrics tend to slightly decrease overall. Finally, inheriting from DDS/DIS methods, our method
relies on strong priors that are learned from the training data distribution. This may potentially lead
to reconstructions that intensify social bias and should be considered in practice.
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