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ABSTRACT

The accurate estimation of Arctic snow depth (hs) remains a critical time-
varying inverse problem due to the extreme scarcity and noise inherent in as-
sociated sea ice parameters. Existing process-based and data-driven models are
either highly sensitive to sparse data or lack the physical interpretability re-
quired for climate-critical applications. To address this gap, we introduce PhysE-
Inv, a novel framework that integrates a sophisticated sequential architecture,
an LSTM Encoder-Decoder with Multi-head Attention and physics-guided con-
trastive learning, with physics-guided inference.Our core innovation lies in a sur-
jective, physics-constrained inversion methodology. This methodology first lever-
ages the hydrostatic balance forward model as a target-formulation proxy, en-
abling effective learning in the absence of direct hs ground truth; second, it uses
reconstruction physics regularization over a latent space to dynamically discover
hidden physical parameters from noisy, incomplete time-series input. Evaluated
against state-of-the-art baselines, PhysE-Inv significantly improves prediction per-
formance, reducing error by 20% while demonstrating superior physical consis-
tency and resilience to data sparsity compared to empirical methods. This ap-
proach pioneers a path for noise-tolerant, interpretable inverse modeling, with
wide applicability in geospatial and cryospheric domains.

1 INTRODUCTION

Snow depth (hs) exerts a first-order control on Arctic sea ice thickness, yet reliable observations
of it remain remarkably scarce. For instance, widely used reanalysis products such as ERA5 do
not provide direct measurements of snow depth over sea ice (Hersbach et al., 2020), despite its
well-established influence on sea ice thermodynamics (Li et al., 2024). Compounding this data
gap, the most available driving observations, such as snow density (ρs), are inherently noisy and
sparse due to measurement complexities. To address this gap, we exploit Physics-encoded Neural
Networks (PeNNs) (Faroughi et al., 2022), a class of models widely applied in scientific analysis
to implement inverse modeling. However, a standard PeNN approach is insufficient to overcome
the core issue of extreme data scarcity and input noise. Therefore, our work introduces a novel
framework that not only encodes sea ice physics derived from the hydrostatic balance equation
(Kwasniok, 2022) but, critically, leverages this equation as a target-formulation proxy to enable the
estimation of hidden parameters and yield physically consistent prediction of snow depth (hs) from
the noisy observational data.

Inverse modeling is a powerful tool for inferring intrinsic physical parameters and uncovering
hidden characteristics of complex physical phenomena. These models extract meaningful insights
from systems in various fields, including lake temperature modeling (Tayal et al., 2022), tomogra-
phy (Bubba et al., 2019), seismic waveform analysis (Sun et al., 2020), materials science (Liao & Li,
2020), and hydrology (Ghorbanidehno et al., 2020). However, a common limitation is that many of
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these methods rely on physical priors or posterior distributions for parameter estimation (Karumuri
& Bilionis, 2024). For example, the accuracy of the predicted variable directly depends on the accu-
racy of the physical mapping from other variables. This dependency can be problematic because any
errors in the initial mapping will propagate through the model during training, potentially affecting
the overall performance. Furthermore, in data-sparse domains like the Arctic, the forward model is
highly sensitive to noisy input, exacerbating this error propagation. While an end-to-end learning
approach can offer a streamlined solution, it can also limit the ability to embed additional physical
constraints that are relevant to the system (Faroughi et al., 2022). This is because the end-to-end
model is highly dependent on its initialization process and the pre-defined forward mapping.

Furthermore, inferring parameters through inverse modeling using complex forward-inverse
flow transformations (Tarantola, 2005; Ghosh et al., 2022; Tayal et al., 2022) can be a computa-
tionally demanding process. These works often rely on a bijective mapping between the input and
latent spaces. While this one-to-one correspondence is suitable for static systems (e.g., unchanging
material properties), its strict nature is restrictive in the context of a dynamic physical system like
Arctic sea ice, where underlying parameters are time-varying. A bijective mapping may not be flex-
ible enough to capture these evolving relationships, as it rigidly links a single input state to a single
output state, limiting its ability to account for the continuous evolution of the system. Additionally,
these methods build upon traditional self-supervised learning that extracts general statistical patterns
from unlabeled data. However, the learned features, which are not constrained by physical princi-
ples, might not be physically meaningful or suitable for parameter estimation in a specific domain
like snow depth prediction. This points to a clear need for a physics-guided contrastive learning
approach that embeds domain knowledge directly into the feature-learning process.

To overcome the limitations of both traditional inverse modeling and conventional self-
supervised learning, we introduce a novel, simplified hybrid framework called PhysE-Inv (Physics-
Encoded Inverse modeling). This framework utilizes a surjective inversion mapping for time-varying
parameter estimation, enabling it to exploit all possible values the predicted variable could take. It
operates on the principle that the temporal evolution of a system can be effectively modeled using
linear dynamics present in its physical variables (Kwasniok, 2022). We embed a linear physical
equation derived from the hydrostatic balance Kwok & Cunningham (2008) to relate the cause-and-
effect phenomena between sea ice and snow variables, leveraging the physical equation as a target
formulation proxy for inversion. The learning mechanism within PhysE-Inv specifically addresses
the pitfalls of generic self-supervised learning by integrating a physics-guided contrastive learning
approach via physics encoding. This is critical because it compels the model’s latent space to cap-
ture the physically meaningful relationships between Arctic snow and sea ice variables. By enforc-
ing these relationships through contrastive loss, we ensure the latent space is optimally structured
for the subsequent inversion and estimation of hidden parameters needed for physically consistent
predictions of snow depth.

The main contributions of this paper are summarized as follows: (1) We present PhysE-Inv,
a novel hybrid framework that leverages a surjective inversion mapping integrated into a physics-
guided contrastive learning process. The novelty of this work lies not in the creation of a novel
network architecture, but in the constrained inversion methodology, which enables a more direct
and efficient optimization for predicting snow depth through inverse modeling. (2) Moving beyond
traditional inverse modeling, our framework achieves effective physics encoding by embedding con-
straints from the hydrostatic balance equation of Arctic sea ice thickness directly into the neural
network. This ensures physically consistent inferences, leading to more accurate snow depth pre-
dictions. (3) We demonstrate the effectiveness of our proposed model by comparing it with multiple
baselines, showing superior performance and resilience to data sparsity.
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2 RELATED WORKS

2.1 PHYSICS-GUIDED MACHINE LEARNING

Physics-encoded Neural Networks (PeNNs) represent powerful approach for integrating scientific
principles into machine learning Faroughi et al. (2022); Willard et al. (2022); Karpatne et al. (2024).
By incorporating physical laws in the form of differential and linear equations Rao et al. (2021);
Chen et al. (2018); Kovachki et al. (2021); Innes et al. (2019), these models not only show improved
performance but also adhere more closely to physical laws, transforming traditional black-box al-
gorithms into more interpretable models. Building on the rigor introduced by PeNNs, machine
learning–enhanced inverse modeling offers a powerful way to uncover hidden physical parameters
that govern observable geospatial phenomena, many of which cannot be measured directly. This
approach has been widely applied in fields such as hydrology Ghosh et al. (2022), water flow stud-
ies Mo et al. (2020), and lake temperature modeling Tayal et al. (2022). In seismic waveform
inversion, for example, researchers have begun integrating theoretical knowledge of seismic wave
propagation into deep learning frameworks Adler et al. (2021). Deep neural networks are also being
employed to tackle electrical impedance tomography (EIT) problems, which involve inverting the
highly nonlinear and high-dimensional Dirichlet-to-Neumann (DtN) map Fan & Ying (2020). In
addition, innovative architectures such as SwitchNet have been developed to address forward and
inverse scattering problems for wave equations, offering computational efficiency while capturing
the global nature of scattering phenomena Khoo & Ying (2021).

Most physics-informed machine learning (PIML) approaches, such as Physics-Informed Neu-
ral Networks (PINNs) Raissi et al. (2019), are designed for learning or solving nonlinear partial
differential equations (PDEs), ordinary differential equations (ODEs), or complex dynamical and
turbulent processes Nguyen et al. (2025); Lu et al. (2021). These frameworks are powerful for nu-
merical simulation, system identification, and discovering new dynamical laws, but they are not well
suited to the simple, linear inverse modeling setting considered in this work, where the goal is to
infer hidden physical parameters from incomplete real-world observations. Our task focuses on es-
timating unobserved but physically meaningful quantities rather than solving a forward dynamical
system, making the assumptions and machinery of PDE-based PIML unnecessarily heavy and often
incompatible with the available data. Similarly, foundation models such as ClimaX Nguyen et al.
(2023) are optimized for large-scale climate prediction and cross-variable representation learning
under conditions where abundant training data exist. Their objectives and data regimes differ sub-
stantially from ours: we target parameter estimation in data-scarce environments, where the structure
of the inverse map is weakly constrained and the physical signal must be recovered from limited and
partially observed inputs. As a result, our surjective inverse estimation task lies outside the problem
class these foundation models are designed to address.

2.2 SELF-SUPERVISED LEARNING

While effective, ML-enhanced inverse methods often require extensive labeled data. To address this
data scarcity challenge, the self-supervised paradigm has also proven effective in addressing inverse
problems across a wide range of scientific disciplines, extending beyond traditional domains like
natural language processing Fang et al. (2020) and computer vision Bardes et al. (2022) to include
scientific modeling Scotti et al. (2023) and noninvasive medical digital twins Kuang et al. (2025).
By exploiting complex pretext tasks and multi-stage training, these methods can extract meaningful
representations directly from underlying physical structures Bardes et al. (2022), which in turn en-
ables parameter estimation without the need for explicit labels Liu et al. (2021); Jing & Tian (2020).
A limitation of these methods is their heavy reliance on generative and regularization losses, which
necessitate extensive hyperparameter tuning. Moreover, the use of bijective mappings (e.g., Ghosh
et al. (2022)) assumes perfect invertibility, which is not plausible with real-world data. Despite these
advances, a research gap remains. Our work proposes a unified framework that merges the rigor of
physics-encoded methods (using known laws with unknown variables) with direct optimization to
solve time-varying inverse problems for unobserved data.
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3 DATA AND METHODOLOGY

3.1 DATASET

The dataset comprises ERA5 reanalysis data Hersbach et al. (2020) from the European Centre for
Medium-Range Weather Forecasts (ECMWF). ERA5 ingests a wide variety of observational data,
a significant portion of which comes from remote sensing instruments Hersbach et al. (2020). We
acquired spatiotemporal data from January 1, 1995, to 2024 (10,958 time steps), specifically for the
central Arctic Ocean region enclosed by the highlighted orange boundary in Figure 4, which roughly
corresponds to the latitude range of approximately 70◦N to 85◦N. The data has a spatial resolution
of 0.25◦ × 0.25◦ (approximately 25 km). It includes key parameters related to snow depth and
sea ice thickness: snow albedo, snow density, and sea ice concentration. We therefore process these
variables using a proxy model derived from the hydrostatic balance equation to generate target proxy
data that is eventually used in the inversion process to estimate hidden characteristics.

3.2 PROBLEM FORMULATION AND PRELIMINARIES

The observational data is first defined. The primary input time series is given as X =
[x1, x2, . . . , xT ], where xt represents the measurement at time step t, and T denotes the total num-
ber of time steps. A corresponding augmented input sequence (Ref, Fig 1), X′ = [x′

1, x
′
2, . . . , x

′
T ],

is generated to facilitate contrastive learning. The target variable is Y = [y1, y2, . . . , yT ], where yt
is the observed output at time step t.

We aim to model the relationship between the input X = ρs and the target Y = hi derived
via the proxy model, particularly in the context of physics-constrained snow depth prediction, by
integrating snow and sea ice properties. To achieve this, we adapt the hydrostatic balance equation,
which, as stated by Kwok & Cunningham (2008), describes the equilibrium where the weight of ice
and snow is balanced by the buoyant force of seawater (equation 2). Using this relation, we generate
proxy Y labels to inject physical attributes into the training process.

4 INVERSE PROBLEM: PREDICTING hS

In this study, we frame the inverse problem as predicting the hidden physical parameter hs using
known geophysical observations such as sea ice concentration, snow albedo, and density fields.
The difficulty arises because computing hs analytically requires inputs such as ice thickness (hi),
freeboard (fb), and snow density (ρs), which are actually unobserved in ERA5.

g(x) = hs ≈ F−1(hi, ρs) (1)

where g denotes the learned estimator that recovers snow depth from the available observations.

This problem is fundamentally ill-posed because a unique one-to-one inversion between the ob-
served input vector X and the target Y is impossible. For instance, several distinct combinations of
ice thickness and snow density can result in the same observed snow depth. To address this inherent
non-uniqueness and to stabilize the solution, we model the inverse relationship as a surjective map-
ping. This assumption is necessary because the large, high-dimensional input space (X) must be
mapped onto a much smaller, physics-constrained output space (hs), meaning the input space can be
mapped onto multiple potential outputs. Our framework uses this surjective mapping assumption to
estimate the hidden physical parameters (α, β, γ) at every time step t, which are used to reconstruct
a physics-constrained prediction hs.
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4.1 PROPOSED PROXY MODEL

The selection of a stable ground truth for training is essential. Since direct observation of key
parameters is uncertain in ERA5, we define our target using an analytically derived ice thickness
proxy model based on the principle of hydrostatic equilibrium.

This derivation establishes the core thickness equation, which serves as the starting point for any
proxy model.

The total weight of the snow and ice column equals the buoyant force (the weight of the displaced
water):

ρihi + ρshs = ρwhsub (2)

The total depth of the column is the sum of the submerged depth (hsub) and the surface elevation
(freeboard, fb):

hi + hs = hsub + fb

Rearranging to isolate the submerged depth:

hsub = hi + hs − fb (3)

Substitute Equation (3) back into the Hydrostatic Balance (2):

ρihi + ρshs = ρw(hi + hs − fb)

Solving for hi: Expand, group all terms containing hi on one side, and factor:

ρihi + ρshs = ρwhi + ρwhs − ρwfb

hi(ρi − ρw) = hs(ρw − ρs)− ρwfb

Finally, isolating hi yields the standard forward equation:

hi =
hs(ρw − ρs)− ρwfb

ρi − ρw
(4)

This is the analytical basis for formulating target proxy data with known variables. The resulting
simplified proxy model used is:

hi ∼
ρwC + αρs
ρw − ρi

(5)

This equation transforms a complex, coupled physical system into a simplified, mathematically
tractable target proxy for our neural network.

4.1.1 CONCEPTUAL JUSTIFICATION FOR THE PROPOSED PROXY MODEL

The specific proxy model (Equation 5) used in our implementation includes sea ice concentration
(C) and snow albedo (α).

• Ice thickness is physically zero when Sea Ice Concentration (C) is zero. Therefore, C acts
as a critical constraint and scaling factor. While not physically equivalent, SIC often serves
as an empirical proxy or normalization term for the bulk sea ice properties in a given area.
Thicker, more stable, and more continuous ice (higher hi and fb) tends to be associated with
higher SIC. In a simplified model, if freeboard cannot be measured, one may substitute a
function of the more easily observable area coverage (SIC), especially when modeling the
mean or volume over a large grid box.
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• The use of snow albedo (α) as a proxy for snow depth (hs) is justified because α is a highly
sensitive and easily observable indicator of snow cover. Only a few centimeters of snow
are required to exceed the optical depth, achieving the maximum possible albedo, meaning
α effectively signals the presence and sufficiency of the snow layer. Since albedo is critical
to the ice-albedo feedback loop and is measured reliably by remote sensing, it serves as
a robust and practical stand-in for the difficult-to-measure physical depth hs in large-scale
sea ice models.

4.2 MODEL ARCHITECTURE

The PhysE-Inv framework is a recurrent sequence modeling architecture designed to address the
ill-posed nature of physical inverse problems under data scarcity. As depicted in Figure 1, our
methodology achieves this by integrating three novel conceptual components: Surjective Inverse
Mapping, Physics Encoding, and Physics-Guided Contrastive Learning, which together guide the
model toward physically consistent solutions.

Figure 1: The Physics-Encoded Inverse (PhysE-Inv) framework outlines the fusion of physical con-
straints, representation learning, and a surjective inverse mapping approach based on the hydrostatic
balance proxy. T represents the final observation time in the input sequence.

Sequence Latent Representation (zT ): The foundational step is the reliable transformation of
the observable input time series X = {x1, . . . , xT } (where T = 10 days) into a robust, contextually
aware latent state (zT ). This latent vector serves as the complete representation of the input history
for all subsequent inverse operations.

Encoder-Decoder Architecture: We employ a standard LSTM encoder-decoder structure, lever-
aging the LSTM’s efficiency in modeling the long-range temporal dependencies crucial for climate
memory effects. The encoder sequentially processes the input, accumulating history in its states:

henc
t , cenc

t = LSTMenc(xt, h
enc
t−1, c

enc
t−1)

Multi-Head Self-Attention: A multi-head self-attention mechanism refines the encoder outputs,
specializing in identifying and weighing non-local temporal dependencies that influence regional
physics. The attention-enhanced input at is computed as:

at = Attention(qt,K, V ) =

T∑
j=1

αtjvj , where αtj =
exp

(
q⊤t kj√

dk

)
∑T

l=1 exp
(

q⊤t kl√
dk

)
The Decoder LSTM processes this refined sequence, yielding the final hidden state, zT = hdec

T ,
which is the definitive input to the inverse module.
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Surjective Inverse Mapping and Physics Encoding: The challenge of retrieving sea ice param-
eters from uncertain satellite data is fundamentally an ill-posed inverse problem. To address the
non-uniqueness inherent in this problem, the core novelty of our approach is the definition of a
surjective inverse mapping that links the model’s latent state to the final physical parameter based
prediction, ensuring physical constraints are enforced dynamically. We implement the surjective
inverse mapping using an MLP-based neural operator that predicts the hidden sea ice parameters
Θt = [α,β,γ] from the observed inputs. This mapping connects the abstract latent state of the
model to the required physical quantities.

Specifically, the network outputs a set of raw, unconstrained predictions, which are then trans-
formed to enforce physically meaningful constraints. Conceptually, this operation can be written
as:

Θt = Transform(MLP(zT ))

In our implementation, the latent state zT (the last hidden state from the decoder) is passed through
a fully connected layer to produce the raw parameters αraw,βraw,γraw. These are then transformed
to ensure adherence to their appropriate physical domains:

α = sigmoid(αraw)× 2− 1

β = exp(βraw)

γ = tanh(γraw)× 10

The raw outputs are transformed to enforce physically meaningful constraints: α is passed through
a scaled sigmoid to lie in [−1, 1], β is exponentiated to ensure positivity, and γ is passed through
a scaled tanh to lie in [−10, 10]. This procedure allows the network to recover dynamically vary-
ing hidden parameters in a way that respects their underlying physical constraints while naturally
realizing the many-to-one (surjective) mapping from observations to the required latent physical
variables.

Physics Encoding and Reconstruction Proxy: The estimated parameters Θt are used to enforce
the hydrostatic balance via a physics encoding layer. The final physics-constrained prediction, ĥest

s,t,
is defined by the following reconstruction proxy:

ĥest
s,t = αt · ĥ

pred

s,t + βt · ĥpred
s,t + γt (6)

where ĥpred
s,t is the direct prediction, and ĥ

pred

s,t is the mean of the intermediate predictions over the
sequence T . The corresponding loss, LPE-pred, ensures the final output respects the physics:

LPE-pred =
1

T

T∑
t=1

(ĥpred
s,t − ĥest

s,t)
2 (7)

Physics-Guided Contrastive Learning (PGCL) The latent space is guided by the physical prin-
ciple of invariance. Because Gaussian noise augmentation (X′) does not alter the underlying phys-
ical characteristics of the original input (X), the pair (X,X′) represents two physically equivalent
observations. The model is therefore encouraged to produce embeddings that remain stable under
observational noise. To enforce this invariance, we adopt a contrastive learning objective inspired by
the Normalized Temperature-Scaled Cross-Entropy (NT-Xent) loss. For each batch of N sequences,
we construct N positive pairs, resulting in a 2N -sample contrastive batch. Given a pair of embed-
dings (zi, zj), the loss promotes high similarity for the positive pair while pushing apart all other
embeddings in the batch:

LContrastive = − 1

2N

2N∑
i=1

log

(
exp(s(zi, zj(i))/τ)∑
k ̸=i exp(s(zi, zk)/τ)

)
(8)

where s(·, ·) denotes cosine similarity and τ is the temperature.
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Contrastive Objective Simplification: Our contrastive regularizer is not equivalent to NT-Xent,
nor is it intended to replicate its temperature-scaled formulation. Instead, we adopt a simplified
objective that captures only the aspect relevant to our setting: encouraging separation between phys-
ically inconsistent parameter reconstructions while keeping consistent samples close in the latent
space. This lightweight formulation avoids the heuristic temperature tuning and large-batch de-
pendence of standard contrastive losses, which are unnecessary for our small, structured physical
parameter space. The goal is therefore not to implement a canonical contrastive learning loss, but
to introduce a minimal stability-inducing term that supports the surjective, invertibility-aware archi-
tecture.

5 BASELINES

Our study’s primary objective is conceptual: to rigorously evaluate how enforcing a surjec-
tive, invertibility-aware mapping enables the stable recovery of latent physical parameters un-
der data scarcity. While acknowledging the presence of general state-of-the-art architectures
in time-series forecasting, our baseline selection is deliberately focused on controlled, ablative
comparisons to isolate the specific impact of the PhysE-Inv framework’s conceptual innovations.

Table 1: Comparison of model predictions with and
without parameter estimation (PE).

Model Without PE With PE

MSE RMSE MSE RMSE

LSTM 0.4679 0.6840 0.4545 0.6742
NeuralODE 0.5066 0.7117 0.4926 0.7018
ResNet50 0.4308 0.6563 0.4315 0.6569
BiLSTM 0.5263 0.7255 0.5177 0.7195
PhysE-Inv 0.3942 0.6278 0.3568 0.5973

In domains like physics-guided inverse
modeling, many architectures in the lit-
erature are custom-built to solve tightly
scoped problems with specific assump-
tions and non-linear partial differential
equations, often lacking the generaliz-
ability needed for broader comparisons.
They frequently only present sample-
based ablations but not performance com-
parisons between state-of-the-art architec-
tures Raissi et al. (2019); Ghosh et al. (2022). For example, we fundamentally differ from PINNs
Raissi et al. (2019), which use automatic differentiation to solve PDEs for numerical simulation.
Therefore, in our study, to facilitate a fair comparison across different architectural paradigms, we
chose to augment each of our selected baselines with an inverse modeling module, enabling them to
perform the same joint parameter estimation and prediction task as our proposed PhysE-Inv frame-
work. Furthermore, we acknowledge the existing gap in the literature regarding direct comparisons
between general-purpose architectures adapted for inverse modeling and those models specifically
designed for particular inverse problems. It is noteworthy that our proposed model combines inverse
modeling (specifically through its parameter estimation process) with physics-guided contrastive
learning (Fig. 1).

To ensure a fair analysis, all baselines are capacity-matched to our PhysE-Inv model. Further-
more, where applicable, they incorporate the same invertibility adjustment to ensure performance
differences are attributable to our novel components (Physics Encoding and Physics-Guided Con-
trastive Learning), not differences in overall model scale. Our choices represent conceptually distinct
classes of time-series modeling with noisy, sparse real-world data:

• LSTM serves as the minimal recurrent baseline, directly aligning with the core temporal
backbone of our encoder-decoder structure. This comparison quantifies the added value of
our physics constraints over a standard sequence modeling approach.

• BiLSTM is included to evaluate whether performance gains are due to the structural en-
forcement of physical rules, or simply from leveraging broader (non-causal) temporal con-
text.
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• Neural ODE offers a direct comparison to an intrinsically continuous-time modeling ap-
proach, often considered ideal for latent physical dynamics, testing the efficacy of our
explicit physics-guided architecture.

• ResNet-50 (1D variant) provides a non-recurrent, deep convolutional benchmark. This
tests whether the temporal memory inherent in the LSTM is necessary when compared to
a capacity-matched architecture that models implicit, discretized dynamics through hierar-
chical feature extraction.

These models collectively form a set of conceptually aligned baselines that effectively isolate and
benchmark the impact of our proposed invertibility principles in estimating time-varying physical
parameters.

5.1 RESULTS AND DISCUSSION

Table 1 presents a comparison of the predictive performance of four baseline models used
in this study with the proposed inverse model PhysE-Inv. The baseline models are LSTM,
NeuralODE, ResNet50, and BiLSTM. The evaluation considers their performance under two
different model settings: the first setting, referred to as the base, reflects prediction with-
out the incorporation of hidden characteristics that arise from parameter estimation and in-
verse mapping, while the other employs parameter estimation and thus includes these hid-
den characteristics. Model efficacy is quantified using two standard error metrics (MSE
and RMSE). Lower values for both metrics indicate a higher degree of predictive accuracy.

Table 2: Ablation study comparing PhysE-
Inv performance with and without super-
vised contrastive learning (SCL)

Training Data Without SCL With SCL

MSE RMSE MSE RMSE

Sample 1 (80%) 0.6601 0.8125 0.5926 0.7698
Sample 2 (60%) 0.6588 0.8117 0.6037 0.7770
Sample 3 (50%) 0.8675 0.9314 0.7940 0.8911

The results indicate that the application of parame-
ter estimation generally correlates with a reduction
in both MSE and RMSE across the evaluated mod-
els, suggesting an enhancement in predictive accu-
racy. Notably, the proposed model demonstrates the
lowest error values both in its base form (without in-
verse modeling and parameter estimation) and in its
form with inverse modeling and parameter estimation
(PhysE-Inv), indicating superior performance in this
specific prediction task. While parameter estimation

shows improvements for other models, the extent of this improvement varies. For instance, both
LSTM and NeuralODE exhibit a substantial decrease in error, whereas the performance of ResNet50
remains relatively consistent. This suggests that the effectiveness of parameter estimation in improv-
ing predictive accuracy is model-dependent. Additionally, our proposed model consistently shows
better performance across all comparisons.
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Figure 2: Comparison of
model performance: box
plot of snow depth devia-
tions.

We conducted ablation experiments with and without contrastive
learning (CL), which typically means the inclusion or exclusion of
contrastive loss. The table (2) presents the results of ablation experi-
ments conducted to examine the effectiveness of CL in our proposed
model, using three different training data samples. Following Ghosh
et al. (2022), we performed an ablation study by reducing the training
data sample size to evaluate the impact of CL. Specifically, Sample 1
used 80% of the training data, Sample 2 used 60%, and Sample 3 used
50%. Our experimental results indicate that the model trained with
CL consistently outperformed the model trained without CL across
all three sample sizes, yielding lower MSE and RMSE values, which
generally suggest more accurate predictions. It is important to note
that an essential part of our model architecture is the inclusion of CL
in addition to the core approach of parameter estimation for physics-
based components. Therefore, the enhanced performance observed in
the ablation study may result from CL’s ability to learn better representations, from the improved
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reconstruction of physical relationships via parameter estimation, or from both. Since ’Physics En-
coding’ (surjective inversion with parameter estimation) plays a key role in embedding physical
knowledge into the model, removing it entirely would fundamentally alter and misrepresent our
proposed model’s structure. Therefore, it doesn’t make sense to do an ablation study without the
physics loss, as such a model would no longer represent our core approach.

The box-and-whisker plots in Figure 2 illustrate the distributions of snow depth anomalies for
the ground truth, baseline models, and the proposed PhysE-Inv. A horizontal dashed red line at
zero represents perfect alignment with the average snow depth condition. Among the baselines,
BiLSTM shows reasonably consistent performance, with a median close to zero and a spread com-
parable to the ground truth, though it produces fewer negative outliers. This suggests that BiLSTM
captures the overall shape of the distribution while underrepresenting extreme values. ResNet50
also has a median near zero, but its predictions show a narrower spread than the ground truth,
indicating the model may underestimate the full variability of the anomalies. In contrast, Neu-
ralODE exhibits greater variability with a median slightly above zero, suggesting an upward bias,
and contains more significant negative outliers, pointing to reduced stability and increased devi-
ation from the true distribution. PhysE-Inv demonstrates the closest agreement with the ground
truth. Its predictions have medians very near zero and a spread that matches the true anomaly
distribution. The relatively low number of outliers indicates stable predictions and an accurate rep-
resentation of the overall distribution. Overall, PhysE-Inv provides the most reliable and consistent
estimates, successfully capturing both the central tendency and variability of snow depth anomalies.
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Figure 3: Time series of predicted and estimated mean
snow depth seasonal pattern

Figure 3 illustrates the strong predic-
tive performance of the proposed PhysE-
Inv model on the test dataset, validated
by the close alignment between the pre-
dicted and estimated normalized snow
depth proxy time series. The model ef-
fectively captures the highly dynamic and
cyclical behavior of the proxy, demon-
strating exceptional fidelity in tracking
both the long-term seasonal variation and
the abrupt transitions that define extreme
events. Specifically, the model accurately
follows the sharp drops from the high

baseline (normalized value near 0) down to the seasonal minimums (near -2), which likely cor-
respond to critical physical processes such as rapid compaction or melt events. While minor pre-
dictive errors, characterized by slight smoothing or phase lag, are primarily localized around these
abrupt transitions, the overall temporal fidelity and quantitative accuracy remain high. This close
correspondence confirms the model’s robustness and its ability to generalize the complex non-linear
relationship between the input snow density field and the normalized snow depth proxy.

6 CONCLUSION AND FUTURE WORK

We presented PhysE-Inv, a physics-encoded inverse modeling framework designed to estimate time-
varying hidden geophysical parameters from sparse observations to predict real-world Arctic snow
depth. The core novelty lies in combining a lightweight inverse head with physics-guided contrastive
learning to achieve a surjective inversion strategy . PhysE-Inv accurately reconstructed the seasonal
evolution of snow depth and consistently outperformed both physics-regularized and data-driven
baselines, demonstrating that simple, interpretable physics encoding yields substantial gains over
generic PIML methods when data are limited. This approach establishes a robust methodology
for handling ill-posed inverse problems in environmental science, paving the way for more reliable
estimation of unobserved variables globally. Future work will incorporate Bayesian uncertainty
quantification to validate learned parameters against independent remote-sensing and in-situ sources.

10
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A APPENDIX

A.1 REGION OF IMPORTANCE

The behavior of sea ice and its overlying snow is analyzed within a specific geographical domain.
This Region of Importance, the central Arctic Ocean, is an essential component of the global climate
system. Figure 4 illustrates the exact spatial extent of this region, which is used for extracting all
atmospheric and oceanographic parameters. To extract spatially aggregated information for our time
series prediction, spatial averaging was applied across the grid points within the orange highlighted
area to produce daily time series. Z-score normalization was then performed using the training set.

Figure 4: Map showing the spatial extent of the central Arctic Ocean, highlighting (orange line) the
region used for data collection.
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A.2 MODEL PARAMETERS AND NOTATION

This appendix provides a detailed reference for all physical parameters and variables discussed in the
modeling chapters. Table 3 defines the essential atmosphere and ocean parameters, their respective
notations, and whether they are treated as constant values or time series.

Table 3: Atmosphere and Ocean Parameters (Features)

Category Parameter Notation Type

Known parameters

Snow albedo Ω Time series
Snow density ρs Time series
Sea ice concentration C Time series
Seawater density ρw Constant
Sea ice density ρi Constant

Unknown parameters
Ice thickness hi Time series
Ice freeboard fb Time series
Snow depth hs Time series

A.3 NON-UNIQUENESS AND THE ILL-POSED PROBLEM

The conceptual framework illustrates why retrieving sea ice thickness (hi) or snow depth (hs) from
remote-sensing measurements constitutes an ill-posed inverse problem. This is demonstrated by
contrasting the stable forward mapping with the non-unique inverse mapping implied by the princi-
ple of hydrostatic balance.

Forward Problem (Well-Posed):
(hs, fb) −→ hi

Given the true snow depth hs and freeboard fb, the hydrostatic equation produces a unique ice
thickness hi. This mapping is stable and well-defined.

Inverse Problem (Ill-Posed):
hi −→ (hs, fb)

Given only the ice thickness hi, there exist infinitely many pairs (hs, fb) that satisfy the hydrostatic
balance. Thus, the inverse mapping is non-unique, unstable, and therefore ill-posed.

Practical Implications: In satellite altimetry, the inputs to the forward computation, especially
snow depth, are highly uncertain. Prior studies show that uncertainty in snow depth is the domi-
nant source of error in satellite-derived sea ice thickness estimates (Kwok & Cunningham, 2008).
Consequently, small perturbations in hs or fb can produce large variations in the inferred thickness
hi.

Implication for Learning-Based Methods: Although the model predicts hi rather than the in-
verse quantities, the ambiguity inherent in the measurement space implies that multiple noisy or
uncertain input configurations can map to similar thickness values. This structural non-uniqueness
contributes to the ill-posedness of the learning problem and motivates incorporating physics-guided
constraints or regularization.

A.4 CONCEPTUAL JUSTIFICATION: WHY SURJECTIVITY IS NECESSARY

The fundamental difficulty in retrieving sea ice parameters stems from the nature of the mapping
between the observed variables and the target quantities. Specifically, the relationship between
inputs and the output is not a simple one-to-one correspondence.
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Figure 5: (a) Bijective mapping: unique input-output relationship. (b) Surjective mapping: multiple
inputs to one output.

The necessary mathematical framework is best understood by contrasting two types of mappings
(Figure 1):

Bijective Mapping (Hypothetical): This mapping assumes the inverse problem is fully reversible
(one-to-one). While mathematically ideal for unique solutions, this model does not reflect the inher-
ent ambiguity and coupled dependencies present in real-world sea ice measurements.

Surjective Mapping (The Real-World Model): This mapping implies that the inverse problem
is not uniquely reversible (many-to-one). This structure correctly models the non-uniqueness where
multiple input measurement pairs can contribute to a single output value (e.g., the same ice thick-
ness).

The surjective assumption is therefore necessary because it acknowledges that every physically
possible thickness value has at least one corresponding input measurement pair. By adopting this
many-to-one structure, the model effectively guarantees that a solution exists in the output parameter
space for every input latent state zT , overcoming the rigid, ill-posed requirements of traditional
inverse modeling techniques.

A.5 ADDITIONAL RESULTS

Figure 6 compares the Probability Density Function (PDF) of the ground truth and the PhysE-
Inv model’s predictions. This comparison provides a more comprehensive evaluation than point-
estimate metrics like MSE by assessing the model’s ability to learn the underlying statistical dis-
tribution of the data. In climate science, where a perfect one-to-one match in geospatial grids is
often not expected, the alignment of the probability distributions becomes a more crucial evaluation
criterion. A strong correspondence between the predicted and true PDFs indicates that the model is
not merely a regression function for individual data points but is capable of generalizing the data’s
generative process. This is crucial for capturing the system’s overall statistical behavior, including
the frequency and likelihood of different outcome magnitudes.

The PhysE-Inv model successfully captures the unimodal nature of the measured deviations in
the ground truth distribution (Fig. 6). By incorporating physics encoding, it captures real-world vari-
abilities, reducing prediction error and producing more physically consistent and robust predictions.

A.6 IMPLEMENTATION
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Figure 6: PDF of mean snow depth anomalies for true values and PhysE-Inv predictions.

Table 4: Model Training and Architectural Hyperparameters

Category Details

Data and Setup

Input Feature Snow density field (time series)
Target Normalized snow depth proxy

Input/Target Shapes [Batch size, Sequence Length, Features]

Train X/Y Shape [8757, 10, 1]
Test X/Y Shape [2183, 10, 1]

Supervision Strategy Prediction at the final time step (t = 10)

Optimization

Loss Function Mean Squared Error (MSE)
Optimizer Adam, η = 0.0005
Batch Size 16
Training Epochs 500
Implementation / Hardware PyTorch on NVIDIA V100 GPU

Architecture

Encoder/Decoder 2-layer LSTM (64 hidden units)
LSTM Dropout Rate 0.4
Attention Mechanism 4-headed self-attention
Prediction Head Fully connected layer
Physical Parameter Head 3-layer FFN with ReLU
Output Transformation Ensures stable parameter ranges
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