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ABSTRACT

The integration of domain knowledge with inverse modeling has emerged as a
powerful approach for solving complex physical systems in machine learning.
While prior research has explored bijective mapping and complex contrastive
learning, the potential of surjective mapping in combination with supervised rep-
resentation learning remains largely unexplored. To address this gap, we propose
Physics-encoded Representation Learning for Inverse modeling (PhysERL-Inv),
which encodes the hydrostatic balance equation and uses supervised contrastive
learning to predict the time evolution of Arctic snow depth. Evaluated against
multiple baseline models, PhysERL-Inv significantly improves prediction perfor-
mance, reducing error by 20% and demonstrating superior physical consistency.
Our approach demonstrates the potential of leveraging surjective mapping to solve
complex, ill-posed problems, with wide applicability in data-sparse domains.

1 INTRODUCTION

Understanding and modeling Earth’s climate system requires accurate data on the spatial extent
and properties of Arctic sea ice. A crucial, yet often unmeasured, property is snow depth. While
its influence on sea ice is well-established (Li et al., 2024), reanalysis datasets like ERA5 do not
include direct measurements of snow depth over sea ice (Hersbach et al., 2020). To address this
data gap, we exploit Physics-encoded Neural Networks (PeNNs) (Faroughi et al., 2022), a class of
models widely applied in scientific analysis to implement inverse modeling. In this study, we use
sea ice physics derived from the hydrostatic equation (Kwasniok, 2022) to inform our network and
predict snow depth.

Inverse modeling is a powerful tool for inferring intrinsic physical parameters and uncovering hid-
den characteristics of complex physical phenomena. These models extract meaningful insights from
systems in various fields, including lake temperature modeling (Tayal et al., 2022), tomography
(Bubba et al., 2019), seismic waveform analysis (Sun et al., 2020), materials science (Liao & Li,
2020), and hydrology (Ghorbanidehno et al., 2020). However, a common limitation is that many of
these methods rely on physical priors or posterior distributions for parameter estimation (Karumuri
& Bilionis, 2024). For example, the accuracy of the predicted variable directly depends on the accu-
racy of the physical mapping from other variables. This dependency can be problematic because any
errors in the initial mapping will propagate through the model during training, potentially affecting
the overall performance. While an end-to-end learning approach can offer a streamlined solution,
it can also limit the ability to embed additional physical constraints that are relevant to the system
(Faroughi et al., 2022). This is because the end-to-end model is highly dependent on its initialization
process and the pre-defined forward mapping.

In addition, inverse modeling using complex forward-inverse flow transformations (Tarantola, 2005;
Ghosh et al., 2022; Tayal et al., 2022) is a computationally demanding process. These works rely on
a bijective mapping between the input and latent spaces. A bijective mapping is a strict, one-to-one
correspondence where each input has a unique output and every possible output is reached. While
this type of mapping is suitable for systems with static parameters (e.g., unchanging material prop-
erties), its strict nature can be restrictive in the context of a dynamic physical system like Arctic sea
ice. In such dynamic cases, the underlying parameters are not static but change over time. A bijec-
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tive mapping may not be flexible enough to capture these evolving relationships, as it rigidly links a
single input state to a single output state, limiting its ability to account for the continuous evolution
of the system. Furthermore, the work mentioned above builds upon traditional self-supervised learn-
ing methods that effectively learn general data representations from unlabeled data by identifying
statistical patterns. However, these learned features, which are not constrained by or encoded with
physical principles, might not be directly relevant or physically meaningful for a specific domain.
As a result, a generic self-supervised model often requires significant fine-tuning with labeled data
to accurately estimate parameters, as it may capture general dynamic patterns without understanding
the precise physical relationships that govern the system.

To overcome the limitations of both traditional inverse modeling and conventional self-supervised
learning, we introduce a novel, simplified hybrid framework called Physics-Encoded Representa-
tion Learning for Inverse modeling (PhysERL-Inv). This framework utilizes a surjective inversion
mapping for time-varying parameter estimation, enabling it to exploit all possible values the pre-
dicted variable could take. It operates on the principle that the temporal evolution of a system can be
effectively modeled using linear dynamics present in its physical variables (Kwasniok, 2022). We,
therefore, use a linear physical equation derived from the hydrostatic balance equation (Kwok &
Cunningham, 2008) of Arctic sea ice to relate the cause-and-effect phenomena between sea ice and
snow variables. By using this mapping, we can detect hidden characteristics of sea ice parameters.
We then encode these physical constraints into our neural network to ensure physically consistent
predictions of snow depth. Additionally, the model incorporates representation learning through a
supervised contrastive learning approach via physics encoding. This compels the model to capture
the physical relationships between Arctic snow and sea ice, which are later inverted to estimate the
hidden parameters needed to improve the prediction process. The main contributions of this paper
are summarized as follows: (1) We present PhysERL-Inv, a novel hybrid framework that leverages
a surjective inversion mapping integrated into a supervised representation learning process. This
approach enables a more direct and efficient optimization for predicting snow depth through in-
verse modeling. (2) Moving beyond traditional inverse modeling, our framework achieves effective
physics encoding by embedding constraints from the hydrostatic balance equation of Arctic sea ice
thickness directly into the neural network. This ensures physically consistent inferences, leading to
more accurate snow depth predictions. (3) We demonstrate the effectiveness of our proposed model
by comparing it with multiple baselines.

2 RELATED WORKS

Machine learning–enhanced inverse modeling offers a powerful way to uncover hidden physical pa-
rameters that govern observable geospatial phenomena, many of which cannot be measured directly.
This approach has been widely applied in fields such as hydrology (Ghosh et al., 2022), water flow
studies (Mo et al., 2020), and lake temperature modeling (Tayal et al., 2022). In seismic waveform
inversion, for example, researchers have begun integrating theoretical knowledge of seismic wave
propagation into deep learning frameworks (Adler et al., 2021). Deep neural networks are also being
employed to tackle electrical impedance tomography (EIT) problems, which involve inverting the
highly nonlinear and high-dimensional Dirichlet-to-Neumann (DtN) map (Fan & Ying, 2020). In
addition, innovative architectures such as SwitchNet have been developed to address forward and
inverse scattering problems for wave equations, offering computational efficiency while capturing
the global nature of scattering phenomena (Khoo & Ying, 2021).

The self-supervised paradigm has also proven effective in addressing inverse problems across a wide
range of scientific disciplines, extending beyond traditional domains like natural language process-
ing (Fang et al., 2020) and computer vision (Bardes et al., 2022) to include scientific modeling
(Scotti et al., 2023) and noninvasive medical digital twins Kuang et al. (2025). By exploiting com-
plex pretext tasks and multi-stage training, these methods can extract meaningful representations
directly from underlying physical structures (Bardes et al., 2022), which in turn enables parameter
estimation without the need for explicit labels (Liu et al., 2021; Jing & Tian, 2020). A limitation of
these methods is their heavy reliance on generative and regularization losses, which necessitate ex-
tensive hyperparameter tuning. Moreover, the use of bijective mappings (e.g., (Ghosh et al., 2022))
assumes perfect invertibility, which is not plausible with real-world data.
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Physics-encoded Neural Networks (PeNNs) represent another powerful approach for integrating
scientific principles into machine learning (Faroughi et al., 2022; Willard et al., 2022; Karpatne
et al., 2024). By incorporating physical laws in the form of differential and linear equations (Rao
et al., 2021; Chen et al., 2018; Kovachki et al., 2021; Innes et al., 2019), these models not only show
improved performance but also adhere more closely to physical laws, transforming traditional black-
box algorithms into more interpretable models. Despite these advances, a research gap remains:
there is no unified framework that merges the rigor of physics-encoded methods with the efficiency
of direct optimization for complex, time-varying inverse problems.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND PRELIMINARIES

We begin by defining our observational data. For each sample i, we have an input time series
Xi = [xi

1, x
i
2, ..., x

i
T ], where xi

t represents the measurement at time step t, and T denotes the total
number of time steps. Correspondingly, we have a target variable Yi = [yi1, y

i
2, ..., y

i
T ], where yit

is the observed output at time step t. As shown in Figure 1, our model uses an augmented input,
denoted as X ′, which is crucial for the supervised contrastive learning component. The core details
of this supervised contrastive learning objective are further discussed in Section 3.3.

We aim to model the relationship between the input Xi = ρs and target Yi = hs, particularly in the
context of estimating snow depth by integrating snow and sea ice properties. To achieve this, we
adapt the hydrostatic balance equation 1, which, as stated by Kwok & Cunningham (2008), describes
the equilibrium where the weight of ice and snow is balanced by the buoyant force of seawater. Using
this relation, we generate proxy Xi labels to inject physical attributes into the training process.

hs =

(
ρw
ρs

)
hf −

(
ρw − ρi

ρs

)
hi (1)

Where hs is the snow depth, hi is the sea ice thickness, and hf is the ice freeboard height. The
parameters ρw, ρi, and ρs represent the densities of seawater, sea ice, and snow, respectively. This
equation provides a fundamental relationship governing the interaction between sea ice, overlying
snow, and the buoyant force exerted by seawater.

3.2 MODEL DESIGN

Our PhysECL-Inv framework (Figure 1) is a physics-encoded autoencoder that combines three key
components: an LSTM, a multi-head attention mechanism, and a multilayer perceptron (MLP).
The LSTM processes the temporal sequences, capturing long-term dependencies within the time
series data. Given the size of our dataset and the need to capture long-term climate patterns, the
LSTM provided a more efficient and stable solution compared to the more computationally intensive
Transformer model. The multi-head attention mechanism then weighs the importance of different
temporal features, which is particularly crucial for identifying non-local relationships in climate
data. A key concept in climate science is that events far away can influence a local system, and this
mechanism helps the model focus on those relevant, non-local connections. Finally, the MLP is used
to infer the underlying physical parameters by encoding physical constraints, enabling the model to
learn complex, physically consistent representations.

Encoder LSTM:The encoder receives the input time-series sequence X = [x1, x2, . . . , xT ], where
xt represents the input at time step t, and T is the length of the input sequence. The encoder is an
LSTM network, it is particularly suited for tasks where long-range temporal dependencies between
events exist. In each step, the LSTM uses the current input xt and its internal memory to calculate
the hidden state ht−1. This hidden state acts as a summarized representation of the input sequence
up to the current time. The hidden state ht represents a compressed overview of the input sequence
up to time step t. Each LSTM cell has a cell state ct, and the following three gates: forget gate ft,
output gate ot, and input gate it, which serve as a memory mechanism and allow the network to
preserve information from the past.
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Figure 1: The Physics-Encoded Representation Learning for Inverse (PhysERL-Inv) framework
presents an outline, showing the fusion of physics-based constraints, representation learning, and an
invertibility approach based on hydrostatic balance equation.

The encoder processes the input sequence sequentially, updating its hidden and cell states at each
time step. After processing the entire input sequence, the encoder produces a final hidden state henc

T
and a final cell state cenc

T , which capture the essential information needed for the decoder.

henc
t , cenc

t = LSTMenc(xt, h
enc
t−1, c

enc
t−1)

Multi-Head Self-Attention Mechanism:To capture intricate temporal dependencies and weigh the
significance of different time steps, we employ a multi-head self-attention mechanism on the LSTM-
encoded sequences. This module comprises multiple independent self-attention heads that learn to
attend to different parts of the input, enabling the model to capture diverse temporal relationships.
Each head computes attention as: The attention-enhanced input at time step t, denoted at, is com-
puted as a weighted sum of the value vectors V = {v1, . . . , vT }, where the weights are determined
by the similarity between the query qt and each key kj , normalized via softmax:

at = Attention(qt,K, V ) =

T∑
j=1

αtjvj , where αtj =
exp

(
q⊤t kj√

dk

)
∑T

l=1 exp
(

q⊤t kl√
dk

)
The concatenated and linearly transformed outputs of these heads allow the model to focus simul-
taneously on various temporal contexts. This enriched representation is then passed to the decoder
LSTM, which leverages it to perform the downstream tasks of prediction and parameter estimation.

Decoder LSTM:The decoder LSTM receives as input the sequence produced by the multi-head
self-attention module, which enhances the encoder outputs with context-aware representations. It is
initialized with the final hidden state henc

T and cell state cenc
T from the encoder. The decoder processes

this attention-enriched sequence to learn temporally-aware latent representation features.

At each time step t, the decoder updates its hidden state hdec
t and cell state cdec

t based on the previous
states and the attention-informed input.

hdec
t , cdec

t = LSTMdec(at, h
dec
t−1, c

dec
t−1)

where at is the attention-enhanced input at time step t.

Inverse Modeling: To integrate physical principles into the learning process, our model leverages
inverse modeling as a core mechanism to guide the mapping from input features to snow depth,
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enabling physically consistent and flexible representations. In our implementation, only the final
hidden state of the decoder, hdec

T , is used as input to the inverse mapping module, which encapsu-
lates temporally-aware features extracted from the entire input sequence and serves as the basis for
surjective mapping. The model estimates a set of parameters through a small feedforward neural
network fparams, which performs a nonlinear transformation of hdec

T . Formally, the parameters are
computed as: [w, b, c] = fparams(h

dec
T ).

These parameters are interpreted as follows: w is snow-ice weight coefficient, b is coupling factor
with predicted snow depth, and c is additive bias term. The parameter estimation module is imple-
mented as a multilayer perceptron (MLP) composed of several fully connected layers with ReLU
activations. This architecture enables the network to learn complex nonlinear mappings from the
latent decoder representation to the physical parameter space.

Each output parameter is computed independently using a final linear transformation followed by
a non-linear activation. Specifically, given the decoder’s final hidden state hdec

T , the parameters are
estimated as:

w = f(w⊤
wh

dec
T + bw), = f(w⊤

b h
dec
T + bb), c = f(w⊤

c h
dec
T + bc),

where f is a non-linear function (ReLU), and ww,wb,wc and bw, bb, bc are learnable parameters.
The network is trained using gradient-based optimization to minimize the reconstruction error based
on these estimated parameters. Through this process, it effectively learns to invert the forward
process and uncover latent physical parameters driving snow depth.

Physics Encoding: Through inverse modeling, we use learned parameters to compute snow depth at
every time step, which is an approach that leverages the physical parameters of the hydrostatic bal-
ance equation. This physical relationship is simplified into a linear form for our model, represented
as:

ŝt = w · ρ̄+ b · ŷt + c, (2)
where ρ̄ represents the mean density, computed from the input sequence x. ŷt denotes the predicted
snow depth at time step t, as output by the decoder LSTM. w, b, c corresponds to the physical
parameters estimated by surjective mapping.

The above formulation can be explained using the physical parameters of the hydrostatic balance
equation.

ĥs,t = heq
f · ρ̄snow + hi · hraw

s,t + ρi, (3)
Here, ρ̄snow represents the mean snow density computed from the input sequence x, and hraw

s,t de-
notes the predicted snow depth at time step t. The parameters heq

f , hi, and ρi correspond to physical
parameters estimated by the inverse modeling approach, informed by the input features. This sim-
plification assumes concurrent recovery of meaningful patterns analogous to the pretext target label
generation using equation 1, thereby maximizing the embedding of physics into the neural network’s
training.

Physics Encoded Loss: The snow depth (ŝt) predicted via physics encoding is compared against
the ground truth to calculate loss:

LPE-pred =
1

T

T∑
t=1

(st − ŝt)
2, (4)

where T is the number of time steps in the sequence. This loss encourages the model to make
predictions that are as close as possible to the observed snow depth values.

Prediction: The snow depth prediction module leverages the full sequence of decoder hidden states
{hdec

1 , hdec
2 , . . . , hdec

T }. At each time step t, a scalar snow depth prediction ŷt is computed by applying
a linear transformation to the corresponding decoder hidden state: ŷt = Wdh

dec
t + bd, where Wd

and bd are learnable parameters shared across time steps.

Prediction Loss: The predicted sequence {ŷ1, ŷ2, . . . , ŷT } is supervised using an MSE loss against
the ground truth snow depth values {y1, y2, . . . , yT }. This loss serves as the direct, data-driven path
for learning to predict snow depth from the temporally aware decoder representations:

Lpred =
1

T

T∑
t=1

(yt − ŷt)
2, (5)
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where T denotes the sequence length, yt is the true snow depth at time step t, and ŷt is the model’s
prediction.

3.3 SUPERVISED CONTRASTIVE LEARNING

To encourage the model to learn stable and invariant representations, we incorporate a supervised
contrastive learning objective. This approach trains the network to produce similar representations
for inputs that are semantically equivalent. Our method is termed supervised because, unlike tradi-
tional methods that rely solely on data augmentation to define positive pairs, we use physics-based
”labels” to generate them. As shown in Figure 1, given an original input sequence X and its aug-
mented version X ′(which is a physically-similar sample from our dataset), we first apply the same
encoder and attention modules to both sequences. The augmented sequence X ′ is generated by
applying a small perturbation by adding Gaussian noise to the original input. Both sequences are
processed independently through the encoder LSTM, the multi-head self-attention mechanism, and
the decoder LSTM. And then the final hidden states hT and h′

T are used as embedding vectors in
the contrastive loss. This objective encourages the model to learn a robust latent space where the
representations of a time series and its noisy version are pulled closer together, while pushing them
away from other unrelated samples.

Contrastive Loss: Let’s say zi and zj are normalized embeddings of hT and h′
T . A similarity matrix

is computed, and the combined embeddings [zi, zj ] are used to create a combined similarity matrix.
To focus on the similarity between non-identical pairs, the diagonal elements of this combined ma-
trix are removed. Cross-entropy loss is then applied to this processed similarity matrix, using labels
that indicate which pairs of embeddings correspond to augmentations of the same original input.
The cross-entropy loss in this context is calculated as:

LContrastive = − 1

N

N∑
i=1

log

(
exp(s(zi, z

+
i )/τ)∑N

j=1 exp(s(zi, zj)/τ)

)
, (6)

where N is the batch size, and s(zi, zj) represents the scaled similarity between embeddings zi
and zj . z+i denotes the positive pair of zi (i.e., the embedding of the augmented version of the same
input). τ is the temperature parameter (scale). This process encourages the model to produce similar
embeddings for an input and its augmented version, while distinguishing them from other inputs.

Total Loss The total loss is calculated by adding the combined model loss to the weighted sums
of the absolute values L1 and squared values L2 of the model’s weights. The hyperparameters
λ1 and λ2 determine the influence of each regularization term on the overall loss. We used both
L1 and L2 regularization to combine their unique benefits. The L2 component was essential for
mitigating overfitting and improving the model’s generalization capabilities on unseen data. The L1
component, while not explicitly for sparsity in our model, helped to further control the complexity of
the network by encouraging smaller, non-zero weights. This combined approach resulted in a more
stable and robust model, which is critical for complex and noisy climate datasets. The combined
model loss consists of the snow depth loss, the estimated snow depth loss, and the contrastive loss,
as defined below:

Total Loss = LPE-pred + Lpred + LContrastive + λ1

n∑
i=1

|wi|+ λ2

n∑
i=1

w2
i (7)

4 EXPERIMENTAL RESULTS

4.1 DATA AND IMPLEMENTATION

The dataset comprises ERA5 reanalysis data (Hersbach et al., 2020) from the European Centre
for Medium-Range Weather Forecasts (ECMWF). ERA5 ingests a wide variety of observational
data, a significant portion of which comes from remote sensing instruments (Hersbach et al., 2020).
We acquired spatiotemporal data from January 1, 1995, to 2011 (10,958 time steps), covering the
central Arctic Ocean region, which roughly corresponds to the latitude range of approximately
70◦Nto85◦N. The data has a spatial resolution of 0.25◦ × 0.25◦ (approximately 25 km). It in-
cludes key parameters related to snow depth and sea ice thickness: snow albedo, snow density, and
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sea ice concentration. We therefore process these variables in the context of sea ice thickness and
freeboard height, which are critical for understanding the dynamics within this specific Arctic re-
gion. To extract spatially aggregated information for our time series prediction, spatial averaging
was applied across the grid points within the orange highlighted area to produce daily time series.
Z-score normalization was then performed using the training set.

The model was trained and evaluated using a chronologically split dataset spanning from January
1, 1995, to March 11, 2011, with the first 5,461 days used for training and the subsequent 589
days reserved for testing. Training was conducted over 500 epochs using the Adam optimizer with
a learning rate of 0.0005. Data were processed in shuffled batches of 16. The model’s learnable
parameters were optimized by minimizing a composite loss function that included the MSE for
both actual and estimated snow depth predictions, as well as a contrastive loss. The model input
X includes the snow density field, while the target Y corresponds to the normalized snow depth
proxy derived from Equation 1. Input and target sequences are constructed with a fixed length of
10 days, and supervision is applied at the final time step of each sequence to guide learning. The
model architecture consists of a two-layer encoder LSTM with 64 hidden units and a dropout rate of
0.4, followed by a four-headed self-attention mechanism that captures temporal dependencies. An
identically configured decoder LSTM then processes the attended representations, which are passed
to a fully connected layer for snow depth prediction and a three-layer feed-forward network with
ReLU activations for physical parameter estimation. The raw outputs for the physical parameters
are subsequently transformed to ensure they remain within meaningful and stable ranges.

4.2 BASELINES

We compare prediction accuracy across four baseline models to evaluate the effectiveness of our
proposed approach. A vanilla LSTM is included to isolate the contribution of the autoencoder ar-
chitecture and the invertibility mechanism relative to a standard sequential model. The BiLSTM
baseline BiLSTM (Ghosh et al., 2022) extends this comparison by capturing bidirectional temporal
dependencies, serving as a reference for the benefits of incorporating invertibility into more com-
plex recurrent structures. Neural ODE (Chen et al., 2018) provides a continuous-time framework
well-suited for modeling dynamic physical parameters, making it a natural baseline for assessing
performance in parameter estimation. Finally, ResNet-50 (He et al., 2016), viewed as an approxi-
mate ODE solver with inherent reversibility properties, offers a strong foundation for comparison
due to its established role in linking deep residual learning to differential equation frameworks. We
compare the prediction accuracy among four different models.

4.3 RESULTS AND DISCUSSION

Table 1 provides a comprehensive comparison of the proposed PhysERL-Inv framework against
several deep learning baselines, including LSTM, BiLSTM, NeuralODE, and ResNet50. While
these models demonstrate a varying capacity to capture underlying data patterns, their architectural
constraints present distinct limitations. For instance, recurrent models excel at capturing tempo-
ral dependencies but often struggle with long-term stability, while NeuralODE’s continuous-time
formulation is limited by the difficulty of learning highly nonlinear dynamics directly from data.
Similarly, ResNet50, although effective at extracting hierarchical features, lacks a mechanism to
embed domain-specific physical constraints.

Table 1: Model performance comparison across baselines and PhysERL-Inv. The percentage im-
provements are calculated with respect to the PhysERL-Inv model, which serves as the benchmark.

Model MSE RMSE MSE Improv. (%) RMSE Improv. (%) MSE Rank RMSE Rank
LSTM 0.4679 0.6840 23.73 12.67 3 3
NeuralODE 0.5066 0.7117 29.59 16.09 2 2
ResNet50 0.4308 0.6563 17.17 8.99 4 4
BiLSTM 0.5263 0.7255 32.20 17.68 1 1
PhysERL-Inv 0.3568 0.5973 – – – –

In contrast, PhysERL-Inv consistently outperforms all baselines across the evaluation metrics, rank-
ing first in both MSE and RMSE. This is clearly demonstrated by significant percentage improve-
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ments, including a 32.20% reduction in MSE and a 17.68% reduction in RMSE compared to the
best-performing baseline (BiLSTM). The results underscore the critical value of embedding physi-
cal knowledge directly into deep learning architectures to create a more accurate and reliable frame-
work.

Table 2: Ablation study comparing PhysERL-Inv
performance with and without supervised contrastive
learning (SCL)

Training Data Without SCL With SCL
MSE RMSE MSE RMSE

Sample 1 (80%) 0.6601 0.8125 0.5926 0.7698
Sample 2 (60%) 0.6588 0.8117 0.6037 0.7770
Sample 3 (50%) 0.8675 0.9314 0.7940 0.8911

We conducted an ablation study (Table 2) to
evaluate the role of supervised contrastive
learning (SCL) within the PhysERL-Inv
framework, specifically testing its robust-
ness in data-limited conditions.The results
clearly show that the PhysERL-Inv model
performs consistently better when SCL is in-
cluded. We observed systematic reductions
in both mean squared error (MSE) and root
mean squared error (RMSE) across all train-
ing scenarios. This study highlights two key
findings. First, SCL provides meaningful
benefits by helping the model learn more accurate and generalizable representations. Second, and
most importantly, these improvements are consistent even when the amount of training data is sig-
nificantly reduced. This suggests that SCL is particularly valuable in settings where observational
data are scarce, as it helps the model maintain stability and limit the degradation in accuracy that
typically occurs in data-limited situations. In short, this study confirms that SCL is a crucial com-
ponent for strengthening the PhysERL-Inv framework, making it a more robust and reliable tool for
scientific prediction.

b)a)

Figure 2: Comparison of model performance: (a) RMSE
over time across baseline models and PhysERL-Inv; (b)
box-and-whisker plot of snow depth deviations for the
ground truth, PhysERL-Inv, and baseline models.

The figure (2a) presents a compar-
ison of the Root Mean Square Er-
ror (RMSE) for five distinct mod-
els, illustrating how their perfor-
mance changes with varying se-
quence lengths. The analysis demon-
strates that as the sequence length
increases, the RMSE for all mod-
els generally decreases, which indi-
cates that a greater amount of histor-
ical data leads to improved predic-
tion quality. The PhysERL-Inv model
consistently shows the lowest RMSE
across all sequence lengths, suggest-
ing it is the most stable model among
those compared. In contrast, the BiL-
STM model generally has the high-
est RMSE, and the LSTM, ResNet50,

and NeuralODE models perform between these two extremes.

The box-and-whisker plots in Figure 2b illustrate the distributions of snow depth anomalies for the
ground truth, baseline models, and the proposed PhysERL-Inv. A horizontal dashed red line at zero
represents perfect alignment with the average snow depth condition. Among the baselines, BiLSTM
shows reasonably consistent performance, with a median close to zero and a spread comparable to
the ground truth, though it produces fewer negative outliers. This suggests that BiLSTM captures
the overall shape of the distribution while underrepresenting extreme values. ResNet50 also has a
median near zero, but its predictions show a narrower spread than the ground truth, indicating the
model may underestimate the full variability of the anomalies. In contrast, NeuralODE exhibits
greater variability with a median slightly above zero, suggesting an upward bias, and contains more
significant negative outliers, pointing to reduced stability and increased deviation from the true dis-
tribution. PhysERL-Inv demonstrates the closest agreement with the ground truth. Its predictions
have medians very near zero and a spread that matches the true anomaly distribution. The relatively
low number of outliers indicates stable predictions and an accurate representation of the overall dis-
tribution. Overall, PhysERL-Inv provides the most reliable and consistent estimates, successfully
capturing both the central tendency and variability of snow depth anomalies.
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Figure 3 illustrates the PhysERL model’s prediction of seasonal changes in snow depth from late
2009 through early 2011, demonstrating a strong correlation of r=0.81 with the true values. The
plot’s most prominent feature is the distinct seasonal pattern. During the winter season, both
the true and predicted snow depths show a consistent downward trend, indicating a period of ac-
cumulation. This is followed by a sharp upward trend as snow melts during the transition to
spring. During the summer months, both truth and PhysERL remain near zero, showing mini-
mal deviation. The model’s reliability is further highlighted by the shaded band, which repre-
sents one standard deviation from the predicted values and contains the majority of the true data
points. The ability of the PhysERL model to accurately capture these seasonal dynamics, from
accumulation to melt, is crucial for improving our understanding of how snow cover impacts sea
ice thickness. The results also reinforce a broader point about the future of computational cli-
mate science. Its path lies not in replacing physical models with machine learning, but in in-
tegrating the strengths of both approaches. By bridging physics and AI, PhysERL-Inv exempli-
fies how hybrid frameworks can move beyond short-term predictive gains to deliver models that
enhance process-level understanding, provide robustness under extrapolation, and ultimately ex-
pand the toolkit available for tackling pressing questions in Earth and environmental sciences.
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Figure 3: Time series of pre-
dicted and true mean snow
depth seasonal pattern

Figure 4 compares the Probability Density Function (PDF) of
the ground truth and the PhysERL-Inv model’s predictions. This
comparison provides a more comprehensive evaluation than point-
estimate metrics like MSE by assessing the model’s ability to learn
the underlying statistical distribution of the data. In climate sci-
ence, where a perfect one-to-one match in geospatial grids is often
not expected, the alignment of the probability distributions becomes
a more crucial evaluation criterion. A strong correspondence be-
tween the predicted and true PDFs indicates that the model is not
merely a regression function for individual data points but is ca-
pable of generalizing the data’s generative process. This is crucial
for capturing the system’s overall statistical behavior, including the
frequency and likelihood of different outcome magnitudes.

The PhysERL-Inv model successfully captures the unimodal nature
of the measured deviations in the ground truth distribution (Fig. 4).
By incorporating physics encoding, it captures real-world variabil-
ities, reducing prediction error and producing more physically con-

sistent and robust predictions.

5 DISCUSSION AND FUTURE WORK

1.0 0.5 0.0 0.5 1.0
Snow Depth Deviation

0.0

0.5

1.0

PD
F

Truth
PhysERL-Inv

Figure 4: PDF of mean snow
depth anomalies for true values
and PhysERL-Inv predictions

We introduce PhysERL-Inv, a novel framework that integrates
physics encoding through inverse modeling with representation
learning via supervised contrastive learning. Our framework
uniquely implements a surjective inverse mapping, which allows
for multiple plausible physical explanations for observed data,
making it particularly well-suited for modeling the dynamic, time-
varying behaviors of seasonal systems. When applied to complex
polar geospatial data, PhysERL-Inv effectively captured the sea-
sonal evolution of snow depth. We demonstrate our model’s ro-
bustness by consistently achieving a 20% performance gain over
multiple baselines, effectively capturing both seasonal trends and
finer-scale variability. Through our unique, simplified inverse
modeling approach using Arctic sea ice data, we demonstrate its potential for predicting snow depth
when observational data is unavailable. This is achieved by using hidden parameters of Arctic vari-
ables and incorporating physics relevant to snow depth to forecast future conditions. Ultimately, our
work showcases the practical value of physics-encoded machine learning in environmental systems
and highlights its potential for fostering interdisciplinary collaboration within geoscience.
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