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Logic-Aware Knowledge Graph Reasoning for Structural Sparsity
under Large Language Model Supervision

Anonymous Author(s)∗

ABSTRACT
Knowledge Graph (KG) reasoning aims to predict missing entities
in incomplete triples, which requires adequate structural infor-
mation to derive accurate embeddings. However, KGs in the real
world are not as dense as the idealized benchmarks, where sparse
graph structures restrict the comprehensive structural information
for superior performance. Although the logical semantics in KGs
shows its potential in alleviating the impact of structural sparsity,
there still exist some challenges. The deficient supervision and the
semantic gap of logic make it difficult to introduce logical seman-
tics in sparse KG reasoning. To this end, we propose a novel KG
reasoning approach LoLLM1 injecting logic with the supervised
information supplied by the Large Language Model (LLM), which
is proved to be effective in evaluating and scoring. Firstly, LoLLM
derives structural embeddings employing a graph convolutional
network (GCN) with relation-aware and triple-aware attention.
LoLLM secondly constructs reasoning paths instantiated from the
first-order logics extracted from sparse KGs, and injects the log-
ical semantics by a designed LLM-enhanced tuning strategy. We
propose a textual loss (TL) and a logical loss (LL) in the optimiza-
tion and obtain logical tuning embeddings of KG in this process.
Finally, LoLLM fuses structural embeddings from the GCN and log-
ical tuning embeddings from the LLM-enhanced tuning for scoring
and incomplete triple prediction. Extensive experiments on two
sparse KGs and a benchmark show that LoLLM outperforms state-
of-the-art structure-based and Language Model (LM)-augmented
baselines. Moreover, the logics with corresponding confidences
provide explicit explanations as an interpretable paradigm.

CCS CONCEPTS
• Computing methodologies→ Knowledge representation
and reasoning.

KEYWORDS
Sparse Knowledge Graph Reasoning, Knowledge Graph, First-order
Logic, LLM-enhanced Tuning

1KGs provide a data and knowledge management on the Web, and the KG embedding
and reasoning are in the scope of Semantics and Knowledge Track.
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1 INTRODUCTION
Knowledge graphs (KGs) possess massive triples consisting of en-
tities and relations in a structured storage scenario, representing
real-world knowledge. They have benefited in various downstream
tasks, such as question answering [1, 7], generation task [9], and
information extraction [10], etc. According to the open-world as-
sumption, the KGs are not complete, so it is essential to predict the
missing entities or relations in incomplete triples. Some dominant
methods [28, 36] assume the abundant structural information in the
prediction. They obtain relation and entity embeddings on widely
used benchmarks [2] with sufficient structure.

Some KGs, unlike benchmarks, have sparse connections between
nodes [17]. For instance, the density (calculated as #𝑇

#𝐸 (#𝐸−1) ) of
CN-100K [30] is about 1/100 compared to the general benchmark
FB15K-237 [2], which is shown in Table 1. This situation, which is
regarded as the structural sparsity, will worsen the embedding of
entities and relations, thereby affecting the reasoning performance.
Aiming at the structural sparsity, some methods [19, 37] concate-
nate textual embeddings of entities to improve KG embeddings,
whereas they have difficulties in distinguishing massive entities in
sparse KGs. For example, in Fig. 1, the structure of the KG is not
able to provide comprehensive semantics of entity Liquid and Fluid
and distinguish them in reasoning. Even with both the structure
and entity text "Liquid" and "Fluid", the embeddings (denoted as A
and B in Fig. 1) are still not distinct enough to correctly predict the
query (𝑊𝑎𝑡𝑒𝑟, hasProperty, ?). Focusing on this, some other meth-
ods [13, 41] leverage densification strategy by adding triples with
the embedding similarity to improve the sparse structure, which is
still strongly related with the precise embeddings.

In recent studies, the first-order logic rules [20, 38] are intro-
duced in KGs to benefit reasoning. As shown in Fig. 1, the query
(𝑊𝑎𝑡𝑒𝑟, hasProperty, ?) can be correctly predicted with the seman-
tics of the following first-order logic:

𝛼 isA(𝑋,𝑍 ) ∧ hasProperty(𝑍,𝑌 )︸                                   ︷︷                                   ︸
𝑏𝑜𝑑𝑦

→ hasProperty(𝑋,𝑌 )︸                  ︷︷                  ︸
ℎ𝑒𝑎𝑑

, (1)

which consists of atoms, i.e. hasProperty(𝑋,𝑌 ), connected by a con-
junction ∧. Given the semantics of logic and the instantiated triples
({𝐿𝑖𝑞𝑢𝑖𝑑, isA,𝑊𝑎𝑡𝑒𝑟 }, {𝑊𝑎𝑡𝑒𝑟, hasProperty, 𝐹𝑙𝑢𝑖𝑑}), the embed-
dings of two entities can be corrected in a scenario of structural
sparsity and the reasoning result (𝑊𝑎𝑡𝑒𝑟, hasProperty, 𝐹𝑙𝑢𝑖𝑑) will
be correctly derived. However, even with the first-order logic, there
still exist some important issues to be solved:

(1) Deficient Supervision. When injecting the semantics of
the logic, we should not only pay attention to the body, i.e.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Reliable logic helps get a correct KG reasoning result under the undistinguished embeddings with structural sparsity.

Table 1: Statistics of the datasets.

Dataset #E #R #T Density
CN-100K 78,088 34 100,000 1.64𝑒−5
FB15K-237-Sparse 14,541 237 18,506 8.72𝑒−5

FB15K-237 14,541 237 272,115 1.28𝑒−3

isA(𝑋,𝑍 ) ∧ hasProperty(𝑍,𝑌 ), but also capture whether the logic
is reliable in reasoning, which is denoted as the confidence 𝛼 in Eq.
(1) of the logic [45]. For example, in Fig. 1, the logic 1○ is more re-
liable than 2○ during predicting (𝑊𝑎𝑡𝑒𝑟, hasProperty, 𝐹𝑙𝑢𝑖𝑑), then
the confidence of 1○ will be greater than that of 2○. Previous logic
learning methods cannot provide the supervised confidences of
first-order logics, while they employ the attention weight to eval-
uate the logic instead [38]. These methods have challenges to get
the supervised confidences under the scenario of KG structural
sparsity, because the attention weights are still calculated by the
KG embeddings. (2) Semantic Gap. As shown in Fig. 1, the first-
order logic is constructed by symbols (i.e. atoms, ∧,→), which is
discrete and difficult to be fused with KG embeddings or text em-
beddings. This phenomenon is regarded as a semantic gap between
the logic and continuous KG embedding space [43]. Specifically, we
intend to introduce the conjunction (∧) semantics of the body, i.e.
isA(𝑋,𝑍 ) ∧ hasProperty(𝑍,𝑌 ), into the embedding model when
predicting (𝑊𝑎𝑡𝑒𝑟, hasProperty, ?). Besides, 𝑋,𝑌, 𝑍 are variables
in the first-order logic, which are instantiated as various entities
in different reasoning process. These pieces of information repre-
sented as discrete symbols in logics are necessary to be captured
by continuous embedding models.

To address these issues, we propose a Logic-aware knowledge
graph reasoning method solving structural sparsity under Large
Language Model (LLM) supervision, named as LoLLM. In LoLLM,
we innovatively leverage LLM to provide supervised information
for the logic, specifically the confidences, inspired by the abundant
background of LLM [12], which is good at scaling and evaluating
items. In order to obtain accurate embeddings in the sparse KGs, we
propose a logical tuning embedding module. In detail, LoLLM firstly
derives structural embeddings employing a graph convolutional
network (GCN), which contains relation-aware and triple-aware at-
tention. LoLLM secondly instantiates first-order logics as reasoning
paths extracted from sparse KGs, and injects the logical seman-
tics by a designed LLM-enhanced tuning process. In this process,
the LLM is used for scaling the confidence of first-order logic by
reasoning paths, aiming at the deficient supervision of structural
sparsity. Then, considering the semantic gap between first-order
logic and the embedding space, we propose a textual loss (TL) and a

logical loss (LL) in fine-tuning pretrained language models (PLMs)
to introduce semantics of reasoning paths and obtain logical tun-
ing embeddings. Finally, LoLLM fuses structural embeddings from
the GCN and logical tuning embeddings from the LLM-enhanced
tuning process to score the triple and implement incomplete triple
prediction. Meanwhile, the logics with confidences representing
the reliability of first-order logic in reasoning.

Our main contributions are in the following three folds:

• A novel logic-aware KG reasoning method for structural
sparsity by LLM is proposed. To the best of our knowledge,
it is the first method to model and combine logical tuning
embeddings with the LLM for accurate KG embeddings.

• In order to solve the deficient supervision in introducing
logics, we use the LLM to provide supervised information
of logics in the LLM-enhanced tuning process. As for the
semantic gap between discrete logic and embedding models,
we instantiate the logic as reasoning paths and design two
novel losses (TL and LL) in the optimization.

• Extensive experiments on two sparse KG and a benchmark
KG show that LoLLM achieves outstanding effectiveness
compared to SOTA baselines. Meanwhile, the logics with
corresponding confidences provide reliable explicit expla-
nations for the reasoning process.

2 RELATEDWORK
2.1 Knowledge Graph Reasoning
KG reasoning is to predict missing entities and relations of the
incomplete triples by their embeddings. Based on the depending
information, we divide the methods into two categories.

Structure-based methods mainly focus on structural infor-
mation for the embeddings. Translation-based methods translate
the entities and relations into a low-dimensional continuous vec-
tor space, which include TransE [3], TransH [40], etc. Semantic
factorization-based methods utilize the semantic factorization to
obtain representations, which usually represent relations as ma-
trices, such as RESCAL [22] and DisMult [44]. RotatE [32] defines
each relation as a transformation matrix from the source entity to
the target entity in the complex vector space. With the development
of deep learning, neural networks are used to capture structural
information. ConvE [5] and ConvTransE [29] obtain entity and
relation embeddings by convolutional networks. Recent methods
model the graph structure of KGs. R-GCN [28] and CompGCN [35]
capture the neighborhood information and model the relational
data by a GCN.
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LM-augmented methods frame KG embeddings via language
models, which have led a significant improvement [24, 48]. More
studies leverage fine-tuning PLMs for the KG embeddings. KG-Bert
[46] obtains embeddings considering the triple as a sequence and
link prediction as a sequence classification task. KEPLER [39] en-
codes entity descriptions with a PLM as their embeddings, and
simultaneously optimizes the knowledge embeddings and language
modeling objectives. StAR [36] proposes a structure-augmented
text representation by PLMs to improve KG embeddings. In addi-
tion, some studies employ prompt tuning for KG embeddings and
reasoning. For example, PKGC [18] transfers triples into natural
prompt sentences for KG embeddings. Moreover, LLMs are being ex-
plored for their potential in KG reasoning [49], in which a zero-shot
reasoning scenario is created to simulate the KG reasoning.

Previous KG reasoning methods are good at the idealized bench-
marks with adequate structural information. Although some meth-
ods focus on the sparse KGs, but they still strongly depend on the
embeddings [17, 19]. Distinguished with them, we inject the logical
semantics for the structural sparsity, which is crucial to enhance
the effectiveness of sparse KG reasoning.

2.2 Logical Reasoning
Logical reasoning focuses on introducing the semantic of logic rules
into reasoning process, which can not only improve the reasoning
performance but also give an interpretable reasoning process. Logi-
cal reasoning can be implemented in various areas. For the visual
reasoning task, NSVQASP [8] uses a neuro-symbolic visual question
answering (VQA) architecture which disentangles perception from
reasoning provided by logical theory. For the text reasoning tasks,
Logiformer [43] utilizes a two-branch graph transformer network
for logical question answering. It constructs implicit logical units
from the text and improves the performance in logical reasoning
task. As for the graph networks, SGR [16] implements reasoning
through a group of symbolic nodes whose outputs explicitly repre-
sent different properties of semantics in a prior graph.

Inspired by the key technique of previous logical reasoning in
text, images and graphs, we innovatively introduce the logical
reasoning into KG reasoning, especially the reasoning on sparse
KGs for comprehensive KG embeddings.

3 PRELIMINARY
3.1 KG Embedding and Reasoning
A KG can be denoted as 𝐺 = {𝑅, 𝐸,𝑇 }, in which 𝑅, 𝐸 are the sets of
relations and entities, respectively.𝑇 ⊂ 𝐸×𝑅×𝐸 is the set of triples
representing facts or commonsenses. A target triple is denoted as
(𝑠, 𝑟, 𝑜), where 𝑠, 𝑜 ∈ 𝐸 are subject and object respectively, and 𝑟 ∈ 𝑅
refers to the predicate in the triple. KG reasoning aims at predicting
the missing entity in the incomplete triple (𝑠, 𝑟, ?) or (?, 𝑟 , 𝑜). The
prediction is maximizing the score of triple (𝑠, 𝑟, 𝑜) based on the
low-dimensional vector embeddings of entities and relations in 𝐺 .

3.2 First-Order Logic
In KGs, the implicit generalized logic for reasoning is the first-order
logic [20, 38], which is denoted as a Horn clause [26]:

𝛼 ∃𝑥, 𝑧1, · · · , 𝑧𝑛−1, 𝑦, r1 (𝑋,𝑍1)∧· · ·∧r𝑛 (𝑍𝑛−1, 𝑌 ) → r(𝑋,𝑌 ), (2)

Table 2: Important symbols and their descriptions.

Symbol Description
(𝑠, 𝑟, 𝑜) Target triple in the sparse KG.
𝒗 (𝑙 )
𝑖

The structural embedding of entity 𝑖 at layer 𝑙 .
P𝑠→𝑜 Reasoning paths in 𝐺 from 𝑠 to 𝑜 .
𝐿𝑚 Maximum length of the reasoning path.
𝑝𝑘 The 𝑘-th reasoning path in P𝑠→𝑜 .
𝜏𝑘 The reasoning sentence corresponding to 𝑝𝑘 .

T (𝑠, 𝑟, 𝑜) The reasoning paragraph around (𝑠, 𝑟, 𝑜).
⟨𝑖⟩ The text of the entity 𝑖 .

𝒛⟨𝑖 ⟩,𝑘 The text embedding of 𝑘-th ⟨𝑖⟩.
𝒛𝑖 The mean textual embedding of entity 𝑖 .

𝑤𝑘,𝑜 The similarities of 𝑜 between in 𝜏𝑘 and T (𝑠, 𝑟, 𝑜)
generated by LLM.

𝑤𝑘,𝑜 The confidence of 𝜏𝑘 in T (𝑠, 𝑟, 𝑜) and the
corresponding first-order.

𝒉⟨𝑖 ⟩ The logical tuning embedding of the entity 𝑖 .

in which the body and head consist of atoms, e.g. r(𝑋,𝑌 ). The
atoms in body are combined by the conjunction symbol ∧ and
point to the head atom by an implication symbol→. Each atom is
constructed by a predicate (e.g. r), which refers to the relation in
KGs, and two arguments (e.g. 𝑋,𝑌 ), which can be instantiated as
entities. The adjacent atoms in the body share the same argument,
since the first-order logic aims to construct a closed path in KGs.

In addition, 𝛼 denotes the confidence of the first-order logic,
which evaluates the reliability of the logic rule during reasoning. In
the reasoning scenario, instantiated logic rules have various values.
The implicit first-order with confidence provides interpretability of
the reasoning model.

3.3 Reasoning Path
In the KG reasoning scenario, first-order logics are instantiated
as the reasoning paths with their own confidence. The argu-
ments 𝑋,𝑍1, · · · , 𝑍𝑛−1, 𝑌 in rule (2) are instantiated as entities
𝑥, 𝑧1, · · · , 𝑧𝑛−1, 𝑦 in a reasoning path, which is denoted as 𝑥

r1−−→
𝑧1 · · · 𝑧𝑛−1

r𝑛−−→ 𝑦. For instance, a reasoning path 𝐿𝑖𝑞𝑢𝑖𝑑
AtLocation−−−−−−−−−→

𝐶𝑢𝑝
IsA−−−→ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 in Fig. 2 is instantiated from the body atoms

of the following first-order logic:

AtLocation(𝑋,𝑍 ) ∧ IsA(𝑍,𝑌 ) → AtLocation(𝑋,𝑌 ). (3)

The reasoning path is constructed by two connected triples
({𝐿𝑖𝑞𝑢𝑖𝑑,AtLocation,𝐶𝑢𝑝}, {𝐶𝑢𝑝, IsA,𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 }). Each triple is
an instantiated proposition [14], which is a significant component
in first-order logic.

4 METHODOLOGY
In this section, we demonstrate LoLLM with the help of Fig. 2.
Specifically, LoLLM is in three parts. The main contents are in the
first two part, which refer to the structural and logical branches in
the framework for KG reasoning.

4.1 Structural Modeling
As mentioned in Section 3.1, LoLLM aims at scoring the target triple
(𝑠, 𝑟, 𝑜) in𝐺 . Considering the plenty of structural information in the

3
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Figure 2: The overall framework of LoLLM, which consists of a structural branch and a logical branch. LoLLM firstly obtain
structural KG embeddings by a GCN. Then, it obtains the logical embedding by a logical tuning embedding tuning, which
contains LLM-enhanced tuning process for the deficient supervision. Finally, LoLLM combine the embeddings from two
branches and obtain the score of the target triple.

KG, we employ the graph convolutional network (GCN) [19, 28] for
structural modeling. In particular, we use an L-layer GCN for the
relation-aware and triple-aware attention based on the structure to
obtain entity and relation embeddings. The forward-pass update
from 𝑙-th layer to 𝑙 + 1-th layer is defined as:

𝒗 (𝑙+1)
𝑖

= 𝜙1 (
∑︁

𝑟 ∈𝑅,𝑗∈N𝑟 (𝑖 )
𝜃
(𝑙 )
(𝑖,𝑟, 𝑗 )W

(𝑙 )
𝑟 𝒗 (𝑙 )

𝑗
+ 𝜃0W(𝑙 )0 𝒗 (𝑙 )

𝑖
), (4)

where 𝒗 (𝑙+1)
𝑖

refers to the embedding of entity 𝑖 at 𝑙 + 1-th layer. 𝑖, 𝑗
indicate a pair of entities connected by relation 𝑟 .N𝑟 (𝑖) refers to the
set of neighbor entities of 𝑖 connected by the relation 𝑟 .W(𝑙 )𝑟 and
W(𝑙 )0 refer to the transformation matrices during the forward-pass
update. 𝜃0 decides whether the self-attention is employed. 𝜙1 (·)
indicates the activation function, specifically tanh(·) in Eq. (4). To
evaluate the neighbor attention of entity 𝑖 , we calculate 𝜃 (𝑖,𝑟 , 𝑗 ) as
the triple-aware attention weight of the triple (𝑖, 𝑟 , 𝑗):

𝜃
(𝑙 )
(𝑖,𝑟 , 𝑗 ) = 𝜃𝑟W(𝒗 (𝑙 )𝑖 ⊕ 𝒗

(𝑙 )
𝑗
), (5)

in whichW is the transformation matrix, and 𝜃𝑟 refers to the spe-
cific relation attention-aware weight connecting entity 𝑖 and 𝑗 . ⊕
concatenates two vector embeddings. The structural modeling pro-
cess generates embeddings of entities and relations, which will be
significant in scoring the target triple.

4.2 Logical Tuning Embedding
As for the reasoning paths instantiated from first-order logics, we
design a strategy to introduce them into the encoding language
model to obtain embeddings of entities and relations. This is the

main part of LoLLM, and we propose an LLM-supervised method
to implement the logical tuning for precise KG embedding.

4.2.1 Logic Extraction and Injection. In this process, we construct
the instantiated logic rules as the reasoning paths, which has been il-
lustrated in Section 3.3. As previously discussed, the reasoning paths
contain critical semantics of the first-order logics during KG reason-
ing, so we intend to introduce the critical semantics of the reasoning
path when embedding entities and relations. Given the target triple
(𝑠, 𝑟, 𝑜), we firstly extract the paths consist of connected triples be-
tween head 𝑠 and tail 𝑜 by breadth first search (BFS) algorithm [4].
Considering the time and space, the length of the reasoning paths is
constrained in a threshold 𝐿𝑚 . The set of the reasoning paths from 𝑠

to 𝑜 is denoted as P(𝑠,𝑜 ) = (𝑝1, 𝑝2, · · · , 𝑝𝑘 , · · · , 𝑝𝐾 ). Each reasoning
path 𝑝𝑘 : 𝑥

r1−−→ 𝑧1 · · · 𝑧𝑛−1
r𝑛−−→ 𝑦 is instantiated from the first-order

logic rule 𝑙𝑘 : r1 (𝑋,𝑍1) ∧ r2 (𝑍1, 𝑍2) · · · r𝑛 (𝑍𝑛−1, 𝑌 ). For example,
in Fig. 2, there are 3 reasoning paths 𝑝1, 𝑝2, 𝑝3 when 𝐿𝑚 is preset
as 3, in which 𝑝1 = (Liquid,AtLocation,Cup, IsA,Container).

In order to introduce the discrete logic rule 𝑙𝑘 and reasoning path
𝑝𝑘 into the continuous model, we propose a logic injection strategy.
Given the set of reasoning paths P(𝑠,𝑜 ) , we construct the reasoning
sentence based on the template we design, which is denoted as 𝜏 (·).
After transformation, the reasoning paragraph T (𝑠, 𝑟, 𝑜) around
the target triple (𝑠, 𝑟, 𝑜) is denoted as following:

𝜏𝑘 =

𝑝𝑘︷                                                   ︸︸                                                   ︷
𝜏 (𝑠1, 𝑟1, 𝑜1) ⊕ 𝜏 (𝑠2, 𝑟2, 𝑜2) · · · ⊕ 𝜏 (𝑠𝑛, 𝑟𝑛, 𝑜𝑛), (6)

T (𝑠, 𝑟, 𝑜) = [𝜏1 ⊕ 𝜏2 · · · ⊕ 𝜏𝑘 · · · ⊕ 𝜏𝐾 ] ⊕ 𝑞 ⊕ 𝑜, (7)
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Figure 3: The generation of similarities by the LLM.

in which 𝜏 (·) constructs the textual sentence of a triple. For example,
𝜏 (𝐿𝑖𝑞𝑢𝑖𝑑,AtLocation,𝐶𝑢𝑝) is “Liquid will locate at cup." ⊕ is the
concatenation operation of sentences to simulate the ∧ semantics.
𝑞 is the question transferred from the relation 𝑟 and subject 𝑠 .

4.2.2 LLM-Enhanced Tuning. As a significant part of deriving logi-
cal semantics from the reasoning paragraph, we propose an LLM-
enhanced tuning strategy. Considering the lacking supervision, we
introduce the LLM to provide supervised information. In Fig. 2, LLM
and PLM are simultaneously applied to obtain precise embeddings
of the entities. Inspired by the LLM-guided approaches [31, 47], we
query LLM with prompt rather than fine-tuning the whole LLM.

With a PLMM, we can obtain the embedding of object text ⟨𝑜⟩
in (𝑠, 𝑟, 𝑜) from T (𝑠, 𝑟, 𝑜). In this process, we aggregate the hidden
states of multiple ⟨𝑜⟩ tokens in T (𝑠, 𝑟, 𝑜) and leverage the mean
pooling to derive the embedding 𝒛𝑜 of 𝑜 :

𝒛𝑜 =

| ⟨𝑜 ⟩ |∑︁
𝑘=1

𝒛⟨𝑜 ⟩,𝑘 , (8)

𝒛⟨𝑜 ⟩,𝑘 =M(⟨𝑜⟩𝑘 |T (𝑠, 𝑟, 𝑜)), (9)

in which | · | gives the number of appearences of ⟨𝑜⟩ in the T (𝑠, 𝑟, 𝑜).
⟨·⟩ generates the text of the entity. Alternatively, we can also focus
on the embedding 𝒛𝑠 of 𝑧, which can be derived through a simi-
lar process: 𝒛⟨𝑠 ⟩,𝑘 = M(⟨𝑠⟩𝑘 |T (𝑠, 𝑟, 𝑜)), and get 𝒛𝑠 by the mean
pooling as well.

In order to generate the supervised samples, we employ the
LLM for the weights of each reasoning path 𝑝𝑘 in the reasoning
paragraph T (𝑠, 𝑟, 𝑜), which obtain superior performance in scoring
and evaluation [50]. As shown in Fig. 3, with the given prompt,
the LLM generates the similarity of ⟨𝑜⟩ between that in 𝜏 (𝑠, 𝑟, 𝑜)
and in each reasoning sentence in T (𝑠, 𝑟, 𝑜), which is denoted as
𝑤𝑘,𝑜 . As the LLM will generate the similarity𝑤𝑘,𝑜 > 1, we calculate
the softmax to constraint the weight 𝑤𝑘,𝑜 ∈ [0, 1] and derive the
LLM-based embedding of ⟨𝑜⟩ by aggregating the embeddings:

𝑤𝑘,𝑜 = LLM(T (𝑠, 𝑟, 𝑜)), (10)

𝑤𝑘,𝑜 = softmax(𝑤𝑘,𝑜 ) =
exp(𝑤𝑘,𝑜 )∑ | ⟨𝑜 ⟩ |

𝑘 ′=1 exp(𝑤𝑘 ′,𝑜 )
, (11)

𝒛𝑜 = 𝑤𝑘,𝑜 · 𝒛⟨𝑜 ⟩,𝑘 , (12)

Alternatively, we can employ the normalization to achieve this as
well. The generated𝑤𝑘,𝑜 is considered to be the confidence of logic,
supplying the lacking supervised information during reasoning.
The complete prompt is in Appendix C.3.

As for introducing the logical information, we fine-tuneM with
the mask predicting task using the following textual loss (TL):

L𝑇𝐿 = − 1
𝑁

𝑁∑︁
𝑢=1

log 𝑃 (𝑋𝑢𝑚 |T (𝑠, 𝑟, 𝑜);M), (13)

= − 1
𝑁

𝑁∑︁
𝑢=1

log
exp(𝒛𝑚 ·W𝑢

𝑚)∑
𝑗∈V exp(𝒛𝑚 ·W𝑗 )

, (14)

where 𝑁 is the number of masked tokens, and 𝑋𝑢𝑚 refers to the
𝑢-th masked token in the T (𝑠, 𝑟, 𝑜).W𝑢

𝑚 andW𝑗 are weights cor-
responding to 𝑢-th masked token and all the candidate tokens in
the corpusV , respectively. 𝒛𝑚 represents the hidden embedding
of the masked token. Moreover, as we discussed before, we try to
reduce the effectiveness of different entities in the reasoning paths
in order to introduce the generalization of first-order logics. During
the process, we choose the margin-based loss [40] to focus on the
overall object embedding and infoNCE loss [34] for every single
appearance of object 𝑜 compared with the masked 𝑜 . Therefore, we
design a logical loss (LL) as following:

L𝐿𝐿 =

overall 𝑜 embedding︷                                        ︸︸                                        ︷
max(0, 𝐷 (𝒛𝑜 , 𝒛𝑜 ) − 𝐷 (𝒛𝑜− , 𝒛𝑜 ) + 𝛾)

− log
exp(𝒛𝑜 · 𝒛𝑜,𝑚/𝜇)∑

𝑖 exp(𝒛𝑜,𝑖− · 𝒛𝑜,𝑚/𝜇) + exp(𝒛𝑜 · 𝒛𝑜,𝑚/𝜇)︸                                                       ︷︷                                                       ︸
masked 𝑜 embedding

, (15)

in which 𝐷 (·) calculates the distance between two vectors. 𝒛𝑜−
and 𝒛𝑜,𝑖− refer to the negative samples, specifically other tokens
instead of ⟨𝑜⟩ in T (𝑠, 𝑟, 𝑜). In Eq. (7), we replace the last 𝑜 with a
masked token, which is denoted as 𝒛𝑜,𝑚 . 𝛾 is a hyper-parameter
in the margin-based loss and 𝜇 is the temperature in infoNCE loss,
whose default is 1. In B-LoLLM, we add the margin-based loss and
infoNCE loss to LL focusing on the subject 𝑠 with the same process
as Eq. (15). We introduce the details of B-LoLLM in Appendix A.
The overall loss is designed as:

L = 𝜆L𝐿𝐿 + (1 − 𝜆)L𝑇𝐿 . (16)

By fine-tuning the PLM, LoLLM can obtain precise embeddings
of the entities of 𝐺 by comprehensive logical semantics for better
initialized representations in triple scoring.

4.3 Scoring and Prediction
After fine-tuning the PLMM with the triples and reasoning paths,
we input ⟨𝑜⟩ (or ⟨𝑠⟩) and take the hidden states as the logical em-
beddings of the entity:

𝒉⟨𝑜 ⟩ =M(⟨𝑜⟩) . (17)

To fuse the logical tuning embeddings and structural embeddings
for prediction, we concatenate the embeddings obtained from the
previous sections:

𝝍𝑖 = 𝒗 (𝐿)
𝑖
⊕ 𝒉⟨𝑖 ⟩ , (18)
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Table 3: Comparison results (%) of KG reasoning task on CN-100K, FB15K237-Sparse and FB15K-237. ♣ indicates the results are
from [13]. ♦means the results are from [17]. The optimal and suboptimal values are marked in bold and underline respectively.
The reasoning results on FB15K-237 are from [17] and [36].

Model CN-100K FB15K237-Sparse FB15K237
H@1 H@3 H@10 MRR MR H@1 H@3 H@10 MRR MR H@1 H@3 H@10 MRR MR

Structure-based
DisMult [44] ♦ 4.51 9.76 17.44 8.97 - 9.20 14.60 22.30 13.60 3061 19.90 30.10 44.60 28.10 512
ComplEx [33] ♦ 7.42 12.45 19.01 11.40 - 9.10 14.30 21.60 13.20 3333 19.40 29.70 45.00 27.80 546
ConvE [5] ♦ 13.97 22.91 34.02 20.88 - 10.60 16.50 25.80 15.60 2263 22.50 34.10 49.70 31.20 245
ConvTransE [29] ♦ 7.87 23.87 38.95 18.68 - 10.30 16.10 25.50 15.30 2285 24.00 37.00 51.00 33.00 -
ConvB [21] ♣ 3.75 8.74 15.58 7.96 2792 - - - - - - - - - -
GCN [19] 21.25 33.04 47.50 29.80 - 1.94 4.14 4.63 2.20 6450 10.00 18.10 30.00 16.40 600
GCN+sim [19] 21.33 33.46 46.75 30.03 - 0.01 0.13 0.20 0.13 6479 - - - - -

LM-augmented
GCN+BERTlarge [19] 38.79 56.46 72.96 50.38 - - - - - - - - - - -
GCN+BERTlarge+sim [19] 39.42 59.58 73.59 51.11 - - - - - - - - - - -
BERT+ConvE [17] ♦ 33.20 52.10 69.10 45.30 260 12.80 20.00 31.50 19.00 408 22.40 33.00 46.50 30.50 190
BERT+ConvTransE [17] ♦ 34.00 52.00 67.50 45.80 276 12.70 19.90 31.00 18.80 390 21.80 32.10 44.90 29.60 211
BERT+DeepConv [17] ♦ 41.80 61.00 77.20 54.00 161 12.70 19.70 31.40 18.80 422 24.60 35.40 48.80 32.70 190
BERT-ResNet+RE [17] ♦ 43.80 62.30 76.90 55.50 169 13.70 21.00 31.70 19.90 413 27.00 38.70 51.40 35.40 186
BERT-ResNet+KD+RE [17] ♦ 45.20 64.70 76.90 56.90 169 12.80 20.10 31.70 19.10 413 26.90 38.60 51.40 35.30 186
RGAT+BERTlarge [13] ♣ 27.90 47.74 67.21 41.03 177 - - - - - - - - - -
RGAT+BERTlarge+sim [13] ♣ 30.75 51.54 69.34 43.97 169 - - - - - - - - - -
StAR [36] - - - - - - - - - - 26.60 40.40 56.20 36.50 117
CNPC-S [41] 45.33 61.46 75.92 54.52 - - - - - - - - - - -
CNPC-I [41] 48.29 65.04 79.13 59.00 - - - - - - - - - - -
CoRPe [25] 46.75 65.66 77.67 57.24 98 - - - - - 31.66 45.11 59.29 40.99 160
CSProm-KG+MPIKGC-S [42] - - - - - - - - - - 26.71 39.52 54.30 35.95 179
LoLLM 40.67 58.75 72.00 51.85 187 17.08 24.41 34.42 22.67 989 31.57 44.23 56.21 40.20 221
B-LoLLM 49.58 66.41 79.33 59.42 82 17.49 26.08 37.51 24.11 1358 32.16 45.64 59.62 41.37 214

inwhich 𝑖 is an entity in the KG. Eventually, to derive the score of the
target triple (𝑠, 𝑟, 𝑜), we employ the decoding approach connecting
entity and relation embeddings, which is illustrated as following:

𝑠𝑐𝑜𝑟𝑒 (𝑠, 𝑟, 𝑜) = 𝜙2 (M(𝝍𝑠 , 𝒓)W𝑐𝑜𝑛𝑣)𝝍𝑜 , (19)

in whichM is the transformation matrix for all the kernals from the
convolution [29]. 𝒓 refers to the embedding of relation 𝑟 , andW𝑐𝑜𝑛𝑣

is a linear transformation matrix. 𝜙2 is the activation function,
which is Sigmoid(·) in this method. As for the optimization of the
reasoning process, we leverage the binary cross-entropy loss.

5 EXPERIMENTAL RESULTS
5.1 Datasets and Baselines
Datasets.We need incomplete KGs to illustrate the effectiveness
of our proposed method. Especially, we desire some sparse KGs to
evidently show the performance. Therefore, we leverage the sparse
KG CN-100K, which is extracted from the original ConceptNet [30].
Moreover, we choose the FB15K-237-Sparse [17], which decrease
the density of original FB15K-237 to simulate the structural spar-
sity. We also implement our method on FB15K-237 to illustrate the
effectiveness on general KG. The detailed statistics are in Table 1.

Baselines. For comprehensive comparison, we select typ-
ical methods in KG embedding and reasoning, including
structure-based DisMult [44], ConvE [5], ConvTransE [29], Con-
vKB [21], StAR [36]. Moreover, we choose the GCN [19] as
well, including a GCN method with the densification strat-
egy named GCN+sim. LM-augmented KG reasoning methods

contain GCN+BERT+sim [19], BERT+DeepConv, BERT+ConvE,
BERT+ConvTransE, BERT+ResNet+KD+RE [17], RGAT+BERT and
RGAT+BERT+sim [13]. Furthermore, we compare LoLLM with the
most recent baselines CNPC-S, CNPC-I and CoRPe [25], and an
LLM-based method CSProm-KG+MPIKGC-S [42] as well.
5.2 Metrics and Experimental Details
Metrics. We choose the ranking metrics in link prediction for
multiple runs considering the random seeds and samples. We use
Hits@𝑡 to evaluate the target triple (𝑠, 𝑟, 𝑜) among negative samples
and see if (𝑠, 𝑟, 𝑜) can rank the top 1, 3 and 10. Besides, we also use
the mean reciprocal ranking (MRR) and mean rank (MR) to evaluate
the overall ranking situation.

Experimental Details. For the reasoning paths, we preset the
max length 𝐿𝑚 = 3 considering the complexity. In the structural
embedding process, we use a 2-layer GCN and set the dimension as
200, dropout as 0.3. As for the logical tuning embedding process, we
utilize the GPT-3.5 [23] for supervision considering the convenience
and cost. We set the batch size as 4 and use the Adam optimizer
[15] with learning rate as 1.5𝑒−5. In the LL function, we set 𝜂 = 4
as the margin of LoLLM and 𝜂 = 16 for B-LoLLM. As for hyper-
parameter 𝜆 adjusting TL and LL in Eq. (16), we select 𝜆 = 0.2, 0.7
in CN-100K and FB15K-237-Sparse respectively. We implement the
experiments on one NVIDIA’s Tesla V100 graphic card. More details
of the settings are in Appendix C.2.
5.3 Comparison Results
In Table 3, we use the ranking task to illustrate the effectiveness of
LoLLM compared with other methods. LoLLM is mainly evaluated
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Table 4: Ablation Results on CN-100K and FB15K-237-Sparse.

Model CN-100K FB15K-237-Sparse
H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

B-LoLLM 49.58 65.58 79.33 59.42 17.49 26.08 37.51 24.11
-w/o LTE 18.83↓30.75 32.58↓30.00 44.83↓34.50 27.39↓32.03 0.01↓17.48 0.05↓26.03 1.19↓36.32 0.51↓23.60
-w/o SE 32.67↓16.91 49.42↓16.16 68.00↓11.33 43.49↓15.93 17.06↓0.43 24.17↓1.91 33.43↓4.08 22.71↓1.40
-w/o LL 44.50↓5.08 62.58↓3.00 76.50↓2.83 55.70↓3.72 16.13↓1.36 21.87↓4.21 30.65↓6.86 20.87↓3.24
-w/o LL & TL 40.33↓9.25 59.00↓6.58 73.25↓6.08 51.63↓7.79 14.51↓2.98 18.32↓7.76 23.26↓14.25 17.75↓6.36

Table 5: Comparison Results (%) of KG Reasoning on CN-
100K with LLMs.

Model Embedding LLM-based H@1 H@3 H@10
CoRPe ✓ 46.75 65.66 77.67
CNPC-I ✓ 48.29 65.04 79.13
GPT-3.5 ✓ 17.67 24.67 30.67
GPT-4 ✓ 28.50 37.92 42.92
B-LoLLM ✓ ✓ 49.58 66.41 79.33

on three datasets. The results of baselines without illustration are
from published papers on top conferences and journals.

5.3.1 Comparison with Embedding Methods. Compared to all the
structure-based methods, LoLLM achieves obvious improvement
on all the datasets in Table 3. For the situation lacking structural
information, the methods merely based on structure of KGs have
difficulties in embedding entities and relations. Specifically com-
pared to ConvE [29], which derives better performance, introducing
logical information by reasoning paths in LoLLM obtains 32.87%
average boost on CN-100K. On FB15K237-Sparse, LoLLM can still
obtain as much as 7.52% average improvement of the reasoning
performance. It illustrates that logical semantics can significantly
reduce the influence of structural information deficiency.

As for the LM-augmented methods, they generally derive bet-
ter results on solving KG reasoning lacking structural information.
From Table 3, LoLLM and B-LoLLM can also own optimal results
in KG reasoning task on three datasets. In particular, our methods
obtain 13 out of 15 better KG reasoning results than LM-augmented
methods. B-LoLLM results in as much as 1.48% average boost com-
pared to CoRPe on CN-100K, which is the most recent baseline.
Moreover, CNPC-S, CNPC-I and CoRPe all implement densifica-
tion in relieving the influence of structure deficiency, which will
consume much over time than LoLLM.

Overall, these results indicate the effectiveness and development
in KG reasoning of our method, which introduces logical semantics
by reasoning paths into the KG embedding process.

5.3.2 Comparison with LLMs. Wealso implement the KG reasoning
on LLMs for comparison. As shown in Table 5, we compare the
results of B-LoLLM with those of GPT-3.5 and GPT-4 [23]. CoRPe
and CNPC-I are the most recent embedding-based methods. It is
illustrated that the method fusing embedding module and LLM can
obtain appearently better Hits@1, Hits@3 and Hits@10 results. To
assess the KG reasoning capability of the LLM, we constructe a
zero-shot question answering scenario for the CN-100K test set and
evaluate whether the LLM could rank the answers within top 1, 3,
and 10. The results are also shown in Table 5. LLMs can not obtain

the performance as embedding-based methods. The phenomenon
might be caused by the semantic gap between the discrete KGs and
the continuous decoder-based LLMs.

5.4 Ablation Studies
We investigate the impacts of logical embedding tuning, TL and
LL loss in the tuning process. As shown in Table 4, we rerun the
models without the factors respectively, which are denoted as: (1)
w/o LTE refers to the method removing logical tuning embedding
(LTE) module in LoLLM. (2) w/o SE indicates the method removing
structural embedding (SE) module in LoLLM. (3) w/o LL indicates
the method removing logical loss (LL) during logical tuning em-
bedding process. (4) w/o LL & TL indicates the method removing
textual loss (TL) compared to w/o LL during logical tuning em-
bedding process, and use the masked language modeling loss for
fine-tuning instead.

The ablation results in Table 4 illustrates the effectiveness of
important factors in our proposed method. (1) The connecting of
logical tuning embeddings and structural embeddings makes
the method obtain better performance. According to the the
results, removing LTE and SE will all reduce the reasoning results of
two datasets. (2) The logical tuning embeddingmodule ismore
effective than the structural embedding module. As shown
in Table 4, the results of B-LoLLM w/o LTE show a more obvious
reduction compared to B-LoLLM w/o SE, which indicates that our
proposed LTE is more critical in sparse KG reasoning, especially on
FB15K-237-Sparse. (3) The method gets optimal results when
all the factors work simultaneously. The reduction between
B-LoLLM and B-LoLLM w/o LL & TL indicates their simultaneous
influence for KG reasoning. (4) TL and LL are all important
for KG reasoning. The results of B-LoLLM and B-LoLLM w/o LL
indicates the importance of the logical semantics. The results of
B-LoLLM w/o LL and B-LoLLM w/o LL & TL shows the importance
of the textual semantics.

5.5 Weight Analysis
5.5.1 Analysis of Language Models. During the obtaining of logical
tuning embedding, the choice of PLM is important for the reasoning
results. We implement the LoLLM on T5 [27] and BERT [6], which
have the encoding part in the model. The KG reasoning results on
CN-100K are shown in Fig. 5 (a). It indicates that the reasoning
constructed by the logical tuning embedding on BERT obtains much
better results than that on T5. It may be because T5 owns strong
capability on downstream tasks, which is not as good at providing
and fine-tuning embedding as the pure encoding model. Therefore,
we choose BERT as the PLM in implementing our method.
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Figure 4: A case indicates the effectiveness of LLM during reasoning.

Figure 5: KG reasoning results based on different parameters.
(a) represents the impact of encoding model; (b) represents
the impact of margin 𝛾 .

5.5.2 Analysis of margin 𝛾 . The margin 𝛾 is a parameter in LL from
Eq. (15) during logical tuning embedding. The margin determines
the distance between positive and negative samples in the optimiza-
tion. As shown in Fig. 5 (b), we record the KG reasoning results
with 𝛾 = {1, 2, 4, 8, 16, 20} on FB15K-237-Sparse. From the results, it
is figured that 𝛾 can influence the performance of reasoning. When
𝛾 = 16, all the metrics obtain best results on FB15K-237-Sparse. This
phenomenon indicates that a margin that is either too large or too
small will result in a negative effect.

5.5.3 Analysis of hyper-parameter 𝜆. In LoLLM, 𝜆 performs a sig-
nificant role in adjusting LL and TL in logical tuning embedding pro-
cess from Eq. (16). We rerun the method on FB15K-237-Sparse and
record the KG reasoning results for different values of 𝜆 ∈ [0.0, 1.0]
with a step of 0.1. The result distributions are shown in Fig. 6.
From the results, we can figure that the reasoning performance
varies with different values of 𝜆 and the distributions of all the met-
rics are generally consistent. In particular, the performance when
𝜆 ∈ [0.6, 0.9] is better than that when 𝜆 ∈ [0.3, 0.5]. When 𝜆 = 0.7,
the performance of our method gets the peak in KG reasoning.
Based on these results, we choose 𝜆 = 0.7 during the logical tuning
embedding process.

5.6 Case Study
As we discussed in Section 1 and Section 4, the logic rules and their
confidences will help the method improve the embeddings and
reasoning results. When introducing the logics, the confidences are
considered as the reliability. We record the confidences generated
by the LLM and the attention weights respectively, which is widely
used in previous rule learning methods [38]. The results are shown

Figure 6: KG reasoning results (%) based on different hyper-
parameters 𝜆.

in Fig. 4. In predicting the query (𝐴𝑡𝑡𝑒𝑛𝑑𝑠𝑐ℎ𝑜𝑜𝑙, usedFor, ?), the four
first-logic rules impact differently in the reasoning process. Without
the supervised information (named as w/o LLM), we calculate the
attention weights following the attention weight of previous rule
learning methods, but the confidence of hasPrerequisite(𝑋,𝑍1) ∧
Desires(𝑍1, 𝑍2) ∧ Causes(𝑍2, 𝑌 ) → usedFor(𝑋,𝑌 ) is up to 0.999,
which is not consistent as the reality. Therefore, the confidence
of logic according to embeddings is not reliable to be the super-
vised information. These results indicate the significance of LLM
supervision.

6 CONCLUSION AND FUTUREWORK
In order to solve the sparse structure in KG reasoning, we propose
a logic-aware method LoLLM with LLM supervision to handle the
deficient supervision and semantic gap in implementation. LoLLM
firstly obtains structural embeddings by the GCN with attention.
Secondly, we construct reasoning paths based on the first-order
logics, and inject the semantics through an LLM-enhance tuning
process. In this process, we derive logical tuning embeddings of
the KG. Finally, LoLLM connects structural embeddings and logical
tuning embeddings and implements the prediction. Extensive ex-
periments on two sparse KGs and a general KG show that LoLLM
achieves outstanding effectiveness compared to SOTA structure-
based and LM-augmented baselines.

LoLLM is still expected to be improved in more reasoning scenar-
ios. Despite the sparse KGs, we would like to capture the challenges
of more benchmark KGs and expand LoLLM to solve more general
issues in KG reasoning.
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A MORE DETAILS OF B-LOLLM
Because of the limitation of pages, we illustrate the loss of B-LoLLM
during logical tuning embedding process here. Following the similar
process, we aggregate the hidden states of multiple ⟨𝑠⟩ tokens in
T (𝑠, 𝑟, 𝑜) and leverage the mean pooling to derive the embedding
𝒛𝑠 of 𝑠 , whose process is as following:

𝒛𝑠 =
| ⟨𝑠 ⟩ |∑︁
𝑘=1

𝒛⟨𝑠 ⟩,𝑘 , (20)

𝒛⟨𝑠 ⟩,𝑘 =M(⟨𝑠⟩𝑘 |T (𝑠, 𝑟, 𝑜)), (21)

The confidence still needs to be in [0, 1], so we derive the LLM-based
embedding of ⟨𝑠⟩:

𝑤𝑘,𝑠 = LLM(T (𝑠, 𝑟, 𝑜)), (22)

𝑤𝑘,𝑠 = softmax(𝑤𝑘,𝑠 ) =
exp(𝑤𝑘,𝑠 )∑ | ⟨𝑠 ⟩ |

𝑘 ′=1 exp(𝑤𝑘 ′,𝑠 )
, (23)

𝒛𝑠 = 𝑤𝑘,𝑠 · 𝒛⟨𝑠 ⟩,𝑘 , (24)

In order to introduce the logical information, the LL of B-LoLLM
is calculated by following equations:

L𝐿𝐿 = 𝜃1max(0, 𝐷 (𝒛𝑠 , 𝒛𝑠 ) − 𝐷 (𝒛𝑠− , 𝒛𝑠 ) + 𝛾)
+max(0, 𝐷 (𝒛𝑜 , 𝒛𝑜 ) − 𝐷 (𝒛𝑜− , 𝒛𝑜 ) + 𝛾)

− 𝜃2log
exp(𝒛𝑠 · 𝒛𝑠,𝑚/𝜇)∑

𝑖 exp(𝒛𝑠,𝑖− · 𝒛𝑠,𝑚/𝜇) + exp(𝒛𝑠 · 𝒛𝑠,𝑚/𝜇)

− log
exp(𝒛𝑜 · 𝒛𝑜,𝑚/𝜇)∑

𝑖 exp(𝒛𝑜,𝑖− · 𝒛𝑜,𝑚/𝜇) + exp(𝒛𝑜 · 𝒛𝑜,𝑚/𝜇)
, (25)

Algorithm 1 Process of KG reasoning by LoLLM.

Input: KG 𝐺 ⟨𝐸, 𝑅,𝑇 ⟩ and target triple (𝑠, 𝑟, 𝑜), Max length of rela-
tional paths 𝐿𝑚 , hyper-parameters 𝜆,𝛾 , templates 𝜏 (·), etc.

Output: Score of (𝑠, 𝑟, 𝑜) and first-order logic rules with confi-
dences𝑤 .

1: for each triple (𝑠, 𝑟, 𝑜) do
2: P𝑠,𝑜 ← extract reasoning paths within the length 𝐿𝑚 from 𝑠

to 𝑜 .
3: T (𝑠, 𝑟, 𝑜) ← construct the reasoning paragraph by the tem-

plate 𝜏 (·) by Eq. (6), (7).
4: 𝒛𝑜 ← mean embedding of the ⟨𝑜⟩ in T (𝑠, 𝑟, 𝑜) by Eq. (8), (9).
5: 𝑤𝑘 ← derive confidence values of reasoning paths from LLM

by Eq. (11).
6: L𝑇𝐿 ← calculate textual loss (TL) of T (𝑠, 𝑟, 𝑜) by Eq. (13).
7: L𝐿𝐿 ← calculate logical loss (LL) of T (𝑠, 𝑟, 𝑜) by Eq. (15).
8: L ← weighted summation of L𝑇𝐿,L𝐿𝐿 by 𝜆 following Eq.

(16) .
9: Update the parameters by Adam optimizer.
10: 𝒉⟨𝑜 ⟩ ← obtain logical tuning embeddings of the object 𝑜 .
11: end for
12: for each triple (𝑠, 𝑟, 𝑜) do
13: for 𝑙 in 𝐿 layers of GCN do
14: 𝒗 (𝑙+1)

𝑖
← message passing from 𝒗 (𝑙 )

𝑗
by Eq. (4), in which

𝑗 ∈ N𝑟
𝑖
.

15: end for
16: Concatenate structural embedding and logical tuning em-

bedding as 𝝍.
17: Calculate score of (𝑠, 𝑟, 𝑜) by Eq. ((19)).
18: Update parameters by binary cross entropy loss.
19: end for
20: return Scores of target triples and first-order rules with confi-

dence𝑤𝑘 .

in which 𝜃1, 𝜃2 = {0, 1}. The value is determined by the experimen-
tal results. The overall loss is still designed as:

L = 𝜆L𝐿𝐿 + (1 − 𝜆)L𝑇𝐿 . (26)

B TRAINING PROCESS
LoLLM can predict missing entities of incomplete triples, and also
generate confidences of the logics during reasoning. In Algorithm
1, we demonstrate the process of reasoning by LoLLM. LoLLM uses
a KG as the input and at last outputs the score of target triple and
a set of first-order rules with confidences. The detailed reasoning
process is in Algorithm 1.

C EXPERIMENTAL DETAILS
C.1 Baselines
For comprehensive comparison, we select typical models in KG
embedding and reasoning methods. We divide these methods into
structure-based and language model (LM)-augmented. Structure-
based methods mainly use the structural information to embed
the entities and relations for the reasoning. The methods include a
typical method DisMult [44] based on semantic factorization and a
convolution-based method ConvE [5]. ConvTransE [29] is a method
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Figure 7: Prompt for generation of𝑤𝑘 .

based on ConvE and the translational TransE. ConvKB [21] lever-
ages convolutional neural networks (CNNs) to capture the global
relations and transitional properties. Moreover, we choose the GCN
[19] as well, including a GCN method with the densification strat-
egy named GCN+sim.

LM-augmented methods introduce pretrained language mod-
els to enhance the results of KG reasoning. Typically, GCN can
be connected with the embeddings derived from the PLM for
the KG reasoning [19], which is named as GCN+BERT+sim. The
model utilizes a student reranking network to develop a deep con-
volutional baseline named BERT+DeepConv. It is also improved
with the ResNet, ranking ensemble and knowledge distillation,

named BERT+ResNet+KD+RE [17]. The models RGAT+BERT and
RGAT+BERT+sim [13] are based on a relational graph attention
network and a PLM. Furthermore, we add the most recent baselines
CNPC-S, CNPC-I and CoRPe [25] as well.

C.2 Experimental Settings
Since various parameters can affect the performance of LoLLM
on different datasets, we tune the parameters separately for each
dataset during the logical tuning embedding module. Our search
space for parameters is as follows:

• Learning rate: {0.00001, 0.000015, 0.000002}
11
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Table 6: Comparison sesults of KG reasoning with different
prompts on FB15K-237-Sparse.

Model H@1 H@3 H@10 MRR MR
LoLLM-Scale(0, 4) 16.96 24.07 32.70 22.37 1414
LoLLM-Weights 17.08 24.41 34.42 22.67 989

• Margin hyper-parameter 𝛾 in LL: {1, 2, 4, 8, 16, 20}
• Number of negative samples in LL: {1, 2, 3, 4}
• Temperature of infoNCE loss in LL: {1, 2, 3}
• Batch size: {2, 4, 8}

C.3 Prompt for generation of𝑤𝑘
Fig. 7 shows the prompt we use for the generation of 𝑤𝑘 during
LLM-enhanced tuning process. The input and output are all in json
format. According to this prompt, we obtain the scores of similarity
between the target sentence and reasoning paragraph. The prompt
works as follows:

• We firstly summarize the background of the prompt.
• Input: The sentence 𝜏 (𝑠, 𝑟, 𝑜) and reasoning paragraph
T (𝑠, 𝑟, 𝑜) with the target triple (𝑠, 𝑟, 𝑜) are as the input.

Moreover, we provide the number of scores in the output
to avoid the hallucination of the LLM [11].

• Output: The LLM outputs a list of scores evaluating the
similarity between 𝑜 in 𝜏 (𝑠, 𝑟, 𝑜) and T (𝑠, 𝑟, 𝑜).

In particular, to reduce the impact of a single reasoning sentence in
T (𝑠, 𝑟, 𝑜), we concatenate 𝜏 (𝑠, 𝑟, 𝑜) with T (𝑠, 𝑟, 𝑜) when evaluating
and aggregating. Considering the possible hallucination, we spe-
cially declare to increase the variance of the scores. E.g. “[0.6, 0.4] is
better than [0.5, 0.5]”. Moreover, according to the strategy that lever-
ages LLM to evaluate the scale [50], we also implement the prompt
that generates a score in a scale of [0, 1, 2, 3, 4]. The results are in
Table 6. It is shown that the reasoning results of LoLLM-Weights is
slightly better than those of LoLLM-Scale(0, 4). The reason might
be that LoLLM-Scale(0, 4) have finite values for evaluating, which
is not enough for better distinguishing.

D CODE APPENDIX
For reproducibility, core codes of LoLLM are in an anonymous
hyperlink: LoLLM. We will make all the available source codes
open for the method upon publication.
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