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Abstract

Virtual Screening (VS) is vital for drug discovery but struggles with low hit rates and
high computational costs. While Active Learning (AL) has shown promise in im-
proving the efficiency of VS, traditional methods rely on inflexible and handcrafted
heuristics, limiting adaptability in complex chemical spaces, particularly in balanc-
ing molecular diversity and selection accuracy. To overcome these challenges, we
propose GLARE1, a reinforced active learning framework that reformulates VS
as a Markov Decision Process (MDP). Using Group Relative Policy Optimization
(GRPO), GLARE dynamically balances chemical diversity, biological relevance,
and computational constraints, eliminating the need for inflexible heuristics. Ex-
periments show GLARE outperforms state-of-the-art AL methods, with a 64.8%
average improvement in Enrichment Factors (EF). Additionally, GLARE enhances
the performance of VS foundation models like DrugCLIP, achieving up to an 8-fold
improvement in EF0.5% with as few as 15 active molecules. These results highlight
the transformative potential of GLARE for adaptive and efficient drug discovery.

1 Introduction

Virtual Screening (VS) plays a pivotal role in drug design, facilitating the identification of active
molecules that interact with biological targets from vast chemical libraries [30]. By predicting
the likelihood of activity for each molecule, VS reduces the need for exhaustive experimental
testing [43, 62, 40]. However, despite its importance, VS faces significant challenges, including low
hit rates (the proportion of active molecules identified) [46] and the computational cost of screening
ultra-large libraries (106 − 108 compounds) [36, 13]. These limitations have driven the search for
more efficient and accurate methodologies to improve the scalability and performance of VS [60].

Active Learning (AL) has shown promise in virtual screening by iteratively refining models through
the selective acquisition of informative molecular samples [14, 26]. Popular strategies often involve
uncertainty-based, diversity-based, and hybrid approaches [48, 64, 7]. Diversity-based approaches
ensure broad exploration by selecting diverse samples, while uncertainty-based methods focus on
refining predictions by prioritizing uncertain molecules [5, 55]. However, both of them rely on
hand-crafted selection strategies. They are often heavily dependent on the diversity and size of the
initial molecular pool, thus lacking the flexibility to dynamically balance exploration and exploitation
when new data are acquired [5].

Recent advancements in AL have sought to improve efficiency by introducing frameworks that
dynamically combine or select strategies, reducing the need for manual intervention [35, 19]. For
instance, SelectAL [15] adjusts AL strategies based on specific tasks and computational budgets,
while AutoAL [57] employs a differentiable framework to identify optimal strategies. Although

1Source code is available at https://github.com/biomed-AI/GLARE
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these approaches mark progress, they remain focused on optimizing the selection of strategies from a
predefined set (i.e., "learning to select rules"). This approach does not enable models to directly learn
how to identify the most promising candidate molecules (i.e., "learning to select molecules"). As a
result, these methods are not well-suited for drug discovery, where the vast and complex chemical
space requires highly adaptive and intelligent exploration to effectively balance structural diversity,
biological relevance, and computational efficiency [10].

In this work, we introduce GLARE, a GRPO-based Learning framework for Active REinforced
screening, designed to overcome the limitations of traditional active learning methods and enhance
large-scale virtual screening. GLARE reformulates the virtual screening process as a Markov Decision
Process (MDP), enabling Reinforcement Learning (RL) to dynamically optimize molecular selection
strategies. By leveraging Group Relative Policy Optimization (GRPO) [49], GLARE eliminates
the reliance on manually-designed heuristics, learning to adaptively screen large-scale chemical
spaces. By balancing molecular diversity, biological relevance, and computational efficiency, GLARE
provides a robust and scalable solution for AL in drug discovery.

Through extensive experiments, we demonstrate that GLARE significantly outperforms state-of-the-
art AL methods, achieving an average 64.8% improvement in Enrichment Factors (EF). Furthermore,
it improves the performance of virtual screening foundation models like DrugCLIP, achieving up to
an 8-fold increase in EF0.5% with as few as 15 active molecules given. These results highlight the
transformative potential of GLARE in enabling adaptive, efficient, and intelligent molecular selection
for drug discovery.

In summary, our contributions are threefold:

• We reformulate virtual screening as a Markov Decision Process (MDP), enabling reinforcement
learning to dynamically optimize molecular selection.

• By utilizing a learnable policy model trained with Group Relative Policy Optimization (GRPO),
GLARE eliminates the need for manually-designed heuristics and learns to adaptively screen the
complex chemical spaces.

• Extensive experiments demonstrate that GLARE significantly outperforms state-of-the-art active
learning methods, enhancing virtual screening efficiency and scalability, while also substantially
improving the performance of virtual screening foundation models.

2 Related Works

2.1 Virtual Screening Methods

Virtual screening methods are broadly categorized into docking-based and deep learning-based
approaches [12]. Docking-based methods [16, 56] use predefined force fields to estimate binding
scores, predicting the binding energy, optimal orientation, and conformation of a small molecule
within a protein binding site [23]. However, their reliance on rigid scoring functions and static
assumptions limits their accuracy and scalability in complex chemical spaces [21].

Deep learning-based virtual screening approaches typically focus on predicting drug-target interac-
tions and binding affinities [34, 61, 32, 28, 63, 39, 29]. These methods represent drugs and target
proteins using various encoding techniques, such as molecular fingerprints, SMILES strings, graph-
based representations [38, 37] for drugs, and sequence-based or structural embeddings for proteins.
These methods leverage large experimental datasets and known interaction information to predict
new potential interactions [20, 9, 50], offering a more comprehensive perspective for drug discovery.

However, as the size of chemical and biological data grows, the computational cost and inefficiency
of exhaustively labeling data become significant challenges [13, 46]. This highlights the need for
active learning to prioritize data points that are most informative for model improvement [42, 41, 14],
enabling more effective exploration of the chemical space.

2.2 Active Learning

Active Learning (AL) has been widely applied in drug discovery and development to iteratively
guide the selection of unlabeled data for annotation, maximizing model performance with minimal
data [14, 26, 5, 55, 8]. Common strategies include uncertainty-based sampling, diversity-based
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sampling, and hybrid approaches [48, 64, 7]. For example, Graff et al. [14] explored pool-based
AL using uncertainty-based acquisition functions to accelerate virtual screening. Li and Rangarajan
[26] proposed diversity-maximizing strategies for graph neural networks, improving chemical space
exploration. Van Tilborg and Grisoni [55] systematically evaluated multiple AL strategies under
low-data regimes by combining acquisition functions like uncertainty and diversity measures.

Despite these advancements, most AL methods rely on manually designed heuristics or static strate-
gies, limiting their adaptability to dynamic and complex chemical spaces [10]. Recent general AL
frameworks such as SelectAL [15] and AutoAL [57] have introduced task-specific optimizations. Se-
lectAL adjusts AL strategies based on computational budgets, while AutoAL employs a differentiable
framework to identify optimal strategies.

Other works have attempted to learn acquisition functions using reinforcement learning approaches,
primarily based on Q-learning [11, 6]. While these methods have shown promise in domains like
semantic and image segmentation, they face challenges in drug discovery, including sparse rewards
and the high dimensionality of molecular representations. As a result, they still fall short in navigating
vast chemical spaces efficiently under low-data conditions.

In contrast, our work leverages Group Relative Policy Optimization (GRPO) [49], which provides
more stable and efficient policy updates compared to Q-learning. GRPO enables dynamic optimization
of the acquisition policy, allowing better exploration and exploitation in complex and evolving
chemical spaces. By directly addressing the limitations of existing methods, our approach significantly
enhances hit discovery efficiency and scalability, particularly in low-data drug discovery scenarios.

3 Methodology

3.1 Problem Definition

Virtual screening aims to identify active molecules that interact with a biological target from a vast
molecule library M . The library M contains a large number of unlabeled molecules, with only a
small fraction being active. Each molecule mi ∈ M can be labeled as active (yi = 1) or inactive
(yi = 0) after annotation. The challenge lies in maximizing the identification of active molecules
while minimizing annotation costs.

To address this, active learning is employed. The process iteratively proceeds as follows:

1. Train: Train the surrogate model ϕθ using a small labeled dataset D.
2. Query: Apply a selection strategy ς to choose molecules mselect from the unlabeled library M .
3. Annotate: Label the selected molecules mselect using the oracle Ω, yielding mlabel.
4. Expand: Add mlabel to the labeled dataset D.

The iteration continues until the annotation budget is exhausted, with the final labeled dataset D
expected to contain a substantial number of active molecules.

Traditional active learning methods rely on predefined selection strategies ς , often referred to as
acquisition functions (e.g., greedy algorithms or mutual information maximization [18]). These fixed
strategies unable to adapt to the characteristics of different datasets, which limits their generalizability
and performance across diverse tasks. In this case, the selection strategy can be expressed as:

mselect = argmaxm∈M ς(m,ϕθ), (1)
where ς(m,ϕθ) scores molecules based on a predefined, hand-crafted acquisition function and ϕθ is
the surrogate model trained on the labeled dataset D.

To address these limitations, we directly replace the predefined selection strategy ς with a learnable
policy network πθ, i.e., ς = πθ, which is capable of dynamically adapting to different datasets through
training. The selection process in our method is expressed as:

mselect ∼ πθ(m|D), (2)
where πθ(m|D) represents a probability distribution over the unlabeled molecules M conditioned on
the labeled dataset D. Unlike fixed strategies, the policy network πθ is continuously updated during
the training step in active learning, adapting as πθ

D−→ πθ′ . This adaptability allows the selection
strategy to dynamically adjust to different datasets and tasks.
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Figure 1: The overall framework of GLARE.

3.2 Overview of GLARE Framework

Figure 1 presents the framework of the proposed GLARE. Similar to traditional active learning
methods, it also includes four steps: Train, Query, Annotate, and Expand. However, in the query stage,
GLARE introduces a learnable policy model πθ to adaptively select molecules for annotation after
formulating a Markov Decision Process (MDP), addressing the diverse and complex nature of virtual
screening tasks. The policy model πθ consists of a Molecular Encoder, which extracts key features
from the molecule library M , and an Action Scoring Layer, which selects molecules for annotation
based on these features. To optimize the policy model and enhance overall performance, GLARE
employs Group Relative Policy Optimization (GRPO), balancing structural diversity, biological
relevance, and computational efficiency, ensuring adaptive and efficient molecular selection.

3.3 Reinforcement Learning for the Policy Model

The optimization task of the policy model πθ is reformulated as a Markov Decision Process (MDP)
within the framework of reinforced active learning-based virtual screening. In this setup, candidate
molecules are divided into a series of groups, and during each active learning iteration, the policy
model sequentially selects molecules for annotation. The MDP is defined by the following key
components:

• State: The state si represents the embedding xi of the molecule mi in the group that currently
being considered for annotation.

• Action: The action ai = [pe, ps] corresponds to the probabilities of "exclude" (pe) and "select"
(ps) for a molecule mi. The policy model πθ determines the action for each molecule based on its
state si, denoted as πθ(ai|si).

• Reward: The reward evaluates the quality of actions, balancing two critical aspects:
(1) Exploitation: Reflects the immediate utility of the selected molecules, specifically whether
they are active.
(2) Exploration: Captures the long-term benefit of selecting molecules, providing insights into the
broader library, even for inactive molecules.
The reward ri of policy network for a molecule mi is defined as:

ri = 1− (yi − ai,yi)
2 · ui, (3)

where yi represents the label of mi provided by the oracle Ω, and ui is a discount factor that adjusts
the exploration contribution which will be discussed in Section 3.4.3.

By framing the optimization task in this manner, the algorithms of molecular selection and model
training for GLARE are summarized in Algorithm 1 and Algorithm 2, respectively. After optimization
in MDP, the policy model πθ learns to balance structural diversity and biological relevance, enabling
adaptive and efficient molecular selection.
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Algorithm 1 Molecular Selection under MDP
Input: Unlabeled library M , Budget B
Output: Labeled dataset D

1: while |B| ≠ 0 do
2: Divide M into groups G
3: for j ∈ {1, 2, ..., |G|} do
4: xj

embed←−−− {m1, ...,mi} ∈ Gj

5: Construct state sj using xj

6: a = {a1, ..., aj − 1}+ πθ(sj)
7: end for
8: Sample mselect with a
9: mlabel = Ω(mselect;B)

10: D ← D +mselect
11: end while
12: return the latest labeled dataset D

Algorithm 2 Policy Model Training with GRPO
Input: Labeled dataset D
Output: Trained policy model πθ

1: for episode ∈ {1, 2, ..., N} do
2: Divide D into groups G
3: for j ∈ {1, 2, ..., |G|} do
4: xj

embed←−−− {m1, ...,mi} ∈ Gj

5: Construct state sj using xj

6: aj = πθ(sj)
7: Receive reward rj after taken aj
8: Do gradient descent step on LGRPO
9: Update πθ with θ

10: end for
11: end for
12: return the latest policy model πθ

3.4 Policy Model for Molecular Selection

The policy model πθ is responsible for determining the probabilities of actions based on the molecular
features extracted by the encoder, allowing GLARE to adaptively select molecules for annotation.
Given the molecular embedding xi as state si, the policy network predicts the probability of action
ai, denoted as πθ(ai|si). The policy model consists of Molecular Encoder (Section 3.4.1) and Action
Scoring Layer (Section 3.4.2), optimized with GRPO strategy (Section 3.4.3).

3.4.1 Molecular Encoder

To enable the policy model πθ to take actions based on molecules, a molecular encoder fenc is utilized
to extract features hi from the input molecules. The encoder fenc is a flexible component that can
adapt to various molecular representations. In this study, we consider three types of fenc:

• Molecular Fingerprint MLP. Each molecule is represented using a 1,024-bit Extended Connectiv-
ity Fingerprint (ECFP) with a radius of 2 Å [44]. These fingerprints are processed by a MultiLayer
Perceptron (MLP) to extract molecular features hi:

hi = σ(Wm · xi + bm), (4)

where σ is the activation function, and Wm and bm are learnable parameters of the MLP.
• Graph Neural Network (GNN). For molecules represented as graph structures, a Graph Isomor-

phism Network (GIN) [59] is implemented. The GIN updates the features of each atom xij in the
molecule mi and an add pooling operation aggregates the features into a molecular hidden feature
hi:

x
(l)
ij =Wg

(1 + ε) · x(l−1)
ij +

∑
k∈N (j)

x
(l−1)
ik

 , hi =
∑

j∈V(i)

x
(l)
ij , (5)

where Wg is a learnable parameter, ε is a fixed scaling factor, N (j) denotes the neighbors of atom
j and V(i) denotes the set of all atoms in molecule mi.

• Pretrained GNN. Pretrained molecular representation models, such as GraphMVP [27] and
3DInfomax [51], can also be adopted as molecular encoders. These pretrained models leverage
prior knowledge from large molecular datasets to provide robust initializations, thereby improving
training efficiency and enhancing the quality of molecular representations.

3.4.2 Action Scoring Layer

Extracted by the encoder, the hidden feature hi is passed through a fully connected layer to compute
an action score zi for each possible action (e.g., "exclude" or "select"):

zi =Wa · hi + ba, (6)

where Wa and ba are learnable parameters of the action scoring layer.
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The scores zi are then transformed into probabilities using a softmax function to gain action ai:

ai = softmax(zi). (7)

This transformation ensures that the output is a valid probability distribution, where the sum of
probabilities for all possible actions equals to 1. The probability distribution represents the confidence
of model in selecting or excluding a specific molecule.

3.4.3 Training Strategy Based on GRPO

The goal of the policy model πθ in active learning is to identify the most informative molecules from
a group of candidate molecules, which naturally aligns with the objective of the widely used Group
Relative Policy Optimization (GRPO) strategy [49]. Thus, we apply an enhanced GRPO to train
the policy model πθ with a carefully designed reward function mentioned in Equation 3 based on
the requirements of active learning. We further enhance the reward by incorporating uncertainty,
ensuring better exploration during molecular selection.

Objective of GRPO in Reinforced Active Learning During the training phase of active learning,
the GRPO strategy is adopted to optimize the policy model πθ, maximizing the following objective
over a group of candidate molecules G:

LGRPO =
1

|G|

|G|∑
i=1

{
min

[
πθ(ai|si)
πold(ai|si)

Ai, clip

(
πθ(ai|si)
πold(ai|si)

, 1−ϵ, 1+ϵ
)
Ai

]
−βDKL[πθ||πref]

}
, (8)

where πref, πold, and πθ are the policy model in previous active learning iteration, previous training
epoch, and current epoch, respectively. clip(·) is a clip operation for stabilizing training and ϵ is the
clip ratio [47]. The definition of advantage Ai and KL divergence DKL[·] as follows:

Ai =
ri −mean(r)

std(r)
, DKL[πθ||πref] =

πref(ai|si)
πθ(ai|si)

− log
πref(ai|si)
πθ(ai|si)

− 1, (9)

where r is the reward vector of the group of candidate molecules G.

The GRPO objective ensures that the policy model πθ focuses on selecting the most informative
molecules while maintaining training stability. Additionally, the KL divergence term prevents
overfitting, especially when meeting the limited available training data in active learning due to the
annotation budget.

Exploration Modification Although the sampling process of the policy model πθ already incorpo-
rates randomness (as discussed in Section 3.4.2), explicitly considering the value of exploration in the
reward function further enhances its ability to avoid aimless or uninformative exploration [5]. This is
achieved by introducing gradient-based uncertainty to estimate the exploration value and designing a
discount factor ui to modify the reward.

The discount factor ui is defined as:

ui =

{
1− νi, if yi = 0 and ai,yi = 1

1, if yi ̸= 0
, (10)

where ν is the normalized 2-norm of the gradient gyi , which is defined as:

||gyi ||22 = ||[gyi

0 , g
yi

1 ]||22 =
[
[pei − I(yi = 0)]2 + [psi − I(yi = 1)]2

]
·
∣∣∣∣w(si)∣∣∣∣22. (11)

As defined in [2], molecules with higher uncertainty yield greater [pei−I(yi = 0)]2+[psi−I(yi = 1)]2,
resulting in greater 2-norm values of the gradient gyi . The detailed derivation is provided in the
Appendix A.

By introducing the discount factor ui, the model reduces the negative reward for inactive molecules
with high uncertainty. This adjustment ensures such molecules can still contribute valuable informa-
tion for model training and exploration despite being inactive.
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Table 1: Enrichment Factor (EF) on ALDH1, PKM2 and VDR.

Method Model Strategy ALDH1 PKM2 VDR
Iter 10 Iter 16 Iter 10 Iter 16 Iter 10 Iter 16

TcsAL
[55]

MLP

Random 1.020 0.988 0.868 0.994 1.071 1.036
Similarity 2.438 2.362 1.943 2.113 2.438 2.664

Uncertainty 0.761 0.791 1.364 1.087 0.833 0.888
Greedy 5.196 5.675 2.604 3.729 3.530 4.055

MI 4.794 5.116 3.059 4.070 4.363 4.529

GNN

Random 1.020 0.988 0.868 1.036 1.071 0.994
Similarity 2.438 2.362 1.943 2.113 2.419 2.664

Uncertainty 0.907 0.923 0.868 0.777 0.754 0.681
Greedy 3.126 3.750 1.901 2.548 3.014 2.871

MI 3.482 4.077 1.777 2.952 4.085 4.085

GLARE
MLP Policy 6.574 6.535 2.067 5.904 3.173 6.512
GNN Policy 6.179 7.067 2.480 7.146 7.535 7.104

Pre. GNN Policy 7.274 7.205 4.547 7.768 7.932 7.992

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate GLARE on two widely used virtual screening benchmarks: LIT-PCBA [52]
and Enamine [1]. For LIT-PCBA, we conduct experiments on the three subsets (ALDH1, PKM2,
and VDR) with most experimentally validated molecules adhering to the protocols in [55]. Each
subset is allocated a total annotation budget of 1% (1,000 molecules) of the library (100,000), with 64
molecules annotated per iteration. Enamine is a large-scale screening database with subsets named
Enamine50k and EnamineHTS. the total annotation budget of Enamine50k is set as 6% (3,000) of the
library (50,240), with 1% (500) per active learning iteration. Due to the large scale of EnamineHTS,
the budget is reduced to 0.6% (12,600) and 1.2% (25,200) of the library (2,141,514), with 0.1%
(2,100) and 0.2% (4,200) per iteration, noted as EnamineHTS-0.1 and EnamineHTS-0.2, respectively.

Baselines. We evaluate GLARE against two state-of-the-art active learning methods for virtual
screening: TcsAL [55], with two model architectures and diverse acquisition functions, and PtAL [5],
which leverages pretrained models like MoLFormer [45] and MolCLR [58]. Additional baselines
include D-MPNN [17], RF [3], and LightGBM [24], with acquisition functions such as greedy,
Mutual Information (MI) [18], Upper Confidence Bound (UCB), uncertainty, similarity, and random.

Metrics. Enrichment Factor (EF) is used to evaluate virtual screening performance, calculated
as EF = |Dactive|

|D| / |Mactive|
|M | , where Dactive and Mactive represent active molecules in the selection and

entire library, respectively. Retrieving Rate (RRn) measures the ability to retrieve the highly active
molecules, defined as RRn =

|Dtop-n|
n , where |Dtop-n| is the number of top n active molecules selected.

4.2 Evaluation of Active Learning for Virtual Screening

4.2.1 Evaluation on General Benchmarks

We evaluate GLARE on general active learning virtual screening benchmarks using three subsets,
ALDH1, PKM2, and VDR from LIT-PCBA, following the protocols in [55]. Table 1 reports the
Enrichment Factor (EF) scores at the mid-phase (10th iteration) and final-phase (16th iteration).
Results for all iterations are shown in Appendix B.1. GLARE consistently outperforms all baseline
methods, achieving significant improvements. Notably, GLARE with a pretrained GNN achieves the
highest EF scores of 7.205, 7.768, and 7.992 on ALDH1, PKM2, and VDR, reflecting improvements
of 27.0%, 90.9%, and 76.5%, respectively, over the best baseline. Even without a pretrained
model, GLARE with MLP and GNN significantly exceeds the best baseline in almost all scenarios,
showcasing its strong performance across various molecular encoders. These findings highlight that
learning a policy model for adaptive molecular selection strategies, rather than relying on predefined
functions, substantially enhances performance.
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Table 2: Retrieving Rate (RR500 and RR1,000) on Enamine50k and EnamineHTS. The upper part is
the comparison among non-pretrained models, while the lower part corresponds to the pretrained.

Method Model Strategy Enamine50k EnamineHTS-0.1 EnamineHTS-0.2
Iter 4 Iter 6 Iter 4 Iter 6 Iter 4 Iter 6

-

RF [3] Greedy 0.4316 0.5452 0.4360 0.5474 0.5802 0.6818
UCB 0.2724 0.3708 0.2796 0.3582 0.4260 0.5096

LightGBM
[24]

Greedy 0.5392 0.6944 0.5218 0.6778 0.7018 0.8250
UCB 0.4459 0.4088 0.4346 0.5614 0.5448 0.6278

D-MPNN
[17]

Greedy 0.4736 0.6532 0.5762 0.7276 0.7784 0.8988
UCB 0.4863 0.6688 0.5932 0.7462 0.8046 0.8974

GLARE GNN Policy 0.4926 0.7424 0.4385 0.7526 0.7024 0.9032

PtAL
[5]

MolCLR
[58]

Greedy 0.5000 0.6708 0.5512 0.7278 0.7574 0.8698
UCB 0.4972 0.6796 0.5384 0.7276 0.7624 0.8844

MoLFormer
[45]

Greedy 0.5812 0.7836 0.6742 0.8158 0.8534 0.9224
UCB 0.6054 0.7924 0.6976 0.8412 0.8594 0.9338

GLARE Pre. GNN Policy 0.7765 0.8869 0.8637 0.9181 0.9618 0.9732

4.2.2 Evaluation on Large-scale Benchmarks

To further validate the scalability of GLARE, we conducted experiments on larger-scale virtual
screening benchmarks. Table 2 presents the RRn scores of various methods at the mid-phase (4th
iteration) and final-phase (6th iteration) of active learning. More details are shown in Appendix B.2.

Among all the methods, GLARE with a pretrained GNN achieves the best performance, benefiting
from faster initialization, which enables the model to effectively identify active molecules early
in the active learning process. On Enamine50k, GLARE with a pretrained GNN achieves RR500

scores of 0.7765 and 0.8869 at the mid and final phases, representing improvements of 28.3% and
11.9% over the best baseline (PtAL with MoLFormer and UCB). Furthermore, GLARE demonstrates
excellent efficiency on the larger EnamineHTS, achieving RR1,000 scores of 0.9181 (EnamineHTS-
0.1) and 0.9732 (EnamineHTS-0.2), with substantial improvements over the best baseline. Although
underperform at the beginning, GLARE with GNN surpasses all non-pretrained methods and PtAL
with MolCLR at final-phase, despite MolCLR being a pretrained GNN, which further validate the
superiority of our adaptive selection strategy. These experiments on large-scale benchmarks clearly
demonstrate the scalability and effectiveness of GLARE for large-scale virtual screening tasks.

4.3 Improvement over Foundation Virtual Screening Methods

To further showcase the practicality of GLARE, we apply it to enhance the performance of virtual
screening foundation models with a limited number of active molecules. The experiment is conducted
on the entire LIT-PCBA dataset using the pretrained DrugCLIP [12], with a budget of n active
molecules, denoted as GLARE(n).

Table 3 summarizes the results of various virtual screening methods on the LIT-PCBA. Impressively,
the screening performance improves by 46.7% on EF0.5% even with the addition of just a single active
molecule during active learning. With 15 additional active molecules, GLARE(15) achieves an 8-fold
improvement in EF0.5% compared to the baseline model DrugCLIP. These results highlight that our
method not only enables efficient virtual screening but also significantly enhances the capability of
existing foundational virtual screening models with a minimal budget of active molecules.

4.4 Ablation Studies and Visualization

Ablation studies (Figure 2.a) demonstrate the effectiveness of the GRPO-based reinforced active
learning in GLARE. GLARE w/o AL discards the active learning process, while GLARE w/o
Policy adopts an active learning process but without reinforcement learning. Both of them perform
significantly worse, even with a larger annotation budget. Experiments on batch size and total
annotation budget reveal that medium batch sizes (64 and 128) strike the best balance between
efficiency and performance, while excessively small or large batch sizes lead to trade-offs between
screening time and effectiveness (Figure 2.b and c). More analysis is shown in Appendix B.4.
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Table 3: AUROC, BEDROC and EFα on LIT-PCBA

AUROC(%) BEDROC(%) EF0.5% EF1% EF5%

Surflex [22] 51.47 - - 2.50 -
Glide-SP [16] 53.15 4.00 3.17 3.41 2.01

Planet [61] 57.31 - 4.64 3.87 2.43
Gnina [32] 60.93 5.40 - 4.63 -

DeepDTA [34] 56.27 2.53 - 1.47 -
BigBind [4] 60.80 - - 3.82 -

DrugCLIP [12] 57.17 6.23 8.56 5.51 2.27

GLARE(1) 57.21 9.65 12.56 7.65 2.69
GLARE(3) 61.76 18.76 23.32 13.61 4.25

GLARE(10) 68.33 25.17 57.93 32.31 8.21
GLARE(15) 70.17 28.49 77.03 40.64 9.94

a.

b.

d.

c.

Figure 2: Results of ablation studies and visualization. a, Ablation study of GLARE for active
learning and reinforcement learning. b, Enrichment Factor (EF) under different total annotation
budgets and batch sizes for GLARE. c, Time consumption for different batch sizes of GLARE. d,
Visualization results of the active learning selection process for TcsAL (upper) and GLARE (lower).

The UMAP [31] visualization (Figure 2.d) shows GLARE explores a broader and more diverse
chemical space compared to TcsAL, achieving higher hit rates at both the mid-phase (10th iteration)
and final-phase (16th iteration) of active learning. This highlights the superior adaptability and
effectiveness of GLARE in discovering novel active molecules while maintaining high structural
diversity.

5 Discussion

This work presents GLARE, an active learning-based virtual screening framework that uses a GRPO-
based strategy to efficiently explore chemical space with a limited annotation budget. Experiments
show the superior performance of GLARE, significantly improving EF0.5% and hit rates on datasets
like LIT-PCBA and ALDH1, while visualizations highlight its ability to identify diverse and novel
active molecules. GLARE enhances molecule discovery efficiency and reduces costs, making it a
valuable tool for drug discovery. However, GLARE faces challenges when scaling to ultra-large
chemical spaces (e.g., 1010 molecules) due to increased time costs, and its performance tends to
decline as the annotation budget increases. Future work could focus on improving scalability and
mitigating the diminishing returns associated with larger annotation budgets.
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A Proof for Uncertainty Estimation Based on Gradient

The policy model can be simply modeled as πθ(ai|si) = W · w(si) + b, then cross entropy loss
between ai = [pei , p

s
i ] and yi is:

lCE(ai, yi) = I(yi = 0) · ln( 1
pei

) + I(yi = 1) · ln( 1
psi

)

= ln(eW0·w(si) + eW1·w(si))−Wyi
· w(si).

(12)

We define gyi

k = ∂
∂Wk

lCE(ai, yi) as the gradients corresponding to yk:

gyi

k =
1

eW0·w(si) + eW1·w(si)
· eWk·w(si) · w(si)− I(yi = k) · w(si)

= [ai,yi − I(yi = k)] · w(si).
(13)

Replacing yi with ŷi = argmax(ai), then the 2-norm of whole gradient gŷi = ∂
∂W lCE(ai, ŷi) is:

||gŷi ||22 = ||[gŷi

0 , g
ŷi

1 ]||22 =
[
[pei − I(ŷi = 0)]2 + [psi − I(ŷi = 1)]2

]
·
∣∣∣∣w(si)∣∣∣∣22. (14)

Evidently, high-uncertainty samples yield greater
[
[pei − I(ŷi = 0)]2 + [psi − I(ŷi = 1)]2

]
since

ŷi = argmax(ai), i.e., the length of gŷi is long. Therefore, samples with high uncertainty tend to
have a great 2-norm of the gradient.

B Additional Results

B.1 Detailed Results of General Benchmarks

Table 4 presents the complete results of GLARE on three LIT-PCBA subsets: ALDH1, PKM2, and
VDR, covering a total of 16 iterations, with an annotation budget of 64 allocated for each iteration.

Table 4: Enrichment Factor (EF) on ALDH1, PKM2 and VDR of each Iteration.

Iter ALDH1 PKM2 VDR

MLP GNN Pre.
GNN MLP GNN Pre.

GNN MLP GNN Pre.
GNN

1 0.483 0.483 0.483 1.754 1.754 1.754 0.869 0.869 0.869
2 1.910 1.500 1.364 1.559 1.559 1.559 0.768 0.768 2.303
3 3.802 3.516 2.566 1.404 1.404 1.404 0.687 1.374 2.062
4 4.303 3.573 3.792 1.277 1.915 1.277 1.866 3.110 3.110
5 4.496 4.260 4.674 1.170 1.756 1.170 1.705 3.978 3.978
6 4.877 4.330 5.873 1.081 1.621 1.081 2.092 5.753 5.230
7 5.540 4.510 6.614 1.505 1.505 2.007 2.422 6.781 6.297
8 5.855 5.024 6.875 1.405 1.405 1.873 2.255 7.218 6.315
9 6.135 5.764 7.045 2.196 2.196 2.635 2.533 7.598 6.754

10 6.574 6.179 7.274 2.067 2.480 4.547 3.173 7.535 7.932
11 6.797 6.631 7.352 1.952 3.904 5.076 4.114 7.854 8.602
12 6.754 6.780 7.289 2.219 4.809 6.288 5.662 8.138 8.846
13 6.765 6.812 7.212 2.811 5.974 7.029 5.372 8.058 8.394
14 6.818 6.840 7.168 3.013 7.029 7.364 6.069 7.666 7.985
15 6.638 7.028 7.335 4.154 7.030 7.349 6.701 7.310 7.919
16 6.535 7.067 7.205 5.904 7.146 7.768 6.512 7.104 7.992

B.2 Detailed Results of Large-scale Benchmarks

Table 5 presents the complete results of GLARE on Enamine50k and EnamineHTS, covering a total
of 6 iterations. For Enamine50k, the annotation budget is 1% (500) of the library per active learning
iteration. For EnamineHTS, the annotation budget is 0.6% (12,600) and 1.2% (25,200) of the library
per active learning iteration, noted as EnamineHTS-0.1 and EnamineHTS-0.2, respectively.
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Table 5: Retrieving Rate (RR500 and RR1,000) on Enamine50k and EnamineHTS of each Iteration.

Iter Enamine50k EnamineHTS-0.1 EnamineHTS-0.2
GNN Pre. GNN GNN Pre. GNN GNN Pre. GNN

1 0.0162 0.0167 0.0010 0.0010 0.0010 0.0010
2 0.1325 0.2340 0.0194 0.7150 0.0473 0.7011
3 0.3463 0.5829 0.2595 0.8197 0.3955 0.9435
4 0.4926 0.7765 0.4385 0.8637 0.7024 0.9618
5 0.6388 0.8387 0.6359 0.8987 0.8314 0.9664
6 0.7424 0.8869 0.7526 0.9181 0.9032 0.9732

B.3 Detailed Results with Standard Deviations

To further validate the stability and robustness of the proposed method, Table 6 presents the detailed
experimental results of GLARE on ALDH1, PKM2, and VDR, including the mean performance
metrics and their standard deviations (Mean ± STD). All results were obtained from multiple
independent runs to ensure the reliability and statistical significance of the evaluation.

Table 6: Enrichment Factor (EF) and of GLARE on ALDH1 at final-phase (16th iteration).

ALDH1 PKM2 VDR

MLP 6.535 ± 0.182 5.904 ± 1.312 6.512 ± 0.674
GNN 7.067 ± 0.384 7.146 ± 1.105 7.104 ± 0.358

Pre. GNN 7.205 ± 0.124 7.768 ± 0.926 7.992 ± 0.425

B.4 Supplement of Ablation Studies

To investigate the effectiveness of active learning, we train two variant models, denoted as GLARE
w/o AL and GLARE w/o Policy. Considering maintaining the same size of training data, we design
GLARE w/o AL with 1000 labeled samples to start and an additional 1000 budget for screening.
GLARE w/o Policy adopts an active learning process but without reinforcement learning. As Table 7
shows, although using twice the annotation budget, GLARE w/o AL performs the worst, which can be
attributed to the absence of active learning, leading to a substantial waste of annotation resources. In
addition, GLARE w/o Policy also underperforms compared to GLARE due to the lack of an adaptive
molecular selection strategy. These results demonstrate the advantage of active learning-based virtual
screening over conventional one-shot screening.

Table 7: EF of ablation study for active learning
and reinforcement learning.

ALDH1 PKM2 VDR

REAL w/o AL 2.106 2.753 2.948
REAL w/o Policy 4.127 3.807 4.285
REAL 7.067 7.146 7.104

Table 8: EF of ablation study under different an-
notation budgets and batch sizes on ALDH1.

32 64 128 256

500 7.781 6.459 4.495 1.624
1000 7.114 7.067 5.923 3.385
2000 6.792 6.896 5.911 4.949

We investigate the effects of annotation budget per iteration (i.e., batch size) and total budget in active
learning, using batch sizes of 32 / 64 / 128 / 256 and budgets of 500 / 1,000 / 2,000. As shown in
Table 8, EFs for batch sizes 64 and 128 initially increase but slightly decline as the budget grows.
The initial increasement can be attributed to the reason that larger budget facilitates better model
training and allocates more resources for screening. But the subsequent slight decline occurs because
the easily identifiable active molecules are quickly selected in the earlier iterations, leaving behind
more challenging ones. Due to the large batch size of 256, only a few active learning iterations can
be operated, resulting in inferior performance compared to others. EF of batch size 32 is the greatest
when annotation budget comes to 500, because smaller batch size allows the model to update without
delay and avoid wasting the screening budget. However, this comes at the cost of doubled screening
time (Figure 2.c), with minimal EF improvement when the annotation budget exceeds 1000.
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B.5 Time Consumption

To provide a comprehensive comparison, we evaluated both training and inference runtimes on the
ALDH1 dataset, using the same hyperparameters and hardware as TcsAL [55].

Active learning typically involves training on a small number of labeled samples while making
predictions on a much larger pool of unlabeled data. As a result, inference time becomes the dominant
computational cost, especially in large-scale virtual screening scenarios. As shown in the Table 9,
while GLARE requires extra training time due to the computational cost of gradient-based uncertainty
in reward calculation, this overhead is confined to the training phase. During inference, reward
computation is not required, enabling GLARE to achieve inference speeds comparable to TcsAL.

Table 9: The runtime of training and inference on ALDH1.

Method Model Training Time
(Sec. per Epoch)

Inference Time
(Sec.)

TcsAL MLP 1.5 18.2
GNN 4.2 148.6

GLARE MLP 4.7 14.5
GNN 8.9 152.6

The characteristic is particularly important for large-scale dataset. To further demonstrate the
scalability of our approach, we tested it on the AmpC dataset (108 compounds) using the same hyper-
parameters as PtAL[5]. As shown in the Table 10, GLARE achieves inference speeds comparable
to the baseline PtAL across both medium (EnamineHTS-0.1, 2 million compounds) and ultra-large
(AmpC, 99.5 million compounds) datasets. As dataset size increases, inference time becomes even
more significant. Our method maintains inference speed similar to baseline methods while delivering
much higher accuracy, making it especially well-suited for ultra-large virtual screening tasks.

Table 10: The runtime of training and inference on EnamineHTS and AmpC.

Method Model
EnamineHTS-0.1 (2m) AmpC (99.5m)

Train Time
(Sec.)

Infer Time
(Sec.)

Train Time
(Sec.)

Infer Time
(Sec.)

PtAL GNN 41.7 825.5 2274.6 40423.3
Pre. GNN 68.3 922.3 3861.5 45374.8

GLARE GNN 84.2 913.3 4868.2 49662.4
Pre. GNN 155.9 1179.1 8237.6 55127.2

B.6 Detailed Results of Training Loss

Regarding training convergence, we ensured sufficient training within each active learning round.
Following the TcsAL baseline, we trained each model for 50 epochs per iteration and monitored the
training loss. As shown in the Table 11, the loss curves for MLP, GNN, and Pre. GNN all reach
convergence within each iteration, confirming that our models are well-trained.

Table 11: The loss of model training on ALDH1.

Epoch MLP GNN Pre. GNN
Iter 4 Iter 6 Iter 4 Iter 6 Iter 4 Iter 6

1 0.4328 0.4204 0.4548 0.555 0.4858 0.5183
2 0.1292 0.1828 0.1717 0.2749 0.2854 0.1897
5 0.0225 0.0181 0.0478 0.0871 0.0351 0.0181
10 0.0016 0.0097 0.0062 0.0158 0.0039 0.0036
20 0.0027 0.0023 0.0112 0.0092 0.0185 0.0256
50 0.0003 0.0009 0.0071 0.0029 0.0006 0.0221
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B.7 Comparison for Different Pretrained GNN

To further isolate the effect of the learning strategy, we compared GLARE (with MolCLR) and PtAL
(also with MolCLR) under same pretrained GINs(i.e. MolCLR), shown in the Table 12. GLARE
consistently outperforms PtAL, showing that the performance gain is primarily due to GLARE’s
superior learning strategy rather than the encoder alone.

Table 12: The comparison for different pretrained GIN encoders.

Method Model Strategy Enamine50k EnamineHTS-0.1 EnamineHTS-0.2
Iter 4 Iter 6 Iter 4 Iter 6 Iter 4 Iter 6

PtAL MolCLR Greedy 0.5000 0.6708 0.5512 0.7278 0.7574 0.8698
UCB 0.4972 0.6796 0.5384 0.7276 0.7624 0.8844

GLARE
GNN

Policy
0.4926 0.7424 0.4385 0.7526 0.7024 0.9032

MolCLR 0.7695 0.8652 0.8425 0.8814 0.9356 0.9527
Pre. GNN 0.7765 0.8869 0.8637 0.9181 0.9618 0.9732

B.8 Different Optimization Strategies and Virtual Screening Methods

We experimented with Direct Policy Optimization (DPO), another effective RL algorithm, for
optimizing the policy network. As shown in the Table 13, GRPO consistently outperforms DPO in
our setting. We attribute this to the utilization of group-wise advantage estimation in GRPO, which
better captures the relative quality of selected molecules within a batch (a property that aligns well
with the objectives of virtual screening). This provides a direct motivation for our choice of GRPO.

Table 13: The result for different reinforcement learning optimization strategies.

Method Model Strategy ALDH1 PKM2 VDR
Iter 10 Iter 16 Iter 10 Iter 16 Iter 10 Iter 16

GLARE

MLP Policy (DPO) 5.759 6.012 1.878 5.526 2.397 5.961
Policy (GRPO) 6.574 6.535 2.067 5.904 3.173 6.512

GNN Policy (DPO) 4.892 6.743 1.927 6.491 3.618 6.635
Policy (GRPO) 6.179 7.067 2.480 7.146 7.535 7.104

Pre. GNN Policy (DPO) 6.387 6.834 4.166 7.394 7.293 7.590
Policy (GRPO) 7.274 7.205 4.547 7.768 7.932 7.992

Recently TTA has been applied in virtual screening, which typically leverages self-supervised
auxiliary tasks during inference to dynamically update the model parameters, enabling the learning of
feature representations tailored to individual test instances. This approach requires no prior knowledge
of the test data distribution and instead adjusts model parameters dynamically on a per-instance basis
during inference. Experiments about the comparison with DrugTTA[50] baseline are conducted. The
results are summarized is Table 14.

Table 14: The comparison for TTA baseline.

Method Strategy AUCROC(%) BEDROC(%) EF0.5% EF1% EF5%

DrugCLIP - 57.17 6.23 8.56 5.51 2.27
GLARE(20) MI 65.08 29.75 37.85 21.34 6.41
GLARE(20) DPO 70.36 38.03 65.53 37.63 9.61

DrugTTA - 71.24 45.08 74.39 42.74 10.61
GLARE(18) GRPO 75.63 41.55 80.8 44.05 10.32
GLARE(20) GRPO 79.78 46.39 83.51 47.36 12.08
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C Additional Details

C.1 Overview of the Benchmarks

LIT-PCBA PCBA includes a total of 15 targets, comprising 7,844 active and 407,381 inactive
compounds. Following [55], we selected the three LIT-PCBA datasets with the highest numbers of
experimentally validated molecules, which correspond to targets of clinical and therapeutic interest:
pyruvate kinase M2 (PKM2, agonism), aldehyde dehydrogenase 1 (ALDH1, inhibition), and vitamin
D receptor (VDR, antagonism). For each dataset, 100,000 molecules were randomly sampled while
maintaining the ratio of active to inactive compounds, which were used to construct a screening
library. For details, refer to Table 15.

Table 15: Summary of the three subsets from LIT-PCBA (PKM2, ALDH1 and VDR).

Dataset Screening
Library Size

Hits
Size

Hits
Ratio

Test
Set Size

Hits
Size

Hits
Ratio

ALDH1 100,000 4,986 5% 20,000 997 5%
PKM2 100,000 223 0.2% 20,000 44 0.2%
VDR 100,000 239 0.2% 20,000 48 0.2%

Enamine Enamine is a commercially available database for large-scale screening. The Enamine
Discovery Diversity Set (Enamine50k) and Enamine HTS collection (EnamineHTS) consist of 50,240
compounds and 2,141,514 molecules, respectively. The Enamine datasets used for these studies
were generated from docking the compounds against thymidylate kinase (PDB ID: 4UNN). Both
Enamine50k and EnamineHTS are publicly accessible via the MolPAL code repository[14], undergo
molecular docking against thymidylate kinase (PDB ID: 4UNN)[33] using AutoDockVina[53].

C.2 Baseline Methods

Baselines We consider two challenging baselines for a thorough evaluation, which contain a range
of surrogate models and acquisition functions as traditional active learning methods. Van Tilborg and
Grisoni [55] proposes an active learning virtual screening baseline containing two model architectures
and some acquisition functions (for convenience, we name it as TcsAL). Cao et al. [5] conducted
experiments on large-scale datasets and proposed a large-scale active learning virtual screening
baseline incorporating pretrained models (for convenience, we name it as PtAL).

Pretrained Models The pretrained models used in PtAL include MoLFormer [45] and Mol-
CLR [25]. MoLFormer is a transformer-based model that takes tokenized SMILES strings as input
and learns molecular representations by capturing intrinsic spatial relationships between atoms. To
improve computational efficiency, it employs linear attention and rotary position embedding instead
of standard quadratic attention. MoLFormer was pretrained on an ultralarge dataset of 1.1 billion
small molecules from ZINC and PubChem using the mask-language-modeling technique. MolCLR
is a graph isomorphism network pretrained on 10 million molecules from PubChem [25] using a
contrastive learning strategy. Other comparative models include D-MPNN [17], a GNN variant, as
well as RF [3] and LightGBM [24], which are decision tree-based ensemble methods.

Acquisition Functions Acquisition functions used for comparison comprise greedy, mutual infor-
mation (MI) [18], upper confidence bound (UCB), uncertainty, similarity, and random.

To estimate the expected value E of a molecule mi, the mean prediction across all surrogate models
in the ensemble is considered when performing traditional active learning-based virtual screening:

E(yi|mi) =
1

K

K∑
k=1

pk(yi|mi). (15)

Similarly, the prediction uncertainty for a molecule mi is defined as the mean entropy H over the
ensemble:

H (yi|mi) = −
1

K

K∑
k=1

pk (yi|mi) log (pk (yi|mi)) . (16)
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Following these definition, the acquisition functions are defined as follows.

Similarity: samples are selected on the basis of their highest Tanimoto coefficient (computed with
ECFPs; with 1,024 bits and a radius of 2) to any previously acquired hit compound.

Greedy: the best predicted samples are selected with

ψ = argmaxn (E (y|m)) . (17)

Uncertainty: most uncertain samples are selected with

ψ = argmaxn(H(y|m)). (18)

Mutual Information (MI) [18]: selects samples with low mutual information with

ψ = argmaxn (H(y|m)− EM [H (y|m, θ)]) . (19)

Upper Confidence Bound (UCB): selects samples with the highest upper confidence bound

ψ = argmaxn (E (y|m) + β · V(y|m)) , (20)

where V denotes the standard deviation between the models.

C.3 Evaluation Metrics

BEDROC Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC)[54]
is designed to assess early recognition performance, giving higher weights to active compounds that
are ranked closer to the top. The formal definition is:

BEDROCα =

∑|M|
i=1 e

−αri/N

Rα(
1−e−α

eα/N−1
)
× Rα sinh(α/2)

cosh(α/2)− cosh(α/2− αRα)
+

1

1− eα(1−Rα)
. (21)

The commonly used variant is BEDROC85, where the top 2% of ranked candidates contribute to 80%
of the BEDROC score.

Enrichment Factor (EFα) For evaluating early retrieval, we use EFα defined as:

EFα =
|Mα|
|M | × α

, (22)

where Mα is the true active molecules in top α%, M is the whole library.

C.4 Implementation Details

Hyper-parameters We used the Adam optimizer with a learning rate of 3e-4. The training batch
size was set to 64 and the inference batch size was set to 512 for quicker inference. The embedding
dim of molecules is 130, and the hidden dim is 1024. The MLP and GIN employed in the molecular
encoder have 3 layers. An MLP with 3 layers is also used in the action scoring layer. During the
training step of active learning, the number of training epochs is set to 50. The ϵ and β in GRPO are
set to 7e−2 and 1e−2, respectively.

Hardware The experiments were performed on a computational cluster equipped with dual Intel
Xeon Gold 6248R CPUs (3.00 GHz, 48 cores) and an NVIDIA RTX 4090 GPU with 24 GB of
memory, running Ubuntu 22.04.2 LTS as the operating system.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have made clear and precise claims in the abstract and introduction that
accurately reflect the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the challenges in scaling GLARE to chemical spaces with
108 molecules due to time costs and note that its performance diminishes as the annotation
budget increases, suggesting areas for future improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided details of experimental setup, including parameters and
hardware, as shown in Appendix C.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have attached our code to the supplementary materials and will open-source
our data and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have included all the training and test details in the appendix, such as data
splits, hyperparameters and metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have provided the detailed results with standard deviations in Appendix B.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have described in Appendix C.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provided the broader impacts of our work in the introduction section.
Extensive experiments show that GLARE outperforms state-of-the-art active learning meth-
ods, boosting virtual screening efficiency, scalability, and foundation model performance.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We strictly follow the licenses and terms of use for all assets utilized in our
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce a reinforced active learning framework GLARE for virtual
screening, and we have provided the details of our method in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not incorporate large language models (LLMs) as significant,
novel, or unconventional components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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