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ABSTRACT
We analyze the universality and generalization of graph neural networks (GNNs)
on attributed graphs, i.e., with node attributes. To this end, we propose pseu-
dometrics over the space of all attributed graphs that describe the fine-grained
expressivity of GNNs. Namely, GNNs are both Lipschitz continuous with re-
spect to our pseudometrics and can separate attributed graphs that are distant in
the metric. Moreover, we prove that the space of all attributed graphs is rela-
tively compact with respect to our metrics. Based on these properties, we prove a
universal approximation theorem for GNNs and generalization bounds for GNNs
on any data distribution of attributed graphs. The proposed metrics compute the
similarity between the structures of attributed graphs via a hierarchical optimal
transport between computation trees. Our work extends and unites previous ap-
proaches which either derived theory only for graphs with no attributes, derived
compact metrics under which GNNs are continuous but without separation power,
or derived metrics under which GNNs are continuous and separate points but the
space of graphs is not relatively compact, which prevents universal approximation
and generalization analysis.

1 INTRODUCTION
Graph neural networks (GNNs) have become a widely used tool in science and industry due to
their ability to capture complex relationships in graph-structured data. This makes them particularly
useful (Zhou et al., 2020) in domains such as computational biology (Stokes et al., 2020; Atz et al.,
2021), molecular chemistry (Wang et al., 2023), network analysis (Yang et al., 2023), recommender
systems (Fan et al., 2019), weather forecasting (Keisler, 2022) and learnable optimization (Qian
et al., 2024; Cappart et al., 2023). As a result, there has been substantial interest in understanding
theoretical properties of GNNs, such as expressivity (Xu et al., 2019), stability (Ruiz et al., 2021)
or robustness (Ruiz et al., 2021), and generalization (Verma & Zhang, 2019; Yehudai et al., 2020;
Oono & Suzuki, 2020; Li et al., 2022; Tang & Liu, 2023; Levie, 2023; Maskey et al., 2022; 2024).

Initial works analyzing expressivity of GNNs focused on the Weisfeiler-Leman (WL) graph isomor-
phism test as a criterion to distinguish graphs (Xu et al., 2019; Morris et al., 2019; Zhang et al.,
2023a; 2024b), others used criteria such as subgraph or homomorphism counts or biconnectivity
(Zhang et al., 2024a; 2023b; Chen et al., 2020; Tahmasebi et al., 2023). However, the WL test
merely considers distinguishability of graphs, while analyses of robustness or generalization need a
metric, i.e., a quantification of similarity. Usually, for graphs, this is a pseudometric, since GNNs
typically cannot distinguish all graphs.

In this paper, we define a pseudometric for attributed graphs which is highly related to the type of
computation message passing GNNs (MPNNs) perform. Our construction enables a unified anal-
ysis of expressivity, universal approximation and generalization of MPNNs on graphs with node
attributes. This work extends and unifies several prior approaches and, to the best of our knowledge,
this is the first work to enable this analysis in such a general setting. Both generalization and expres-
sivity analysis rely on a few prerequisites that we need to attain via an appropriate (pseudo-)metric:
one must identify the finest topology in which (1) MPNNs separate points, i.e., for any two different
points in space, there exists an MPNN that can distinguish between them; (2) MPNNs are Lipschitz
continuous; (3) the space of inputs, i.e., attributed graphs, is a compact space.

Given the interest in understanding GNN robustness and generalization, a few recent works studied
pseudometrics on graphs. Most of them reflect the computation structure of MPNNs in defining
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the distance, essentially aiming to view graphs from the viewpoint of the GNN. Message passing,
when unrolled, leads to a tree-structured computation tree rooted at each node for computing the
feature of that node. The pseudometrics then define distances between computation trees, often
via optimal transport (Wasserstein distance). Chen et al. (2022; 2023) prove that MPNNs separate
points and are Lipschitz continuous over the Weisfeiler-Lehman (WL) distance between hierarchies
of probability measures. Since the space of graphs is not compact under their metric, they achieve
universal approximation by limiting the analysis to an arbitrary compact subspace. To quantify
stability and domain transfer of GNNs, Chuang & Jegelka (2022) define the Tree Mover’s Distance
between finite attributed graphs. However, the above pseudometrics on finite graphs do not yield
the desired compactness, and hence no universal approximation over the entire space of attributed
graphs. Moreover, a robustness-type generalization theorem over the entire space, which depends
on the space having a finite covering number, is not attainable. To solve this, we focus on graph limit
theories in which the space of graphs is completed to a compact space, i.e., graphon theory. Inspired
by Chen et al. (2022), Böker et al. (2023) took the first steps towards solving the aforementioned
problem, by extending the expressivity analysis to graphons and using iterated degree measures
(Grebı́k & Rocha, 2021) to represent an analog of computation trees and the 1-WL test on infinite
objects. While this enables proofs that MPNNs separate points and are Lipschitz over a compact
space, and hence have universal approximation, their pseudometric is restricted to graphs without
attributes. In contrast, Levie (2023) defined a limit object of attributed graphs, i.e., graphon-signals.
His pseudometric, an extension of the cut distance, a common metric between attributed graphs,
allows to analyze generalization via compactness and Lipschitz continuity, but is too fine to allow
MPNNs to separate points, so does not allow universal approximation. The position paper (Morris
et al., 2024) identifies these limitations, posing them as open problems.

In this work, we close these gaps via a unified approach that allows for an analysis of expressivity,
universal approximation, and generalization. Inspired by prior works, we too base our pseudometrics
on Wasserstein distance (or Prokhorov metric) between distributions of computation tree analogs.
To accommodate attributed graphs and graphons, we extend the theory of iterated degree measures –
a hierarchy of measures that reflects a computation tree structure – to graphon-signals, and then de-
fine an appropriate extension of MPNNs and appropriate distance between our continuous analogs of
computation trees. We then prove that our pseudometric leads to a topology with the three desider-
ata above: (1) MPNNs separate points; (2) MPNNs are Lipschitz continuous; and (3) the input
space of attributed graphons is compact. This enables us to evoke the Stone-Weierstrass theorem to
show universal approximation for continuous functions on attributed graphons, and hence, graphs.
Compactness and Lipschitzness enable a uniform Monte Carlo estimate to compute a generalization
bound for MPNNs. Our generalization bound makes no distributional assumptions on the data and
number of parameters of the MPNN. Empirically, our pseudometric correlates with output perturba-
tions of the MPNN, allowing to judge stability.

Contributions. We propose the first metric for attributed graphs under which the space of attributed
graphs is compact and MPNNs are Lipschitz continuous and separate points. Our construction leads
to the first theory of MPNNs that unifies expressivity, universality, and generalization on any data
distribution of attributed graphs. In detail:

• We show a fine-grained metric version of the separation power of MPNNs, extending the results
of Böker et al. (2023) to attributed graphs: two graph-signals are close in our metric if and only
if the outputs of all MPNNs on the two graphs are close. Hence, the geometry of graphs (with
respect to our metric) is equivalent to the geometry of the graphs’ representations via MPNNs
(with respect to the Euclidean metric).

• We prove that the space of attributed graphs with our metric is compact and MPNNs are Lipschitz
continuous (and separate points). This leads to two theoretical applications: (1) A universal
approximation theorem, i.e., MPNNs can approximate any continuous function over the space
of attributed graphs. (2) A generalization bound for MPNNs, akin to robustness bounds (Xu &
Mannor, 2012), requiring no assumptions on the data distribution or the number of GNN weights.

1.1 RELATED WORK

Several recent works consider pseudo metrics on graphs, aiming to capture structural properties of
the graph and the computational procedure of message passing. The latter is often described by
computation trees, hierarchical structures resulting from unrolling message passing (Morris et al.,
2019; Arvind et al., 2020; Garg et al., 2020; Xu et al., 2020; Chuang & Jegelka, 2022; Jegelka,
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2022). Similarly, hierarchical structures of measures have been used for the analysis of MPNNs
(Chen et al., 2022; 2023; Böker et al., 2023; Maskey et al., 2022). Although these structures may
look different at first glance, they can describe the same iterative message passing mechanism. Other
approaches include Titouan et al. (2019) graph metric defined a using both Wasserstein distance and
Gromov-Wasserstein distance Mémoli (2011). This approach, just like classic graph metrics Bunke
& Shearer (1998); Sanfeliu & Fu (1983) requires using approximation. In addition, several graph
kernels have been proposed Vishwanathan et al. (2010); Borgwardt et al. (2020). Here, we focus on
the viewpoint of computation trees, as they closely align with MPNNs. A number of existing works
study generalization for GNNs, e.g., via VC dimension, Rademacher complexity or PAC-Bayesian
analysis (Oono & Suzuki, 2020; Tang & Liu, 2023; Li et al., 2022; Garg et al., 2020; Maskey et al.,
2022; Morris et al., 2023; Maskey et al., 2022; Liao et al., 2021b). Most need assumptions on the
data distribution, and often on the MPNN model too. Levie (2023) uses covering number, for a wide
range of data distributions. We expand this result to a more general setting.

2 BACKGROUND

We begin with some background and notation, for additional background and fundamental concepts
in topology see Appendix A. An index is available in Appendix N.

Basic Notation. Throughout this text, λ denotes the Lebesgue measure on [0, 1], and we consider
measurability with respect to the Borel σ-algebra. For any metric space X , we denote by B(X ) its
standard Borel σ-algebra. Given a measure µ on X , we define its total mass as ∥µ∥ := µ(X ). For
a standard Borel space (Y,B(Y)) and a measurable map f : X → Y , we define the push-forward
f∗µ of µ via f as f∗µ(A) := µ(f−1(A)) for any A ∈ B(Y). Inequality between two measures
µ ≤ ν on some space X means that for any set A ⊆ X , it holds that µ(A) ≤ ν(A). Given a vector
x⃗ = (xα)α∈Λ, where Λ can be any countable set, we denote by xα0 and x(α0) the element at index
α0 ∈ Λ of x⃗. For a finite setA, |A| is the cardinality. For K ∈ N0, we denote [K] = {0, 1, . . . ,K}.
In our notation, a function is denoted by f : A → C. When f is evaluated at a point x ∈ A we
write f(x) or fx. We may also write f(−) or f−, which simply mean f . We define ∥f∥∞ :=
supx∈[0,1] |f(x)|. The covering number of a metric space (X , d) is the smallest number of open
balls of radius ϵ needed to cover X . K without an index can represent any compact space, i.e., a
topological space X in which every cover that consists only of open sets of X has a finite subcover.
Note that compact spaces always have finite covering number. We use Kd to denote any compact
subspace of (Rd, ∥ · ∥2), where ∥ · ∥2 is shorthand for the metric d(x, y) = ∥x − y∥2. An example
for Kd is Spheredr(0) := {x ∈ Rd : ∥x∥2 ≤ r}.
The weak∗ Topology. Let M≤1(X ) and P(X ) denote the space of all nonnegative Borel measures
with total mass at most one, and the space of all Borel probability measures on X , respectively.
We use Cb(X ) to denote the set of all bounded continuous real-valued functions on X . We endow
M≤1(X ) and P(X ) with the topology generated by the maps µ 7→

∫
X fdµ for f ∈ Cb(X ), called

the weak∗ topology in functional analysis (Kechris, 2012, Section 17.E), (Bogachev, 2007, Chapter
8). Under this topology, both spaces are standard Borel spaces, and if K is a compact metric space,
then M≤1(K), P(K) are compact metrizable (Kechris, 2012, Theorem 17.22). See Appendix D.2
for more details. Under the weak∗ topology, for a sequence of measures (µi)i and a measure µ, we
have convergence µi → µ if and only if

∫
X fdµi →

∫
X fdµ for every f ∈ Cb(X ). Similarly, for

measures µ and ν, we have equality µ = ν if and only if
∫
X fdµ =

∫
X fdν for every f ∈ Cb(X ).

Optimal Transport. We will use Optimal Transport to construct a metric between graphs and be-
tween graph limits. Unbalanced Optimal Transport (Séjourné et al., 2023), also called Unbalanced
Earth Mover’s Distance and Unbalanced Wasserstein Distance, is a distance function defined by
the minimal transportation cost between two distributions. The transport is described by a coupling
γ between two measures µ, ν on measure spaces X , Y , respectively, i.e., a nonnegative joint mea-
sure on X × Y such that (pX )∗γ = µ, (pY)∗γ ≤ ν, given that ∥µ∥ ≤ ∥ν∥. Here, pX and pY are
the projections from X × Y to X and Y , i.e., to the first and the second component, respectively,
(pX )∗γ(A) = γ(A× Y) and (pY)∗γ(B) = γ(X ×B).
Definition 1 (Unbalanced Optimal Transport/Wasserstein Distance). Let (X , d) be a metric Polish
space. The Unbalanced Earth Mover’s Distance between two measures µ, ν ∈M≤1(X , d) is

OTd(µ, ν) = inf
γ∈Γ(µ,ν)

(∫
X×X

d(x, y)dγ(x, y)
)
+ |∥µ∥ − ∥ν∥| ,
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where Γ(µ, ν) is the set of all couplings of µ and ν.

An intuitive way to think about such couplings is as transportation plans from one distribution of
points in a space to another, where the cost is given by the overall travel distance.

Product Metric. A product metric d is a metric on the Cartesian product of finitely many metric
spaces (X1, dX1

), . . . , (Xn, dXn
) which metrizes the product topology (see Appendices A.4.4 and

A.4.2). Here we use product metrics that are defined as the ℓ1-norm of the vector of distances
measured in n subspaces: d((x1, . . . , xn), (y1, . . . , yn)) := ∥(dX1

(x1, y1), . . . , dXn
(xn, yn))∥1.

Graph- and Graphon-signals. A graphG = (V,E) consists of a set of nodes (vertices) V = V (G)
connected by edges E = E(G) ⊆ V × V . We denote by N (v) the set of neighbors of v ∈ V . A
graph-signal (alternatively attributed graph) (G, f) is a graph G with node set V = {1, . . . , N},
and a signal f = (fj)

N
j=1 ∈ KN×d that assigns the value fj ∈ Kd to each node j ∈ {1, . . . , N}.

A graphon (Lovász, 2012) may be viewed as a generalization of a graph, where instead of discrete
sets of nodes and edges, there are an infinite sets indexed by the sets V (W ) := [0, 1] for nodes and
E(W ) := V (W )2 = [0, 1]2 for edges. A graphon is defined as a measurable symmetric function
W : E(W ) → [0, 1], i.e., W (x, y) = W (y, x). Each value W (x, y) describes the probability or
intensity of a connection between points x and y. The graphon is used to study limit behavior of
large graphs (Lovász, 2012). A graphon-signal (Levie, 2023) is a pair (W, f) where W is a graphon
and f : V (W ) 7→ Kd is a measurable function with respect to the Borel σ-algebra B(V (W )). Note
that any graph/graphon without a signal can be seen as a graph/graphon-signal by simply setting
the signal to the constant map, i.e., ∀x ∈ V (W ) : f(x) = c. We denote byWSd the space of all
graphon-signals with signals f : V (W ) 7→ Kd.

Any graph-signal can be identified with a corresponding graphon-signal as follows. Let (G, f) be a
graph-signal with node set {1, . . . , N} and adjacency matrix A = {ai,j}i,j∈{1,...,N}. Let {Ik}Nk=1

with Ik = [(k − 1)/N, k/N) be the equipartition of [0, 1] into n intervals. The graphon-signal
(W, f)(G,f) = (WG, ff ) induced by (G, f) is defined by WG(x, y) =

∑N
i,j=1 aij1Ii(x)1Ij (y)

and ff (z) =
∑N
i=1 fi1Ii(z), where 1Ii is the indicator function of the set Ii ⊂ [0, 1]. We write

(W, f)(G,f) = (WG, ff ) and identify any graph-signal with its induced graphon-signal.

Message Passing Neural Networks. Message Passing Neural Networks (MPNNs) (Gilmer et al.,
2017) are a class of neural networks designed to process graph-structured data, where nodes may
have attributes. Via a message passing process, MPNNs iteratively update each node’s features
by aggregating (processed) features from its neighbors. Various aggregation methods exist, e.g.,
summation, averaging, or coordinate-wise maximum. Our focus is on normalized sum aggregation,
which in practice achieves comparable performance to standard sum aggregation (Levie, 2023).

Computation Trees. Computation trees capture and characterize local structure of graphs by de-
scribing the data propagation through neighboring nodes via MPNNs’ successive layers (Morris
et al., 2019; Arvind et al., 2020; Garg et al., 2020; Xu et al., 2020). Since graphons can be seen as
graphs with uncountable number of nodes, the concept of computation trees can be extended in a
natural way to graphons, by recursively defining computation trees as objects composed of a root
node and a distribution of sub-trees induced by the node adjacency of the graphon. The resulting
hierarchy of probability measures (Chen et al., 2022; Böker et al., 2023) connects to iterated degree
measures. These easily integrate with MPNNs and allow us to identify the finest topology in which
MPNNs separate points, which is needed to prove a universal approximation theorem for graphons.

Iterated Degree Measures and the 1-WL Test for Graphons. Grebı́k & Rocha (2021) define
iterated degree measures (IDMs) to generalize the 1-Weisfeiler-Leman graph isomorphism test (1-
WL) (Appendix A.1) and its characterizations to graphons. The 1-WL test performs message passing
to uniquely encode (color) the type of computation tree rooted at each node. The collection of trees
helps determine graph isomorphism for many pairs of graphs. Initially, the unattributed nodes are
indistinguishable, and the test starts with a constant coloring. For graphons, measures replace node
colorings, and iterated measures encode computation trees. Analogous to constant colorings, the
base measure is defined as M̃0 := {∗}, where ∗ is any value, e.g., 0. At level L ≥ 0, the tree
is encoded as the product H̃L :=

∏
j≤L M̃j over levels, and the space of next-level features as

a measure over features of level ≤ L: M̃L+1 := M≤1(H̃L). We endow H̃L with the product
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topology and M̃L+1 with the weak∗ topology, as these are natural topologies for product spaces
and spaces of measures.

Grebı́k & Rocha (2021) connect each graphon W with its corresponding node colorings through
the maps γ̃W,L : [0, 1] 7→ H̃L, which we call computation iterated degree measures (computation
IDMs). This differs from both Grebı́k & Rocha (2021) and Böker et al. (2023) use the name IDM for
infinite sequences of Borel measures. These maps send each graphon node x ∈ [0, 1] to its iterated
degree measure, i.e., its coloring. We start with a constant map to a tree that encodes a single color,
γ̃W,0 : [0, 1] 7→ H̃0. The “color” γ̃W,L(x) at level L > 0 is a vector, where the j-th entry encodes
the color of node x after j coloring iterations. That is, letting α(x)(j) be the j-th entry of the vector
α(x), we set γ̃W,L(x)(j) = γ̃(W,f),L−1(x)(j), for every j < L. Reflecting the WL-test, the last
entry γ̃W,t(x)(L) is a measure recursively defined as γ̃W,t(x)(L)(A) =

∫
γ̃−1
W,L−1(A)

W (x,−) dµ for

any subset A ⊆ H̃L−1 of the (L − 1)-th level colors. Namely, we are aggregating colors over the
neighborhood of node x, according to the connectivity encoded by W (x,−), obtaining a measure
over level (L − 1) colors, analogous to the discrete 1-WL algorithm. Analogously to computation
trees, computation IDMs capture the graphons’ connectivity. In Section 3, we generalize IDMs to
additionally incorporate signal information, thus moving from graphon analysis to graphon-signal
analysis. We note that this definition is taken from Grebı́k & Rocha (2021). It differs from the 1-WL
test in Böker et al. (2023), where they do not concatenate all previous coloring.

3 GRAPHON-SIGNAL METRICS THROUGH ITERATED DEGREE MEASURES

To analyze expressivity and generalization, we need to define an appropriate metric between at-
tributed graphons. Hence, in this section, we first extend the IDM definition in Section 2 to capture
both signal values and graphon topology. We then define distributions of iterated degree measures
(DIDMs) and metrics between IDMs and DIDMs. These induce distance measures on the space of
attributed graphs/graphons, which are polynomial time computable. We essentially transition from
our computation trees that capture only graphon structure to computation trees that capture attributes
as well. In Section 4, we will see how this allows us to analyze MPNNs on attributed graphs.

Figure 1: Measuring similarity between graph-signals on the left is translated into measuring similar-
ity between graphon-signals and, lastly, to computing optimal transport between two IDMs, which
comprise in the figure of a signal value and a distribution over signal values induced by the graphon’s
adjacency. Edges colors depict edge weights and node colors depict signal values.

Computation IDMs and Distributions of IDMs. We first expand the definitions of IDM and
computation IDM of Section 2 from unattributed to attributed graphons. In hindsight, our approach
is in line with an idea outlined in Section 5 of Böker et al. (2023). We change the IDMs’ base space
from a one point space, {∗}, to the space of node attributes Kp, thus incorporating signal values
inherently into the IDMs’ structure. Explicitly, we define the space of iterated degree measures of
order-L, HL, inductively by first defining M0 := Kp for p ∈ N0. Then, for every L ≥ 0, let
HL =

∏
i≤LMi andML+1 = M≤1(HL), where the topologies ofHL andML+1 are the product

and the weak∗ topology, respectively. We call P(HL) the space of distributions of iterated degree
measures (DIDMs) of order-L. We denote by pL,j : HL 7→ Hj and pL : HL →ML the canonical
projections where j ≤ L < ∞. Recall that α(x)(j), refers to the j-th entry of the vector α(x).
Next, we define a graphon-signal 1-WL analog.
Definition 2. Let [0, 1] be the interval with the standard Borel σ-algebra B and let (W, f) be a
graphon-signal. We define γ(W,f),0 : [0, 1] → H0 to be the map γ(W,f),0(x) := f(x) for every
x ∈ [0, 1]. Inductively, we define γ(W,f),L+1 : [0, 1]→ HL+1 such that

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) γ(W,f),L+1(x)(j) = γ(W,f),L(x)(j), for every j ≤ n and

(b) γ(W,f),L+1(x)(L+ 1)(A) =
∫
γ−1
(W,f),L

(A)
W (x,−) dµ, whenever A ⊆ Hn is a Borel set.

Finally, for every L ∈ N0, let Γ(W,f),L be the push-forward of λ via γ(W,f),L. We call γ(W,f),L a
computation iterated degree measure (computation IDM) of order-L and Γ(W,f),L a distribution of
computation iterated degree measures (computation DIDM) of order-L.

In appendix D.2 we prove that the spaces of IDMs and DIDMs are compact, which, together with
the continuity of MPNNs (Theorem 13), and the separation power of MPNNs (Theorem 14), allows
us to use the Stone-Weierstrass theorem (Theorem A.5) to show universality and to use uniform
Monte Carlo estimation to compute a generalization bound for MPNNs.
Theorem 3. The spacesHL and P(HL) are compact spaces for any L ∈ N0.

The proof of Theorem 3 inductively uses the fact that given any compact space K, the spaces
M≤1(K) and P(K) endowed with the weak∗ topology are compact metrizable spaces. Tychonoff’s
theorem, which states that the product of any collection of compact topological spaces is compact
with respect to the product topology, completes the argument.

DIDM Mover’s Distance. Next, we define a distance between graphons, viewed as distributions
of computation IDMs. Inspired by the tree mover’s distance of Chuang & Jegelka (2022), we do
this by optimal transport with a ground metric between IDMs, i.e., trees. As both computational
IDMs and trees can be seen to represent the same thing i.e. MPNNs’ computational procees. Thus,
we explicitly construct a metric that metrizes the topology of HL. We define the IDM distance of
order-0 on M0 = H0 = Kp, for p ∈ N0, by d0IDM := ∥x− y∥2, and denote by OTd0IDM

the
optimal transport distance onM1 = M≤1(H0). We define dLIDM recursively as the product metric
on HL =

∏
j≤LMj when the distance onMj = M≤1(Hj−1) for 0 < j < L − 1 is OTdj−1

IDM
.

Explicitly written,

dLIDM(µ, ν) :=

{
∥µ0 − ν0∥2 +

∑L
j=1 OTdj−1

IDM
(µj , νj) : if∞ > L > 0

∥µ0 − ν0∥2 : L = 0

for µ = (µj)
L
j=0, ν = (νj)

L
j=0 ∈ HL. The next theorem states that, for every L ∈ N0, both the IDM

distance dLIDM and optimal transport distance OTdLIDM
fit naturally to the topologies of IDMs and

DIDMs defined in Section 2.
Theorem 4. Let L ∈ N0. The metrics dLIDM on HL and OTdLIDM

on P(HL) and M≤1(HL) are
well-defined. Moreover, OTdLIDM

metrizes the weak∗ topologies of M≤1(HL) and P(HL).

We now use the distance between IDMs to define a distance between graphons, viewed as distribu-
tions of computation IDMs. Specifically, we define the DIDM Mover’s Distance between graphons
as the optimal transport cost between their DIDMs, with ground metric dLIDM(·, ·):
Definition 5 (DIDM Mover’s Distance). Given two graphon-signals (Wa, fa), (Wb, fb) and L ≥ 1,
the DIDM Mover’s Distance between (Wa, fa) and (Wb, fb) is defined as

δLDIDM((Wa, fa), (Wb, fb)) := OTdLIDM
(Γ(Wa,fa),L,Γ(Wb,fb),L).

Intuitively, δLDIDM is the minimum cost required to transport node-wise IDMs from one graphon to
another.

Given two attributed graphs, (G, f) and (H,g), the DIDM mover’s distance,
δLDIDM((G, f), (H,g)) := δLDIDM((WG, ff ), (WH , fg)) can be computed in polynomial time,
as shown next.
Theorem 6. For any fixed L ∈ N0, δLDIDM between any two graph-signals (G, f) and (H,g) can
be computed in time polynomial in L and the size of G and H , namely O(L · N5 log(N)) where
N = max(|V (G)| , |V (H)|).

The theorem is proven in Appendix L.2 along the following lines. While δLDIDM is defined using
the induced graphon, it is computed directly on the graph. Moreover, we do not use a data-structure
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for representing IDMs directly. Instead, we compute each time cost matrices derived from the cost
matrices of the previous layer, avoiding explicit representations of the IDMs. We first compute a
cost matrix D0, containing the L2 distances between the nodes’ attributes, and then use it as a cost
matrix of an OT problem. We repeatedly solve OT problems based on the previous cost matrix
and the adjacency matrices of the graphs using linear programming and sum the results with the
previous cost matrix to get the next cost matrix. Each OT problem is solved in O(N3 log(N))
time (Flamary et al., 2021; Chapel et al., 2020). At each step we solve N2 problems. This means
O(N2 ·N3 log(N)) per step. After computing DL, we use it to solve a single OT problem between
two uniform distributions, one over V (G) and the other over V (H) to get δLDIDM’s value, which
again takes O(N3 log(N)). Hence, the total computation time is O(L ·N2 ·N3 log(N)). In Section
5, we evaluate the DIDM Mover’s Distance empirically.

Alternative Approach. For the sake of completeness, we present in Appendix L the Prokhorov
metric, which can be used for defining alternative metrics to optimal transport which metrize HL,
similarly to the constuction of Böker et al. (2023). All of our results can be equivalently stated with
the alternative metrics.

4 MPNNS AND THEIR RELATION TO DIDM MOVER’S DISTANCE

We next integrate MPNNs into our framework and define a general message passing scheme for
computing features of attributed graphons, which generalizes standard graph MPNNs. Equivalently,
by defining aggregated features via IDMs and DIDMs, we can define the MPNN directly on IDMs
and DIDMs. In Appendix F, we show the equivalency between MPNNs defined on graphon-signals
and MPNNs defined on IDMs and DIDMs. By analyzing MPNNs on IDMS and DIDMs, we prove
Theorems 13 and 14, which state that two graphon-signals are close to each other in our metrics if
and only if the two outputs of any MPNN on the two graphon-signals are close-by in ℓ2 distance.

An MPNN consists of features initialization, which is a learnable Lipschitz continuous mapping
φ(0) : Rp 7→ Rd0 , followed byL layers, each of which consists of two steps: a message passing layer
(MPL) that aggregates neighborhood information, followed by a node-wise update layer. Here, we
assume the MPL to be normalized sum pooling, when applied on graph-signals or graphon-signals.
The update layer consists of a learnable Lipschitz continuous mapping φ(t) : R2dt−1 7→ Rdt where
0 < t ≤ L is the layer’s index. Each layer computes a representation of each node. For predictions
on the full graph, a readout layer aggregates the node representations into a single graph feature and
transforms it by a learnable Lipschitz function ψ : RdL 7→ Rd for some d ∈ N0. For the readout,
with use average pooling.
Definition 7 (MPNN Model). Let L ∈ N0 and p, d0, . . . , dL, d ∈ N0. We call any collection
φ = (φ(t))Lt=0 of Lipschitz continuous functions φ(0) : Rp 7→ Rd0 and φ(t) : R2dt−1 7→ Rdt , for
1 ≤ t ≤ L, an L-layer MPNN model, and call φ(t) update functions. For Lipschitz continuous
ψ : RdL 7→ Rd, we call the tuple (φ,ψ) an MPNN model with readout, where ψ is called a readout
function. We call L the depth of the MPNN, p the input feature dimension, d0, . . . , dL the hidden
feature dimensions, and d the output feature dimension.

An MPNN model processes graph-signals as a function as follows.
Definition 8 (MPNNs on graph-signals). Let (φ,ψ) be an L-layer MPNN model with readout,
and (G, f) be a graph-signal where f : V (G) 7→ Rp. The application of the MPNN on (G, f)

is defined as follows: initialize g
(0)
− := φ(0)(f(−)) and compute the hidden node representations

g
(t)
− : V (G)→ Rdt at layer t, with 1 ≤ t ≤ L and the graph-level output G ∈ Rd by

g(t)v := φ(t)
(
g(t−1)
v ,

1

|V (G)|
∑

u∈N (v)

g(t−1)
u

)
and G := ψ

( 1

|V (G)|
∑

v∈V (G)

g(L)v

)
.

To clarify the dependence of g and G on φ and (G, f), we often denote g(φ)
(t)
v or g(φ,G, f)(t)v ,

and G(φ,ψ) or G(φ,ψ,G, f). Here, we use normalized sum aggregation over neighborhoods to be
directly compatible with the graphon version. To extend this MPNN to graphons, we transition from
a discrete set of nodes to a continuous set by converting the normalized sum into an integral.
Definition 9 (MPNNs on Graphon-signals). Let (φ,ψ) be an L-layer MPNN model with readout,
and (W, f) be a graphon-signal where f : V (W ) 7→ Rp. The application of the MPNN on (W, f)

7
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is defined as follows: initialize f
(0)
− := φ(0)(f(−)), and compute the hidden node representations

f
(t)
− : V (W )→ Rdt at layer t, with 1 ≤ t ≤ L and the graphon-level output F ∈ Rd by

f(t)x := φ(t)
(
f(t−1)
x ,

∫
[0,1]

W (x, y)f(t−1)
y dλ(y)

)
and F := ψ

(∫
[0,1]

f(φ)(L)x dλ(x)
)
.

As before, we often denote f(φ)
(t)
v or f(φ,W, f)(t)v , and F(φ,ψ) or F(φ,ψ,W, f).

The following definition generalizes MPNNs to IDMs and DIDMs using the canonical projections
pL,j : HL 7→ Hj and pL : HL →ML, where j ≤ L <∞.

Definition 10 (MPNNs on IDMs and DIDMs). Let (φ,ψ) be an L-layer MPNN model with readout.
The application of the MPNN on IDMs and DIDMs is defined as follows: initialize h(0)− := φ(0)(−),
and compute the hidden IDM representations h(t)− : Ht → Rdt on any order-t IDM τ ∈ Ht, and the
DIDM-level putput H ∈ Rd on an order-L DIDM ν ∈P(HL), by

h(t)τ := φ(t)

(
h
(t−1)
pt,t−1(τ)

,

∫
Ht−1

h
(t−1)
− dpt(τ)

)
and H := ψ

(∫
HL

h
(L)
− dν

)
.

We also denote h(φ)
(t)
τ and H(φ,ψ) or H(φ,ψ, ν). We name MPNNs’ hidden representations and

outputs features. MPNNs on IDMs and DIDMs are canonical extensions of MPNNs on graphon-
signals as follows.

Lemma 11. Let (W, f) be a graphon-signal and (φ,ψ) an L-layer MPNN model with readout.
Then, given the computation IDMs {γ(W,f),t}Lt=0 and DIDM Γ(W,f),L, we have that f(φ,W, f)(t)x =

h(φ)
(t)
γ(W,f),t(x)

for any t ∈ [L], x ∈ [0, 1]. Similarly, F(φ,ψ,W, f) = H(φ,ψ,Γ(W,f),L).

That is, graphon-signals’ hidden representations are computed through their computation IDMs and
DIDMs, i.e., the product of the graphon-signals 1-WL algorithm (Definition 2). Similarly, graph-
signals’ hidden representations are computed through their induced graphon-signal.

Corollary 12 is a consequence of Theorem 15, one of our main results, presented in Section 5. It
reveals a strong connection between MPNN features and the weak∗ topology of P(HL).
Corollary 12. Let L ∈ N0 and d > 0 be fixed. Let ν ∈ P(HL) and (νi)i be a sequence with
νi ∈P(HL). Then, νi → ν if and only if H(φ,ψ, νi)→ H(φ,ψ, ν) for all L-layer MPNN models
φ with a readout function ψ : RdL → Rd.

We now present Theorem 13 and Theorem 14. Together, they establishe a bidirectional fundamental
connection between our metrics and the outputs of all possible MPNNs, where the second direction
is phrased as a delta-epsilon relation. Specifically, Theorem 13 states a Lipschitz bound for MPNNs
with respect to the IDM and DIDM mover’s distance. This quantifies stability as in the finite case in
Chuang & Jegelka (2022).

Theorem 13. Let φ be an L-layer MPNN model. Then, there exists a constant Cφ, that depends
only on L, the number of layers, and the Lipschitz constants of model’s update functions, such that

∥h(φ, α)(L) − h(φ, β)(L)∥2 ≤ Cφ · dLIDM(α, β)

for all α, β ∈ HL. If φ has a readout function ψ, then, for all µ, ν ∈P(HL), there exists a constant
C(φ,ψ), that depends only on Cφ and the Lipschit constant of the model’s readout function, such that

∥H(φ,ψ, µ)− H(φ,ψ, ν)∥2 ≤ C(φ,ψ) ·OTdLIDM
(µ, ν).

In our analysis, Theorem 13 is vital for the generalization analysis in Section 5. The following
theorem is roughly the “topological converse” of Theorem 13, and is based on Corollary 12.

Theorem 14. Let d > 0 be fixed. For every ε > 0, there are L ∈ N0, C > 0, and δ > 0 such that,
for all DIDMs µ, ν ∈ P(HL), if ∥H(φ,ψ, µ) − H(φ,ψ, ν)∥2 ≤ δ holds for every L-layer MPNN
model φ with readout function ψ : RdL → Rd when C(φ,ψ) ≤ C, then OTdLIDM

(µ, ν) ≤ ε.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Note that the constants L, C, and δ are independent of the DIDMs µ and ν. The combination of
Theorem 13 and Theorem 14 implies that we can not only bound MPNNs’ output perturbations with
OTdLIDM

, but also estimate closeness in OTdLIDM
via MPNNs’ output closeness.

Empirical Evaluation. As a proof of concept, we empirically test the correlation between δLDIDM
and distance in the output of MPNNs. For the graphs, we use stochastic block models (SBMs), which
are random graph generative models. We generated a sequence of 50 random graphs {Gi}49i=0, each
with 30 vertices. Each graph is generated from a SBM with two blocks (communities) of size 15
with p = 0.5 and qi = 0.1 + 0.4i/49 probabilities of having an edge between each pair of nodes
from the same block different blocks, respectively. We denote G := G49, which is an Erdős–Rényi
model. We plot δ2DIDM(Gi, G) against distance in the output of randomly initialized MPNNs. We
conducted the experiment twice, once with a constant feature for all nodes and once with a signal
which has a different constant value on each community of the graph. Each of these two values is
randomly sampled from a uniform distribution over [0, 1]. Figure 2, shows the results when varying
the hidden dimension of the GNN. The results show a strong correlation between input distance and
GNN output distance. More empirical results are presented in Appendix M.

Figure 2: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN.
A convergent sequence of graphs. The graphs are generated by a stochastic block models. In the
six leftmost figures the signal is constant. In the six rightmost figures, the signal values are constant
each graph’s community. Each signal value is sampled from a uniform distribution over [0, 1].

5 THEORETICAL APPLICATIONS

Next, we state the main theoretical applications of the compactness of the space of attributed graphs
and the Lipschitz and separation power of MPNNs with respect to DIDM mover’s distance. First,
we show a universal approximation theorem for MPNNs on IDMs and DIDMs, which means that
MPNNs can approximate any continuous function on IDMs and DIDMs. This entails universal
approximation of MPNNs on attributed graphs/graphons as well, generalizing the results of Böker
et al. (2023) to attributed graphs. Second, we introduce a uniform generalization bound for MPNNs.

Universal Approximation. We define the set N dL
L := {h(φ)(L)− : HL 7→

KdL |φ is an L-layer MPNN model} ⊆ C(HL,RdL), where C(HL,RdL) is the set of all contin-
uous functions, HL 7→ RdL . Similarly we define the set NN d

L := {H(φ,ψ,−) : P(HL) 7→
Kd|(φ,ψ) is an L-layer MPNN model with readout} ⊆ C(P(HL),Rd).
Theorem 15 (Universal Approximation). Let L ∈ N0. Then, the set N 1

L is uniformly dense in
C(HL,R) and the set NN 1

L is uniformly dense in C(P(HL),R).

Combining Theorem 15 with Lemma 11 leads in a very straightforward way to universal approxima-
tion of continuous functions from graph-signals to graph-signals embeddings. Our theory implies
that if we use all MPNNs, we can distinguish between all attributed graphs with positive graph
distance (since they could take different function values). Indeed, Table 1 and 3 in Böker et al.
(2023) illustrate that using sufficiently many MPNNs provides enough discriminative power for
graph classification tasks on both attributed and unattributed graphs. Our results supply the theoret-
ical background for their experiments with attributed graphs.

Generalization Bounds for MPNNs. We consider C-class classification, i.e., the data is drawn
from a distribution (P(HL) × {0, 1}C ,Σ, τ), where Σ is the Borel σ-algebra and τ is a Borel
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measure. We denote P(HL)’s covering number by κ. Let E be a Lipschitz continuous loss function
with a Lipschitz constant L2. We denote by Lip(P(HL), L1), the space of Lipschitz continuous
mappings M : P(HL) → RC with Lipschitz constant L1. We aim to minimize the statistical
risk, R(M) =

∫
E(M(ν), y)dτ(ν, y), where M ∈ Lip(P(HL), L1), by minimizing the empirical

risk R̂X(MX) = 1
N

∑N
i=1 E(MX(νi), yi) on independent identically distributed (i.i.d) samples

X = (X1, . . . , XN ) from the data distribution (P(HL) × {0, 1}C , τ) where for 0 < i ≤ N ,
Xi = (νi, Yi) and MX is a model with possible dependence on the sample set, e.g. through training.

The following generalization theorem uses the same techniques as Levie (2023). It is based on the
fact that the space of DIDMs has a finite covering number, since it is compact, and on the fact that
MPNNS are Lipschitz continuous. These two properties together lead to a uniform generalization
bound, akin to robustness-type bounds (Xu & Mannor, 2012).
Theorem 16 (MPNN generalization theorem). Consider the above classification setting, and let
L = L1(L2+1). Let {Xi}Ni=1 be independent random samples from the data distribution (P(HL)×
{0, 1}C ,Σ, τ). Then, for every p > 0, there exists an event Up ⊂ (P(HL)× {0, 1}C)N , regarding
the choice of X = (X1, . . . , XN ), with probability νN (Up) ≥ 1 − Cp − 2C

2

N , in which for every
function MX in the hypothesis class Lip(P(HL), L1), we have∣∣∣R(MX)− R̂X(MX)

∣∣∣ ≤ ξ−1(N/2C)
(
2L+ 1√

2
(L+ E(0, 0))(1 +

√
log(2/p)

)
, (1)

where ξ(ϵ) = κ(ϵ)2 log(κ(ϵ))
ϵ2 , κ is the covering number of the compact space P(HL)× {0, 1}C and

ξ−1 is the inverse function of ξ.

Theorem 16 means that when minimizing the empirical risk on a training set drawn from the data
distribution, the statistical risk is guaranteed to be close to the empirical risk in high probability,
where no assumptions on the data and number of parameters of the MPNN is required (the only as-
sumption is Lipschitz continuity of the update and readout functions). Indeed, the term ξ−1(N/2C)
in (1) approaches zero when we take N to infinity. Moreover, since the space P(HL)× {0, 1}C is
compact (Theorem 25), its covering number κ is finite. Further details are provided in Appendix K.
By Lemma 11, the same result is also true for MPNNs on graph-signals. Namely, we get the same
generalization bound on distributions of graph-signals and MPNNs on graph-signals with a covering
number that depends on the graphon-signal space and not the space of DIDMs. For a comparison of
our generalization bound to other bounds in the literature, see Appendix B.3.

6 DISCUSSION

MPNNs were historically defined constructively, as specific types of computations on graphs, with-
out a proper theory of MPNN function spaces over properly defined domains of definition. Our work
provides a comprehensive functional basis for MPNNs, which elegantly leads to machine learning
results like universal approximation and generalization for attributed graphs.

The only nonstandard part in our construction is the choice of normalized sum aggregation in our
MPNN architecture, while most MPNNs use sum, mean, or max aggregation. We justify this choice
as follows. First, experimentally, in (Böker et al., 2023, Tables 1, 3) and (Levie, 2023, Table 2), it is
shown that MPNNs with normalized sum aggregation generalize well, comparably to MPNNs with
sum aggregation. We believe that this is the case since in most datasets most graphs have roughly
the same order of vertices. Hence, the normalization by N2 is of a constant order of magnitude and
can be swallowed by the weights of the MPNN, mimicking the behavior of an MPNN with sum
aggregation. Future work may explore extensions of our theory to other aggregation schemes (see
Appendix A.3 and Appendix B.2 for more details).

Our theory is meaningful only for dense graphs, as sparse graphs are always considered close to the
empty graph under our metrics (see Appendix B.1). Future work may focus on deriving fine-grained
expressivity analyses for sparse attributed graphs. Moreover, the current theory is designed around
graph level tasks. However, potentially, one can also use IDMs to study node level tasks, as IDMs
represent the computational structure corresponding to each node. For example, one can potentially
use our construction for analyzing the stability of node-level GNNs to perturbations to the structure
of the graph and its features, where the magnitude of the perturbation is modeled via IDM distance.
Lastly, since our proofs are specific to MPNNs with normalized sum aggregation, future research
could provide extension of our theory to other aggregation functions.
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Béla and Oliver Riordan. Sparse graphs: Metrics and random models. Random Structures & Algo-
rithms, 39, 08 2011. doi: 10.1002/rsa.20334.
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las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
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A ADDITIONAL BACKGROUND

A.1 WEISFEILER LEMAN GRAPH ISOMORPHISM TEST ON GRAPHS

The Weisfeiler-Leman-1 (WL-1) test, which was developed by Boris Weisfeiler and Andrei Leman,
also known as color refinement, is an algorithm which aimed to effectively approximate the solution
of the graph isomorphism problem.As graph isomorphism problem is not known to be solvable in
polynomial time, the algorithm cannot distinguish all non-isomorphic graphs.

Given a graph G = (V,E) with initial labeling L0 : V 7→ N0 (also referred to as coloring),
composed of V , a the set of nodes and E ⊆ V × V , a the set of edges, the WL-1 algorithm
iteratively updates the nodes labels based on the labels of neighboring vertices.

Definition 17 (Weisfeiler-Leman Iteration). Given a graph G = (V,E) with an initial labeling
L0 : V → N0, each iteration t > 0 of the WL algorithm computes a new labeling Lt as follows:

Lt(v) = Hash (Lt−1(v), {{Lt−1(u) : u ∈ N (v)}})

whereN (v) denotes the neighbors of vertex v, and Hash is an injective function mapping the previ-
ous label and multiset of neighbor labels to a new unique label.

This process runs on two graphs in parallel and continues on until a stable labeling of one of the two
graphs is achieved, meaning that for some t ∈ N0 the label of one of the graphs doesn’t change, or a
discrepancy is found between the label of the two graphs being compared. One of these two events
is always reached.

A.2 MESSAGE PASSING NEURAL NETWORKS ON GRAPHS

Message Passing Neural Networks (MPNNs) Gilmer et al. (2017) are a neural networks class de-
signed to process graph-structured data with and without attributes. Given a graph G = (V,E), and
a signal f : V 7→ Rd (in the case of a graph without attributes the signal is the constant function
f(v) = 1, MPNNs iteratively update node embeddings through the exchange of messages between
nodes through edges. We restate here Definition 7.

Definition 41 (MPNN Model). Let L ∈ N0 and p, d0, . . . , dL, d ∈ N0. We call any collection
φ = (φ(t))Lt=0 of Lipschitz continuous functions φ(0) : Rp 7→ Rd0 and φ(t) : R2dt−1 7→ Rdt , for
1 ≤ t ≤ L, an L-layer MPNN model, and call φ(t) update functions. For Lipschitz continuous
ψ : RdL 7→ Rd, we call the tuple (φ,ψ) an MPNN model with readout, where ψ is called a readout
function. We call L the depth of the MPNN, p the input feature dimension, d0, . . . , dL the hidden
feature dimensions, and d the output feature dimension.

Let φ be an L-layer MPNN model. We recall thatN (v) denotes the set of neighbors of node v. Each
node v ∈ V starts with an initial feature vector g(φ)(0)v = f(v), which are updated iteratively through
the the layer of the message passing model. Each layer consists of two main steps: aggregation and
update.

At each layer 0 < t ≤ L, each node v aggregates information from its neighbors by:

m(φ,G, f)(t)v := Agg
(
G, g(φ,G, f)

(t−1)
−

)
, (2)

where Agg is a differentiable aggregation function that process the graph and its hidden node repre-
sentations on each layer. In this article we focus on normalized sum aggregation, which is defined
as follows.

Definition 18 (Normalized Sum Aggregation on Graph-signals). Let (G, f) be a graph-signal, then
normalized sum aggregation with respect to the (G, f) and a node v ∈ V (G) is defined as

Agg(G, g(φ,G, f)
(t)
− )(v) =

1

|V |
∑

u∈N (v)

g(φ,G, f)(t)u
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The node embeddings are then updated based on the message m(φ,G, f)
(k)
v and the node feutures

from the privious layer g(φ,G, f)(k−1)
v :

g(φ,G, f)(k)v = φ(k)
(
g(φ,G, f)(k−1)

v ,m(φ,G, f)(k)v

)
, (3)

where φ(k) is called the update function which is a learnable Lipschitz function like an MLP (Multi-
Layer Perceptron). After L layers, the last layer’s hidden node representations g(φ,G, f)

(L)
− are

processed by an update layer. This layer is computed by applying a readout function ψ : RdL 7→ Rd
and outputs a single graph-signal-level representation:

G(φ,ψ,G, f) := ψ

 1

|V (G)|
∑

v∈V (G)

g(φ,G, f)(L)v

 (4)

ψ is typically a permutation-invariant function, that ensures the graph features is independent of any
node ordering.

A.2.1 GRAPH ISOMORPHISM NETWORK (GIN)

Graph Isomorphism Network (GIN) Xu et al. (2019) is a popular MPNN model for graphs, which is
as expressive as the Weisfeiler-Lehman graph isomorphism test. GIN is defined with sum aggrega-
tion but we use normalized sum aggregation. As an update function,it uses a multi layer preceptron
(MLP) composed on addition of the massage m(φ,G, f)

(t)
− := m

(t)
− and g(φ,G, f)

(t−1)
− := g

(t−1)
−

that depends on a contant ϵ, that controls the weighting between the node’s own embedding and its
neighbors’ embeddings, as follows:

m(t)
v :=

1

|V |
∑

u∈N (v)

g(t−1)
u ,

g(t)v := MLP(t)
(
(1 + ϵ)g(t−1)

v +m(t)
v

)
.

The readout after L layers (which we also normalize in contrast to the original definition) is:

G(φ,ψ,G, f) := G :=
1

|V |
∑
v∈V

g(L)v .

GIN’s ability to distinguish between non-isomorphic graphs makes it compatible for tasks, such as
graph classification and node-level prediction.

A.3 SUM AND MEAN AGGREGATION

We present here sum and mean aggregation schemes on graph-signals. This allows further discussion
on the different aggregation schemes in Appendix C.
Definition 19 (Sum Aggregation on Graph-signals). Let φ be an L-layer MPNN model, (G, f) be a
graph-signal, and t ∈ [L − 1] then sum aggregation of (G, f)’s t-level features with respect to the
node v ∈ V (G) is defined as

Agg(G, g(φ,G, f)
(t)
− )(v) =

∑
u∈N (v)

g(φ,G, f)(t)u .

Definition 20 (Mean Aggregation on Graph-signals). Let φ be an L-layer MPNN model, (G, f) be
a graph-signal, and t ∈ [L − 1] then mean aggregation of (G, f)’s t-level features with respect to
the node v ∈ V (G) is defined as

Agg(G, g(φ,G, f)
(t)
− )(v) =

1

N (v)

∑
u∈N (v)

g(φ,G, f)(t)u .
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A.4 TOPOLOGY BASICS

Topology is a fundamental branch of mathematics, in which spatial properties that remain unchanged
under continuous deformations are studied formally. Here, we introduce key concepts of topology.

Definition 21 (Topological Space). A topological space is a pair (X , τ), where X is a set and τ is
a collection of subsets of X satisfying:

1. Both ∅ and X are in τ

2. τ is closed under finite intersections

3. τ is closed under arbitrary unions

The elements of τ are called open sets.

A.4.1 CONTINUITY

Continuity, in topology, generalizes the notion of continuity from calculus to any arbitrary topolog-
ical space.

Definition 22 (Continuous Function). Given topological spaces (X , τX) and (Y, τY ), a function
f : X → Y is continuous if the preimage of every open set in Y is open in X . Formally, f−1(U) ∈
τX for all U ∈ τY .

A.4.2 PRODUCT TOPOLOGY

The product topology is a topology which is naturally defined on a Cartesian product topological
spaces. Although it can be defined for Cartesian products of any number of spaces, in our analysis,
we are only interested in the finite case.

Let {(Xi, τi)}i∈I be an finite set of topological spaces, then the product space of the set {(Xi, τi)}i∈I
is denoted by

∏
i∈I Xi and defined as the set of all vectors (xi)i∈I where xi ∈ Xi for each i ∈ I .

The product topology is then generated by the basis {(Ui)i∈I : Ui ∈ τi}.
For each i ∈ I , the projection map πi :

∏
j∈I Xj → Xi is defined by πi((xj)j∈I) = xi. In the

product topology, all projection maps πi are continuous. Moreover, a sequence in the product space
converges if and only if its projections onto each factor space converge.

A.4.3 COMPACTNESS AND SEPARABILITY

Compactness and separability are both important properties in topology.

Definition 23 (Compact Space). A topological space (X , τ) is compact if every open cover of X
has a finite subcover.

Definition 24 (Separable Space). A topological space is separable if it contains a countable dense
subset.

Theorem 25 (Tychonoff’s Theorem). Let {Xi}i∈I be a family of compact topological spaces. Then
the product space

∏
i∈I Xi is compact in the product topology.

A.4.4 METRIC SPACES AND TOPOLOGY

A metric space is a topological space, where the topology is induced by a distance function called a
metric.

Definition 26 (Metric Space). A metric space is a pair (X , d) where X is a set and d : X ×X → R
is a function satisfying:

1. d(x, y) ≥ 0 for all x, y ∈ X , with equality if and only if x = y

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X
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The topology induced by a metric is generated by a base containing all open balls defined by
B(x, r) = {y ∈ X : d(x, y) < r}.
Definition 27 (Metrizable Space). A topological space (X, τ) is called metrizable if there exists a
metric d : X ×X → R such that the topology induced by the metric d coincides with the topology
τ on X .

In other words, the open sets in the topology τ are exactly the open sets with respect to the metric d.

A.4.5 COMPLETE METRIC SPACE

Definition 28 (Complete Metric Space). A metric space (X, d) is called complete if every Cauchy
sequence in X converges to a point in X . A sequence {xn} ⊂ X is a Cauchy sequence if for every
ϵ > 0, there exists an integer N ∈ N0 such that for all m,n ≥ N , the following holds:

d(xn, xm) < ϵ. (5)

In other words, if the elements of a sequence get arbitrarily close to each other as the sequence
progresses, then that sequence also converges to a point within the space. If a topological space is
metrizable to a complete metric space, we say that it is completely metrizable.

A.4.6 MEASURE SPACES AND BOREL SETS

Measure theory generalizes and formalizes geometrical measures such as length, area, and volume
as well as other notions, such as magnitude, mass, and probability of events.
Definition 29 (σ-algebra). LetA be a set. A collection F of subsets ofA is called a σ-algebra if the
following properties are satisfied:

1. A ∈ F .

2. F is closed under complement, i.e., if A ∈ F , then X \ A ∈ F ,

3. F is closed under countable unions, i.e., if {An}∞n=1 is a countable collection of sets in F ,
then

∞⋃
n=1

An ∈ F . (6)

The pair (A,F) is called a measurable space.

A σ-algebra provides the foundation for the construction of measures,
Definition 30 (Measure). Let (A,F) be a measurable space, whereA is a set and F is a σ-algebra
on A. A function µ : F → [0,∞] is called a measure if it satisfies the following properties:

1. Non-negativity: For all A ∈ F , µ(A) ≥ 0.

2. Null empty set: µ(∅) = 0.

3. Countable additivity (or σ-additivity): For any countable collection of pairwise disjoint
sets {An}∞n=1 ⊂ F , the measure of their union is the sum of their measures:

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An). (7)

A measure µ assigns a non-negative extended real number to each set in the σ-algebra F . The triple
(X,F , µ) is called a measure space.

A.4.7 POLISH SPACES

Polish spaces are topological spaces, that have a ”nice” topology in the following way.
Definition 31 (Polish Space). A topological space is Polish if it is separable and completely metriz-
able, i.e., there exists a complete metric that generates its topology.
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A.5 STONE–WEIERSTRASS THEOREM

We present a variation of the Stone-Weierstass Theorem (see (Rudin, 1976, Theorem 7.32)) we use
in Appendix H to prove a universal approximation theorem.

Theorem 32 (Real Stone–Weierstrass). Let K be a compact metric space and A ⊆ C(K,R) be a
sub-algebra that contains 1K and separates points, i.e., for every k ̸= l ∈ K there is f ∈ A such
that f(k) ̸= f(l). Then A is uniformly dense in C(K,R).

The following corollary (taken from Grebı́k & Rocha (2021)) is another useful description of the
Stone-Weierstrass theorem, and is used as well in the universal approximation proof in Appendix H.

Corollary 33 (Separating Measures). LetK be a compact metric space and E ⊆ C(K,R) be closed
under multiplication, contain 1K, and separate points. Then for every µ ̸= ν ∈ M≤1(K) there is
f ∈ E such that ∫

K
fdµ ̸=

∫
K
fdν

i.e., the linear functionals that correspond to elements of E separate points inM≤1(K).

A.6 THE CUT DISTANCE

The cut distance was introduced by Frieze & Kannan (1999) and provides the central notion of
convergence in the theory of dense graph limits. Here we define the cut distance on graphons
although it can be extended to a more general objects.

Definition 34. Let W be a graphon, its cut norm is defined as:

∥W∥□ := sup
A,B∈[0,1]

∣∣∣∣∫
A×B

W (x, y) dxdy

∣∣∣∣
Built upon this, the cut distance between two graphons is defined as:

Definition 35. Let U , V be graphons, the cut distance is between U , V is

δ□(U, V ) := inf
σ∈S[0,1]

∥Uσ − V ∥□

where S[0,1] is the space of measure preserving bijections from the interval [0, 1] to itself and
Uσ(x, y) := U(σ(x), σ(y)).

A.7 THE CUT NORM

Levie (2023) defines the cut norm to generalize the cut distance on the space of graphons to a
distance function on graphon-signals. We vary the following definition and change the signal output
space from Spheredr(0) := {x ∈ Rd : ∥x∥2 ≤ r}, for any r > 0, to Kd, which is slightly more
general.

Definition 36 (Definition 3.1 (Levie, 2023): Cut Norm of a Signal). For a signal f : [0, 1] → Kd,
the cut norm ∥f∥□ is defined as

∥f∥□ := sup
S⊂[0,1]

∣∣∣∣∫
S

f(x) dµ(x)

∣∣∣∣ , (8)

where the supremum is taken over the measurable subsets S ⊂ [0, 1].

Definition 37 (Cut Norm of a Graphon-signal). We define the graphon-signal cut norm, for measur-
able W,V : [0, 1]2 → R and f, g : [0, 1]→ R, by

∥(W, f)∥□ = ∥W∥□ + ∥f∥□.

We define the graphon-signal cut metric by d□((W, f), (V, g)) = ∥(W, f)− (V, g)∥□.
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A.8 WEIGHED PRODUCT METRIC

We say that a product metric is weighed if there is a vector of weights w⃗ = {wi}ni=1 with positive
entries (wi > 0) such that

d1((x1, . . . , xn), (y1, . . . , yn)) := ∥(w1 · dX1
(x1, y1), . . . , wn · dXn

(xn, yn))∥1.

B ADDITIONAL DISCUSSION

Here, we provide additional high level discussion on different aspects of our construction.

B.1 THE LIMITATION OF OUR CONSTRUCTION TO DENSE GRAPHS

For sparse graphs, the number E of edges is much smaller than the number N2 of vertices squared.
As a result, the induced graphon is supported on a set of small measure. Since graphon are bounded
by 1, this means that induced graphons from sparse graphs are close in L1([0, 1]

2) to the 0 graphon.
DIDM mover’s distance gives a courser topology than cut distance, which is courser thanL1([0, 1]

2).
Hence, since all sparse graph sequences converge to 0 in L1([0, 1]

2), they also converge to 0 in
DIDM distance.

Therefore, we can only use our theory for datasets of graphs that roughly have the same sparsity
level S ∈ N0, i.e., N2/E is on the order of some constant S for most graphs in the dataset. For
this, one can scale our distance by S, making it appropriate to graphs with E ≪ N2 edges, in the
sense that the graphs will not all be trivially close to 0. Our theory does not solve the problem of
sequences of graph asymptotically converging to 0.

In future work, one may develop a fine-grained expressivity theory based sparse graph limit theo-
ries. There are several graph limit theories that apply to sparse graphs, including Graphing theory
Lovász (2020), Benjamini–Schramm limits Abért et al. (2014); Béla & Riordan (2011); Hatami et al.
(2014), stretched graphons Jian et al. (2023); Ji et al. (2024), Lp graphons Borgs et al. (2014a;b),
and graphop theory Ágnes Backhausz & Szegedy (2020), which extends all of the aforementioned
approaches . Future work may extend our theory to sparse graph limits.

B.2 COMPARISON OF SUM MEAN, AND NORMALIZED SUM AGGREGATIONS

See Appendix A.3 for the definition of sum and mean aggregation on attributed graphs. First, (un-
normalized) sum aggregation (Definition 19) does not work in the context of our analysis. Indeed,
given an MPNN that simply sums the features of the neighbors and given the sequence of complete
graphs of sizeN ∈ N0, then, the output of the MPNN on these graphs diverges to infinity as n→∞.
As a result, equivalency of the metric at the output space of MPNNs with a compact metric on the
space of graphs is not possible.

Another popular aggregation scheme is mean aggregation, defined canonically on graphon-signal as
follows (Maskey et al., 2022; 2024).

Definition 38 (Mean Aggregation on Graphon-signals). Let φ be an L-layer MPNN model, (W, f)
be a graph-signal, and t ∈ [L− 1]. Then mean aggregation of (W, f)’s t-level features with respect
to the node x ∈ V (W ) is defined as

Agg(W, f(φ,W, f)
(t)
− )(x) =

1∫
[0,1]

W (x, y)dλ(y)

∫
[0,1]

W (x, y)f(φ,W, f)(t)y dλ(y).

The theory could potentially extend to mean aggregation using two avenues. One approach is to
do this under a limiting assumption: restricting the space to graphs/graphons with minimum node
degree bounded from below by a constant. This is like an idea outlined in Maskey et al. (2024).

A second option is to redefine δDIDM using balanced OT. In this paper, δDIDM highly relates to the
type of computation MPNNs with normalized sum aggregation perform. We used unbalanced OT
(Definition 1) as the basis of δDIDM due to the fact that MPNNs with normalized sum aggregation
do not average incoming messages, which means they can separate nodes of different degrees within
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a graph. MPNNs with mean aggregation, in contrast, do average incoming messages. Hence, an ap-
propriate version of optimal transport, in this case, could be based on averaging. I.e., using balanced
OT on normalized measures could serve as a base for defining metrics in the analysis of MPNNs
with mean aggregation.

B.3 CONPARISON OF OUR GENERALIZATION BOUND TO RELATED WORKS

Both our work and Levie (2023) do not make any assumptions on the graphs and allow a general
MPL scheme. Our classification learning setting generalizes that of Levie (2023), which assumes a
ground truth deterministic class per input, while we consider a joint distribution over the input and
label.

In comparison to other recent works on generalization, Garg et al. (2020); Liao et al. (2021a) as-
sume bounded degree graphs, Morris et al. (2023) assumes graphs with bounded color complexity,
and Maskey et al. (2022; 2024) assume the graphs are sampled from a small set of graphons. More-
over, Garg et al. (2020); Liao et al. (2021a); Morris et al. (2023) do not allow a general MPL s
presented in this paper, so their dependence on N is N−1/2. This means their generalization bound
decays faster as a function of the training set size N . Li et al. (2022) analysis is restricted to graph
convolution networks which are a special case of MPNNs. Tang & Liu (2023) does not focus on
graph classification tasks but on node classification. Oono & Suzuki (2020) focus on transductive
learning in contrast to our inductive learning analysis.

C MPNN ARCHITECTURES: STANDARD AND ALTERNATIVE
FORMULATIONS

Levie (2023) suggest a different MPNN definition for the analysis of MPNNs on graphon-signals.
This definition includes, in addition to update and readout functions, function called message func-
tions. In this section we show that, although our MPNNs definition is, in it essence, a simplified
version of the MPNNs in Levie (2023), the two definition are equivalent in terms of expressivity.
We start with a recap on our standard MPNNs definition.

C.1 STANDARD MPNNS

An MPNN as defined in 7 consists of an initial layer which updates the features, via a learnable
Lipschitz continuous mapping φ(0) : Rp 7→ Rd0 , followed by L layers, each of which consists of
two steps: a message passing layer (MPL) that aggregates neighborhood information, followed by a
node-wise update layer. Here, when we apply the MPNN on graph-signals or graphon-signals, we
assume the MPL to be normalized sum pooling or integration pooling, respectively. The normalized
sum we use can be defined for graphon-signals as follows.
Definition 39 (Normalized Sum Aggregation on Graphon-signals). Let φ be an L-layer MPNN
model, (W, f) be a graph-signal, and t ∈ [L − 1] then normalized sum aggregation of (W, f)’s
t-level features with respect to the node x ∈ V (W ) is defined as

Agg(W, f(φ,W, f)
(t)
− )(x) =

∫
[0,1]

W (x, y)f(φ,W, f)(t)y dλ(y).

The update layer consists of a learnable Lipschitz continuous mapping φ(t) : R2dt−1 7→ Rdt where
1 ≤ t ≤ L is the layer’s index. Each layer computes a representation for each node. For predictions
on the full graph, a readout layer aggregates the node representations into a single graph feature and
transforms it by a learnable Lipschitz function ψ : RdL 7→ Rd for some d ∈ N0. For the readout on
graph-signals and graphon-signals, we use average pooling. The readout layer aggregates represen-
tations across all nodes when a single graph representation is required (e.g. for graph classification).

C.2 ALTERNATIVE MPNNS

We next show how to extend our normalized sum aggregation, used in this paper, to an aggregation
scheme with a function called message function. This aggregation scheme is used in Levie (2023),
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for the analysis of MPNNs on graphon-signals. The idea is that general message functions ϕ depend
both and the feature b at the transmitting node and the feature a at the receiving node of the message,
i.e., ϕ(a, b). In Levie (2023), such a general ϕ(a, b) was approximated by a linear combination of
simple tensors of the form ξrec(a)ξtrans(a) to accommodate the analysis.
Definition 40 (Message Function). Let K ∈ N . For every 1 ≤ k ≤ K, let ξk,rec, ξk,trans : Rd 7→
Rp be Lipschitz continuous functions that we call the receiver and transmitter message functions,
respectively. The corresponding message function ϕ : R2d 7→ Rp is the function

ϕ(a, b) =

K∑
k=1

ξk,rec(a)ξk,trans(b),

where the multiplication is element-wise along the feature dimension.

Given some signal f over the domain X , we see the point x ∈ X as the receiver of the message
ϕ(f(x), f(y)), and y as the transmitter, and call ϕ(f(−), f(−)) : X 2 7→ Rp the message kernel.

Just like with MPNN models, for predictions on the full graph, a readout layer aggregates the
node representations into a single graph feature and transforms it by a learnable Lipschitz function
ψ : RdL 7→ Rd for some d ∈ N0. For the readout, we use average pooling. We now define the
alternative MPNN model.
Definition 41 (Alternative MPNN Model). Let L ∈ N0 and p, d0, . . . , dL, p0, . . . , pL−1, d ∈ N0.
We call the tuple (φ, ϕ) such that φ is any collection φ = (φ(t))Lt=0 of Lipschitz continuous functions
φ(0) : Rp 7→ Rd0 and φ(t) : Rdt−1×pt−1 7→ Rdt , for 1 ≤ t ≤ L, and ϕ is any collection ϕ =
(ϕ(t))Lt=1 of (Lipschitz continuous) message functions ϕ(t) : R2dt−1 7→ Rpt−1 , for 1 ≤ t ≤ L, an L-
layer alternative MPNN model, and call φ(t) update functions. For Lipschitz continuous ψ : RdL 7→
Rd, we call the tuple (φ,ψ) an MPNN model with readout, where ψ is called a readout function.
We call L the depth of the MPNN, p the input feature dimension, d0, . . . , dL the hidden node feature
dimensions, p0, . . . , pL−1 the hidden edge feature dimensions, and d the output feature dimension.

It is possible to define the application of alternative MPNN models not only on graphon-signals,
but on graph-signals, IDMs and DIDMs as well. In this discussion our purpose is to show that our
aggregation schemes are equivalent on graph-signals and graphon-signals.

For our purpose, the application of the alternative MPNN model on graph-signals and graphon-
signals is enough.
Definition 42 (Alternative MPNNs on Graph-signals). Let (φ, ϕ, ψ) be an L-layer alternative
MPNN model with readout, and (G, f) be a graphon-signal where f : V (G) 7→ Rp. The appli-
cation of the MPNN on (G, f) is defined as follows: initialize ĝ

(0)
− := φ(0)(f(−)), and compute the

hidden node representations ĝ(t)− : V (G) → Rdt at layer t, with 1 ≤ t ≤ L and the graphon-level
output F ∈ Rd by

ĝ(t)v := φ(t)
(
ĝ(t−1)
v ,

1

|V (G)|
∑

u∈N (v)

ϕ(t)(ĝ(t−1)
v , ĝ(t−1)

u )
)

and Ĝ := ψ
( 1

|V (G)|
∑

v∈V (G)

ĝ(L)x

)
.

Definition 43 (Alternative MPNNs on Graphon-signals). Let (φ, ϕ, ψ) be an L-layer alternative
MPNN model with readout, and (W, f) be a graphon-signal where f : V (W ) 7→ Rp. The applica-
tion of the MPNN on (W, f) is defined as follows: initialize f̂

(0)
− := φ(0)(f(−)), and compute the

hidden node representations f̂(t)− : V (W ) → Rdt at layer t, with 1 ≤ t ≤ L and the graphon-level
output F ∈ Rd by

f̂(t)x := φ(t)
(
f̂(t−1)
x ,

∫
[0,1]

W (x, y)ϕ(t)(̂f(t−1)
x , f̂(t−1)

y )dλ(y)
)

and F̂ := ψ
(∫

[0,1]

f̂(L)x dλ(x)
)
.

As with the standard MPNN features, to clarify the dependence of f̂ and F̂ on (φ, ϕ) and (w, f), we
often denote f̂(φ, ϕ)

(t)
v or f̂(φ, ϕ,W, f)(t)v , and F̂(φ, ϕ, ψ) or F̂(φ, ϕ, ψ,W, f).

Definition 44 (Alternative Normalized Sum Aggregation on Graphon-signals). Let φ be an L-layer
MPNN model, (W, f) be a graph-signal, and t ∈ [L − 1] then normalized sum aggregation of
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(W, f)’s t-level features with respect to the node x ∈ V (W ) is defined as

Agg(W, f(φ,W, f)
(t)
− )(x) =

∫
[0,1]

W (x, y)ϕ(t)(̂f(t−1)
x , f̂(t−1)

y )dλ(y).

Many well-known MPNNs architectures can be easily expressed as alternative MPNNs. We now
present an examples taken from Levie (2023) of a spectral convolutional network.
Definition 45 (Vector Concatenation). Let a ∈ Rm and b ∈ Rn be two vectors. The concatenation
of a and b, denoted as [a;b], is a vector in Rm+n defined as:

[a;b] =



a1
a2
...
am
b1
b2
...
bn


.

Given a graph-signal (G, f), with f ∈ Rn×d with adjacency matrix A ∈ Rn×n, a spectral convolu-
tional layer based on a polynomial filter filter(λ) =

∑J
j=0 λ

jCj , where Cj ∈ Rd×p, is defined to
be

filter(A)f =

J∑
j=0

1

nj
AjfCj ,

followed by a pointwise non-linearity like ReLU. Such a convolutional layer can be seen as J + 1
MPLs, where each MPL is of the form

f → [f ;
1

n
Af ].

Notice that the action f → 1
nAf is simply the action of a normalized sum aggregation. We first define

φ(0) as the identity function, and then, we define φ(t) = [·; ·] and ϕ(t)(a, b) = b for 0 < t ≤ J , to
get the desired action. Lastly, we define

φ(t)(f) = ReLu(fC)

for some C ∈ R(J+1)d×p, where ReLu(x) = max(x, 0) is a pointwise non-linearity.

C.3 AGGREGATION SCHEMES EXPRESSIVITY EQUIVALENCY

We now show that alternative MPNN models have the same expressive power as
MPNNs with our normalized sum aggregation. Denote AdLL := {̂f(φ, ϕ)(L)− :

HL 7→ KdL |(φ, ϕ) is an L-layer MPNN model} and SdLL := {f(φ)(L)− : HL 7→
KdL |φ is an L-layer MPNN model}. It is clear that the alternative MPNN models are as expressive
as our standard MPNN models. If we set the message function to be ϕ(a, b) := b, the alternative nor-
malized sum aggregation (Definition 44) is equal to the one in Definition 39. This means thatAdL ⊆
SdLL . We now prove Proposition 47, that shows SdLL ⊆ AdL . It follows immediately that the sets
{F̂(φ, ϕ, ψ,−,−) : P(HL) 7→ Kd|(φ, ϕ, ψ) is an L-layer alternative MPNN model with readout}
and {F(φ,ψ,−,−) : HL 7→ KdL |(φ,ψ) is an L-layer MPNN model} are equal. We start by defin-
ing function concatenation and function Cartesian product, which we use in the proof of Proposition
47.
Definition 46 (Function Concatenation). Let f : X 7→ Y and g : X 7→ Z be two functions. We
define function concatenation as the function f ∥ g : X 7→ Y × Z such that pY ◦ (f ∥ g) = f and
pZ ◦ (f ∥ g) = f where pY , pZ are the canonical projections from Y ×Z to Y and Z , respectively.
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Given {fk}Kk=1 a set of functions f : Xk 7→ Yk, we shortly denote f1∥ . . . ∥fK as ∥Kk=1fk.

Proposition 47. Let (φ, ϕ) be an L-layer alternative MPNN model. Then, there exists an MPNN
model φ′ such that,

f̂(φ, ϕ,−,−)(L)− = f(φ′,−,−)(L)− .

Proof. The proof is by induction.

Inducation Base. For L = 0, (φ,ψ) = (φ(0)), that is, the feature do not depend of the aggregation
and therefore, the statement is trivial and we can jsut define φ′ = (φ′(0)) such that φ′(0) = φ(0).

Inducation Assumption. Presume that for any L-layer alternative MPNN model (φ, ϕ) there exists
an L-layer MPNN model φ′ such that f̂(φ, ϕ,−,−)(L)− = f(φ′,−,−)(L)− .

Inducation Step. Let (φ, ϕ) = ((φ(t))t∈[L+1], (ϕ
(t))L+1

t=1 ) be an L+1-layers alternative MPNN
model. Then, ((φ(t))t∈[L], (ϕ

(t))Lt=1) is an L-layer MPNN model. By the induction assumption,
there exists an L-layer MPNN model φ′ such that f̂(φ, ϕ,−,−)(L)− = f(φ′,−,−)(L)− . Following the
message function definition, we can write ϕ(L)(a, b) =

∑K
k=1 ξk,rec(a)ξk,trans(b) for some Lips-

chitz continuous functions {ξk,rec}Kk=1 and {ξk,trans}Kk=1.

Define φ′′, an L+1-layers MPNN model, as follows: for 0 ≤ t < L set φ′′(t) := φ′(t), and set
φ′′(L) := ζ ◦ φ′(L), when ζ(x) := (x) ∥ (∥Kk=1ξk,rec(x)) ∥ (∥

K
k=1ξk,trans(x)) ∈ R(2K+1)p. Define

φ′′(L+1) = φ(L+1) ◦ σ, where σ : R2(2K+1)p 7→ R2p is defines as follows; let v = (vi)
2(K+1)p
i=1 ∈

R2(2K+1)p be a vector, then σ(v) = ((vi)
p
i=1,

∑K
j=1 vp+jv(3K+2)p+j)).

Let (W, f) be a graphon-signal. In the following equations we use a shorten notation and do not
write explicitly the dependence of the features on the graphon-signal, as all features depend on
(W, f). Then,

f(φ′′)(L+1)
x = φ′(L+1)

(
f(φ′′)(L)x ,

∫
[0,1]

W (x, y)f(φ′′)(L)y dλ(y)
)

= φ(L+1) ◦ σ
(
ζ(f(φ′)(L)x ),

∫
[0,1]

W (x, y)(ζ(f(φ′)(L)y ))dy)
)

= φ(L+1) ◦ σ
(
ζ (̂f(φ, ϕ)(L)x ),

∫
[0,1]

W (x, y)(ζ (̂f(φ, ϕ)(L)y ))dy)
)

= φ(L+1)
(̂
f(φ, ϕ)(L)x ,

K∑
k=1

ξk,rec(̂f(φ, ϕ)
(L)
x )

∫
[0,1]

W (x, y)ξk,trans(̂f(φ, ϕ)
(L)
y dy)

)
= φ(L+1)

(̂
f(φ, ϕ)(L)x ,

∫
[0,1]

W (x, y)

K∑
k=1

ξk,rec(̂f(φ, ϕ)
(L)
x )ξk,trans(̂f(φ, ϕ)

(L)
y )dy)

)
= φ(L+1)

(
f̂(φ, ϕ)(L)x ,

∫
[0,1]

W (x, y)ϕ(L+1)(̂f(φ, ϕ)(L)x , f̂(φ, ϕ)(L)y )dy
)

= f̂(φ, ϕ)(L+1)
x

D BASIC METRIC PROPERTIES

D.1 THE WEAK∗ TOPOLOGY

Let L ∈ N0. we motivate the need to prove that dLIDM and OTdLIDM
are well-defined, by the fact that

the measures in ML = M≤1(HL) = M≤1(HL,B(HL)) (and P(HL) = P(HL,B(HL))) are
defined as functions µ : B(HL)→ R. But for any topological space X , its σ-algebra B(X ) depends
on the topology of X . In the case of HL, the topology is the product topology, when Mi, for
i ∈ [L] has the weak∗ topology, which makes it crucial for OTdiIDM

to metrize the weak∗ topology
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on M≤1(HL) and P(HL); otherwise the sets M≤1(HL,B(HL)) and M≤1(HL, dLIDM) might be
two different sets.

The well definiteness of the metric dLIDM onHL and OTdLIDM
on P(HL) follow similar arguments

used in Böker et al. (2023). Let (X , d) be a complete separable metric space. Böker et al. (2023)
showed that the unbalaced optimal transport, as we define it (see Definition 1) is indead a metric on
M≤1(S) by following the proof of Pele & Werman (2008).

Moreover, they show that this metric metrizes the weak∗ topology of M≤1(S) by proving inequal-
ities that are known to hold for probability measures, to measures with total mass smaller then one.
They follow proofs outlined in Schay (1974) and Garcı́a-Palomares & Giné (1977), which use the
duality of linear programming.
Lemma 48. Let (X , d) be a complete separable metric space with Borel σ-algebra B. Then OTd

is well defined and metrizes the weak∗ topology of M≤1(X ) and P(X ).

We can now follow the proof of Lemma 24. in Böker et al. (2023) and prove Theorem 4.
Theorem 4. Let L ∈ N0. The metrics dLIDM on HL and OTdLIDM

on P(HL) and M≤1(HL) are
well-defined. Moreover, OTdLIDM

metrizes the weak∗ topologies of M≤1(HL) and P(HL).

Proof. We start with the fact that (H0, d0IDM) = (Kp, ∥·∥2) and therefore d0IDM is well defined. As
Kp is a complete separable metric space (a compact sub space of Rp), by Lemma 48, convergence in
OTd0IDM

is equivalent to weak∗ convergence on M≤1(H0, d0IDM) and P(H0, d0IDM) which is just
weak∗ convergence on M≤1(H0,B(H0)) and P(H0,B(H0)), respectively. Hence, the topology
induced by OTd0IDM

is equal to the weak∗ topology on M≤1(H0,B(H0)) and P(H0,B(H0)) as
both spaces are metrizable. The induction step follows the same arguments with the additional claim
that dLIDM is a product metric, which metrizes the product topology.

D.2 COMPACTNESS

Let K be a compact space. A well-established result (Kechris, 2012, Section 17) in measure theory
states that the space, M≤1(K), is equivalent to the set of non-negative Radon measures of total mass
at most 1. The Riesz Representation Theorem (Rudin, 1986, Theorem 6.19) establishes that these
measures correspond precisely to the non-negative linear functionals with norm at most 1 in the
dual space of continuous real-valued functions on K, C(K,R). The weak∗ topology on M≤1(K) is
defined as the minimal topology that ensures continuity of the mappings:∫

K
fdνn 7→

∫
K
fdν

for all continuous real-valued functions f on K. A fundamental result asserts that M≤1(K), when
endowed with the weak∗ topology, forms a compact metrizable space. Moreover, the Borel σ-
algebra generated by this weak∗ topology is identical to the conventional Borel structure on M≤1(K)
induced by the mappings:

A 7→ ν(A), A ∈ B(K)
where B(K) denotes the Borel sets of K (Kechris, 2012, Section 17).
Theorem 3. The spacesHL and P(HL) are compact spaces for any L ∈ N0.

Proof. The proof is done using induction.

Induction Base. Recall that H0 = (Kp, ∥·∥) is a compact metric space. As unbalanced optimal
transport metrizes the weak∗ topology on M≤1(H0) and P(H0), they both form compact metriz-
able spaces.

Induction Assumption. Presume that for any 0 < L, the spaces Hi, M≤1(Hi), and P(Hi) are
compact spaces for i ∈ [L− 1].

Induction Step. Let 0 < L. Tychonoff’s theorem (see Theorem 25) states that the product of any
collection of compact topological spaces is compact with respect to the product topology. As dLIDM
metrize the product topology, we can combine Tychonoff’s theorem with the induction assumption
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and conclude that HL =
∏

0≤i<L M≤1(Hi) is compact. We can now use the same argument as
in the induction base, i.e., unbalanced optimal transport metrizes the weak∗ topology on M≤1(H0)
and P(H0), to conclude that both M≤1(HL) and P(HL) with the topology induced by OTdLIDM

form compact spaces.

E COMPUTABILITY OF OUR METRICS

First, we extend (Schmitzer & Schnörr, 2013, Proposition 4.5) for couplings between measures with
unequal mass, by follows the steps in the original proof. We emphasize that in Proposition 49, Γ
and γ do not refer to Definition 2.

Proposition 49. For two discrete sets A, C and two measurable maps ϕa : X → A, ϕb : Y → C
denote by ϕ the product map ϕ(x, y) = (ϕa(x), ϕb(y)). Then one finds

ϕ∗Γ(µ, ν) = Γ(ϕa∗µ, ϕb∗ν)

when ϕ∗Γ(µ, ν) := {γ : γ = ϕ∗γ
′ : γ′ ∈ Γ(µ, ν)}.

Proof. Assume ∥µ∥ ≤ ∥ν∥. For any γ ∈ Γ(µ, ν) we get

(ϕ∗γ)(S) = γ(ϕ−1(S)) ≥ 0.

when S ⊆ A× C a measurable subset, and

(ϕ)∗γ(SA × C) = γ(ϕ−1
a (SA)×X ) = (p1)∗γ(ϕ

−1
a (SA))

= µ(ϕ−1
a (SA)) = (ϕa)∗µ(SA)

when SA ⊆ A a measurable subset and analogous for SC ⊆ C a measurable subset

(ϕ)∗γ(A× SC) = γ(X × ϕb(SC) = (p1)∗γ(ϕ
−1
a (SC))

≤ ν(ϕ−1
a (SC)) = (ϕa)∗ν(SC).

Thus (ϕ)∗Γ(µ, ν) ⊆ Γ((ϕa)∗µ, (ϕb)∗ν).

We now show by construction for any ρ ∈ Γ(ϕa∗µ, ϕb∗ν) the existence of some γ ∈ Γ(µ, ν) such
that ρ = (ϕ)∗γ. For any element (a, c) ∈ A× C construct the pre-image measure

γ(a,c)(x, y) =

{
0 if ρ(a, c) = 0 ∨ (a, c) ̸= ϕ(x, y)

µ(x)ν(y)
((ϕa)∗µ)(a)((ϕb)∗ν)(c)

ρ(a, c) else

where this element wise definition for each (x, y) is extended to all subsets of X × Y by

γ(a,c)(S) =
∑

(x,y)∈S

γ(a,c)(x, y)

when S is any measurable subset of X ×Y . Now consider γ =
∑

(a,c)∈A×C γ(a,c). First verify that
it is indeed contained in Γ(µ, ν):

γ(S) ≥ 0 : ∀ measurable S ⊆ X × Y.

since γ(x, y) ≥ 0 for all (x, y). Furthermore
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γ(SX × Y) =
∑
x∈SX
y∈Y

∑
(a,c)∈A×C:
ϕ(x,y)=(a,c),
ρ(a,c)>0

µ(x)ν(y)

((ϕa)∗µ)(a)((ϕb)∗ν)(c)
ρ(a, c)

=
∑
x∈SX

∑
c∈C:

ρ(ϕa(x),c)>0

µ(x)(
∑
y:ϕb(y)=c

ν(y))

((ϕa)∗µ)(ϕa(x))((ϕb)∗ν)(c)
ρ(ϕa(x), c)

=
∑
x∈SX

∑
c∈C:

ρ(ϕa(x),c)>0

µ(x)ν(ϕ−1
b (c))

((ϕa)∗µ)(ϕa(x))((ϕb)∗ν)(c)
ρ(ϕa(x), c)

=
∑
x∈SX

µ(x)

((ϕa)∗µ)(ϕa(x))

∑
c∈C:

ρ(ϕa(x),c)>0

ρ(ϕa(x), c)

=
∑
x∈SX

µ(x)

((ϕa)∗µ)(ϕa(x))
(p1)∗ρ(ϕa(x))

=
∑
x∈SX

µ(x)

((ϕa)∗µ)(ϕa(x))
(ϕa)∗µ(ϕa(x)) =

∑
x∈SX

µ(x) = µ(SX )

for all measurable subsets SX ⊆ X and likewise

γ(X × SY) ≤ ν(SY).

γ(X × SY) =
∑
y∈SY
x∈X

∑
(a,c)∈A×C:
ϕ(x,y)=(a,c),
ρ(a,c)>0

µ(x)ν(y)

((ϕa)∗µ)(a)((ϕb)∗ν)(c)
ρ(a, c)

=
∑
y∈SY

∑
a∈A:

ρ(a,ϕb(y))>0

(
∑
x:ϕb(x)=a

µ(x))ν(y)

((ϕa)∗µ)(a)((ϕb)∗ν)(ϕb(y))
ρ(ϕa(x), c)

=
∑
y∈SY

∑
a∈A:

ρ(a,ϕb(y))>0

µ(ϕ−1
a (a))ν(y)

((ϕa)∗µ)(a)((ϕb)∗ν)(ϕb(y))
ρ(a, ϕb(y))

=
∑
y∈SY

ν(y)

((ϕb)∗ν)(ϕb(y))

∑
a∈A:

ρ(a,ϕb(y))>0

ρ(a, ϕb(y))

=
∑
y∈SY

ν(x)

((ϕb)∗ν)(ϕb(y))
(p2)∗ρ(ϕa(y))

≤
∑
y∈SY

ν(y)

((ϕb)∗ν)(ϕb(y))
((ϕb)∗ν)(ϕb(y)) =

∑
y∈SY

ν(x) = ν(SA)

for all measurable subsets SY ⊆ Y . Now check whether ϕ∗γ = ρ:
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(ϕ)∗γ(S) = γ(ϕ−1(S)) =
∑

(x,y)∈ϕ−1(S)

γ(x, y)

=
∑

(x,y)∈ϕ−1(S):
ρ(ϕ(x,y))>0

µ(x)ν(y)

((ϕa)∗µ)(ϕa(x))((ϕb)∗ν)(ϕb(y))
ρ(ϕ(x, y))

=
∑

(a,c)∈S
ρ((a,c))>0

∑
(x,y)∈ϕ−1((a,c))

µ(x)ν(y)

((ϕa)∗µ)(a)((ϕb)∗ν)(c)
ρ(a, c)

=
∑

(a,c)∈S
ρ((a,c))>0

(
∑
x∈ϕ−1

a (a) µ(x))(
∑
y∈ϕ−1

b (c) ν(y))

((ϕa)∗µ)(a)((ϕb)∗ν)(c)
ρ(a, c)

=
∑

(a,c)∈S
ρ((a,c))>0

ρ(a, c) = ρ(S)

when S is a measurable subset ofX×Y . Consequently any ρ ∈ Γ((ϕa)∗µ, (ϕb)∗ν) is also contained
in ϕ∗Γ(µ, ν) and the two sets are equal.

(Chen et al., 2022, Lemma A.1) is now easily extended to measures with unequal mass. Although
the proof is equivalent to the one in Chen et al. (2022), we will add it here for completeness.
Lemma 50. Let X ,Y be finite metric spaces and let (Z, dZ) be a complete and separable metric
space. Let ϕX : X → Z and ϕY : Y → Z be measurable maps. Consider any µX ∈M≤1(X ) and
µY ∈M≤1(Y). Then, we have that

OTd((ϕX )∗µX , (ϕY)∗µY) = inf
γ∈Γ(µX ,µY)

∫
X×Y

d(ϕX (x), ϕY(y))γ(dx× dy).

Proof. Since X and Y are finite, ϕX (X ) and ϕY(Y) are discrete sets. Then, if we let ϕ := ϕX ×ϕY ,

(ϕ)∗Γ(µX , µY) = Γ((ϕY)∗µX .(ϕY)∗µY)

follows directly from Proposition 49.

Hence,

OTd((ϕX )∗µX , (ϕY)∗µY) = inf
γ∈Γ((ϕX )∗µX ,(ϕY)∗µY)

∫
Z×Z

dZ(z1, z2)γ(dz1 × dz2)

= inf
γ∈Γ(µ,ν)

∫
Z×Z

dZ(z1, z2)ϕ∗γ(dz1 × dz2)

= inf
γ∈Γ(µ,ν)

∫
X×Y

dZ(ϕX (x), ϕY(y))γ(dx× dy).

Now, following the constraction of the algorithms used to compute the Weisfeiler-Lehman metric
in Chen et al. (2022) and the metrics presented in Grebı́k & Rocha (2021), we phrase an algorithm
for computing δLDIDM for L ∈ N0. We note that instead of using a min-cost-flow algorithm Pele
& Werman (2009) to solve the unbalanced optimal transport problem, we use linear programming
Flamary et al. (2021) as it is more convenient when working with real values (instead of integers).
The unbalaced optimal transport problem can casted into a regular optimal transport problem by
adding reservoir points in which the surplus mass is sent Chapel et al. (2020).
Theorem 6. For any fixed L ∈ N0, δLDIDM between any two graph-signals (G, f) and (H,g) can
be computed in time polynomial in L and the size of G and H , namely O(L · N5 log(N)) where
N = max(|V (G)| , |V (H)|).
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Proof. From Lemma 50 we have that

δLDIDM((G, f), (H,g)) := OT
(
Γ(G,f),L,Γ(H,g),L

)
= OT

((
γ(G,f),L

)
∗ λV (G),

(
γ(H,g),L

)
∗ λV (H)

)
= inf
γ∈Γ(λV (G),λV (H))

∫
V (G)×V (H)

dLIDM

(
γ(G,f),L(x), γ(H,g),L(y)

)
γ(dx× dy).

In order to compute δLDIDM((G, f), (H,g)), we must first compute dLIDM

(
γ(G,f),L(x), γ(H,g),L(y)

)
for each x ∈ V (G) and y ∈ V (H). To do this, we introduce some notation. For each i = 1, . . . , L,
we let Ci, Di denote the |V (G)| × |V (H)| matrices such that for each x ∈ V (G) and y ∈ V (H),

Ci(x, y) := diIDM

(
γ(G,f),i(x), γ(H,g),i(y)

)
, Di(x, y) := OTi

(
γ(G,f),i(x)(i), γ(H,g),i(y)(i)

)
.

We also let C0 denote the matrix such that C0(x, y) := ∥f(x) − g(y)∥ for each x ∈ V (G) and
y ∈ V (H). Then, our task is to compute the matrix CL. For this purpose, we consecutively
compute the matrices Ci and Di for i = 1, . . . , L. Given matrix Ci−1, since γ(G,f),i(x)(i) =(
γ(G,f),i−1(x)

)
∗ ν(G,f) and γ(H,g),i(y)(i) =

(
γ(H,g),i−1(y)

)
∗ ν(H,g), computing

OTi
(
γ(G,f),i(x)(i), γ(H,g),i(y)(i)

)
= inf
γ∈Γ(ν(G,f),ν(H,g))

∫
V (G)×V (H)

di−1
IDM

(
γ(G,f),i−1(x), γ(H,g),i−1(y)

)
γ(dx× dy).

is reduced to solving the optimal transport problem with Ci−1 as the cost matrix and ν(G,f) and
ν(H,g) as the source and target distributions, which can be done in O(N3 log(N)) time (Flamary
et al., 2021; Chapel et al., 2020). Thus, for each i, computing Di given that we know Ci−1 requires
O(N2 · N3 log(N)). To get Ci, all that remains is to compute the sum Di + Ci−1. Finally, we
need O(N3 log(N)) time to compute δLDIDM((G, f), (H,g)) based on solving an optimal transport
problem with cost matrix CL and with λV (G) and λV (H) being the source and target distributions.

Therefore, the total time needed to compute δLDIDM((G, f), (H,g)) is

L ·O(N5 log(N)) +O(N3 log(N)) = O(L ·N5 log(N)).

For any N ∈ N0, δLDIDM generates a distance between two graph-signls with number of vertices
bounded by N .

F EQUIVALENCY OF MPNNS ON GRAPHS, GRAPHONS, AND DIDMS

Here, we show that, first, for a graph-signal (G, f), the output of an MPNN on G is equal to the
output of the MPNN on the corresponding induced graphon-signal (WG, ff ), similarly to of (Böker
et al., 2023, Appendix C.1).

Lemma 51. Let (G, f) be a graph-signal and φ be an L-layer MPNN model. Let (Iv)v∈V (G) be the
partition of [0, 1] used in the construction of (WG, ff ) from (G, f). Then, for all t ∈ [L], v ∈ V (G),
and x ∈ Iv ,

f(t)x := f(φ,WG, ff )
(t)
x = g(φ,G, f)(t)v =: g(t)v .

Proof. We prove the claim by induction on t.

Base of the induction. For all v ∈ V (G) and x ∈ Iv ,

f(0)x = φ(0) ◦ ff (x) = φ(0) ◦ f(v) = g(0)v .
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Induction step. The induction assumption is that f(t−1)
x = g

(t−1)
v for all v ∈ V (G) and x ∈ Iv .

Then, for all v ∈ V (G) and x ∈ Iv , we have

f(t)x = φ(t)

(
f(t−1)
x ,

∫
[0,1]

WG(x, y)f
(t−1)
y dy

)
= φ(t)

f(t−1)
x ,

∑
u∈V (G)

∫
Iu

WG(x, y)f
(t−1)
y dy


= φ(t)

g(t−1)
v ,

∑
u∈V (G)

∫
Iu

WG(x, y)g
(t−1)
u dy


= φ(t)

g(t−1)
v ,

1

|V (G)|
∑

u∈N (v)

g(t−1)
u

 = g(t)v .

Lemma 52. Let (G, f) be a graph, let (φ,ψ) be an L-layer MPNN model with readout. Let
(Iv)v∈V (G) be the partition of [0, 1] used in the construction (WG, ff ) from (G, f). Then,

G := G(φ,ψ,G, f) = F(φ,ψ,WG, ff ) =: F.

Proof. With Theorem 51, we get

F = ψ

(∫
[0,1]

f(L)x dλ(x)

)
= ψ

 ∑
v∈V (G)

∫
Iv

f(L)x dλ(x)


= ψ

 ∑
v∈V (G)

∫
Iv

g(L)v dλ(x)


= ψ

 1

|V (G)|
∑

v∈V (G)

g(L)v

 = G.

Next, we show that the output of a MPNN on a graphon-signal (W, f) equals the output of the
MPNN on the corresponding distribution of computation IDMs Γ(W,f) of (W, f). The following
lemma is related to the absolute continuity of weighted Lebesgue measures with respect to the
Lebesgue measure.
Lemma 53. (Billingsley, 1995, Theorem 16.11.) Let δ : [0, 1] 7→ R be a nonnegative measurable
function and A ⊆ [0, 1] be any measurable set. Denote the measure νδ(A) :=

∫
A
δdλ. Then, a

measurable function f : [0, 1] 7→ R is integrable with respect to νδ(A) if and only if fδ is integrable
with respect to λ, in which case

∫
A
fdνδ =

∫
A
fδdλ.

Lemma 54. Let (W, f) ∈ WSd a graphon-signal and φ be a L-layer MPNN model. Then, for
every t ∈ [L] and almost every x ∈ [0, 1],

f(t)x = f(φ,W, f)(t)x = h(t)(φ)γ(W,f),t(x) = h
(t)
γ(W,f),t(x)

Proof. We prove by induction on t.

Induction Base. We have by definition

f(0)x = φ(0) ◦ f(x) = h
(0)
γ(W,f),0(x)

.

Induction Assumption. Let 1 ≤ t ≤ L. We assume that

f(t−1)
x = h

(t−1)
γ(W,f),t−1(x)

for almost every x ∈ [0, 1].
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Induction Step. We have

f(t)x = φ(t)

(
f(t−1)
x ,

∫
[0,1]

W (x, y)f(t−1)
y (x, y)dλ(y)

)
Recall that for any A ∈ B(Ht−1),

(γ(W,f),t(x)(t))(A) =

∫
γ−1
(W,f),t−1

(A)

W (x, y)dy.

Consider the weighted measure Lebesgue νW (x,−)(A) :=
∫
AW (x, y)dλ(y),

γ(W,f),t(x)(t) = (γ(W,f),t−1)∗νW (x,−).

Hence, by Lemma 53 with δ =W (x,−) and f = h
(t−1)
− , we have

h
(t)
γ(W,f),t(x)

= φ(t)
(
h
(t−1)
pt,t−1(γ(W,f),t)

,

∫
Ht−1

h
(t−1)
− dpt(γ(W,f),t(x))

)
= φ(t)

(
h(t−1)
γ(W,f),t−1

,

∫
Ht−1

h
(t−1)
− dγ(W,f),t(x)(t)

)
= φ(t)

(
h(t−1)
γ(W,f),t−1

,

∫
H(t−1)

h
(t−1)
− d(γ(W,f),t−1)∗ν(W,f)(x,−)

)
= φ(t)

(
h(t−1)
γ(W,f),t−1

,

∫
[0,1]

h
(t−1)
− ◦ γ(W,f),t−1(y)dν(W,f)(x,−)(y)

)
= φ(t)

(
h(t−1)
γ(W,f),t−1

,

∫
[0,1]

W (x, y)h
(t−1)
γ(W,f),t−1(y)

dy
)
,

Hence, by the induction assumption,

f(t)x = h
(t)
γ(W,f),t(x)

Lemma 55. Let (W, f) ∈ WS, let (φ,ψ) be an L-layer MPNN model with readout, then

F := F(φ,ψ,W, f) = H(φ,ψ,Γ(W,f),L) =: H

Proof. Recall that for any A ∈ B(Mt−1),

Γ(W,f),L(A) =

∫
γ−1
(W,f),L

(A)

y.

So,
Γ(W,f),L = (γ(W,f),L)∗λ.

Equality follows from the above remark and Theorem 54.

H = ψ

(∫
HL

h
(L)
− dΓ(W,f),L

)
= ψ

(∫
HL

h
(L)
− d(γ(W,f),L)∗λ

)
= ψ

(∫
[0,1]

h
(L)
γ(W,f),L(x)dλ(x)

)

= ψ

(∫
[0,1]

f(L)x dλ(x)

)
= F.
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Hence, it suffices to consider MPNNs on DIDMs. We can summerazie the results of this section in
the following lemma.
Lemma 11. Let (W, f) be a graphon-signal and (φ,ψ) an L-layer MPNN model with readout.
Then, given the computation IDMs {γ(W,f),t}Lt=0 and DIDM Γ(W,f),L, we have that f(φ,W, f)(t)x =

h(φ)
(t)
γ(W,f),t(x)

for any t ∈ [L], x ∈ [0, 1]. Similarly, F(φ,ψ,W, f) = H(φ,ψ,Γ(W,f),L).

G LIPSCHITZ CONTINUITY OF MPNNS WITH RESPECT TO OUR METRICS

In this section, we prove that MPNNs are Lipschitz continuous, following the proofs in Appendix
C.2.5. Grebı́k & Rocha (2021).
Definition 56. Let X , Y be two metric spaces. Let M ∈ Lip(X ,Y), where Lip(X ,Y) is the space
of Lipschitz continuous mappings X 7→ Y. We define the function ∥·∥L : Lip(X ,Y)→ R+ by

∥M∥L = inf
L
{L : L is a Lipschitz constant of M}.

Note that ∥·∥L is a seminorm over Lip(X ,Y).
Definition 57. Let X , Y be two metric spaces. Let M ∈ Lip(X ,Y), where Lip(X ,Y) is the space
of Lipschitz continuous mappings X 7→ Y. The ℓ∞-norm over Lip(X ,Y) is defined by

∥M∥∞ = sup
x∈X
|M(x)|

Definition 58. Let X , Y be two metric spaces. Let Lip(X ,Y) be the space of Lipschitz continuous
mappings X 7→ Y. We define the Bounded-Lipschitz function over Lip(X ,Y) as

∥ · ∥BL := ∥·∥∞ + ∥·∥L ,
when ∥·∥L and ∥·∥∞ are defined in Definition 56 and Definition 57, respectively.

Note that as ∥·∥∞ is a norm and ∥·∥L is a semi norm then ∥·∥BL is a seminorm as well. The next
claim is a trivial result of Claim 23. in Böker et al. (2023).
Claim 59. Let f : S → Rn be Lipschitz. Then,∥∥∥∥∫

S

fdµ−
∫
S

fdν

∥∥∥∥
2

≤ ∥f∥BL ·
(
(∥µ∥ − ∥ν∥) +

∫
S×S

d(x, y)dγ(x, y)

)
for every γ ∈ Γ(µ, ν), where γ is a coupling as defined in Section 2 and ∥ · ∥BL is the Bounded-
Lipschitz seminorm over Lip(S,Rn), when Lip(S,Rn) is the space of Lipschitz continuous map-
pings S 7→ Rn.
Theorem 13. Let φ be an L-layer MPNN model. Then, there exists a constant Cφ, that depends
only on L, the number of layers, and the Lipschitz constants of model’s update functions, such that

∥h(φ, α)(L) − h(φ, β)(L)∥2 ≤ Cφ · dLIDM(α, β)

for all α, β ∈ HL. If φ has a readout function ψ, then, for all µ, ν ∈P(HL), there exists a constant
C(φ,ψ), that depends only on Cφ and the Lipschit constant of the model’s readout function, such that

∥H(φ,ψ, µ)− H(φ,ψ, ν)∥2 ≤ C(φ,ψ) ·OTdLIDM
(µ, ν).

For anL-layer MPNN modelφ = (φ(t))Lt=0, we define a constant, which we later show is a Lipschitz
constant of h(φ)(L)− , by Cφ := CLφ , when Ctφ ≥ 0 is inductively defined for t ∈ {0, . . . , L} by

Ctφ :=
{
∥φ(0)∥L : if t = 0

If additionally the MPNN model has a readout function ψ, then we define another constant, which
we later show is a Lipschitz constant of H(φ,ψ,−)(L), by

C(φ,ψ) := ∥ψ∥L (
∥∥∥h(L)−

∥∥∥
∞

+ Cφ).

We now use Claim 59 to prove the MPNN’s Lipschitz property. We show that, given an L-layer
MPNN model φ and a readout function ψ, Cφ and C(φ,ψ) are Lipschitz constants of h(φ)(L)− and
H(φ,ψ,−), respectively.
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Proof. Let us now prove the first inequality of Theorem 13 by induction on L.

Induction Base. For L = 0, φ = (φ(0)). Thus the statement trivially holds since φ(0) is Lipschitz
and h

(0)
α = φ(0)(α).

Induction Assumption. We assume that the statement hold for L− 1 for L > 0

Induction Step. Now the MPNN model is φ = (φ)t∈[L]. We use the notation h
(L)
− instead of h(φ)(L)− .

For the inductive step, we have, by Claim 59 and the induction hypothesis, for all α, β ∈ HL.

∥h(L)α − h
(L)
β ∥2

=

∥∥∥∥φ(L)

(
h
(L−1)
pL,L−1(α)

,

∫
HL−1

h
(L−1)
− dpL(α)

)
− φ(L)

(
h
(L−1)
pL,L−1(β)

,

∫
HL−1

h
(L−1)
− dpL(α)

)∥∥∥∥
2

≤
∥∥∥φ(L)

∥∥∥
L

(∥∥∥h(L−1)
pL,L−1(α)

− h
(L−1)
pL,L−1(β)

∥∥∥
2
+

∥∥∥∥∫
HL−1

h
(L−1)
− dpL(α)−

∫
HL−1

h
(L−1)
− dpL(β)

∥∥∥∥
2

)
≤
∥∥∥φ(L)

∥∥∥
L
(∥h(L−1)

− ∥LdL−1
IDM(pL,L−1(α), pL,L−1(β)) + ∥h(L−1)

− ∥BLOTdLIDM
(pL(α), pL(β))

≤ 2
∥∥∥φ(L)

∥∥∥
L
∥h(L−1)

− ∥BLd
L
IDM(α, β) = 2

∥∥∥φ(L)
∥∥∥
L
(∥h(L−1)

− ∥∞ + ∥h(L−1)
− ∥L) · dLIDM(α, β)

= 2
∥∥∥φ(L)

∥∥∥
L
(∥h(L−1)

− ∥∞ + CL−1
φ ) · dLIDM(α, β) = CLφd

L
IDM(α, β) = Cφd

L
IDM(α, β).

The second inequality results from combining induction assumption with Claim 59. Hence, we get
the first part of Theorem 13. The second part then follows from the first by a similar reasoning. For
all µ, ν ∈P(HL) we have

∥h(φ,ψ, µ)− h(φ,ψ, ν)∥2 =

∥∥∥∥ψ(∫
HL

h
(L)
− dµ

)
− ψ

(∫
HL

h
(L)
− dν

)∥∥∥∥
2

≤ ∥ψ∥L

∥∥∥∥∫
HL

h
(L)
− dµ−

∫
HL

h
(L)
− dν

∥∥∥∥
2

≤ ∥ψ∥L
∥∥∥h(L)−

∥∥∥
BL

OTdLIDM
(µ, ν)

= ∥ψ∥L
(∥∥∥h(L)−

∥∥∥
∞

+
∥∥∥h(L)−

∥∥∥
L

)
OTdLIDM

(µ, ν)

= ∥ψ∥L
(∥∥∥h(L)−

∥∥∥
∞

+ CLφ

)
OTdLIDM

(µ, ν)

= ∥ψ∥L
(∥∥∥h(L)−

∥∥∥
∞

+ Cφ

)
OTdLIDM

(µ, ν)

= C(φ,ψ)OTdLIDM
(µ, ν)

The second inequality is a result of Claim 59 and the Lipschitzness from the first part of Theorem
13. For the sake of completeness, we state Theorem 13 as an epsilon-delta statement.

Theorem 60. Let d > 0 be fixed. For every L ∈ N0, C > 0, and ε > 0, there is a δ > 0 such
that, for all order-t DIDMs µ and ν, if OTdtIDM

(µ, ν) ≤ δ, then ∥H(φ,ψ, µ) − H(φ,ψ, ν)∥2 ≤ ε

for every L-layer MPNN model φ with readout function ψ : RdL → Rd with C(φ,ψ) ≤ C.

Proof. Follows immediately from Theorem 13.

H UNIVERSALITY OF MESSAGE-PASSING GRAPH NEURAL NETWORKS

In this section we prove our universal approximation theorem for MPNNs on IDMs and DIDMs,
showing the sets N 1

t and NN 1
t are dense in C(Ht,R) and C(P(Ht),R), respectively. The proofs

of Lemma 62, Theorem 15, follow the proofs of Lemma 25, Theorem 4, and Theorem 6 in Böker
et al. (2023), respectively. This follows by inductively applying Stone–Weierstrass theorem, cf.
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Appendix A.5, to the set N 1
t . Given that N 1

t satisfies all requirements of the Stone–Weierstrass
theorem, Corollary 12 yields that N 1

t+1 separates points, which allows us to show that N 1
t+1 again

satisfies all requirements of the Stone-Weierstrass theorem. We recall the canonical projections were
denoted by pL,j : HL 7→ Hj and pL : HL →ML, when j ≤ L < ∞. We first introduce function
Cartesian product.
Definition 61 (Function Cartesian Product). Let f : X1 7→ Y and g : X2 7→ Z be two functions.
We define function Cartesian product as the function f × g : X1 × X2 7→ Y × Z such that (f ×
g)((x1, x2)) = (f(x1), g(x2)) for (x1, x2) ∈ X1 ×X2.
Lemma 62. Let 0 ≤ t <∞. The set N 1

t are closed under multiplication and linear combinations,
contains 1Ht and separates points ofHt.

Proof. We will now prove the lemma inductively.

Induction Base. For t = 0, the claim trivially holds as N 1
0 contains precisely the functions

f : H0 7→ R that are Lipschitz continuous which contains 1H0 , and closed to multiplication and
addition.

Induction Assumption. We assume the sets N 1
t is closed under multiplication and linear

combinations, contains 1Ht and separates points ofHt.

Induction Step. Let t + 1. Clearly N 1
t+1 contains the all-one function 1Ht+1 since we can

always choose φ(t+1) in an MPNN model to be the all-one function on any of the two inputs. Let φ,
φ′ be two (t+ 1)-layer MPNN models. Define Ξk,mul(x, y) := x · y and Ξk,add(x, y) := x+ c · y
for all x, y ∈ R, where c ∈ R is fixed. Then, define the MPNN model

φmul := (φ(0) × φ′(0), . . . , φ(t) × φ′(t),Ξk,mul ◦ (φ(t+1) × φ′(t+1)
))

and define φadd analogously via Ξk,add. Note that Ξk,mul and Ξk,add are in fact MPNN models
since multiplication and addition on a compact, and hence, a bounded subset of R2 is Lipschitz
continuous

Let α, β ∈ Ht+1 with α ̸= β. We consider two cases: either pt+1(α) ̸= pt+1(β) or pt+1,t(α) ̸=
pt+1,t(β). We start with the first case, i.e., pt+1(α) ̸= pt+1(β). By the induction hypothesis, the
set N 1

t is closed under multiplication and linear combinations, contains 1Ht , and separates points
of Ht. Hence, it is a sub-algebra of C(Ht,R) that separates points and contains the constants. By
the Stone–Weierstrass theorem, N 1

t is dense in C(Ht,R). Corollary 33 then entails that there is a
t-layer MPNN model φ with output dimension one such that∫

Ht

h(φ)
(t)
− dpt+1(α) ̸=

∫
Ht

h(φ)
(t)
− dpt+1(β).

Define the (t + 1)-layer MPNN model φ′ := (φ′(i))t+1
i=0, where φ′(i) = φ(i) for i ∈ [t] and

φ′(t+1)(x, y) := y for every (x, y) ∈ R2. Then, φ′ ∈ N 1
t , separates α and β since

h(t+1)(φ′, α) =

∫
Ht

h(φ′)
(t)
− dpt+1(α)

= h(φ)
(t)
− dpt+1(α) ̸=

∫
Ht

h(φ)
(t)
− dpt+1(β)

=

∫
Ht

h(φ′)
(t)
− dpt+1(β) = h(t+1)(φ′, β).

In the second case, where pt+1,t(α) ̸= pt+1,t(β), we have that, from the induction assumption, there
exists a t-layer MPNN model φ̂ such that h(φ̂)(t)pt+1,t(α)

̸= h(φ̂)
(t)
pt+1,t(β)

. Define the (t + 1)-layer

MPNN model φ̂′ := (φ̂′(i))t+1
i=0, where φ̂′(i) = φ̂(i) for i ∈ [t] and φ̂′(t+1)(x, y) := x for every

(x, y) ∈ R2. Then, φ̂′ ∈ N 1
t separates α and β since

h(φ̂′)(t+1)
α = h(φ̂′)

(t)
pt+1,t(α)

= h(φ̂)
(t)
pt+1,t(α)

̸= h(φ̂)
(t)
pt+1,t(β)

= h(φ̂′)
(t)
pt+1,t(β)

= h(φ̂′)
(t+1)
β .
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With Lemma 62, we immediately obtain Theorem 15, which we restate here for better readability.

Theorem 15 (Universal Approximation). Let L ∈ N0. Then, the set N 1
L is uniformly dense in

C(HL,R) and the set NN 1
L is uniformly dense in C(P(HL),R).

Proof. By Lemma 62, the Stone–Weierstrass theorem is applicable to N 1
L, and hence, N 1

L is dense
in C(HL,R). We can then use this to show that NN 1

L is dense in C(P(HL),R). By the same
arguments as in the first case of the inductive step in the proof of Lemma 62, NN 1

L is closed
under multiplication and linear combinations, contains the all-one function, and separates points of
P(HL). Hence, an application Corollary 33 yields that NN 1

L is dense in C(P(HL),R).

Theorem 15 then yields Corollary 12. To prove Corollary 12, we follow the proof of Corollary 5. in
Böker et al. (2023).

Corollary 12. Let L ∈ N0 and d > 0 be fixed. Let ν ∈ P(HL) and (νi)i be a sequence with
νi ∈P(HL). Then, νi → ν if and only if H(φ,ψ, νi)→ H(φ,ψ, ν) for all L-layer MPNN models
φ with a readout function ψ : RdL → Rd.

Proof. First, let n = 1. When restricted to functions H(φ,ψ,−) ∈ NNn
L of the form H(φ,ψ, ν) =∫

ML
h
(L)
− dν, i.e., the readout ψ is the identity, the claim follows since N 1

L is dense in C(ML,R) by
Theorem 15 and the definition of the weak∗ topology on P(ML), cf. Section 2. Since the readout
function ψ is continuous, the equivalence also holds when considering all functions in the setNN d

L.
Finally, since one can always consider the projection to a single component and conversely map a
single real number to a vector of these numbers, the equivalence also holds in the case n > 1.

I PROOF OF FINE-GRAINED EXPRESSIVITY OF MPNNS

Here, we present the proof of Theorem 14, which we copy here for the convenience of the reader.

Theorem 14. Let d > 0 be fixed. For every ε > 0, there are L ∈ N0, C > 0, and δ > 0 such that,
for all DIDMs µ, ν ∈ P(HL), if ∥H(φ,ψ, µ) − H(φ,ψ, ν)∥2 ≤ δ holds for every L-layer MPNN
model φ with readout function ψ : RdL → Rd when C(φ,ψ) ≤ C, then OTdLIDM

(µ, ν) ≤ ε.

Proof. Assume that there is an ε > 0 such that such L ∈ N0, C > 0, and δ > 0 do not exist.
Then, for every L ∈ N and C > 0 δk := 1/k ≥ 0, there are L-layer DIDMs µk and νk such that
∥H(φ,ψ, µk)−H(φ,ψ, νk)∥2 ≤ δk for every L-layer MPNN model (φ,ψ) with readout and output
dimension d, and C(φ,ψ) ≤ C but also OTdLIDM

(µk, νk) > ε. By the compactness of P(HL),
there are subsequences (µki)i and (νki)i converging to DIDMs µ̃ and ν̃, respectively, in the weak∗

topology. Let φ̂ be an L-layer MPNN model and a readout fucntion ψ̂ : RdL → Rd. Then,
by Corollary 12, also (H(φ̂, ψ̂, µki))i and (H(φ̂, ψ̂, νki))i converge to H(φ̂, ψ̂, µ̃) and H(φ̂, ψ̂, ν̃),
respectively. Hence,

∥H(φ̂, ψ̂, ν̃)− H(φ̂, ψ̂, µ̃)∥2 ≤∥H(φ̂, ψ̂, ν̃)− H(φ̂, ψ̂, νki)∥2
+ ∥H(φ̂, ψ̂, νki)− H(φ̂, ψ̂, µki)∥2

+ ∥H(φ̂, ψ̂, µki)− H(φ̂, ψ̂, µ̃)∥2
i→∞−−−→ 0

by the assumption, i.e., H(φ̂, ψ̂, µ̃) = H(φ̂, ψ̂, ν̃). Since this holds for every MPNN model and
Lipschitz ψ, we have OTdLIDM

(µ̃, ν̃) = 0 by Corollary 12 and Theorem 4 with the fact that P(HL)
is Hausdorff. Then, however

OTdLIDM
(µki , νki) ≤ OTdIDM(µki , µ̃) +OTdLIDM

(µ̃, ν̃) +OTdLIDM
(ν̃, νki)

k→∞−−−−→ 0

since (νki)i and (µki)i converge to ν̃ and µ̃, respectively, also in OTdLIDM
by by Corollary 12 and

Theorem 4. This contradicts the assumption that OTdLIDM
(µki , νki) > ε for every k ≥ 0.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

J PROXIMITY RELATIONS OF MPNNS

Here, we summarize how proximity of any MPNN’s outputs on any two different DIDMs is related
to the proximity of the two DIDMs.
Theorem 63. Let L ∈ N0 and (µi)i be a sequence of order-L DIDMs, and let µ ∈ P(HL) be a
DIDM. Then, the following are equivalent:

1. OTdLIDM
(µi, µ)→ 0.

2. hµi → hµ for all MPNN model φ with readout ψ : RdL 7→ Rd, where d > 0.

3. µi → µ.

Proof. The implication (1) ⇒ (2) is just a result of Theorem 13, and its converse is Theorem 14.
Properties (1) and (2) are equivalent to (3) by Theorem 4 and Corollary 12.

We further note that the following variant of Theorem 63 holds as well.
Theorem 64. Let µ, ν ∈P(HL). Then, the following are equivalent:

1. OTdLIDM
(µ, ν) = 0.

2. hµ = hν for every MPNN model φ and a readout function ψ : Rd → Rn, where n > 0.

3. µ = ν.

Proof. The equivalences follow as in Theorem 63 since P(HL) is Hausdorff.

K GENERALIZATION THEOREM FOR MPNNS

We expand the generalization analysis in Levie (2023) to a more general setting and adjust it to meet
our definitions.

K.1 STATISTICAL LEARNING AND GENERALIZATION ANALYSIS

In statistical learning theory, usually we consider a product probability space P = X × Y , which
represents all possible data. We call any arbitrary probability measure on (P,B(P)) a data dis-
tribution. We presume we have a fixed and unknown data distribution τ . As the completeness of
our measure space does not affect our construction, we may assume that we complete B(P) with
respect to τ to a complete σ-algebra Σ or just denote Σ = B(P). Additionally, let X ⊆ P be a
dataset of independent random samples from (P, τ). Additionally, we presume Y contains values
that relate to every point in X , according to a fixed and unknown conditional distribution function
τY|X ∈ P(Y). In it’s essence, the problem of learning is choosing from some set of function, the
one that best approximate the relation between the points in Y and the points in X .

Let E be a Lipschitz loss function with a Lipschitz constant denote by L2. Note that the loss E can
have a learnable component that depends on the dataset X as long as it is Lipschitz with a constant
L2. Our objective is to find the optimal model M from some hypothesis space Z that has a low
statistical risk

R(M) = E(ν,y)∼τ [L(M(ν), y)] =

∫
E(M(ν), y)dτ(ν, y), M ∈ Z

However, as stated before, the true distribution τ is not directly observable. Instead, we have access
to a set of independent, identically distributed (i.i.d) samples X = (X1, . . . , XN ) from the data
distribution (P, τ). Instead of minimizing the statistical risk with an unknown data distribution τ ,
we try to approximation the optimal model by minimizing the empirical risk:

R̂X(MX) =
1

N

N∑
i=1

E(MX(νi), Yi),
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where 0 < i ≤ N : Xi = (νi, Yi) and MX is a model with some possible dependence on the
sampled data, e.g., through training.

Generalization analysis goal is to show that low empirical risk of a a network entails low statistical
risk as well. One approach to bounding the statistical risk involves using the inequality:

R(M) ≤ R̂(M) + E

where E is called the generalization error, defined as:

E = sup
Θ∈H

|R(Θ)− R̂(Θ)|

It’s important to note that the trained network M := MX depends on the dataset X. This essantially
means that the empirical risk is not truly a Monte Carlo approximation of the statistical risk in the
learning context, as the network is not constant when varying the dataset. If the model M was
fixed, Monte Carlo theory would provide us an order O(

√
κ(p)/N) bound for E with probability

1 − p, where κ(p) depends on the specific inequality used (e.g., κ(p) = log(2/p) in Hoeffding’s
inequality).

Such events are called good sampling events and depend on the model M. This dependence, result
in the requirement of intersecting all good sampling events in Z , in order to compute a naive bound
to the generalization error.

Uniform convergence bounds are employed to intersect appropriate sampling events, allowing for
more efficient bounding of the generalization error. This intersection introduces a term in the gener-
alization bound called the complexity or capacity.This concept describes the richness of the hypothe-
sis space Z and underlies approaches such as VC-dimension, Rademacher dimension, fat-shattering
dimension, pseudo-dimension, and uniform covering number (see, e.g., Shalev-Shwartz & Ben-
David (2014)).

K.2 UNIFORM MONTE CARLO ESTIMATION FOR LIPSCHITZ CONTINUOUS FUNCTIONS

The proof of Theorem 16 relies on Theorem 67, which examines uniform Monte Carlo estimations
of Lipschitz continuous functions over metric spaces with finite covering. The next theorems are
taken from Levie (2023).
Definition 65. A metric space X is said to have a covering number ν : (0,∞) → N0 if, for any
δ > 0, X can be covered by ν(δ) balls of radius δ.
Theorem 66 (Hoeffding’s Inequality). Let X1, . . . , XN be independent random variables such that
a ≤ Xi ≤ b almost surely. Then, for any k > 0,

P

(∣∣∣∣∣ 1N
N∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ k
)
≤ 2 exp

(
− 2k2N

(b− a)2

)
.

Theorem 67 is an extended version of Lemma B.3 in Maskey et al. (2022).
Theorem 67 (Uniform Monte Carlo Estimation for Lipschitz Continuous Functions). Let P be a
probability metric 1 space with probability measure µ and covering number κ(ϵ). Let X1, . . . , XN

be drawn i.i.d. from P . Then, for any p > 0, there exists an event EpLip ⊂ PN (regarding the choice
of (Y1, . . . , YN )), with probability

µN (EpLip) ≥ 1− p
such that for every (X1, . . . , XN ) ∈ EpLip, for every bounded Lipschitz continuous function F : P →
Rd with Lipschitz constant LF, we have∥∥∥∥∥

∫
F(x)dµ(x)− 1

N

N∑
i=1

F(Xi)

∥∥∥∥∥
∞

≤ 2ξ−1(N)LF +
1√
2
ξ−1(N)∥F∥∞(1 +

√
log(2/p)),

where ξ(r) = κ(r)2 log(κ(r))
r2 and ξ−1 is the inverse function of ξ.

1A metric space with a probability Borel measure, where we either take the completion of the measure space
with respect to µ (adding all subsets of null-sets to the σ-lgebra) or not.
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K.3 A GENERALIZATION THEOREM FOR MPNNS

In classification tasks our goal is to classify the input space into C classes. In this analysis we look at
the product probability space P = P(HL)×RC and use L-layer MPNNs with readout. Our DIDM
features are hν =

∫ L
H h

(L)
− dν. Each entry (v⃗)c of the output vector v⃗ ∈ RC depicts the probability

the input belongs to class c ∈ C. We thus consider the readout function ψ : Rp → RC as part of
the loss function and assume the combined loss to be Lipschitz continuous. Although loss functions
like cross-entropy are not Lipschitz continuous, composing cross-entropy on softmax is Lipschitz,
which is usally how cross-entropy is being used.

We denote by ΘL the set of all MPNN models of depth-Lwith a readout function, s.t. h : P(HL) 7→
RC and by Lip(P(HL), L1) the space of Lipschitz continuous mappings M : P(HL)→ RC with
Lipschitz constant L1. Notices that, by Theorem 13, our hypothesis class ΘL of depth-L MPNNs is
contained in Lip(P(HL), L1) for some given Lipschitz constant L1.

Following the proof of Theorem Theorem G.4 in Levie (2023), we prove the next theorem via
Theorem 67.
Theorem 16 (MPNN generalization theorem). Consider the above classification setting, and let
L = L1(L2+1). Let {Xi}Ni=1 be independent random samples from the data distribution (P(HL)×
{0, 1}C ,Σ, τ). Then, for every p > 0, there exists an event Up ⊂ (P(HL)× {0, 1}C)N , regarding
the choice of X = (X1, . . . , XN ), with probability νN (Up) ≥ 1 − Cp − 2C

2

N , in which for every
function MX in the hypothesis class Lip(P(HL), L1), we have∣∣∣R(MX)− R̂X(MX)

∣∣∣ ≤ ξ−1(N/2C)
(
2L+ 1√

2
(L+ E(0, 0))(1 +

√
log(2/p)

)
, (1)

where ξ(ϵ) = κ(ϵ)2 log(κ(ϵ))
ϵ2 , κ is the covering number of the compact space P(HL)× {0, 1}C and

ξ−1 is the inverse function of ξ.

Proof. For each i ∈ [C], let Si be the number of samples of X that falls within Bi. The ran-
dom variable (S1, . . . , SC) is multinomial, with expected value (N/C, . . . , N/C) and variance
(N(C−1)

C2 , . . . , N(C−1)
C2 ) ≤ (NC , . . . ,

N
C ). We now use Chebyshev’s inequality, which states that

for any a > 0,

P (|Si −N/C| > a

√
N

C
) < a−2.

We choose a
√

N
C = N

2C , so a = N1/2

2C1/2 , and

P (|Si −N/C| >
N

2C
) <

2C

N
.

Therefore,

P (Si >
N

2C
) > 1− 2C

N
.

We intersect these events of i ∈ [C], and get an event Emult of probability more than 1−2C
2

N in which
Si >

N
2C for every i ∈ [C]. In the following, given a set B, we consider a realization M = Si, and

then use the law of total probability.

From Theorem 67 we get the following. For every p > 0, there exists an event Epi ⊂ BMi regarding
the choice of (X1, . . . , XM ) ⊆ BMi , with probability

νM (EpLip) ≥ 1− p,

such that for every function M′ in the hypothesis class Lip(P(HL), L1), we have
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∣∣∣∣∣
∫
E(M′(ν), y)dτ(ν, y)− 1

M

M∑
i=1

E(M′(νi), Yi)

∣∣∣∣∣ (9)

≤ 2ξ−1(M/L+
1√
2
ξ−1(M))(∥E(M′(·), ·)∥∞(1 +

√
log(2/p)) (10)

≤ 2ξ−1(N/2C)L+
1√
2
ξ−1(N/2C)(L+ E(0, 0))(1 +

√
log(2/p)), (11)

where for 0 < i ≤ N : (νi, Yi) = Xi, ξ(r) = e(r)
2 log(e(r)), κ is the covering number of P(HL)×

{0, 1}C , and ξ−1 is the inverse function of ξ. In the last inequality, we use the bound, for every
(ν, y) ∈P(HL)× {0, 1}C ,

|E(M′(ν), y)| ≤ |E(M′(ν), y)− E(0, 0)|+ |E(0, 0)| ≤ L2|(L1 + 1)− 0|+ |E(0, 0)|.

Since 9 is true for any M′ ∈ Lip(P(HL), L1), it is also true for MX for any realization of X, so
we also have

|R(MX)− R̂X(MX)| ≤ 2ξ−1(N/2C)L+
1√
2
ξ−1(N/2C)(L+ E(0, 0))(1 +

√
log(2/p)).

Lastly, we denote

Ep = Emult ∩

(
C⋃
i=1

Epi

)
.

L PROKHOROV’S DISTANCE FOR DIDM METRICS

For completeness, we show an alternative approach to define a metric on graphons through IDMs
and DIDMs using Prokhorv metric.

L.1 DEFINITION AND BASIC PROPERTIES OF PROKHOROV’S DISTANCE

Let X be a complete separable metric space with Borel σ-algebra B. We define Aϵ := {y ∈ S |
d(x, y) ≤ ϵ for some x ∈ A} for a subset A ⊆ X and ϵ ≥ 0. Then, the Prokhorov metric P on
M≤1(X ,B) is given by

P(µ, ν) := inf{ϵ > 0 | µ(A) ≤ ν(Aϵ) + ϵ and ν(A) ≤ µ(Aϵ) + ϵ for every A ∈ B}.

The following theorem shows that Prokhorov metric is topologically equivalent to OTd on any
complete separable metric space (X , d).
Lemma 68. (Prokhorov, 1956, Theorem 1.11) Let (X , d) be a complete separable metric space.
Then, (M (X ),P) is a complete separable metric space, and convergence in P is equivalent to
weak∗ convergence of measures.

We can define in the same fashion as done in Section 3 alternative metrics pLIDM onHL and PpLIDM
on

M≤1(HL) by replacing optimal transport in the definitions with Prokhorov metric. Then a distance
between two graphon-signals can be define too as
Definition 69 (DIDM Prokhorov’s Distance). Given two graphon-signals (Wa, fa), (Wb, fb) and
L ≥ 1, the tree prokhorov’s distance between (Wa, fa) and (Wb, fb) is defined as

ρLDIDM((Wa, fa), (Wb, fb)) = PpLIDM
(Γ(Wa,fa),L,Γ(Wb,fb),L),
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Lemma 68 lets us prove the next theorem which is proven similarly to Theorem 4.
Theorem 70. Let L ∈ N0. The metrics pLIDM on HL, PpLIDM

on P(HL) and M≤1(HL) are well-
defined. Moreover, PpLIDM

metrizes the weak∗ topology of M≤1(HL) and P(HL).

This essentially means, that all our results in this paper can be rephrased by replacing dLIDM,
OTdLIDM

, and δLDIDM with pLIDM, PpLIDM
, and ρLDIDM respectively. The only thing remains, is to

discuss ρLDIDM compatibility.

L.2 COMPUTABILITY

It remains to prove that ρLDIDM is polynomial-time computable. Böker et al. (2023) prove the Lemma
71 by generalizing an observation in Theorem 1 Schay (1974) and Lemma Garcı́a-Palomares &
Giné (1977) to finite measures to finite measures and showing that the value of ρ(ε) := inf{η > 0 |
µ(A) ≤ ν(Aε) + η for every A ⊆ S} can be expressed as a linear program. Additionally, he based
his conclusions on Garel & Massé (2009), which is concerned with computing the Prokhorov metric
of (possibly non-discrete) probability distributions.
Lemma 71. (Böker et al., 2023, Theorem 16.) Let µ, ν ∈ M (X ), where (X , d) is a finite met-
ric space with X = {x1, . . . , xn}. Then, the Prokhorov metric P(µ, ν) can be computed in time
polynomial in n and the number of bits needed to encode d, µ and ν.

This allows us to prove Theorem 72 following the same steps as in the proof of Theorem 6.
Theorem 72. For any fixed L ∈ N0, δLDIDM between any two graph-signals (G, f) and (H,g)
can be computed in time polynomial in h and the size of G and H , namely O(L · N7) where
N = max(|V (G)| , |V (H)|).

The computational advantage of using unbalanced optimal transport, tipped the scales in favor it,
making it the main focus of this paper.

M ADDITIONAL EXPERIMENTS AND DETAILS

We present here additional experimental results. We evaluate δ2DIDM in graph classification tasks,
i.e., graphs separation tasks. We follow the same set up in Chen et al. (2022); Böker et al. (2023)
for comparison. The goal of our experiments is to support the theoretical results which formulate
a form of equivalence between GNN outputs and DIDM mover’s distance. We emphasize that our
proposed DIDM mover’s distance metric is mainly a tool for theoretical analysis and the proposed
experiments are not designed to compete with state-of-the-art methods. Although our metric is
not intended to be used directly as a computational tool, our results suggest that we can roughly
approximate the DIDM mover’s distance between two graphs by the Euclidean distance between
their outputs under random MPNNs. This Euclidean distance can be used in practice as it is less
computationally expensive than DIDM mover’s distance.

M.1 1-NEAREST-NEIGHBOR CLASSIFIER

The goal of the experiment in this section is to show that the geometry underlying the metric δDIDM

captures in some sense the underlying data-driven similarity related to the classification task. We
consider the problem of classifying attributed graphs, and a solution based on the 1-nearest neighbor.

The 1-Nearest Neighbor (1-NN) classifier is a non-parametric, instance-based machine learning
method. Given a datasetD = {((Gi, fi), yi)}ni=1, where (Gi, fi) represents graph-signals and yi ∈ C
denotes class labels from a finite set C, the goal is to classify a new input (Gi, fi). The classification
process of classifying the input (G, f) involves:

1. Computing the distance between the input (G, f) and every point (Gi, fi) in the dataset
using a distance metric d.

2. Identifying the nearest neighbor (Gk, fk) such that:
(Gk, fk) = argmin

i∈n
d((G, f), (Gi, fi)).
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3. Assigning the label yk of the nearest neighbor as the label y of (G, f):

y ←− yk.

Here we chose to compare δ2DIDM with other optimal-transport-based iteratively defined metrics.
Tree Mover’s Distance TMDL from Chuang & Jegelka (2022) is defined via optimal transport
between finite attributed graphs through so called computation trees. The Weisfeiler-Lehman (WL)
distance d(L)WL and its lower bound distance d(L)WLLB,≥L from Chen et al. (2022; 2023) are defined via
optimal transport between finite attributed graphs through hierarchies of probability measures. The
metric δW,L from Böker et al. (2023) is define via optimal transport on a variant of IDMs and DIDMs
where the IDMs are not concatenated. The metric δW,≥L, from Böker et al. (2023), is a variation of
δW,L where the maximum number of iterations performed after having obtained a stable coloring is
bounded by 3. Unlike δDIDM, all the above metrics cannot be used to unify expressivity, uniform
approximation and generalization for attributed graphs. Namely, the above pseudometrics are either
restricted to graphs without attributes or are not compact.

Table 1 compares the mean classification accuracy of δW,3, δW,≥3 (Böker et al., 2023), d(3)WL,
d
(3)
WLLB,≥3 (Chen et al., 2022; 2023), TMD3 (Chuang & Jegelka, 2022), and δ2DIDM in a 1-NN

classification task using node degrees as initial labels. We used the MUTAG dataset (Morris et al.,
2020) and followed the same random data split as in Chen et al. (2022); Böker et al. (2023): 90
percent of the data for training and 10 percent of the data for testing. We repeat the random split
ten times. We started by computing the pairwise distances for all the graphs in the dataset. We
continued by performing graph classification using a 1-nearest-neighbor classifier (1-NN).

We note that the 1-NN classification experiment “softly” supports our theory, in the sense that this
experiment shows that our metric clusters the graphs quite well with respect to their task-driven
classes. We stress that this experiment does not directly evaluates any rigorous theoretical claim. We
moreover note that while the metric in Chen et al. (2022) achieves better accuracy, the space of all
graphs under their metric is not compact, so this metric does not satisfy our theoretical requirements:
a compact metric which clusters graphs well.

M.2 MPNNS’ INPUT AND OUTPUT DISTANCE CORRELATION

As a proof of concept, we empirically test the correlation between δLDIDM and distance in the output
of MPNNs. We hence chose well-known and simple MPNN architectures, varying the hidden di-
mensions and number of layers. We do not claim that GIN Xu et al. (2019) and GraphConv Morris
et al. (2019) are representative of the variety of all types of MPNNs. Nevertheless, they are proper
choices for demonstrating our theory in practice.

M.2.1 MPNN ARCHITECTURES

The GIN meanpool model is a variant of the Graph Isomorphism Network (GIN) (see Appendix
A.2.1) designed for graph-level representation learning. Each layer consists of normalized sum ag-
gregation and a multi layer perceptron (MLP). The first MLP consists of two linear transformations,
ReLU activations, and batch normalization. Each MLP that follows has additionally a skip connec-
tion and summation of the input features and output features. The readout after L layers is mean
pooling (with no readout function).

The GC meanpool model is a realization of graph convolution network (GCN) for graph-level
representation learning. Each layer consists of normalized sum aggregation with a linear message
and update functions (see Appendix C for the definition of message function and for the equivalency
between MPNNs that use message functions and MPNNs with no message functions). All layers
except the first layer have additionally a skip connection and a summation of the input features and
output features. The readout after L layers is mean pooling (with no readout function).
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M.2.2 CORRELATION EXPERIMENTS ON GRAPHS GENERATED FROM A STOCHASTIC
BLOCK MODEL

We extend here the experiments presented in Section 4, with the same experimental proce-
dure and also offer an extended discussion and description of the experiments. We empiri-
cally test the correlation between δLDIDM and the distance in the output distance of an MPNN.
We use stochastic block models (SBMs), which are generative models for graphs, to generate
random graph sequences. We generated a sequence of 50 random graphs {Gi}49i=0, each with
30 vertices. Each graph is generated from an SBM with two blocks (communities) of size 15
with p = 0.5 and qi = 0.1 + 0.4i/49 probabilities of having an edge between each pair of
nodes from the same block different blocks, respectively. We denote G := G49, which is an
Erdős–Rényi model. We plot δ2DIDM(Gi, G) against distance in the output of randomly initialized
MPNNs, i.e., once against ∥H(GIN meanpool, Gi)− H(GC meanpool, G)∥2 and once against
∥H(GIN meanpool, Gi)− H(GC meanpool, G)∥2. Note that in each experiment, we initialize
GIN meanpool and GC meanpool only once with random weights and then compute the hidden
representations of all graphs.

We conducted the entire procedure twice, once with a constant feature attached to all nodes and once
with a signal which has a different constant value on each community of the graph. Each value is
randomly sampled from a uniform distribution over [0, 1]. In section 4 We present the results of the
experiments when varying hidden dimension (see Figure 2). Figure 6 and Figure 7 show the results
when varying the number of layers when the signal is constant and when the signal has a different
randomly generated constant value on each community, respectively. The results still show a strong
correlation between input distance and GNN outputs. When increasing the number of layer, the
correlation slightly weakens.

We conducted the experiment one more time with signal values sampled from a normal distribution
N (µ, σi) with mean µ = 1 and variance σi = 49−i

49 . Figure 8 and Figure 9 show the results
when varying the number of dimensions and the number of layers, respectively. The results still
show a correlation between input distance and MPNN outputs, but with a higher variance. As we
interpret this result, the increased variance could be an artifact of using random noise as signal in
our experiments. The specific MPNNs we used, have either a linear activation or a ReLU activation
function. Thus, they have a “linear” averaging effect on the signal, which cancels in a sense the
contribution of the noise signal to the output of the MPNN, while the metric takes the signal into
full consideration. This leads to a noisy correlation.

M.2.3 REAL DATASETS CORRELATION EXPERIMENTS

We empirically test the correlation between δLDIDM and distance in the output of MPNNs on MUTAG
and PROTEINS databases. In the following, we present the results that showcase insightful relations.

Correlation experiments using a single randomized MPNN. Denote by D a generic dataset.
For the entire dataset we randomly initialized one MPNN with random weights. We randomly
picked an attributed graph from the dataset (Ĝ, f̂) ∈ D. For each (G, f) ∈ D we computed
δ2DIDM((Ĝ, f̂), (G, f)). We plotted the distance in the output of the randomly initialized MPNNs
on each (G, f) ∈ D against δ2DIDM((Ĝ, f̂), (G, f)). We conducted the experiment multiple times.
Figure 4 and Figure 5 show the results on MUTAG when varying the number of dimensions and
the number of layers, respectively. Figure 11 and Figure 12 show the results on PROTEINS when
varying the number of dimensions and the number of layers, respectively.

Correlation between DIDM model’s distance and maximal MPNN distance.

Corollary 12 states that “convergence in DIDM mover’s distance” is equivalent to “conver-
gence in the MPNN’s output for all MPNNs”. The previous experiment depicts Corollary
12 only vaguely, since the experiment uses a single MPNN, and does not check the output
distance for all MPNNs. Instead, in this experiment we would like to depict the “for all”
part of Corollary 12 more closely. Since one cannot experimentally apply all MPNNs on a
graph, we instead randomly choose 100 MPNNs for the whole dataset. Denote the set con-
taining the 100 MPNNs by N ′. To verify the “for all” part, given each pair of graphs,
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we evaluate the distance between the MPNN’s outputs on the two graphs for each MPNN
and return the maximal distance. We plot this maximal distance against the DIDM mover’s
distance. Namely, we plot maxH∈N ′ ∥H(GIN meanpool, Gi)− H(GC meanpool, G)∥2 and
maxH∈N ′ ∥H(GIN meanpool, Gi)− H(GC meanpool, G)∥2 against δ2DIDM(Gi, G). Note that
in each experiment, we initialize GIN meanpool and GC meanpool only once with random
weights and then compute the hidden representations of all graphs.

In more details, we checked the extent to which δ2DIDM correlates with the maximal distance of
100 MPNNs’ vectorial representation distances on MUTAG dataset and marked the Lipschitz rela-
tion. Here, we randomly generated 100 MPNNs for the entire dataset. Figure 3 showcase different
Lipschitz relation. Note that the results are normalized.

From this, one can estimate a bound on the Lipschitz constants of all MPNNs from the family.

The Random MPNN Distance conjecture. Observe that in our experiments we plotted the
MPNN’s output distance for random MPNNs, not for “all MPNNs,” and still got a nice correla-
tion akin to Corollary 12. This leads us to the hypothesis that randomly initialized MPNNs have a
fine-grained expressivity property: for some distribution over the space of MPNNs, a sequence of
graph-signals converges in DIDM mover’s distance if and only if the output of the sequence under a
random MPNN converges in high probability. See Figure 10 for a comparison of δ2DIDM’s correlation
with the maximal distance of 100 MPNNs’ vectorial representation distances, with δ2DIDM’s corre-
lation with the mean distance of 100 MPNNs’ vectorial representation distances, and with δ2DIDM’s
correlation with a single MPNN’s vectorial representation distances on MUTAG dataset.
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Table 1: Graph distances classification accuracy of 1-NN. δW,3 and δW,≥3 results are taken from
Böker et al. (2023). d(3)WL and d(3)WLLB,≥3 results are taken from Chen et al. (2022) using node degrees
as initial labels. The table shows the mean classification accuracy of 1-NN using different graph
distances using node degrees as initial labels.

Accuracy ↑ MUTAG

Chen et al. (2022) d(3)WL 91.1 ± 4.3
Chen et al. (2022) d(3)WLLB,≥3 85.2 ± 3.5
Böker et al. (2023) δW,3 87.89 ± 4.11
Böker et al. (2023) δW,≥3 86.32 ± 4.21
Chuang & Jegelka (2022) TMD3 89.47 ± 7.81
δ2DIDM 89.47 ± 7.81

Figure 3: Correlation between δ2DIDM and the maximum over distances in the outputs of 100 ran-
domly initialized MPNNs with a varying number of hidden dimensions. The Lipschitz bound is
marked by the red line.
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Figure 4: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN
with a varying number of hidden dimensions. GraphConv embeddings preserve graph distance better
than GIN on MUTAG dataset.

Figure 5: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN
with a varying number of layers. GraphConv embeddings preserve graph distance better than GIN
on MUTAG dataset.
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Figure 6: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN
with a varying number of layers. A convergent sequence of graphs with a constant signal. The
graphs are generated by a stochastic block models.

Figure 7: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN
with a varying number of layers. A convergent sequence of graphs with a signal, such that the
signal values are constant each graph’s community. Each signal value is sampled from a uniform
distribution over [0, 1]. The graphs are generated by a stochastic block models.
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Figure 8: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN
with a varying number of hidden dimensions. A convergent sequence of graphs with a signal, such
that the signal values are sampled from a normal distributionN (µ, σi) with mean µ = 1 and linearly
decreasing variance. The graphs are generated by a stochastic block models.

Figure 9: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN
with a varying number of layers. A convergent sequence of graphs with a signal, such that the signal
values are sampled from a normal distribution N (µ, σi) with mean µ = 1 and linearly decreasing
variance. The graphs are generated by a stochastic block models.
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Figure 10: Correlation between δ2DIDM and distance in the output of randomly initialized MPNNs
with a varying number of hidden dimensions. On the top row of figures, the correlation between
δ2DIDM and distance in the output of a single randomly initialized MPNNs is presented. On the
middle row of figures, the correlation between δ2DIDM and the maximum over distances in the outputs
of 100 randomly initialized MPNNs is presented. On the bottom row of figures, the correlation
between δ2DIDM and the mean over distances in the outputs of 100 randomly initialized MPNNs is
presented.
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Figure 11: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN
with a varying number of dimensions. GraphConv embeddings preserve graph distance better than
GIN on PROTEINS dataset.

Figure 12: Correlation between δ2DIDM and distance in the output of a randomly initialized MPNN
with a varying number of layers. GraphConv embeddings preserve graph distance better than GIN
on PROTEINS dataset.
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N LIST OF NOTATIONS

Sets and Graphs

A× C The cartesian product of two sets A and C
N0 The set of natural numbers including 0.

R The set of real numbers

Rd The set of real vectors of length d

Kd A compact sub-set of Rd, (page 3)

Cb(X ) The set of all bounded continuous real-valued functions on
X , (page 3)

C(X ,Y) The set of all continuous functions from X to Y
K A compact space

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between (and including) 0 and n

[n] The set of all integers between (and including) 0 and n

[a, b] The real interval including a and b

I A real interval

(a, b] The real interval excluding a but including b

(G, f) A graph-signal (page 4)

(H, , f) A graph-signal

(W, f) A graphon-signal (page 4)

(Q, g) A graphon-signal

V (G) The set of nodes of the graph G

V (W ) The set of nodes of the graphon W

E(W ) The set of edges of the graphon W

N (v) The set of all neighboring nodes of a graph node v

Calculus∫
f(x)dx Definite integral over the entire domain of x∫

S
f(x)dx Definite integral with respect to x over the set S

Numbers and Arrays

x Element of a set, can be both a scalar or a vector

ai Element i of vector or a sequence

C A matrix

D A matrix

X A random (either multi or single) variable

Measure Theory and Iterated degree Measures
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γ(W,f),L Computation iterated degree measure (page 5)

Γ(W,f),L Computation distribution of iterated degree measure (page
5)

f∗µ the push-forward of a measure µ ∈ M (X ) via a measur-
able map f : X → Y

µi The i’th element of an IDM µ

µ(i) The i’th element of an IDM µ

F A σ-algebra

Σ A σ-algebra

B(X ) The standard Borel σ-algebra of a measurable space X
(X ,Σ) a mesurable space

(X ,Σ, µ) a measure space

M≤1(X ) The space of all non negative Borel measures with total
mass at most one on (X ,B(X )) (page 3)

P(X ) The space of all Borel probability measures on (X ,B(X ))
(page 3)

Hd The space of iterated degree measures (IDMs) of order d
(page 5)

P(Hd) The space of distributions of iterated degree measures
(DIDMs) of order d (page 5)

Metrics

d A metric

||x||p ℓp norm of x

||x||∞ the infinity norm of x

OTd Optimal transport with respect to the distance function d
(page 3)

dIDM IDM distance (page 6)

δDIDM DIDM mover’s distance (page 6)

Pd Prokhorov metric with respect to the distance function d
(page 40)

pIDM IDM Prokhorov distance (page 40)

ρDIDM DIDM Prokhorov’s distance (page 40)

Probability and Information Theory

N (µ,Σ) Gaussian distribution with mean µ and covariance Σ

Functions
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f : A → C The function f with domain A and range C
f(x) The function f evaluated at a point x

f(−) The function f evaluated at some point

f− The function f evaluated at some point

f ◦ g Composition of the functions f and g

log x Natural logarithm of x

1condition is 1 if the condition is true, 0 otherwise

R̂ the empirical risk (page 9)

R the statistical risk (page 9)

Message Passing Neural Networks (page 7)

φ A L-layer MPNN model

(φ,ψ) A L-layer MPNN model with ψ a readout function

φ(t) An update function

ψ An readout function

g
(t)
− L-layer MPNN model graph-signal feutures for t ∈ [L]

G L-layer MPNN model with readout graph-signal feutures

f
(t)
− L-layer MPNN model graphon-signal feutures for t ∈ [L]

F L-layer MPNN model with readout graphon-signal feu-
tures

h
(t)
− L-layer MPNN model IDM feutures for t ∈ [L]

H L-layer MPNN model with readout DIDM feutures
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