
Under review as a conference paper at ICLR 2024

ELEVATING AUGMENTATION:
BOOSTING PERFORMANCE VIA SUB-MODEL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Image classification has improved with the development of training techniques.
However, these techniques often require careful parameter tuning to balance the
strength of regularization, limiting their potential benefits. In this paper, we propose
a novel way to use regularization called Augmenting Sub-model (AugSub). Aug-
Sub consists of two models: the main model and the sub-model. While the main
model employs conventional training recipes, the sub-model leverages the benefit
of additional regularization. AugSub achieves this by mitigating adverse effects
through a relaxed loss function similar to self-distillation loss. We demonstrate
the effectiveness of AugSub with three drop techniques: dropout, drop-path, and
random masking. Our analysis shows that all AugSub improves performance, with
the training loss converging even faster than regular training. Among the three,
AugMask is identified as the most practical method due to its performance and cost
efficiency. We further validate AugMask across diverse training recipes, including
DeiT-III, ResNet, MAE fine-tuning, and Swin Transformer. The results show that
AugMask consistently provides significant performance gain. AugSub provides
a practical and effective solution for introducing additional regularization under
various training recipes. The code will be available publicly.

1 INTRODUCTION

As deep neural networks scale up, addressing issues such as overfitting and improving generalization
performance becomes essential. To solve this, various data augmentation and regularizations have
been developed. Starting from the traditional techniques like weight-decay and dropout (Srivastava
et al., 2014), modern approaches such as image-mixing augmentations (e.g., Mixup (Zhang et al.,
2017) and CutMix (Yun et al., 2019)), mixture of data augmentation (e.g., RandAugment (Cubuk et al.,
2020) and AutoAugment (Cubuk et al., 2019)), and drop-based techniques (e.g., Drop-path (Fan et al.,
2019) and RandomErase (Zhong et al., 2020)) have been widely used to improve the performance.

These regularizations and augmentations usually improve generalization performance, making train-
ing difficult and hindering the deep models from converging with low training loss. In other words,
the training techniques often underfit a model to the training data with degraded performance. Thus,
practitioners and researchers have empirically found appropriate combinations and intensities of
these techniques (Wightman et al., 2021; Touvron et al., 2021a; 2022a), a concept referred to as
“training recipes”. The importance of such training recipe becomes even more significant in Vision
Transformer (ViT) (Dosovitskiy et al., 2020) architecture. The recipes of DeiT (Touvron et al., 2021a)
and DeiT-III (Touvron et al., 2022a) are considered de facto for training ViTs.

A significant role of training recipes (Wightman et al., 2021; Touvron et al., 2022a) is to find optimal
hyperparameters for training techniques, so modifying the recipes may lead to unstable training or
degraded performance. This makes it challenging for users to increase the intensity of regularization
or introduce a new training technique.

Our research goal is to achieve further performance improvements with additional regularization
while maintaining the stability of existing training recipes. To this end, we introduce a training
framework using a “sub-model” alongside the main model; throughout this paper, we use the term
“sub-model” to describe a partial model extracted from the ”main model”, in which some trainable
weights do not engage in training. The main model uses standard training recipes (Wightman et al.,
2021; Touvron et al., 2022a). On the other hand, the sub-model utilizes additional regularization.

1

Under review as a conference paper at ICLR 2024

(c) Our AugSub training(b) Masking training

Model

(a) Full-image training

Loss

Model

Loss

Network

Main model

Loss

Sub-model

Self-distill

Label ‘cat’ Label ‘cat’ Label ‘cat’

ViT-B ViT-L ViT-H
83.0

83.5

84.0

84.5

85.0

85.5

86.0
DeiT-III
+ AugMask

Figure 1: Overview of our Augmenting Sub-model (AugSub). (a) original supervised training; (b) conventional
drop-based technique (random masking). It is applied to the main model, which degrades performance; (c)
our proposed AugSub training, which separates the drop-based technique from the main model using the
sub-model and employs a relaxed loss based on self-distillation. It achieves significant improvements from the
state-of-the-art ViT training recipe (Touvron et al., 2022a).

We name our method as Augmenting Sub-model (AugSub). In the example of Figure 1, the desired
additional regularization is random masking (as done in MAE (He et al., 2022)). As in Figure 1 (b),
applying the random masking to the main model may lead to degraded performance. In contrast, as
in Figure 1 (c), AugSub utilizes the sub-model for random masking, and the sub-model receives a
training signal from the main model similar to the self-distillation (Zhu et al., 2018; Zhang et al.,
2019; Phuong & Lampert, 2019). While the random masking technique amplifies the difficulty of the
training process, this is counterbalanced by self-distillation loss since the outputs of the main model
are relaxed and easier objective than the ground-truth label.

In summary, AugSub applies an additional regularization separated from the main model, utilizing a
relaxed loss form. As a result, AugSub enables any additional regularization without disrupting the
convergence of original train loss; we employ three strong in-network drop-based options to show the
applicability: dropout (Srivastava et al., 2014), drop-path (Huang et al., 2016; Fan et al., 2019), and
input masking (He et al., 2022; Bao et al., 2021). Corresponding to each respective regularization
strategy, we denote them AugDrop, AugPath, and AugMask.

We extensively validate the performance of three AugSub methods. First, we analyze AugSub using
100 epochs training on ImageNet (Deng et al., 2009). Without AugSub, loss convergence speed
and corresponding accuracy are significantly degraded when additional regularization is applied.
Conversely, AugSub successfully mitigates potential harmful effects from additional regularization,
leading to a network training process that is even more efficient than standard training procedures.
Among the three variants of AugSub, AugMask notably exhibits a significant enhancement in
performance. Thus, we expand experiments to regular training in ImageNet (Deng et al., 2009) focus
on AugMask. AugMask is applied on various supervised learning cases including DeiT-III (Touvron
et al., 2022a), ResNet-RSB (Wightman et al., 2021), MAE finetuning (He et al., 2022), and Swin
transformer (Liu et al., 2021). AugMask demonstrates remarkable performance improvement in all
benchmarks. We argue that AugMask can be regarded as a significant advancement as a novel way to
utilize regularization for visual recognition.

2 RELATED WORK

Training recipe has been considered an important ingredient in building a high-performance network.
He et al. (He et al., 2019) demonstrate that the training recipe significantly influences the network
performance. RSB (Wightman et al., 2021) is a representative and high-performance recipe for
ResNet. With the emergence of ViT (Dosovitskiy et al., 2020), the training recipe for ViT has gained
the attention of the field. DeiT (Touvron et al., 2021a) shows that ViT can be trained to strong
performance with only ImageNet-1k (Deng et al., 2009). DeiT-III (Touvron et al., 2022a) is an
improved version of DeiT, which applies findings from RSB to DeiT instead of distillation from
CNN teacher. It is challenging to implement stronger or additional regularization in existing training
recipes. To address this issue, we propose AugSub approach employing sub-models.

CoSub (Touvron et al., 2022b) introduces a similar concept to ours, utilizing sub-models. However,
the objective of the sub-model differs significantly: while AugSub aims to stabilize training through

2

Under review as a conference paper at ICLR 2024

additional regularization, CoSub aims to train the sub-models in a collaborative manner (Zhang et al.,
2018). We regard AugSub as a more generalized framework since CoSub only considers the drop-path
method to employ sub-models, whereas AugSub can cover a variety of drop-based techniques.

Self-distillation utilizes supervision from a network itself instead of using a teacher. ONE (Zhu et al.,
2018) uses a multi-branch ensemble to build superior output for the network and distill ensemble
outputs as supervision for each branch. Some studies (Zhang et al., 2019; Phuong & Lampert, 2019)
utilize the early-exit network for self-distillation. Those studies improve performance by using a
full network as a teacher and an early-exit network as a student. MaskedKD (Son et al., 2023)
utilizes masking to reduce computation for knowledge distillation. From a self-distillation perspective,
AugSub presents a new insight to construct the student model (i.e., sub-model) from the teacher
model (i.e., main model) utilizing drop-based techniques.

Self-supervised learning shares components with AugSub. Previous works on contrastive learning
incorporate two models with self-distillation loss (Chen & He, 2021; Grill et al., 2020). Want et
al. (Wang et al., 2022) introduce a double tower with weak and strong augmentation for each model. In
masked image models, supervised MAE (Liang et al., 2022) introduces additional supervised learning
tasks to the MAE framework and accelerates MAE. Those studies partially share the fundamental
concept with AugSub and gave us the motivation for AugSub. However, the proposed AugSub is
significantly different from self-supervised learning approaches.

3 METHOD

We propose our method Augmenting Sub-model (AugSub) with formulation and pseudo-code in
Section 3.1. Next, we introduce three variants of AugSub: AugDrop, AugPath, and AugMask in
Section 3.2. Section 3.3 presents analyses of AugSub with loss convergence, accuracy, and gradient.

3.1 AUGMENTING SUB-MODEL (AUGSUB)

The cross-entropy loss with the softmax σ(z) = ezi/
∑

j e
zj for images xi and one-hot labels

yi(i ∈ [1, 2, ..., N]) in a mini-batch with size N is

− 1

N

N∑
i

yilog (σ(fθ(xi|pdrop = 0))), (1)

where fθ represents the network used for training. pdrop means drop probability of network. Since
the drop probability can be easily changed, we denote it as a condition for network function. Based
on the value of pdrop, certain network features are dropped with probability pdrop. Note that we set
the default drop probability to zero for convenience. Then, loss for drop-based regularization loss
with probability p ∈ [0, 1] is

− 1

N

N∑
i

yilog (σ(fθ(xi|pdrop = p))). (2)

Typically, a network with drop-based regularization is trained with equation 2. But, we conjecture
that training using equation 2 with high probability p may interfere with loss convergence and induce
instability in training. To ensure training stability, we utilize the model output of equation equation 1,
fθ(xi|pdrop = 0), as guidance for drop-based regularization fθ(xi|pdrop = p) instead of yi. In other
words, equation 2 is changed as

− 1

N

N∑
i

σ(fθ(xi|pdrop = 0)) log (σ(fθ(xi|pdrop = p))). (3)

In our Augmenting Sub-model (AugSub), the average of equation 1 and equation 3 is used as a loss
function for the network. We designate fθ(xi|pdrop = 0) as the main model and fθ(xi|pdrop = p)
as the sub-model. This naming convention is employed because a network with dropped features
appears to be a subset of the entire network. In equation 3, the main model output fθ(xi|pdrop = 0)
is used with stop-gradient. Thus, the sub-model is trained to mimic the main model, but the gradient

3

Under review as a conference paper at ICLR 2024

for the main model is independent of the sub-model. This can be interpreted as self-distillation,
where knowledge is transferred from the main model to the sub-model. Also, AugSub can easily be
expanded to binary cross-entropy loss by replacing the softmax function with the sigmoid function.

Algorithm 1 describes PyTorch-style pseudo-code of training with AugSub. The drop probability
is put into the network input. The gradients are calculated on the average losses from the main and
the sub-model. Note that AugSub does not use additional data augmentation, optimizer steps, and
network parameters for the sub-model. We will demonstrate the significant performance benefits of
this simple training technique.

Algorithm 1 AugSub in PyTorch-style pseudo-code

For drop probability p
for (x, y) in loader:

o1, o2 = f(x, 0), f(x, p)
loss = CE(o1, y)
loss += CE(o2, softmax(o1.detach()))
(loss/2).backward()
optimizer.step()

Since the sub-model mimics the main
model, it automatically controls the
difficulty. If the main model pro-
duces output closely aligned with the
ground-truth label, the sub-model loss
aims to attain an accurate classifica-
tion output under drop-based regular-
ization. Conversely, if the main model
fails to converge, the sub-model loss
becomes considerably easier than con-
structing a ground-truth label. In summary, AugSub prioritizes the learning process, ensuring that
drop-based regularization is exclusively applied to images that produce successful output in a standard
setting. We assert that the prioritized loss mechanism of AugSub enables the network to preserve its
convergence speed and learning stability while maintaining the benefits of drop-based regularization.

3.2 DROP-BASED SUB-MODEL REGULARIZATIONS

We select three drop-based techniques for AugSub: dropout (Srivastava et al., 2014), drop-path (Huang
et al., 2016), and random masking (He et al., 2022). All methods are to drop a certain intermediate
feature of the network. Drop-based techniques can easily adjust the strength by controlling drop
probability and are also widely used as an essential regularization in training recipes (Wightman et al.,
2021; Touvron et al., 2021a; 2022a; Liu et al., 2021). In this section, we explain each drop-based
techniques and our implementation.

AugDrop. Dropout (Srivastava et al., 2014) is a fundamental activation drop method. Dropout
drops feature elements with a fixed probability. Since dropout is not related to feature structure,
every element of the feature has independent drop probability p. Although dropout is not preferred
in recent training recipes (Touvron et al., 2021a; 2022a), it is effective in the sub-model frame-
work. For AugDrop, dropout is used for every self-attention and MLP block following the famous
implementation (Wightman, 2019).

AugPath. Drop-path (Huang et al., 2016; Fan et al., 2019) randomly drops a total feature of the
network block with a probability p. When a layer is dropped, the signal proceeds to the next layer
through the residual path only, acting as if the dropped layer does not exist for a specific image input.
Drop-path is used to adjust the regularization strength (Touvron et al., 2022a). For AugPath, we
maintain drop-path of the training recipe in the main model and increase drop-path probability with a
fixed rate, +0.1 or +0.2, in the sub-model.

AugMask. Random masking is an augmentation technique for BERT-like self-supervised learn-
ing (Bao et al., 2021; He et al., 2022). It drops input patches with a fixed ratio and uses the remaining
patches as the network inputs. Despite the successes of random masking in self-supervised learning,
it is often deemed too rigorous for supervised learning. Thus, we employ it in AugSub, which is
designed to mitigate the intensity of regularization. We implement AugMask using MAE style token
drop (He et al., 2022), allowing us to inherit the computational cost reduction by skipping network
computation for the masked region.

3.3 ANALYSIS

We analyze the impact of AugSub with training ViT-B for 100 epochs on ImageNet-1k (Deng et al.,
2009). Three variants of AugSub are applied: AugDrop, AugPath, and AugMask. Based on DeiT-
III (Touvron et al., 2022a), we shorten the epoch to 100 epochs and use image resolution 224× 224.

4

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Epoch

0

20

40

60

80

To
p-

1
ac

cu
ra

cy

Original
Masking
AugMask

(a) Accuracy

20 40 60 80 100
Epoch

6

8

10

12

Tr
ai

n
lo

ss
 (×

 0
.0

01
)

Original
Masking
AugMask

(b) Train loss (original)

20 40 60 80 100
Epoch

8

10

12

Tr
ai

n
lo

ss
 (×

 0
.0

01
)

Original
Masking
AugMask

(c) Train loss (drop)

Figure 2: Training metric analysis. We use 50%-random masking to compare three training settings: original
(equation 1), masking (equation 2), and AugMask. We visualize (a) accuracy on the validation set; (b) train loss
without drop (masking); (c) train loss with drop (masking).

Table 1: Analysis on drop regularization with/without AugSub. The table shows 100 epochs of the ViT-B
performance trained with drop regularization. Note that training loss scale 10−3 is omitted for simplicity. The
table presents the average values over three separate runs, and the standard deviations are reported in Table A.4

Single model Augmenting Sub-model (AugSub)

Drop
ratio Accuracy Train loss

(original)
Train loss

(drop) Accuracy Train loss
(original)

Train loss
(drop)

Original - 77.4 6.42 - - - -

Dropout
0.1 76.1 6.60 6.87 79.1 5.88 6.32
0.2 74.1 6.95 7.34 79.1 5.82 6.57
0.3 71.6 8.34 7.79 79.1 5.84 6.90

Drop-path
0.1 77.4 6.42 6.42 78.4 6.11 6.11
0.2 74.9 6.74 7.19 78.7 5.91 6.48
0.3 71.6 7.31 8.04 78.8 5.87 7.02

Masking
25% 76.3 6.60 6.96 79.0 5.89 6.38
50% 73.8 7.02 7.77 79.4 5.81 6.89
75% 67.3 8.08 9.27 79.2 5.84 8.15

We compare three settings: original, drop-based technique, and AugSub. The original uses equation 1
as the training loss, and none of the drop-based techniques is not used. For the drop-based techniques,
the network is trained with equation 2. Note that it is a common practice to use drop-based techniques.
We compare those two settings with AugSub. For analysis, we measured equation 1 ‘train loss -
original’ and equation 2 ‘train loss - drop’ regardless of loss used for training. It shows how losses
changed by training setting.

20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

G
ra

di
en

t n
or

m
 (×

 0
.0

01
)

Original
Masking
AugMask-Main
AugMask-Sub

Figure 3: Gradients magnitude. The
gradient norm is averaged value over
all parameters for each epoch.

Figure 2 shows loss and accuracy trends in masking 50% case.
When random masking is applied to training (green), loss with
masking (Figure 2c) converges better than the original (blue).
However, it significantly degrades the original train loss (Fig-
ure 2b), resulting in degrade in accuracy (Figure 2a). Regular-
ization over the balance point often causes malicious effects on
original train loss, which decreases accuracy. As shown in Fig-
ure 2b and 2c, AugMask improves the loss convergence for both
losses, which makes a significant improvement in accuracy.

Figure 3 explains the function of AugSub loss (equation 3) in
the aspect of gradients magnitude for masking 50% case. The
gradient magnitude from the main model (AugMask-Main) is
similar to that of other training. In contrast, gradients from the
sub-model (AugMask-Sub) have a small magnitude at the early stage. As the learning progresses,
the gradients from the sub-model increase. It shows that AugSub trains the network following our
intention. During the early stage of training, the gradients from the main model lead the training.
Following the progress of the main model training, the sub-model adaptively increases its gradient
magnitude and produces a reasonable amount of gradients at the end of training.

5

Under review as a conference paper at ICLR 2024

Table 2: Comparison of three variants of AugSub. We use 400 epochs training with DeiT-III (Touvron et al.,
2022a) to compare the performance of three drop-based regularizations integrated with AugSub: AugDrop,
AugPath, and AugMask. The table presents the average over three runs. The std values are shown in Table A.5

Architecture Baseline AugDrop AugPath AugMask

ViT-S/16 80.4 80.6 (+0.2) 80.8 (+0.4) 81.1 (+0.7)
ViT-B/16 83.5 83.8 (+0.3) 83.8 (+0.3) 84.1 (+0.6)

Computational costs ×1.0 ×2.0 ×2.0 ×1.5

Table 3: Training from scratch with ViT using DeiT-III. AugMask (50%) is applied to the ViT training
recipe (Touvron et al., 2022a) on ImageNet-1k. Note that the training settings are identical to the original ones.

Architecture # params FLOPs
400 epochs 800 epochs

DeiT-III + AugMask DeiT-III + AugMask

ViT-S/16 22.0 M 4.6 G 80.4 81.1 (+0.7) 81.4 81.7 (+0.3)
ViT-B/16 86.6 M 17.5 G 83.5 84.1 (+0.6) 83.8 84.2 (+0.4)
ViT-L/16 304.4 M 61.6 G 84.5 85.2 (+0.7) 84.9 85.3 (+0.4)
ViT-H/14 632.1 M 167.4 G 85.1 85.7 (+0.6) 85.2 85.7 (+0.5)

Table 1 shows results of other drop-based regularization with two drop-ratio. ‘Single model’ represents
a training with drop loss function equation 2, when additional drop-based technique is directly applied
to the main model. ‘Augmenting Sub-model (AugSub)’ shows the performance when drop-based
regularization is applied through AugSub. Similar to Figure 2, ‘Train loss (original)’ shows equation 1
and ‘Train loss (drop)’ represents loss with drop as equation 2. The results demonstrate that AugSub
improves training in all three drop-based regularization cases. In all cases, AugSub improves original
and drop loss convergence, which is connected to superior accuracy compared to original training.

4 EXPERIMENTS

We validate the effectiveness of Augmenting Sub-model (AugSub) by applying it to diverse training
scenarios. We claim AugSub is an easy plug-in solution for various training recipes. Thus, we strictly
follow the original training recipe, including optimizer parameters, learning rate and weight-decay,
and regularization parameters. The only difference between baseline and AugSub is the drop-based
technique for the sub-model. We consider AugMask our representative method among the three
variants of AugSub with its cost efficiency and impressive performance. We mainly report the results
with AugMask with a fixed masking ratio 50% across all experiments. Note that comparisons in the
same training computation costs are reported in Table A.1 in Sec. A.1.

4.1 TRAINING FROM SCRATCH

The training recipe in ViTs is a key factor enabling ViT to surpass CNN; thus, the ViT training recipe
is a significant and active research topic. We use a state-of-the-art ViT recipe, DeiT-III (Touvron et al.,
2022a), as a baseline. Integrating additional techniques into the DeiT-III is a significant challenge,
and improvements made over DeiT-III can be considered a novel state-of-the-art in ViT training.

We measure the performance of all three variants of AugSub on a 400 epochs training with Deit-III.
We use Dropout (0.2), Drop-path (base + 0.1), and Masking (50%) for AugDrop, AugPath, and
AugMask, respectively. Table 2 shows the results. All three variants of AugSub outperform the
baseline. Among the three methods, AugMask shows the best performance. Also, AugMask has
the lowest computation costs due to MAE (He et al., 2022)-style computation reduction. Thus, we
conclude that AugMask (50%) is the best in practice for other training recipes.

We expand the experiment with AugMask (50%). Various sizes of ViTs are trained with AugMask
(50%) on 400 and 800 epochs training. The results are shown in Table 3. AugMask significantly
improves performance in all settings. In 400 epochs training, AugMask improves DeiT-III with
substantial margins, which even outperforms 800 epochs training except for ViT-S/16. AugMask
also demonstrates superior performance in 800 epochs of training. The impact of AugMask is
impressively sustained even for larger models like ViT-L/16 and ViT-H/16. It is worth noting that

6

Under review as a conference paper at ICLR 2024

Table 4: ImageNet-1k finetuning. We report finetuned performance of MAE (He et al., 2022), BEiT v2 (Peng
et al., 2022) and CLIP finetuning (Dong et al., 2022) with AugMask (50%). Official pretrained weights are used.

Pretraining Finetuning recipe Finetuning
epochs Architecture Baseline +AugMask

MAE
(1600 epochs)

MAE finetuning
(+ AugMask)

100 ViT-B/16 83.6 83.9 (+0.3)
50 ViT-L/16 85.9 86.1 (+0.2)
50 ViT-H/14 86.9 87.2 (+0.3)

BEiT v2
(1600 epochs)

BEiT v2 finetuning
(+ AugMask)

100 ViT-B/16 85.5 85.6 (+0.1)
50 ViT-L/16 87.3 87.4 (+0.1)

CLIP Finetuning CLIP
(+ AugMask)

50 ViT-B/16 84.8 85.2 (+0.4)
30 ViT-L/14 87.5 87.8 (+0.3)

Table 5: ImageNet-1k with hierarchical architecture. We show the performance of ResNet (He et al., 2016)
and Swin Transformer (Liu et al., 2021) trained from scratch with AugMask (50%).

Training recipe Epochs Architecture # params FLOPs Baseline + AugMask

ResNet-RSB A2 300
ResNet50 25.6 M 4.1 G 79.7 80.0 (+0.3)
ResNet101 44.5 M 7.9 G 81.4 82.1 (+0.7)
ResNet152 60.2 M 11.6 G 81.8 82.8 (+1.0)

Swin Transformer 300
Swin-T 28.3 M 4.5 G 81.3 81.4 (+0.1)
Swin-S 49.6 M 8.7 G 83.0 83.4 (+0.4)
Swin-B 87.9 M 15.4 G 83.5 83.9 (+0.4)

ViT-H + AugMask (400 epochs) outperforms ViT-H/16 (800 epochs) with a significant +0.5pp gain
even with half training length. Thus, AugMask is an effective way to improve ViT training.

4.2 FINETUNING

Following the emergence of self-supervised learning on ImageNet (Deng et al., 2009), the significance
of finetuning has notably increased. Generally, self-supervised learning, such as MAE (He et al., 2022)
and BEiT (Bao et al., 2021; Peng et al., 2022), does not use supervised labels at pretraining, which
makes AugSub inapplicable for pretraining. However, most methods utilize supervised finetuning
steps after pretraining to demonstrate their performance. Thus, we apply our AugMask (50%) to the
finetuning stage. Note that we strictly follow original finetuning recipes and apply AugMask (50%)
based on it. All finetuning is conducted using officially released pretrained weights.

We utilize three finetuning recipes: MAE (He et al., 2022), BEiT v2 (Peng et al., 2022), and Finetune
CLIP (Dong et al., 2022). MAE (He et al., 2022) is a representative method of masked image models
(MIM). Since our random masking is motivated by MAE, AugMask is seamlessly integrated into
MAE finetuning process. BEiT v2 (Peng et al., 2022) uses pretrained CLIP for MIM and achieves
superior performance compared to MAE. Following the masking strategy of BEiT v2 using mask-
token, we adjust AugMask to masking using mask-token from the pretrained weight. Finetune
CLIP (Dong et al., 2022) is a finetuning recipe for CLIP (Radford et al., 2021) pretrained weights.
AugMask is applied to finetuning CLIP without change, the same as MAE finetune.

Table 4 shows the finetuning results. AugMask improves the performance of all finetune recipes,
including large-scale ViT models. This is notable as it shows substantial improvement with a short
finetuning phase of fewer than 100 epochs compared to the pretraining period of 1600 epochs. In
MAE finetuning, AugMask improves 0.2 - 0.3pp in all model sizes. AugMask is also effective on
BEiT v2, which utilizes RPE (Liu et al., 2021; Bao et al., 2021) and masking strategy with mask-token.
Even in CLIP finetuning, AugMask achieves substantial improvement. In finetuning CLIP, we report
performance at the last epoch rather than selecting the best performance in early epochs. The best
performance of finetuning CLIP with AugMask is the same as the baseline.

4.3 HIERARCHICAL ARCHITECTURE

We extend experiments to architectures with hierarchical spatial dimensions: ResNet (He et al.,
2016) and Swin Transformer (Liu et al., 2021). Unlike ViT maintains spatial token length for all

7

Under review as a conference paper at ICLR 2024

Table 6: Comparison in ImageNet-1k training. The
table shows performance and GPU costs of augment-
ing methods for ViT-B 400 epoch training.

Method Accuracy GPU days

Original (2022a) 83.5 17.3

RepeatedAug (2020) 83.5 (+0.0) 36.8 (+113%)
GradAug (2020) 83.2 (-0.3) 39.7 (+129%)
CoSub (2022b) 83.9 (+0.4) 35.3 (+104%)
AugMask 84.1 (+0.6) 25.1 (+45%)

Table 7: Comparison in MAE finetuning. The table
displays performances and GPU costs of augmenting
methods when applied to MAE ViT-B fine-tuning.

Method Accuracy GPU days

Original (2022a) 83.6 6.0

RepeatedAug (2020) 83.1 (-0.5) 11.8 (+97%)
GradAug (2020) 84.0 (+0.4) 23.4 (+290%)
CoSub (2022b) 83.8 (+0.2) 11.0 (+83%)
AugMask 83.9 (+0.3) 8.6 (+43%)

layers, those networks change the spatial size of features in the middle of layers, requiring a change
in masking strategy. We apply AugMask (50%) to ResNet and Swin Transformer. We simply fill
out masked regions with zero pixels for ResNets and replace masked regions to mask-tokens for
Swin Transformer. It maintains the spatial structure and enables spatial size reduction of hierarchical
architecture. Following previous literature (Woo et al., 2023), we use random masking with patch-size
32 × 32. Note that the computation reduction of AugMask is not applicable for this case due to
changes in the masking strategy. Thus, AugMask costs double the training budget. For ResNet, we use
a high-performance training recipe (Wightman et al., 2021) with 300 epochs. The recipe of original
paper (Liu et al., 2021) is used for the Swin Transformer training. We strictly follow the training
recipe and apply AugMask without recipe tuning.

Results are shown in Table 5. AugMask achieves impressive performance gains even in ResNet
and Swin Transformer. ResNet is a convolutional neural network using Batch Normalization (Ioffe
& Szegedy, 2015). Thus, it is substantially different from ViT. Swin Transformer uses a different
training recipe from the conventional ViT recipe (Touvron et al., 2022a). Thus, an improvement on
Swin shows that AugMask can be used for different training from scratch recipes without tuning.
In summary, the effectiveness of AugMask is not limited to ViT architectures and is applicable to
hierarchical architectures.

4.4 COMPARISON WITH OTHER AUGMENTING METHODS

We compare AugMask with other augmenting methods: RepeatedAug (Hoffer et al., 2020),
GradAug (Yang et al., 2020), and CoSub (Touvron et al., 2022b). RepeatedAug (2020) is a data
augmentation technique widely used for ViT training. For comparison, we doubled the RepeatedAug
and compared the performance. GradAug (2020) is an early-stage sub-network augmentation that
utilizes network slimming (Yu et al., 2018) to build sub-network. CoSub introduces a sub-network
based on drop-path (Fan et al., 2019) and uses the sub-network as co-training (Zhang et al., 2018). We
compared AugMask (AugSub with random masking) with those methods as a general augmentation
technique. Comparisons include two training scenarios: 400 epochs ImageNet-1k training from
scratch (Touvron et al., 2022a) and MAE fine-tuning on ImageNet-1k (He et al., 2022). All experi-
ments are conducted on a V100×8 machine. We compare top-1 accuracy and training computation
cost of each augmentation method. The computation is reported as the number of days when it is
trained with a single V100 machine.

Table 6 shows the 400 epoch training from scratch result, and Table 7 represents MAE fine-tuning
result. Note that GradAug in Table 6 is 200 epochs training result to adjust computation cost similar
to other methods. All augmentation methods require additional computation costs. In particular,
GradAug spends almost 300% of additional training costs compared to original methods. On the
other hand, our AugMask only requires a small amount of additional costs (below 50%), which is
a significant advantage compared to other methods. With the smallest computation, our AugMask
achieves substantial performance improvements. AugMask performs superior to CoSub in all cases
and performs similarly to GradAug in MAE fine-tuning with 1/6 training costs.

4.5 ROBUSTNESS

We evaluate the impact of AugMask in various robustness benchmarks. We use models trained for 800
epochs in Table 3. Table 8 shows the results. ViT models trained with AugMask demonstrate superior
performance in all robustness metrics. AugMask outperforms the baseline in natural adversarial

8

Under review as a conference paper at ICLR 2024

Table 8: Robustness benchmark. Table shows the robustness benchmark for ViT pretrained with/without
AugMask. In all metrics, higher scores indicate better results.

Model +AugMask IN-1k IN-V2 IN-Real IN-A IN-R ObjNet SI-size SI-loc SI-rot

ViT-S - 81.4 70.1 87.0 23.4 46.4 32.6 55.0 39.8 37.8
✔ 81.7 71.0 87.4 26.9 47.2 33.5 56.7 42.5 39.9

ViT-B - 83.8 73.4 88.2 36.8 54.1 35.7 58.0 42.7 41.5
✔ 84.2 74.0 88.6 41.9 54.4 37.2 59.0 44.8 43.3

ViT-L - 84.9 74.8 88.8 45.3 57.4 38.8 59.8 46.5 45.0
✔ 85.3 75.8 89.2 51.1 58.5 40.0 60.2 46.8 45.9

ViT-H - 85.2 75.7 89.2 51.9 58.8 40.1 61.9 49.0 46.8
✔ 85.7 76.5 89.6 58.3 59.9 41.7 62.4 50.1 48.4

Table 9: Transfer learning to small-scale datasets. Table shows transfer learning performance with/without
AugMask. We measure the performance when AugMask is applied to pretraining and finetuning. The table
presents the average values over three separate runs, and the standard deviations are reported in Table A.6

Model Pretraining
+ AugMask

Finetuning
+ AugMask CIFAR-10 CIFAR-100 Flowers Cars iNat-18 iNat-19

ViT-S/16
- - 98.8 90.0 94.5 80.9 70.1 76.7
✔ - 98.9 90.6 95.2 81.2 70.8 77.0
✔ ✔ 98.8 89.9 98.3 92.2 71.2 77.1

ViT-B/16
- - 99.1 91.7 97.5 90.0 73.2 78.5
✔ - 99.2 91.9 97.7 90.2 73.6 78.8
✔ ✔ 98.8 89.6 98.7 92.8 73.9 79.1

examples (Hendrycks et al., 2021b) (IN-A), objects in different styles and textures (IN-R (Hendrycks
et al., 2021a)), controls in rotation, background, and viewpoints (ObjNet (Barbu et al., 2019)), and
SI-scores (Djolonga et al., 2021) (SI-size, SI-loc, and SI-rot). The results demonstrate that the
improvement of AugMask is not limited to ImageNet validation and has been verified across various
robustness metrics.

4.6 TRANSFER LEARNING

Improvement on pretraining can boost the performance of downstream tasks (Kornblith et al.,
2019). We measure transfer learning performance of AugMask using 800 epochs pretrained weight
from Table 3. We use the CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), Oxford Flowers-102 (Nilsback & Zisserman, 2008), Stanford Cars (Krause et al., 2013) and
iNaturalist (Van Horn et al., 2018) datasets. We use AdamW training recipe (Touvron et al., 2022a).
We also evaluate performance when AugMask (50%) is applied to the finetuning process. Table 9
shows the results. The backbone pretrained with AugMask consistently outperforms the DeiT-III
backbone across all cases. Moreover, when AugMask is applied to the finetuning process, it further
boosts performance in most cases except CIFAR.

5 CONCLUSION

In this work, we have presented a new method for additional regularization across various training
recipes. Our method, Augmented Sub-model (AugSub), is designed to leverage drop-based regular-
ization within a sub-model, which is separated from main training and uses a relaxed loss function.
Our extensive analysis reveals that AugSub effectively mitigates malicious effects of additional
regularization while accelerating the convergence speed, yielding superior performance. We verify
AugSub on various training recipes, including diverse architecture. Notably, AugMask, a specific
implementation of AugSub for random masking, demonstrates significant performance improvements
across diverse scenarios. We claim that AugSub is a substantial advancement in training recipes and
contributes to building novel regularization strategies.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
of object recognition models. Advances in neural information processing systems, 32, 2019.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: high quality object detection and instance
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5):1483–1498,
2019.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

MMCV Contributors. MMCV: OpenMMLab computer vision foundation. https://github.
com/open-mmlab/mmcv, 2018.

MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and
benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 113–123, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition workshops, pp. 702–703, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 248–255. Ieee, 2009.

Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders, Lucas Beyer, Alexander
Kolesnikov, Joan Puigcerver, Matthias Minderer, Alexander D’Amour, Dan Moldovan, et al. On
robustness and transferability of convolutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16458–16468, 2021.

Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Shuyang Gu, Weiming Zhang, Lu Yuan,
Dong Chen, Fang Wen, and Nenghai Yu. Clip itself is a strong fine-tuner: Achieving 85.7% and
88.0% top-1 accuracy with vit-b and vit-l on imagenet. arXiv preprint arXiv:2212.06138, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

10

https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmsegmentation

Under review as a conference paper at ICLR 2024

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image
classification with convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 558–567, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial ex-
amples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 15262–15271, 2021b.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment
your batch: Improving generalization through instance repetition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8129–8138, 2020.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Proceedings of the European Conference on Computer Vision, pp. 646–661.
Springer, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2661–2671, 2019.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
backbones for object detection. In Proceedings of the European Conference on Computer Vision,
pp. 280–296. Springer, 2022.

Feng Liang, Yangguang Li, and Diana Marculescu. Supmae: Supervised masked autoencoders are
efficient vision learners. arXiv preprint arXiv:2205.14540, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings of
the European Conference on Computer Vision, pp. 740–755. Springer, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008.

Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu Wei. Beit v2: Masked image modeling
with vector-quantized visual tokenizers. arXiv preprint arXiv:2208.06366, 2022.

Mary Phuong and Christoph H Lampert. Distillation-based training for multi-exit architectures. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1355–1364, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

11

Under review as a conference paper at ICLR 2024

Seungwoo Son, Namhoon Lee, and Jaeho Lee. Maskedkd: Efficient distillation of vision transformers
with masked images. arXiv preprint arXiv:2302.10494, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357. PMLR, 2021a.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 32–42, 2021b.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In Proceedings of the
European Conference on Computer Vision, pp. 516–533. Springer, 2022a.

Hugo Touvron, Matthieu Cord, Maxime Oquab, Piotr Bojanowski, Jakob Verbeek, and Hervé Jégou.
Co-training 2L submodels for visual recognition. arXiv preprint arXiv:2212.04884, 2022b.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778,
2018.

Xiao Wang, Haoqi Fan, Yuandong Tian, Daisuke Kihara, and Xinlei Chen. On the importance of
asymmetry for siamese representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16570–16579, 2022.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. arXiv
preprint arXiv:2301.00808, 2023.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
418–434, 2018.

Taojiannan Yang, Sijie Zhu, and Chen Chen. Gradaug: A new regularization method for deep neural
networks. Advances in Neural Information Processing Systems, 33:14207–14218, 2020.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3713–3722, 2019.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/facebookresearch/detectron2

Under review as a conference paper at ICLR 2024

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4320–4328,
2018.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–13008,
2020.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 633–641, 2017.

Xiatian Zhu, Shaogang Gong, et al. Knowledge distillation by on-the-fly native ensemble. Advances
in neural information processing systems, 31, 2018.

13

Under review as a conference paper at ICLR 2024

APPENDIX

A EXPERIMENTS

A.1 TRAINING BUDGET

We have shown that AugMask effectively improves the performance of various architectures. However,
AugMask requires additional computation costs for the sub-model, which increases training costs.
Thus, we analyze AugMask regarding its training costs to determine if AugMask could be an effective
solution within a limited training budget. We compare AugMask with training recipes set to ×1.5
epochs to align with the training budget. The training budget is quantified regarding required GPU
days when only a single NVIDIA V100 GPU is used for training. Table A.1 shows the results. In DeiT-
III (Touvron et al., 2022a) training, AugMask outperforms baseline with ×1.5 epochs setting. Thus,
AugMask is superior to the long epoch training to spend computation costs for training ViT. MAE
finetuning with ×1.5 epochs even degrades the performance compared to the baseline. For ResNet,
we compare 300 epochs AugMask with 600 epochs training recipe RSB (Wightman et al., 2021) A1.
AugMask outperforms 600 epochs training recipes in ResNet101 and ResNet152. Consequently, the
results show that AugMask is an effective way to improve training, even considering computation
costs for the sub-model.

Table A.1: Comparison in the same training budget. All training has been conducted with NVIDIA V100 8
GPUs. GPU days refer to the number of days required for training when using a single V100 GPU.

Architecture Training recipe +AugMask Epochs GPU days Accuracy

DeiT-III
Training

ViT-S/16
DeiT-III - 600 22 80.7

✔ 400 22 81.2 (+0.5)

DeiT-III - 1200 45 81.6
✔ 800 44 81.7 (+0.1)

ViT-B/16
DeiT-III - 600 26 83.7

✔ 400 25 84.1 (+0.4)

DeiT-III - 1200 52 83.8
✔ 800 50 84.2 (+0.4)

MAE
Finetuning

ViT-B/16 MAE Finetune - 150 9 83.5
✔ 100 9 83.9 (+0.4)

ViT-L/16 MAE Finetune - 75 14 85.5
✔ 50 14 86.1 (+0.6)

ResNet
Training

ResNet50 RSB A1 - 600 22 80.4
RSB A2 ✔ 300 14 80.0 (-0.4)

ResNet101 RSB A1 - 600 24 81.5
RSB A2 ✔ 300 20 82.1 (+0.6)

ResNet152 RSB A1 - 600 32 82.0
RSB A2 ✔ 300 29 82.8 (+0.8)

A.2 DOWNSTREAM TASKS

Semantic segmentation. Using the segmentation recipe of BEiT v2 (Peng et al., 2022), we train
UpperNet (Xiao et al., 2018) with ViT backbone on ADE-20k (Zhou et al., 2017) dataset. Table A.2
shows the results in two ways: single-scale and multi-scale evaluation. On both evaluations, the
backbone pretrained with AugMask demonstrates superior performance in ViT-B and ViT-L.

Object detection and instance segmentation. We utilize Cascaded Mask R-CNN (Cai & Vasconce-
los, 2019) with ViT backbones (Li et al., 2022) for MS COCO (Lin et al., 2014), which conducts
object detection and instance segmentation simultaneously. ViTDet (Li et al., 2022) is used as a
training recipe for this experiment. Table A.3 shows the results. The metric AP box quantifies the
performance in object detection, while APmask provides performance in instance segmentation. In
both measures, the backbone pretrained with AugMask outperforms the DeiT-III backbone.

14

Under review as a conference paper at ICLR 2024

Table A.2: Semantic segmentation on ADE-20k. UpperNet for
ViT backbone is trained with the BEiTv2 segmentation recipe.

Single-scale mIoU Multi-scale mIoU

DeiT-III + AugMask DeiT-III + AugMask

ViT-B 48.8 49.4 (+0.6) 49.7 50.2 (+0.5)
ViT-L 51.7 52.2 (+0.5) 52.3 52.7 (+0.4)

Table A.3: Detection and instance seg-
mentation on MS COCO. Cascaded
Mask R-CNN with ViT-B is used.

AP box APmask

DeiT-III 50.7 43.6
+AugMask 50.9 (+0.2) 43.9 (+0.3)

A.3 MEAN AND STANDARD DEVIATION

We provide mean and standard deviation for experiments using different random seeds. The values
presented in this section are the result of three independent runs with different seeds.

Table A.4 shows the mean and standard deviation values for Table 1 in the original paper. Note
that some numbers changed from the original table due to a minor bug fixing in the analysis code.
Table A.4 shows the superiority of our AugSub in additional regularization training.

Table A.5 shows 400 epochs training with DeiT-III (Touvron et al., 2022a), which is reported in
Table 2 of the paper. Our AugSub improves the performance of ViT training with three regularizations:
AugDrop, AugPath, and AugMask. Among the three variants, AugMask demonstrates the best
performance.

We measure mean and standard deviation values for transfer learning experiments (Table 9 in the
paper) as shown in Table A.6. The random masking variant of our method (AugMask) demonstrates
significant gains, which surpass the standard deviation of performance. Table A.7 presents short
training (300 epochs) results. AugMask shows substantial improvements when it is applied to both
pretraining and finetuning processes.

Table A.4: Mean and std for analysis on drop regularization with/without AugSub. The table shows ‘mean
± std’ values for experiments in Table 1 of the paper. Note that training loss scale 10−3 is omitted for simplicity.

Single model Augmenting Sub-model (AugSub)

Drop
ratio Accuracy Train loss

(original)
Train loss

(drop) Accuracy Train loss
(original)

Train loss
(drop)

Original - 77.40 ± 0.20 6.42 ± 0.03 - - - -

Dropout
0.1 76.09 ± 0.25 6.60 ± 0.07 6.87 ± 0.06 79.14 ± 0.15 5.88 ± 0.02 6.32 ± 0.02
0.2 74.10 ± 0.22 6.95 ± 0.06 7.34 ± 0.06 79.10 ± 0.11 5.82 ± 0.04 6.57 ± 0.04
0.3 71.62 ± 0.29 8.34 ± 0.03 7.79 ± 0.03 79.09 ± 0.15 5.84 ± 0.03 6.90 ± 0.03

Drop-path
0.1 77.40 ± 0.20 6.42 ± 0.03 6.42 ± 0.03 78.36 ± 0.03 6.11 ± 0.01 6.11 ± 0.01
0.2 74.92 ± 0.12 6.74 ± 0.04 7.19 ± 0.03 78.72 ± 0.12 5.91 ± 0.01 6.48 ± 0.01
0.3 71.57 ± 0.10 7.31 ± 0.02 8.04 ± 0.02 78.80 ± 0.15 5.87 ± 0.02 7.02 ± 0.01

Masking
25% 76.33 ± 0.28 6.60 ± 0.05 6.96 ± 0.05 79.02 ± 0.12 5.89 ± 0.03 6.38 ± 0.04
50% 73.78 ± 0.08 7.02 ± 0.04 7.77 ± 0.03 79.36 ± 0.01 5.81 ± 0.01 6.89 ± 0.01
75% 67.27 ± 0.25 8.08 ± 0.05 9.27 ± 0.04 79.16 ± 0.05 5.84 ± 0.01 8.15 ± 0.02

Table A.5: Mean and std for three variants of AugSub. We report ‘mean ± std’ values for 400 epochs training
with DeiT-III (Touvron et al., 2022a). Note that we use the performance of original paper (Touvron et al., 2022a)
for baseline training.

Architecture Baseline AugDrop AugPath AugMask

ViT-S/16 80.40 ± 0.33 80.57 ± 0.12 80.78 ± 0.05 81.08 ± 0.12
ViT-B/16 83.46 ± 0.04 83.83 ± 0.11 83.80 ± 0.12 84.08 ± 0.02

B IMPLEMENTATION DETAILS

Most experiments in the paper were performed on a machine with NVIDIA V100 8 GPUs. The
exceptions were DeiT-III (Touvron et al., 2022a) experiments for ViT-L and ViT-H in Table 3 and

15

Under review as a conference paper at ICLR 2024

Table A.6: Mean and std for transfer learning to small scale datasets. Table shows ‘mean ± std’ values for
transfer learning performance with/without AugMask. We measure the performance when AugMask is applied
to pretraining and finetuning.

Model Pretraining
+ AugMask

Finetuning
+ AugMask CIFAR10 CIFAR100 Flowers Cars iNat-18 iNat-19

ViT-S
- - 98.83 ± 0.05 89.96 ± 0.15 94.54 ± 1.71 80.86 ± 0.71 70.12 ± 0.13 76.69 ± 0.56
✔ - 98.88 ± 0.09 90.63 ± 0.09 95.19 ± 1.95 81.23 ± 0.73 70.82 ± 0.03 77.00 ± 0.21
✔ ✔ 98.77 ± 0.05 89.87 ± 0.17 98.25 ± 0.51 92.17 ± 0.14 71.17 ± 0.21 77.12 ± 0.48

ViT-B
- - 99.07 ± 0.05 91.69 ± 0.15 97.52 ± 0.51 90.05 ± 0.24 73.16 ± 0.05 78.49 ± 0.62
✔ - 99.19 ± 0.03 91.89 ± 0.04 97.73 ± 0.30 90.18 ± 0.12 73.61 ± 0.08 78.77 ± 0.05
✔ ✔ 98.82 ± 0.03 89.55 ± 0.05 98.68 ± 0.16 92.77 ± 0.09 73.88 ± 0.12 79.07 ± 0.55

Table A.7: Transfer learning at short (300 epochs) training. Table shows ‘mean ± std’ values for transfer
learning at 300 epochs. We measure the performance when AugMask is applied to pretraining and finetuning.

Model Pretraining
+ AugMask

Finetuning
+ AugMask CIFAR10 CIFAR100 Flowers Cars

ViT-S
- - 98.41 ± 0.12 87.27 ± 0.19 66.66 ± 2.52 46.04 ± 3.72
✔ - 98.48 ± 0.06 87.54 ± 0.33 72.61 ± 1.20 45.46 ± 1.80
✔ ✔ 98.96 ± 0.06 90.81 ± 0.09 96.64 ± 0.23 87.43 ± 0.43

ViT-B
- - 98.97 ± 0.10 90.33 ± 0.14 90.92 ± 1.60 78.52 ± 0.59
✔ - 99.06 ± 0.02 90.82 ± 0.21 92.45 ± 0.90 80.34 ± 0.56
✔ ✔ 99.15 ± 0.04 91.52 ± 0.16 98.44 ± 0.13 92.22 ± 0.03

object detection in Table A.3, conducted with NVIDIA A100 64 GPUs. Also, we use a single NVIDIA
V100 for transfer learning in Table 9.

We strictly follow original training recipes for experiments. We denote details of the training recipes
to clarify our implementation details and assist in reproducing our results. Table B.1 shows training
recipes used for Table 2, 3, 4, and 5 of the paper. It demonstrates that our AugMask is validated
on various training recipes that cover diverse regularization and optimizer settings and achieves
consistent improvement on all settings, which exhibits the general applicability of AugMask. Note
that AugMask is applied to all recipes with the same masking ratio of 0.5. Thus, AugMask does not
require hyper-parameter tuning specialized for each recipe.

Model-specific training recipes of DeiT-III (Touvron et al., 2022a) are reported in Table B.2. DeiT-III
achieves strong performance with sophistically tuned training parameters mainly focused on input
size and drop-path rate. It makes improving DeiT-III more challenging than other recipes, which is
accomplished by our AugSub with a significant performance gap.

For semantic segmentation in ADE20k, we use BEiT v2 (Peng et al., 2022) segmentation recipe that
utilizes MMCV (Contributors, 2018) and MMSeg (Contributors, 2020) library. Following the default
setting, we replace the ViT backbone with the DeiT-III backbone, which includes layer-scale (Touvron
et al., 2021b). Then, we train the segmentation task for 160k iteration using DeiT-III and DeiT-III +
AugMask pretrained backbone.

We use Detectron2 (Wu et al., 2019) for object detection and instance segmentation task on
MSCOCO (Lin et al., 2014) dataset. Among various recipes in the Detectron2 library, we use
ViTDet (Li et al., 2022) as a recent and strong recipe for a ViT-based detector. We train ViTDet
Cascaded Mask-RCNN with DeiT-III and DeiT-III + AugMask pretrained backbone and report
performance after MSCOCO 100 epoch training.

For transfer learning, we use the AdamW training recipe on DeiT-III (Touvron et al., 2022a) transfer
learning. We use AdamW with lr 10−5, weight-decay 0.05, batch size 768. Drop-path (Huang et al.,
2016) and random erasing (Zhong et al., 2020) are not used. Data augmentation is set to be the
same as DeiT-III, and we train ViT for 1000 epochs with a cosine learning rate decay. For CIFAR
datasets, we resize 32× 32 image to 224× 224 to use ImageNet pretrained backbones. In the case of
iNaturalist datasets (Van Horn et al., 2018), we use AdamW with lr 7.5× 10−5, weight-decay 0.05,
batch size 768. Drop-path and random erasing ratios are set to 0.1, and ViT is trained for 360 epochs
with cosine learning rate decay.

16

Under review as a conference paper at ICLR 2024

Table B.1: Details of various training recipes used for experiments. Our AugMask achieves consistent
improvement in all training recipes that covers diverse regularization and optimizer settings.

Training recipe DeiT-III RSB A2 Swin MAE BEiT v2 FT-CLIP

Fine-tuning ✗ ✗ ✗ ✔ ✔ ✔

Epoch 400 / 800 300 300 100, 50 100, 50 50, 30
Batch size 2048 2048 1024 1024 1024 2048
Optimizer LAMB LAMB AdamW AdamW AdamW AdamW
LR 3× 10−3 5× 10−3 1× 10−3 (2, 4)× 10−3 (5, 2)× 10−4 (6, 4)× 10−4

LR decay cosine cosine cosine cosine cosine cosine
Layer LR decay - - - 0.65, 0.75 0.6, 0.8 0.6, 0.65
Weight decay 0.03 / 0.05 0.01 0.05 0.05 0.05 0.05
Warmup epochs 5 5 20 5 20, 5 10, 5
Loss BCE BCE CE CE CE CE

Label smoothing - - 0.1 0.1 0.1 0.1
Dropout - - - - - -
Drop-path Table B.2 0.05 0.1 0.1, 0.2, 0.3 0.2 -
Repeated aug ✔ ✔ - - - -
Gradient clip 1.0 - 5.0 - - -
RandAugment Three Aug. 7 / 0.5 9 / 0.5 9 / 0.5 9 / 0.5 9 / 0.5
Mixup alpha 0.8 0.1 0.8 0.8 0.8 -
CutMix alpha 1.0 1.0 1.0 1.0 1.0 -
Random erasing - - 0.25 0.25 0.25 0.25
Color jitter 0.3 - 0.4 - 0.4 0.4
EMA - - - - - 0.9998
Train image size Table B.2 224× 224 224× 224 224× 224 224× 224 224× 224

Test image size 224× 224 224× 224 224× 224 224× 224 224× 224 224× 224
Test crop ratio 1.0 0.95 0.875 0.875 0.875 1.0

Table B.2: Model specific recipes of DeiT-III (Touvron et al., 2022a). The table shows model-size and training
length-specific training arguments used for the DeiT-III recipe. In addition to Table B.1, DeiT-III utilizes drop-
path and image size to adjust the recipe for diverse model-size and training lengths.

400 epochs 800 epochs

ViT-S ViT-B ViT-L ViT-H ViT-S ViT-B ViT-L ViT-H

Pretraining

Image size 224 192 192 160 224 192 192 160
Drop-path 0.0 0.1 0.4 0.5 0.05 0.2 0.45 0.6

LR 0.004 0.003 0.004 0.003

Weight decay 0.03 0.05

Resolution
Finetuning

Drop-path - 0.2 0.45 0.55 - 0.2 0.45 0.55

Epochs - 20 - 20
Image size - 224 x 224 - 224 x 224
Optimizer - AdamW - AdamW

LR - 1e-5 - 1e-5

17

	Introduction
	Related Work
	Method
	Augmenting Sub-model (AugSub)
	Drop-based Sub-model Regularizations
	Analysis

	Experiments
	Training from scratch
	Finetuning
	Hierarchical architecture
	Comparison with other augmenting methods
	Robustness
	Transfer learning

	Conclusion
	Experiments
	Training budget
	Downstream tasks
	Mean and standard deviation

	Implementation details

