

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PHYSE-INV: A PHYSICS-ENCODED INVERSE MOD- ELING APPROACH FOR ARCTIC SNOW DEPTH PREDI- CTION

006
007 **Anonymous authors**
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

The accurate estimation of Arctic snow depth (h_s) remains a critical time-varying inverse problem due to the extreme scarcity and noise inherent in associated sea ice parameters. Existing process-based and data-driven models are either highly sensitive to sparse data or lack the physical interpretability required for climate-critical applications. To address this gap, we introduce PhysE-Inv, a novel framework that integrates a sophisticated sequential architecture, an LSTM Encoder-Decoder with Multi-head Attention and physics-guided contrastive learning, with physics-guided inference. Our core innovation lies in a surjective, physics-constrained inversion methodology. This methodology first leverages the hydrostatic balance forward model as a target-formulation proxy, enabling effective learning in the absence of direct h_s ground truth; second, it uses reconstruction physics regularization over a latent space to dynamically discover hidden physical parameters from noisy, incomplete time-series input. Evaluated against state-of-the-art baselines, PhysE-Inv significantly improves prediction performance, reducing error by 20% while demonstrating superior physical consistency and resilience to data sparsity compared to empirical methods. This approach pioneers a path for noise-tolerant, interpretable inverse modeling, with wide applicability in geospatial and cryospheric domains.

1 INTRODUCTION

Snow depth (h_s) exerts a first-order control on Arctic sea ice thickness, yet reliable observations of it remain remarkably scarce. For instance, widely used reanalysis products such as ERA5 do not provide direct measurements of snow depth over sea ice (Hersbach et al., 2020), despite its well-established influence on sea ice thermodynamics (Li et al., 2024). Compounding this data gap, the most available driving observations, such as snow density (ρ_s), are inherently noisy and sparse due to measurement complexities. To address this gap, we exploit Physics-encoded Neural Networks (PeNNs) (Faroughi et al., 2022), a class of models widely applied in scientific analysis to implement inverse modeling. However, a standard PeNN approach is insufficient to overcome the core issue of extreme data scarcity and input noise. Therefore, our work introduces a novel framework that not only encodes sea ice physics derived from the hydrostatic balance equation (Kwasniok, 2022) but, critically, leverages this equation as a target-formulation proxy to enable the estimation of hidden parameters and yield physically consistent prediction of snow depth (h_s) from the noisy observational data.

Inverse modeling is a powerful tool for inferring intrinsic physical parameters and uncovering hidden characteristics of complex physical phenomena. These models extract meaningful insights from systems in various fields, including lake temperature modeling (Tayal et al., 2022), tomography (Bubba et al., 2019), seismic waveform analysis (Sun et al., 2020), materials science (Liao & Li, 2020), and hydrology (Ghorbanidehno et al., 2020). However, a common limitation is that many of

054 these methods rely on physical priors or posterior distributions for parameter estimation (Karumuri
 055 & Bilionis, 2024). For example, the accuracy of the predicted variable directly depends on the accu-
 056 racy of the physical mapping from other variables. This dependency can be problematic because any
 057 errors in the initial mapping will propagate through the model during training, potentially affecting
 058 the overall performance. Furthermore, in data-sparse domains like the Arctic, the forward model is
 059 highly sensitive to noisy input, exacerbating this error propagation. While an end-to-end learning
 060 approach can offer a streamlined solution, it can also limit the ability to embed additional physical
 061 constraints that are relevant to the system (Faroughi et al., 2022). This is because the end-to-end
 062 model is highly dependent on its initialization process and the pre-defined forward mapping.
 063

064 Furthermore, inferring parameters through inverse modeling using complex forward-inverse
 065 flow transformations (Tarantola, 2005; Ghosh et al., 2022; Tayal et al., 2022) can be a computa-
 066 tionally demanding process. These works often rely on a bijective mapping between the input and
 067 latent spaces. While this one-to-one correspondence is suitable for static systems (e.g., unchanging
 068 material properties), its strict nature is restrictive in the context of a dynamic physical system like
 069 Arctic sea ice, where underlying parameters are time-varying. A bijective mapping may not be flex-
 070 ible enough to capture these evolving relationships, as it rigidly links a single input state to a single
 071 output state, limiting its ability to account for the continuous evolution of the system. Additionally,
 072 these methods build upon traditional self-supervised learning that extracts general statistical patterns
 073 from unlabeled data. However, the learned features, which are not constrained by physical prin-
 074 ciples, might not be physically meaningful or suitable for parameter estimation in a specific domain
 075 like snow depth prediction. This points to a clear need for a physics-guided contrastive learning
 076 approach that embeds domain knowledge directly into the feature-learning process.

077 To overcome the limitations of both traditional inverse modeling and conventional self-
 078 supervised learning, we introduce a novel, simplified hybrid framework called PhysE-Inv (Physics-
 079 Encoded Inverse modeling). This framework utilizes a surjective inversion mapping for time-varying
 080 parameter estimation, enabling it to exploit all possible values the predicted variable could take. It
 081 operates on the principle that the temporal evolution of a system can be effectively modeled using
 082 linear dynamics present in its physical variables (Kwasniok, 2022). We embed a linear physical
 083 equation derived from the hydrostatic balance Kwok & Cunningham (2008) to relate the cause-and-
 084 effect phenomena between sea ice and snow variables, leveraging the physical equation as a target
 085 formulation proxy for inversion. The learning mechanism within PhysE-Inv specifically addresses
 086 the pitfalls of generic self-supervised learning by integrating a physics-guided contrastive learning
 087 approach via physics encoding. This is critical because it compels the model’s latent space to cap-
 088 ture the physically meaningful relationships between Arctic snow and sea ice variables. By enforc-
 089 ing these relationships through contrastive loss, we ensure the latent space is optimally structured
 090 for the subsequent inversion and estimation of hidden parameters needed for physically consistent
 091 predictions of snow depth.
 092

093 The main contributions of this paper are summarized as follows: **(1)** We present PhysE-Inv,
 094 a novel hybrid framework that leverages a surjective inversion mapping integrated into a physics-
 095 guided contrastive learning process. The novelty of this work lies not in the creation of a novel
 096 network architecture, but in the constrained inversion methodology, which enables a more direct
 097 and efficient optimization for predicting snow depth through inverse modeling. **(2)** Moving beyond
 098 traditional inverse modeling, our framework achieves effective physics encoding by embedding con-
 099 straints from the hydrostatic balance equation of Arctic sea ice thickness directly into the neural
 100 network. This ensures physically consistent inferences, leading to more accurate snow depth pre-
 101 dictions. **(3)** We demonstrate the effectiveness of our proposed model by comparing it with multiple
 102 baselines, showing superior performance and resilience to data sparsity.
 103
 104
 105
 106
 107

108

2 RELATED WORKS

109

110 2.1 PHYSICS-GUIDED MACHINE LEARNING

111 Physics-encoded Neural Networks (PeNNs) represent powerful approach for integrating scientific
 112 principles into machine learning Faroughi et al. (2022); Willard et al. (2022); Karpatne et al. (2024).
 113 By incorporating physical laws in the form of differential and linear equations Rao et al. (2021);
 114 Chen et al. (2018); Kovachki et al. (2021); Innes et al. (2019), these models not only show improved
 115 performance but also adhere more closely to physical laws, transforming traditional black-box al-
 116 gorithms into more interpretable models. Building on the rigor introduced by PeNNs, machine
 117 learning-enhanced inverse modeling offers a powerful way to uncover hidden physical parameters
 118 that govern observable geospatial phenomena, many of which cannot be measured directly. This
 119 approach has been widely applied in fields such as hydrology Ghosh et al. (2022), water flow stud-
 120 ies Mo et al. (2020), and lake temperature modeling Tayal et al. (2022). In seismic waveform
 121 inversion, for example, researchers have begun integrating theoretical knowledge of seismic wave
 122 propagation into deep learning frameworks Adler et al. (2021). Deep neural networks are also being
 123 employed to tackle electrical impedance tomography (EIT) problems, which involve inverting the
 124 highly nonlinear and high-dimensional Dirichlet-to-Neumann (DtN) map Fan & Ying (2020). In
 125 addition, innovative architectures such as SwitchNet have been developed to address forward and
 126 inverse scattering problems for wave equations, offering computational efficiency while capturing
 127 the global nature of scattering phenomena Khoo & Ying (2021).

128
 129 Most physics-informed machine learning (PIML) approaches, such as Physics-Informed Neu-
 130 ral Networks (PINNs) Raissi et al. (2019), are designed for learning or solving nonlinear partial
 131 differential equations (PDEs), ordinary differential equations (ODEs), or complex dynamical and
 132 turbulent processes Nguyen et al. (2025); Lu et al. (2021). These frameworks are powerful for nu-
 133 matical simulation, system identification, and discovering new dynamical laws, but they are not well
 134 suited to the simple, linear inverse modeling setting considered in this work, where the goal is to
 135 infer hidden physical parameters from incomplete real-world observations. Our task focuses on es-
 136 timating unobserved but physically meaningful quantities rather than solving a forward dynamical
 137 system, making the assumptions and machinery of PDE-based PIML unnecessarily heavy and often
 138 incompatible with the available data. Similarly, foundation models such as ClimaX Nguyen et al.
 139 (2023) are optimized for large-scale climate prediction and cross-variable representation learning
 140 under conditions where abundant training data exist. Their objectives and data regimes differ sub-
 141 stantially from ours: we target parameter estimation in data-scarce environments, where the structure
 142 of the inverse map is weakly constrained and the physical signal must be recovered from limited and
 143 partially observed inputs. As a result, our surjective inverse estimation task lies outside the problem
 144 class these foundation models are designed to address.

145

146 2.2 SELF-SUPERVISED LEARNING

147 While effective, ML-enhanced inverse methods often require extensive labeled data. To address this
 148 data scarcity challenge, the self-supervised paradigm has also proven effective in addressing inverse
 149 problems across a wide range of scientific disciplines, extending beyond traditional domains like
 150 natural language processing Fang et al. (2020) and computer vision Bardes et al. (2022) to include
 151 scientific modeling Scotti et al. (2023) and noninvasive medical digital twins Kuang et al. (2025).
 152 By exploiting complex pretext tasks and multi-stage training, these methods can extract meaningful
 153 representations directly from underlying physical structures Bardes et al. (2022), which in turn en-
 154 ables parameter estimation without the need for explicit labels Liu et al. (2021); Jing & Tian (2020).
 155 A limitation of these methods is their heavy reliance on generative and regularization losses, which
 156 necessitate extensive hyperparameter tuning. Moreover, the use of bijective mappings (e.g., Ghosh
 157 et al. (2022)) assumes perfect invertibility, which is not plausible with real-world data. Despite these
 158 advances, a research gap remains. Our work proposes a unified framework that merges the rigor of
 159 physics-encoded methods (using known laws with unknown variables) with direct optimization to
 160 solve time-varying inverse problems for unobserved data.

162 3 DATA AND METHODOLOGY
163164 3.1 DATASET
165

166 The dataset comprises ERA5 reanalysis data Hersbach et al. (2020) from the European Centre for
167 Medium-Range Weather Forecasts (ECMWF). ERA5 ingests a wide variety of observational data,
168 a significant portion of which comes from remote sensing instruments Hersbach et al. (2020). We
169 acquired spatiotemporal data from January 1, 1995, to 2024 (10,958 time steps), specifically for the
170 central Arctic Ocean region enclosed by the highlighted orange boundary in Figure 4, which roughly
171 corresponds to the latitude range of approximately 70°N to 85°N. The data has a spatial resolution
172 of 0.25° × 0.25° (approximately 25 km). It includes key parameters related to snow depth and
173 sea ice thickness: snow albedo, snow density, and sea ice concentration. We therefore process these
174 variables using a proxy model derived from the hydrostatic balance equation to generate target proxy
175 data that is eventually used in the inversion process to estimate hidden characteristics.
176

177
178 3.2 PROBLEM FORMULATION AND PRELIMINARIES
179

180 The observational data is first defined. The primary input time series is given as $\mathbf{X} = [x_1, x_2, \dots, x_T]$, where x_t represents the measurement at time step t , and T denotes the total number
181 of time steps. A corresponding augmented input sequence (Ref, Fig 1), $\mathbf{X}' = [x'_1, x'_2, \dots, x'_T]$,
182 is generated to facilitate contrastive learning. The target variable is $\mathbf{Y} = [y_1, y_2, \dots, y_T]$, where y_t
183 is the observed output at time step t .
184

185 We aim to model the relationship between the input $\mathbf{X} = \rho_s$ and the target $\mathbf{Y} = h_i$ derived
186 via the proxy model, particularly in the context of physics-constrained snow depth prediction, by
187 integrating snow and sea ice properties. To achieve this, we adapt the hydrostatic balance equation,
188 which, as stated by Kwok & Cunningham (2008), describes the equilibrium where the weight of ice
189 and snow is balanced by the buoyant force of seawater (equation 2). Using this relation, we generate
190 proxy \mathbf{Y} labels to inject physical attributes into the training process.
191

192
193 4 INVERSE PROBLEM: PREDICTING h_s
194

195 In this study, we frame the inverse problem as predicting the hidden physical parameter h_s using
196 known geophysical observations such as sea ice concentration, snow albedo, and density fields.
197 The difficulty arises because computing h_s analytically requires inputs such as ice thickness (h_i),
198 freeboard (f_b), and snow density (ρ_s), which are actually unobserved in ERA5.
199

$$200 \quad 201 \quad 202 \quad 203 \quad g(\mathbf{x}) = h_s \approx \mathbf{F}^{-1}(h_i, \rho_s) \quad (1)$$

204
205 where g denotes the learned estimator that recovers snow depth from the available observations.
206

207 This problem is fundamentally ill-posed because a unique one-to-one inversion between the ob-
208 served input vector \mathbf{X} and the target \mathbf{Y} is impossible. For instance, several distinct combinations of
209 ice thickness and snow density can result in the same observed snow depth. To address this inherent
210 non-uniqueness and to stabilize the solution, we model the inverse relationship as a surjective map-
211 ping. This assumption is necessary because the large, high-dimensional input space (\mathbf{X}) must be
212 mapped onto a much smaller, physics-constrained output space (h_s), meaning the input space can be
213 mapped onto multiple potential outputs. Our framework uses this surjective mapping assumption to
214 estimate the hidden physical parameters (α, β, γ) at every time step t , which are used to reconstruct
215 a physics-constrained prediction h_s .

216 4.1 PROPOSED PROXY MODEL
217218 The selection of a stable ground truth for training is essential. Since direct observation of key
219 parameters is uncertain in ERA5, we define our target using an analytically derived ice thickness
220 proxy model based on the principle of hydrostatic equilibrium.
221222 This derivation establishes the core thickness equation, which serves as the starting point for any
223 proxy model.
224225 The total weight of the snow and ice column equals the buoyant force (the weight of the displaced
226 water):
227

$$\rho_i h_i + \rho_s h_s = \rho_w h_{\text{sub}} \quad (2)$$

228 The total depth of the column is the sum of the submerged depth (h_{sub}) and the surface elevation
229 (freeboard, f_b):
230

$$h_i + h_s = h_{\text{sub}} + f_b$$

232 Rearranging to isolate the submerged depth:
233

$$h_{\text{sub}} = h_i + h_s - f_b \quad (3)$$

236 Substitute Equation (3) back into the Hydrostatic Balance (2):
237

$$\rho_i h_i + \rho_s h_s = \rho_w (h_i + h_s - f_b)$$

240 **Solving for h_i :** Expand, group all terms containing h_i on one side, and factor:
241

$$\rho_i h_i + \rho_s h_s = \rho_w h_i + \rho_w h_s - \rho_w f_b$$

$$h_i (\rho_i - \rho_w) = h_s (\rho_w - \rho_s) - \rho_w f_b$$

246 Finally, isolating h_i yields the standard forward equation:
247

$$h_i = \frac{h_s (\rho_w - \rho_s) - \rho_w f_b}{\rho_i - \rho_w} \quad (4)$$

251 This is the analytical basis for formulating target proxy data with known variables. The resulting
252 simplified proxy model used is:
253

$$h_i \sim \frac{\rho_w C + \alpha \rho_s}{\rho_w - \rho_i} \quad (5)$$

255 This equation transforms a complex, coupled physical system into a simplified, mathematically
256 tractable target proxy for our neural network.
257258 4.1.1 CONCEPTUAL JUSTIFICATION FOR THE PROPOSED PROXY MODEL
259260 The specific proxy model (Equation 5) used in our implementation includes sea ice concentration
261 (C) and snow albedo (α).
262263

- 264 • Ice thickness is physically zero when Sea Ice Concentration (C) is zero. Therefore, C acts
265 as a critical constraint and scaling factor. While not physically equivalent, SIC often serves
266 as an empirical proxy or normalization term for the bulk sea ice properties in a given area.
267 Thicker, more stable, and more continuous ice (higher h_i and f_b) tends to be associated with
268 higher SIC. In a simplified model, if freeboard cannot be measured, one may substitute a
269 function of the more easily observable area coverage (SIC), especially when modeling the
mean or volume over a large grid box.

270

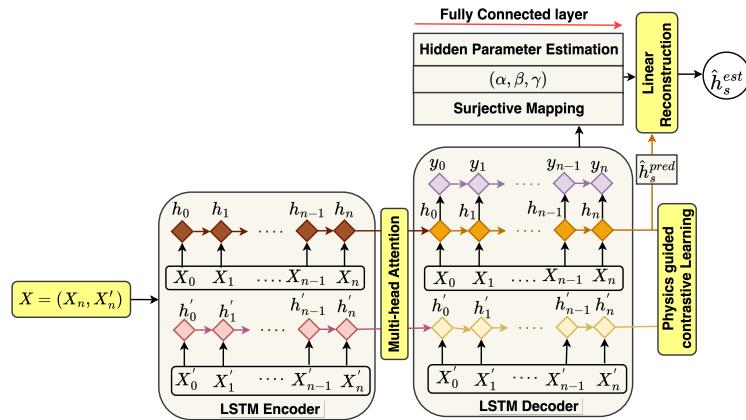
- 271 The use of snow albedo (α) as a proxy for snow depth (h_s) is justified because α is a highly
 272 sensitive and easily observable indicator of snow cover. Only a few centimeters of snow
 273 are required to exceed the optical depth, achieving the maximum possible albedo, meaning
 274 α effectively signals the presence and sufficiency of the snow layer. Since albedo is critical
 275 to the ice-albedo feedback loop and is measured reliably by remote sensing, it serves as
 276 a robust and practical stand-in for the difficult-to-measure physical depth h_s in large-scale
 277 sea ice models.

278

279 4.2 MODEL ARCHITECTURE

280 The PhysE-Inv framework is a recurrent sequence modeling architecture designed to address the
 281 ill-posed nature of physical inverse problems under data scarcity. As depicted in Figure 1, our
 282 methodology achieves this by integrating three novel conceptual components: Surjective Inverse
 283 Mapping, Physics Encoding, and Physics-Guided Contrastive Learning, which together guide the
 284 model toward physically consistent solutions.

285



300 Figure 1: The Physics-Encoded Inverse (PhysE-Inv) framework outlines the fusion of physical con-
 301 straints, representation learning, and a surjective inverse mapping approach based on the hydrostatic
 302 balance proxy. T represents the final observation time in the input sequence.

303

304 **Sequence Latent Representation (\mathbf{z}_T):** The foundational step is the reliable transformation of
 305 the observable input time series $\mathbf{X} = \{x_1, \dots, x_T\}$ (where $T = 10$ days) into a robust, contextually
 306 aware latent state (\mathbf{z}_T). This latent vector serves as the complete representation of the input history
 307 for all subsequent inverse operations.

308

309 **Encoder-Decoder Architecture:** We employ a standard LSTM encoder-decoder structure, lever-
 310 aging the LSTM’s efficiency in modeling the long-range temporal dependencies crucial for climate
 311 memory effects. The encoder sequentially processes the input, accumulating history in its states:

312

$$h_t^{\text{enc}}, c_t^{\text{enc}} = \text{LSTM}^{\text{enc}}(x_t, h_{t-1}^{\text{enc}}, c_{t-1}^{\text{enc}})$$

315 **Multi-Head Self-Attention:** A multi-head self-attention mechanism refines the encoder outputs,
 316 specializing in identifying and weighing non-local temporal dependencies that influence regional
 317 physics. The attention-enhanced input a_t is computed as:

318

$$a_t = \text{Attention}(q_t, K, V) = \sum_{j=1}^T \alpha_{tj} v_j, \quad \text{where } \alpha_{tj} = \frac{\exp\left(\frac{q_t^\top k_j}{\sqrt{d_k}}\right)}{\sum_{l=1}^T \exp\left(\frac{q_t^\top k_l}{\sqrt{d_k}}\right)}$$

319 The Decoder LSTM processes this refined sequence, yielding the final hidden state, $\mathbf{z}_T = h_T^{\text{dec}}$,
 320 which is the definitive input to the inverse module.

321

324 **Surjective Inverse Mapping and Physics Encoding:** The challenge of retrieving sea ice parameters
 325 from uncertain satellite data is fundamentally an ill-posed inverse problem. To address the
 326 non-uniqueness inherent in this problem, the core novelty of our approach is the definition of a
 327 surjective inverse mapping that links the model’s latent state to the final physical parameter based
 328 prediction, ensuring physical constraints are enforced dynamically. We implement the surjective
 329 inverse mapping using an MLP-based neural operator that predicts the hidden sea ice parameters
 330 $\Theta_t = [\alpha, \beta, \gamma]$ from the observed inputs. This mapping connects the abstract latent state of the
 331 model to the required physical quantities.
 332

333 Specifically, the network outputs a set of raw, unconstrained predictions, which are then trans-
 334 formed to enforce physically meaningful constraints. Conceptually, this operation can be written
 335 as:
 336

$$\Theta_t = \text{Transform}(\text{MLP}(\mathbf{z}_T))$$

337 In our implementation, the latent state \mathbf{z}_T (the last hidden state from the decoder) is passed through
 338 a fully connected layer to produce the raw parameters $\alpha_{\text{raw}}, \beta_{\text{raw}}, \gamma_{\text{raw}}$. These are then transformed
 339 to ensure adherence to their appropriate physical domains:
 340

$$\alpha = \text{sigmoid}(\alpha_{\text{raw}}) \times 2 - 1$$

$$\beta = \exp(\beta_{\text{raw}})$$

$$\gamma = \tanh(\gamma_{\text{raw}}) \times 10$$

341 The raw outputs are transformed to enforce physically meaningful constraints: α is passed through
 342 a scaled sigmoid to lie in $[-1, 1]$, β is exponentiated to ensure positivity, and γ is passed through
 343 a scaled tanh to lie in $[-10, 10]$. This procedure allows the network to recover dynamically vary-
 344 ing hidden parameters in a way that respects their underlying physical constraints while naturally
 345 realizing the many-to-one (surjective) mapping from observations to the required latent physical
 346 variables.
 347

348 **Physics Encoding and Reconstruction Proxy:** The estimated parameters Θ_t are used to enforce
 349 the hydrostatic balance via a physics encoding layer. The final physics-constrained prediction, $\hat{h}_{s,t}^{\text{est}}$,
 350 is defined by the following reconstruction proxy:
 351

$$\hat{h}_{s,t}^{\text{est}} = \alpha_t \cdot \bar{h}_{s,t}^{\text{pred}} + \beta_t \cdot \hat{h}_{s,t}^{\text{pred}} + \gamma_t \quad (6)$$

352 where $\hat{h}_{s,t}^{\text{pred}}$ is the direct prediction, and $\bar{h}_{s,t}^{\text{pred}}$ is the mean of the intermediate predictions over the
 353 sequence T . The corresponding loss, $\mathcal{L}_{\text{PE-pred}}$, ensures the final output respects the physics:
 354

$$\mathcal{L}_{\text{PE-pred}} = \frac{1}{T} \sum_{t=1}^T (\hat{h}_{s,t}^{\text{pred}} - \hat{h}_{s,t}^{\text{est}})^2 \quad (7)$$

355 **Physics-Guided Contrastive Learning (PGCL)** The latent space is guided by the physical prin-
 356 ciple of **invariance**. Because Gaussian noise augmentation (\mathbf{X}') does not alter the underlying phys-
 357 ical characteristics of the original input (\mathbf{X}), the pair $(\mathbf{X}, \mathbf{X}')$ represents two physically equivalent
 358 observations. The model is therefore encouraged to produce embeddings that remain stable under
 359 observational noise. To enforce this invariance, we adopt a contrastive learning objective inspired by
 360 the Normalized Temperature-Scaled Cross-Entropy (NT-Xent) loss. For each batch of N sequences,
 361 we construct N positive pairs, resulting in a $2N$ -sample contrastive batch. Given a pair of embed-
 362 dings $(\mathbf{z}_i, \mathbf{z}_j)$, the loss promotes high similarity for the positive pair while pushing apart all other
 363 embeddings in the batch:
 364

$$\mathcal{L}_{\text{Contrastive}} = -\frac{1}{2N} \sum_{i=1}^{2N} \log \left(\frac{\exp(s(\mathbf{z}_i, \mathbf{z}_{j(i)})/\tau)}{\sum_{k \neq i} \exp(s(\mathbf{z}_i, \mathbf{z}_k)/\tau)} \right) \quad (8)$$

365 where $s(\cdot, \cdot)$ denotes cosine similarity and τ is the temperature.
 366

378 **Contrastive Objective Simplification:** Our contrastive regularizer is not equivalent to NT-Xent,
 379 nor is it intended to replicate its temperature-scaled formulation. Instead, we adopt a simplified
 380 objective that captures only the aspect relevant to our setting: encouraging separation between phys-
 381 ically inconsistent parameter reconstructions while keeping consistent samples close in the latent
 382 space. This lightweight formulation avoids the heuristic temperature tuning and large-batch de-
 383 pendence of standard contrastive losses, which are unnecessary for our small, structured physical
 384 parameter space. The goal is therefore not to implement a canonical contrastive learning loss, but
 385 to introduce a minimal stability-inducing term that supports the surjective, invertibility-aware archi-
 386 tecture.
 387

389 5 BASELINES

391 Our study’s primary objective is conceptual: to rigorously evaluate how enforcing a surjec-
 392 tive, invertibility-aware mapping enables the stable recovery of latent physical parameters un-
 393 der data scarcity. While acknowledging the presence of general state-of-the-art architectures
 394 in time-series forecasting, our baseline selection is deliberately focused on controlled, ablative
 395 comparisons to isolate the specific impact of the PhysE-Inv framework’s conceptual innovations.
 396

397 In domains like physics-guided inverse
 398 modeling, many architectures in the lit-
 399 erature are custom-built to solve tightly
 400 scoped problems with specific assump-
 401 tions and non-linear partial differential
 402 equations, often lacking the generaliz-
 403 ability needed for broader comparisons.
 404 They frequently only present sample-
 405 based ablations but not performance com-
 406 parisons between state-of-the-art architec-
 407 tures Raissi et al. (2019); Ghosh et al. (2022). For example, we fundamentally differ from PINNs
 408 Raissi et al. (2019), which use automatic differentiation to solve PDEs for numerical simulation.
 409 Therefore, in our study, to facilitate a fair comparison across different architectural paradigms, we
 410 chose to augment each of our selected baselines with an inverse modeling module, enabling them to
 411 perform the same joint parameter estimation and prediction task as our proposed PhysE-Inv frame-
 412 work. Furthermore, we acknowledge the existing gap in the literature regarding direct comparisons
 413 between general-purpose architectures adapted for inverse modeling and those models specifically
 414 designed for particular inverse problems. It is noteworthy that our proposed model combines inverse
 415 modeling (specifically through its parameter estimation process) with physics-guided contrastive
 416 learning (Fig. 1).
 417

418 To ensure a fair analysis, all baselines are capacity-matched to our PhysE-Inv model. Further-
 419 more, where applicable, they incorporate the same invertibility adjustment to ensure performance
 420 differences are attributable to our novel components (Physics Encoding and Physics-Guided Con-
 421 trastive Learning), not differences in overall model scale. Our choices represent conceptually distinct
 422 classes of time-series modeling with noisy, sparse real-world data:
 423

- 425 • LSTM serves as the minimal recurrent baseline, directly aligning with the core temporal
 426 backbone of our encoder-decoder structure. This comparison quantifies the added value of
 427 our physics constraints over a standard sequence modeling approach.
- 428 • BiLSTM is included to evaluate whether performance gains are due to the structural en-
 429 forcement of physical rules, or simply from leveraging broader (non-causal) temporal con-
 430 text.
 431

- Neural ODE offers a direct comparison to an intrinsically continuous-time modeling approach, often considered ideal for latent physical dynamics, testing the efficacy of our explicit physics-guided architecture.
- ResNet-50 (1D variant) provides a non-recurrent, deep convolutional benchmark. This tests whether the temporal memory inherent in the LSTM is necessary when compared to a capacity-matched architecture that models implicit, discretized dynamics through hierarchical feature extraction.

These models collectively form a set of conceptually aligned baselines that effectively isolate and benchmark the impact of our proposed invertibility principles in estimating time-varying physical parameters.

5.1 RESULTS AND DISCUSSION

Table 1 presents a comparison of the predictive performance of four baseline models used in this study with the proposed inverse model PhysE-Inv. The baseline models are LSTM, NeuralODE, ResNet50, and BiLSTM. The evaluation considers their performance under two different model settings: the first setting, referred to as the base, reflects prediction without the incorporation of hidden characteristics that arise from parameter estimation and inverse mapping, while the other employs parameter estimation and thus includes these hidden characteristics. Model efficacy is quantified using two standard error metrics (MSE and RMSE). Lower values for both metrics indicate a higher degree of predictive accuracy.

Table 2: Ablation study comparing PhysE-Inv performance with and without supervised contrastive learning (SCL)

Training Data	Without SCL		With SCL	
	MSE	RMSE	MSE	RMSE
Sample 1 (80%)	0.6601	0.8125	0.5926	0.7698
Sample 2 (60%)	0.6588	0.8117	0.6037	0.7770
Sample 3 (50%)	0.8675	0.9314	0.7940	0.8911

shows improvements for other models, the extent of this improvement varies. For instance, both LSTM and NeuralODE exhibit a substantial decrease in error, whereas the performance of ResNet50 remains relatively consistent. This suggests that the effectiveness of parameter estimation in improving predictive accuracy is model-dependent. Additionally, our proposed model consistently shows better performance across all comparisons.

We conducted ablation experiments with and without contrastive learning (CL), which typically means the inclusion or exclusion of contrastive loss. The table (2) presents the results of ablation experiments conducted to examine the effectiveness of CL in our proposed model, using three different training data samples. Following Ghosh et al. (2022), we performed an ablation study by reducing the training data sample size to evaluate the impact of CL. Specifically, Sample 1 used 80% of the training data, Sample 2 used 60%, and Sample 3 used 50%. Our experimental results indicate that the model trained with CL consistently outperformed the model trained without CL across all three sample sizes, yielding lower MSE and RMSE values, which generally suggest more accurate predictions. It is important to note that an essential part of our model architecture is the inclusion of CL in addition to the core approach of parameter estimation for physics-based components. Therefore, the enhanced performance observed in the ablation study may result from CL’s ability to learn better representations, from the improved

The results indicate that the application of parameter estimation generally correlates with a reduction in both MSE and RMSE across the evaluated models, suggesting an enhancement in predictive accuracy. Notably, the proposed model demonstrates the lowest error values both in its base form (without inverse modeling and parameter estimation) and in its form with inverse modeling and parameter estimation (PhysE-Inv), indicating superior performance in this specific prediction task.

While parameter estimation

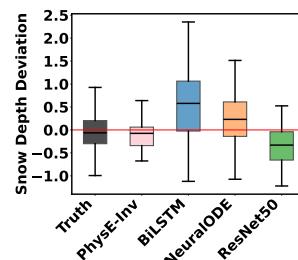
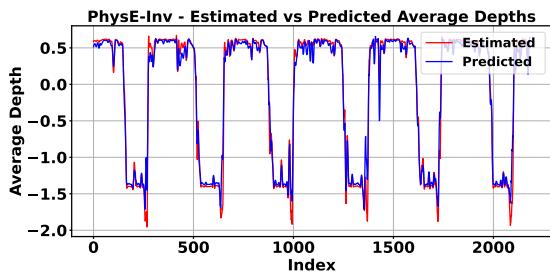


Figure 2: Comparison of model performance: box plot of snow depth deviations.

486 reconstruction of physical relationships via parameter estimation, or from both. Since 'Physics
 487 Encoding' (surjective inversion with parameter estimation) plays a key role in embedding physical
 488 knowledge into the model, removing it entirely would fundamentally alter and misrepresent our
 489 proposed model's structure. Therefore, it doesn't make sense to do an ablation study without the
 490 physics loss, as such a model would no longer represent our core approach.
 491

492 The box-and-whisker plots in Figure 2 illustrate the distributions of snow depth anomalies for
 493 the ground truth, baseline models, and the proposed PhysE-Inv. A horizontal dashed red line at
 494 zero represents perfect alignment with the average snow depth condition. Among the baselines,
 495 BiLSTM shows reasonably consistent performance, with a median close to zero and a spread com-
 496 parable to the ground truth, though it produces fewer negative outliers. This suggests that BiLSTM
 497 captures the overall shape of the distribution while underrepresenting extreme values. ResNet50
 498 also has a median near zero, but its predictions show a narrower spread than the ground truth,
 499 indicating the model may underestimate the full variability of the anomalies. In contrast, Neu-
 500 ralODE exhibits greater variability with a median slightly above zero, suggesting an upward bias,
 501 and contains more significant negative outliers, pointing to reduced stability and increased devi-
 502 ation from the true distribution. PhysE-Inv demonstrates the closest agreement with the ground
 503 truth. Its predictions have medians very near zero and a spread that matches the true anomaly
 504 distribution. The relatively low number of outliers indicates stable predictions and an accurate rep-
 505 resentation of the overall distribution. Overall, PhysE-Inv provides the most reliable and consistent
 506 estimates, successfully capturing both the central tendency and variability of snow depth anomalies.
 507



517 Figure 3: Time series of predicted and estimated mean
 518 snow depth seasonal pattern
 519

520
 521 baseline (normalized value near 0) down to the seasonal minimums (near -2), which likely cor-
 522 respond to critical physical processes such as rapid compaction or melt events. While minor pre-
 523 dictive errors, characterized by slight smoothing or phase lag, are primarily localized around these
 524 abrupt transitions, the overall temporal fidelity and quantitative accuracy remain high. This close
 525 correspondence confirms the model's robustness and its ability to generalize the complex non-linear
 526 relationship between the input snow density field and the normalized snow depth proxy.
 527

528 6 CONCLUSION AND FUTURE WORK

530
 531 We presented PhysE-Inv, a physics-encoded inverse modeling framework designed to estimate time-
 532 varying hidden geophysical parameters from sparse observations to predict real-world Arctic snow
 533 depth. The core novelty lies in combining a lightweight inverse head with physics-guided contrastive
 534 learning to achieve a surjective inversion strategy. PhysE-Inv accurately reconstructed the seasonal
 535 evolution of snow depth and consistently outperformed both physics-regularized and data-driven
 536 baselines, demonstrating that simple, interpretable physics encoding yields substantial gains over
 537 generic PIML methods when data are limited. This approach establishes a robust methodology
 538 for handling ill-posed inverse problems in environmental science, paving the way for more reliable
 539 estimation of unobserved variables globally. Future work will incorporate Bayesian uncertainty
 quantification to validate learned parameters against independent remote-sensing and in-situ sources.

Figure 3 illustrates the strong predic-
 tive performance of the proposed PhysE-
 Inv model on the test dataset, validated
 by the close alignment between the pre-
 dicted and estimated normalized snow
 depth proxy time series. The model ef-
 fectively captures the highly dynamic and
 cyclical behavior of the proxy, demon-
 strating exceptional fidelity in tracking
 both the long-term seasonal variation and
 the abrupt transitions that define extreme
 events. Specifically, the model accurately
 follows the sharp drops from the high

540 AUTHOR CONTRIBUTIONS
541542 This work uses a large language model to refine and clarify the language, improve sentence structure,
543 and polish the writing.
544545 ACKNOWLEDGMENTS
546547 Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
548 those to funding agencies, go at the end of the paper.
549550 REFERENCES
551552 A. Adler, M. Araya-Polo, and T. Poggio. Deep learning for seismic inverse problems: Toward the
553 acceleration of geophysical analysis workflows. *IEEE Signal Processing Magazine*, 38:89–119,
554 2021.555 A. Bardes, J. Ponce, and Y. LeCun. Vicregl: Self-supervised learning of local visual features.
556 *Advances In Neural Information Processing Systems*, 35:8799–8810, 2022.557 T. Bubba, G. Kutyniok, M. Lassas, M. März, W. Samek, S. Siltanen, and V. Srinivasan. Learning
558 the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography.
559 *Inverse Problems*, 35:064002, 2019.560 R. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations.
561 *Advances In Neural Information Processing Systems*, 31, 2018.562 Y. Fan and L. Ying. Solving electrical impedance tomography with deep learning. *Journal Of
563 Computational Physics*, 404:109119, 2020.564 H. Fang, S. Wang, M. Zhou, J. Ding, and P. Xie. Cert: Contrastive self-supervised learning for
565 language understanding. *ArXiv Preprint ArXiv:2005.12766*, 2020.566 S. Faroughi, N. Pawar, C. Fernandes, M. Raissi, S. Das, N. Kalantari, and S. Mahjour. Physics-
567 guided, physics-informed, and physics-encoded neural networks in scientific computing. *ArXiv
568 Preprint ArXiv:2211.07377*, 2022.569 H. Ghorbanidehno, A. Kokkinaki, J. Lee, and E. Darve. Recent developments in fast and scalable
570 inverse modeling and data assimilation methods in hydrology. *Journal Of Hydrology*, 591:125266,
571 2020.572 R. Ghosh, A. Renganathan, K. Tayal, X. Li, A. Khandelwal, X. Jia, C. Duffy, J. Nieber, and V. Ku-
573 mar. Robust inverse framework using knowledge-guided self-supervised learning: An application
574 to hydrology. In *Proceedings Of The 28th ACM SIGKDD Conference On Knowledge Discovery
575 And Data Mining*, pp. 465–474, 2022.576 Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-
577 Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cor-
578 nel Soci, Saleh Abdalla, Xavier Abellán, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati,
579 Jean Bidlot, Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Dia-
580 mantakis, Rossana Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer,
581 Leo Haimberger, Sean Healy, Robin J. Hogan, Elías Hólm, Marta Janisková, Sarah Keeley,
582 Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Radnóti, Patricia de Rosnay, Iryna
583 Rozum, Freja Vamborg, Sébastien Villaume, and Jean-Noël Thépaut. The era5 global reanal-
584 ysis. *Quarterly Journal of the Royal Meteorological Society*, 146(730):1999–2049, 2020. doi:
585 <https://doi.org/10.1002/qj.3803>. URL <https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803>.

594 M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. Shah, and W. Tebbutt. A differentiable
 595 programming system to bridge machine learning and scientific computing. *ArXiv Preprint*
 596 *ArXiv:1907.07587*, 2019.

597

598 L. Jing and Y. Tian. Self-supervised visual feature learning with deep neural networks: A survey.
 599 *IEEE Transactions On Pattern Analysis And Machine Intelligence*, 43:4037–4058, 2020.

600

601 A. Karpatne, X. Jia, and V. Kumar. Knowledge-guided machine learning: Current trends and future
 602 prospects. *ArXiv Preprint ArXiv:2403.15989*, 2024.

603

604 S. Karumuri and I. Bilionis. Learning to solve bayesian inverse problems: An amortized variational
 605 inference approach using gaussian and flow guides. *Journal Of Computational Physics*, 511:
 606 111903, 2024.

607

608 Y. Khoo and L. Ying. Switchnet: a neural network model for forward and inverse scattering prob-
 609 lems. *SIAM Journal On Scientific Computing*, 43:A1105–A1132, 2021.

610

611 N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar.
 612 Neural operator: Learning maps between function spaces. *ArXiv Preprint ArXiv:2108.08481*,
 613 2021.

614

615 K. Kuang, F. Dean, J. B Jedlicki, D. Ouyang, A. Philippakis, D. Sontag, and A. Alaa. Med-real2sim:
 616 Non-invasive medical digital twins using physics-informed self-supervised learning. *Advances In
 617 Neural Information Processing Systems*, 37:5757–5788, 2025.

618

619 F. Kwasniok. Linear inverse modeling of large-scale atmospheric flow using optimal mode decom-
 620 position. *Journal Of The Atmospheric Sciences*, 79:2181–2204, 2022.

621

622 R. Kwok and G. Cunningham. Icesat over arctic sea ice: Estimation of snow depth and ice thickness.
 623 *Journal Of Geophysical Research: Oceans*, 113, 2008.

624

625 Haili Li, Chang-Qing Ke, Xiaoyi Shen, Qinghui Zhu, Yu Cai, and Lanhua Luo.
 626 The varied role of atmospheric rivers in arctic snow depth variations. *Geophys-
 627 ical Research Letters*, 51(14):e2024GL110163, 2024. doi: <https://doi.org/10.1029/2024GL110163>. URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2024GL110163> e2024GL110163 2024GL110163.

626

627

628 T. Liao and G. Li. Metaheuristic-based inverse design of materials—a survey. *Journal Of Materi-
 629 omics*, 6:414–430, 2020.

630

631 X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang. Self-supervised learning:
 632 Generative or contrastive. *IEEE Transactions On Knowledge And Data Engineering*, 35:857–
 633 876, 2021.

634

635 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 636 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 637 *Nature Machine Intelligence*, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5. URL <http://dx.doi.org/10.1038/s42256-021-00302-5>.

636

637

638 S. Mo, N. Zabaras, X. Shi, and J. Wu. Deep-learning-based inverse modeling approaches: A sub-
 639 surface flow example. *Water Resources Research*, 56:e2019WR026731, 2020.

640

641

642 Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K. Gupta, and Aditya Grover. Cli-
 643 max: A foundation model for weather and climate. 2023. URL <https://arxiv.org/abs/2301.10343>.

644

645 Tung Nguyen, Arsh Koneru, Shufan Li, and Aditya Grover. Physix: A foundation model for physics
 646 simulations. 2025. URL <https://arxiv.org/abs/2506.17774>.

648 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 649 deep learning framework for solving forward and inverse problems involving nonlinear partial
 650 differential equations. *Journal of Computational physics*, 378:686–707, 2019.
 651

652 C. Rao, H. Sun, and Y. Liu. Hard encoding of physics for learning spatiotemporal dynamics. *ArXiv
 653 Preprint ArXiv:2105.00557*, 2021.

654 P. Scotti, A. Banerjee, J. Goode, S. Shabalin, A. Nguyen, A. Dempster, N. Verlinde, E. Yudler,
 655 D. Weisberg, K. Norman, and Others. Reconstructing the mind’s eye: fmri-to-image with con-
 656 trastive learning and diffusion priors. *Advances In Neural Information Processing Systems*, 36:
 657 24705–24728, 2023.
 658

659 J. Sun, Z. Niu, K. Innanen, J. Li, and D. Trad. A theory-guided deep-learning formulation and
 660 optimization of seismic waveform inversion. *Geophysics*, 85:R87–R99, 2020.

661 Albert Tarantola. *Inverse problem theory and methods for model parameter estimation*. SIAM,
 662 2005.

663 K. Tayal, X. Jia, R. Ghosh, J. Willard, J. Read, and V. Kumar. Invertibility aware integration of static
 664 and time-series data: An application to lake temperature modeling. In *Proceedings of the SIAM
 665 International Conference on Data Mining (SDM)*, 2022. Available: <https://pubs.siam.org/doi/10.1137/1.9781611977172.79>.
 666

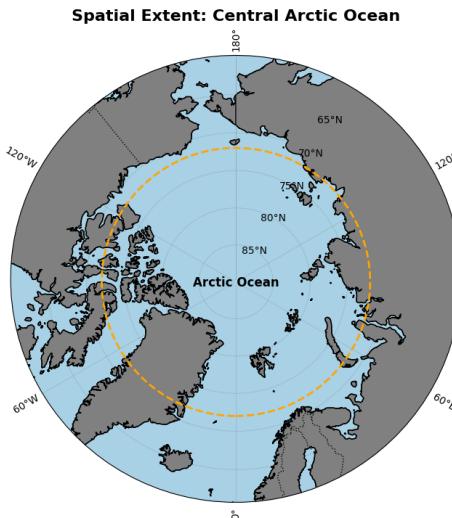
667 J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating scientific knowledge with machine
 668 learning for engineering and environmental systems. *ACM Computing Surveys*, 55(1):1–37, 2022.
 669

670

672 A APPENDIX

673 A.1 REGION OF IMPORTANCE

674 The behavior of sea ice and its overlying snow is analyzed within a specific geographical domain.
 675 This Region of Importance, the central Arctic Ocean, is an essential component of the global climate
 676 system. Figure 4 illustrates the exact spatial extent of this region, which is used for extracting all
 677 atmospheric and oceanographic parameters. To extract spatially aggregated information for our time
 678 series prediction, spatial averaging was applied across the grid points within the orange highlighted
 679 area to produce daily time series. Z-score normalization was then performed using the training set.
 680



700 Figure 4: Map showing the spatial extent of the central Arctic Ocean, highlighting (orange line) the
 701 region used for data collection.

702 A.2 MODEL PARAMETERS AND NOTATION
703704 This appendix provides a detailed reference for all physical parameters and variables discussed in the
705 modeling chapters. Table 3 defines the essential atmosphere and ocean parameters, their respective
706 notations, and whether they are treated as constant values or time series.
707708 Table 3: Atmosphere and Ocean Parameters (Features)
709

710 Category	711 Parameter	712 Notation	713 Type
714 Known parameters	Snow albedo	Ω	Time series
	Snow density	ρ_s	Time series
	Sea ice concentration	C	Time series
	Seawater density	ρ_w	Constant
	Sea ice density	ρ_i	Constant
718 Unknown parameters	Ice thickness	h_i	Time series
	Ice freeboard	f_b	Time series
	Snow depth	h_s	Time series

722 A.3 NON-UNIQUENESS AND THE ILL-POSED PROBLEM
723724 The conceptual framework illustrates why retrieving sea ice thickness (h_i) or snow depth (h_s) from
725 remote-sensing measurements constitutes an ill-posed inverse problem. This is demonstrated by
726 contrasting the stable forward mapping with the non-unique inverse mapping implied by the principle
727 of hydrostatic balance.
728729 **Forward Problem (Well-Posed):**

730
$$(h_s, f_b) \longrightarrow h_i$$

731 Given the true snow depth h_s and freeboard f_b , the hydrostatic equation produces a unique ice
732 thickness h_i . This mapping is stable and well-defined.
733

734 **Inverse Problem (Ill-Posed):**

735
$$h_i \longrightarrow (h_s, f_b)$$

736 Given only the ice thickness h_i , there exist infinitely many pairs (h_s, f_b) that satisfy the hydrostatic
737 balance. Thus, the inverse mapping is non-unique, unstable, and therefore ill-posed.
738

739 **Practical Implications:** In satellite altimetry, the inputs to the forward computation, especially
740 snow depth, are highly uncertain. Prior studies show that uncertainty in snow depth is the domi-
741 nant source of error in satellite-derived sea ice thickness estimates (Kwok & Cunningham, 2008).
742 Consequently, small perturbations in h_s or f_b can produce large variations in the inferred thickness
743 h_i .
744745 **Implication for Learning-Based Methods:** Although the model predicts h_i rather than the in-
746 verse quantities, the ambiguity inherent in the measurement space implies that multiple noisy or
747 uncertain input configurations can map to similar thickness values. This structural non-uniqueness
748 contributes to the ill-posedness of the learning problem and motivates incorporating physics-guided
749 constraints or regularization.
750751 A.4 CONCEPTUAL JUSTIFICATION: WHY SURJECTIVITY IS NECESSARY
752753 The fundamental difficulty in retrieving sea ice parameters stems from the nature of the mapping
754 between the observed variables and the target quantities. Specifically, the relationship between
755 inputs and the output is not a simple one-to-one correspondence.
756

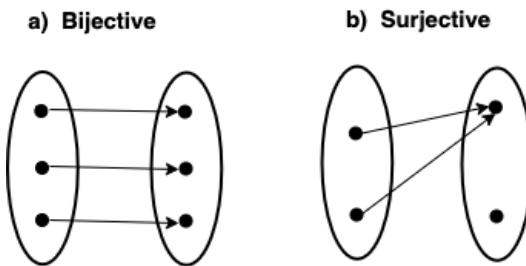


Figure 5: (a) Bijective mapping: unique input-output relationship. (b) Surjective mapping: multiple inputs to one output.

The necessary mathematical framework is best understood by contrasting two types of mappings (Figure 1):

Bijective Mapping (Hypothetical): This mapping assumes the inverse problem is fully reversible (one-to-one). While mathematically ideal for unique solutions, this model does not reflect the inherent ambiguity and coupled dependencies present in real-world sea ice measurements.

Surjective Mapping (The Real-World Model): This mapping implies that the inverse problem is not uniquely reversible (many-to-one). This structure correctly models the non-uniqueness where multiple input measurement pairs can contribute to a single output value (e.g., the same ice thickness).

The surjective assumption is therefore necessary because it acknowledges that every physically possible thickness value has at least one corresponding input measurement pair. By adopting this many-to-one structure, the model effectively guarantees that a solution exists in the output parameter space for every input latent state z_T , overcoming the rigid, ill-posed requirements of traditional inverse modeling techniques.

A.5 ADDITIONAL RESULTS

Figure 6 compares the Probability Density Function (PDF) of the ground truth and the PhysE-Inv model's predictions. This comparison provides a more comprehensive evaluation than point-estimate metrics like MSE by assessing the model's ability to learn the underlying statistical distribution of the data. In climate science, where a perfect one-to-one match in geospatial grids is often not expected, the alignment of the probability distributions becomes a more crucial evaluation criterion. A strong correspondence between the predicted and true PDFs indicates that the model is not merely a regression function for individual data points but is capable of generalizing the data's generative process. This is crucial for capturing the system's overall statistical behavior, including the frequency and likelihood of different outcome magnitudes.

The PhysE-Inv model successfully captures the unimodal nature of the measured deviations in the ground truth distribution (Fig. 6). By incorporating physics encoding, it captures real-world variabilities, reducing prediction error and producing more physically consistent and robust predictions.

A.6 IMPLEMENTATION

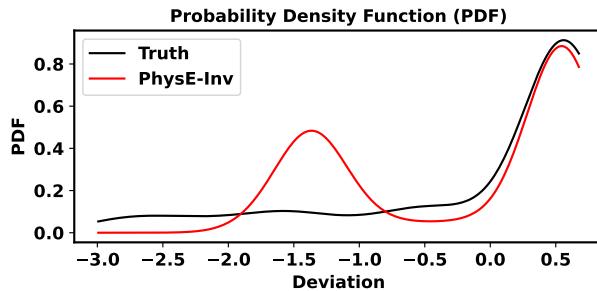


Figure 6: PDF of mean snow depth anomalies for true values and PhysE-Inv predictions.

Table 4: Model Training and Architectural Hyperparameters

Category	Details
Data and Setup	
Input Feature	Snow density field (time series)
Target	Normalized snow depth proxy
Input/Target Shapes	
Train X/Y Shape	[8757, 10, 1]
Test X/Y Shape	[2183, 10, 1]
Supervision Strategy	Prediction at the final time step ($t = 10$)
Optimization	
Loss Function	Mean Squared Error (MSE)
Optimizer	Adam, $\eta = 0.0005$
Batch Size	16
Training Epochs	500
Implementation / Hardware	PyTorch on NVIDIA V100 GPU
Architecture	
Encoder/Decoder	2-layer LSTM (64 hidden units)
LSTM Dropout Rate	0.4
Attention Mechanism	4-headed self-attention
Prediction Head	Fully connected layer
Physical Parameter Head	3-layer FFN with ReLU
Output Transformation	Ensures stable parameter ranges