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ABSTRACT

Online influence maximization aims to maximize the influence spread of a content
in a social network with an unknown network model by selecting a few seed nodes.
Recent studies followed a non-adaptive setting, where the seed nodes are selected
before the start of the diffusion process and network parameters are updated when
the diffusion stops. We consider an adaptive version of content-dependent online
influence maximization problem where the seed nodes are sequentially activated
based on real-time feedback. In this paper, we formulate the problem as an
infinite-horizon discounted MDP under a linear diffusion process and present a
model-based reinforcement learning solution. Our algorithm maintains a network
model estimate and selects seed users adaptively, exploring the social network while
improving the optimal policy optimistically. We establish Õ(

√
T ) regret bound

for our algorithm. Empirical evaluations on synthetic and real-world networks
demonstrate the efficiency of our algorithm.

1 INTRODUCTION

Influence Maximization (IM) (Kempe et al., 2003; Kitsak et al., 2010; Centola & Macy, 2007),
motivated by real-world social-network applications such as viral marketing, has been extensively
studied in the past decades. In viral marketing, a marketer selects a set of users (seed nodes) with
significant influence for content promotion. These selected users are expected to influence their
social network neighbors, and such influence will be propagated across the network. With limited
seed nodes, the goal of IM is to maximize the information spread over the network. A typical IM
formulation models the social network as a directed graph and the associated edge weights are the
propagation probabilities across users. Influence propagation is commonly modeled by a certain
stochastic diffusion process, such as independent cascade (IC) model and linear threshold (LT) model
(Kempe et al., 2003). A popular variant is topic-aware IM (Chen et al., 2015; 2016) where the
activation probabilities are content-dependent and personalized, i.e., edge weights are different when
propagating different contents.

Classical influence maximization solutions are studied in an offline setting, assuming activation
probabilities are given (Kempe et al., 2003; Chen et al., 2009; 2010). However, this information may
not be fully observable in many real-world applications. Online influence maximization (Chen et al.,
2013; Wen et al., 2017; Vaswani et al., 2017) has recently attracted significant attention to tackle
this problem, where an agent learns the activation probabilities by repeatedly interacting with the
network. Most existing works on online influence maximization are formulated as a multi-armed
bandits problem making a non-adaptive batch decision: at each round, the seed nodes are computed
prior to the diffusion process by balancing exploring the unknown network and maximizing the
influence spread; the agent observes either edge-level (Chen et al., 2013; Wen et al., 2017; Wu et al.,
2019) or node-level (Vaswani et al., 2017; Li et al., 2020) activations when the diffusion finishes and
updates its model. Combinatorial multi-armed bandits (Chen et al., 2013; Wang & Chen, 2017) and
combinatorial linear bandits (Wen et al., 2017; Wu et al., 2019) algorithms have been proposed as
solutions, where most works follow independent cascade model with edge-level feedback.

In contrast to the non-adaptive setting, adaptive influence maximization allows the agent to select
seed nodes in a sequential manner after observing partial diffusion results (Golovin & Krause, 2011;
Tong et al., 2016; Peng & Chen, 2019). The agent can achieve a higher influence spread since the
decision adapts to the real-time feedback of diffusion. In viral marketing, the agent could observe
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partial diffusion feedback from the customer and adjust the campaign for the rest of budgets based
on current diffusion state. Unfortunately, online influence maximization in an adaptive setting is
under-explored. Previous bandit-based solutions cannot be applied because the decisions of bandit
algorithms are independent of the network state.

In this paper, we study the content-dependent online adaptive influence maximization problem: at
each round, the agent selects a user-content pair to activate based on current network state, observes
the immediate diffusion feedback, and updates its policy in real-time. The network’s activation
probabilities are content-dependent and are unknown to the agent. The agent’s goal is to maximize
the total influence spread. We formulate this problem as an infinite-horizon discounted Markov
decision process (MDP), where the state is users’ current activation status under different contents
(user-content pairs), an action is to pick a user-content pair as the new seed, and the total reward is
the discounted sum of active user counts. Specifically, we study the problem under the independent
cascade model with node-level feedback. Similar to combinatorial linear bandits (Wen et al., 2017;
Vaswani et al., 2017), we formulate a tensor network diffusion process where activation probabilities
are assumed to be linear with respect to both user and content features. To tackle the problem of
node-level feedback, we propose a Bernoulli independent cascade model, a linear approximation to
the classic IC model which requires edge-level feedback to learn.

We propose a model-based reinforcement learning (RL) algorithm to learn the optimal adaptive policy.
Our approach builds on prior work of bandit-based influence maximization algorithms (Chen et al.,
2013; Wen et al., 2017; Wu et al., 2019) and has the following distinct features: (1) Our adaptive IM
policy makes decisions and updates policy on the fly, without waiting till the end of diffusion process;
(2) Our algorithm takes into consideration real-time feedback from the network, thus approaching a
dynamic-optimal policy and outperforming bandit-based static-optimal solutions; (3) Our algorithm
learns from node-level feedback, which greatly relaxes the common edge-level feedback assumption
in previous works with IC model; (4) Our policy can handle content-dependent networks and select
the best content for the right user for the campaign; (5) To improve computation efficiency, we
adopt the slow switching strategy (Abbasi-Yadkori et al., 2011) that only update model parameter
for O(d log T ) times, where d is the feature space dimension. Our contributions are summarized as
follows:

• We propose a linear tensor diffusion model for content propagation in social networks and formulate
the problem as an infinite-horizon discounted MDP.

• We propose a tensor-regression-based RL influence maximization algorithm with optimistic plan-
ning that learns an adaptive policy from node-level feedback, which selects the content and next
seed user based on current state of the network.

• We proved a Õ(d
√
T/∆ +

√
dNKT )1 regret of our algorithm, where T is the total rounds, N is

the number of users, K is the number of contents, ∆ is the coefficient for diffusion decay, d is the
dimension related to user and content feature. To our best knowledge, this is the first sublinear
regret bound for online adaptive influence maximization.

• We empirically validated on synthetic and real-world social networks that our algorithm explores the
unknown network more thoroughly than conventional bandit methods, achieving larger influence
spread.

Related Works. The classical works on (offline) influence maximization (Kempe et al., 2003; Chen
et al., 2009; 2010) assume the network model, i.e., the activation probabilities, is known to the agent
and the goal is to maximize the influence spread, i.e., total number of activated users. IM has been
studied in a non-adaptive setting where the agent chooses the seed nodes before the diffusion starts
(Kempe et al., 2003; Chen et al., 2009; 2010; Bourigault et al., 2016; Netrapalli & Sanghavi, 2012;
Saito et al., 2008), or an adaptive setting where the agent sequentially selects the seed nodes adaptive
to current diffusion results (Golovin & Krause, 2011; Tong et al., 2016; Han et al., 2018; Peng &
Chen, 2019; Tong & Wang, 2020). Online influence maximization (Chen et al., 2013; 2015; Lei et al.,
2015; Lugosi et al., 2019; Perrault et al., 2020; Zuo et al., 2022) is proposed to learn network model
while selecting seed nodes in the non-adaptive setting. Existing works on online IM studies mostly
follow IC model and edge-level feedback (Chen et al., 2013; Wang & Chen, 2017; Wen et al., 2017;
Vaswani et al., 2017; Lugosi et al., 2019). Chen et al. (2013) and Wang & Chen (2017) formulated the
online IM problem as combinatorial bandits problem and proposed combinatorial upper confidence

1Õ(·) ignores all logarithmic terms.
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bound (CUCB) algorithm to estimate the activation probabilities of edges in a tabular manner. Wen
et al. (2017) assumed a linear parameterization on each edge with known edge features and proposed
a linear bandits-based solution. Our paper is the first to consider online influence maximization in
the adaptive setting and formulate it as an RL problem. We also can handle the more challenging
node-level feedback. Some recent works also explored settings beyond IC model and edge-level
feedback. Li et al. (2020) studied online IM with linear threshold model, and proposed a linear
bandits-based solution to model the linearity in LT model for node-level feedback. We also leveraged
the linearity in diffusion model to handle node-level feedback similar to Li et al. (2020) but for
IC model. Vaswani et al. (2017) considered diffusion model-independent setting using a heuristic
objective function, but without theoretical guarantee of the heuristic. Olkhovskaya et al. (2018)
studied UCB-based algorithm for node-level feedback, but their algorithm is designed only for certain
random graph models such as stochastic block models and Chung–Lu models.

Our analysis is related to regret analysis of model-based reinforcement learning, which have been
studied in various settings such as tabular MDP (Auer et al., 2008), linear/kernel MDP (Yang &
Wang, 2020; Yang et al., 2020), factored MDP (Rosenberg & Mansour, 2021), general model class
(Ayoub et al., 2020), etc. We provide a first problem-specific analysis for influence maximization. Our
analysis differs from existing regret analysis in a couple of ways. First, although we focus on a linear
model for network diffusion, the state-to-state transition of the IM is highly nonlinear, thus the value
and Q functions for IM do not admit a linear model and invalidate linear/kernel MDP approaches.
Second, due to the nature of network diffusion process, the state and its value can grow unboundedly
for large networks, causing unbounded variance at the same time. Our analysis is specially tailored
to such growth process over large networks and derive regret bound by focusing a high probability
event where states stay bounded. To our best knowledge, this is a first IM-specific regret analysis for
controlling unbounded growth process over large networks.

2 PROBLEM FORMULATION

We present a tensor network diffusion process to model user feature-dependent content feature-
dependent network propagation. Our goal is to both select seed users and customize contents for
influence maximization. Further, we formulate IM into an RL problem to enable much more delicate
control of the network diffusion process based on real-time feedback.

2.1 TENSOR NETWORK DIFFUSION PROCESS

Consider a social network of N users, where the network structure may be hidden. Let there be
K choices of contents. Let si,k ∈ {0, 1} denote the status of an user-content pair, i.e., si,k = 1 if
user i is actively tweeting content k. The full state of the network is denoted by s ∈ {0, 1}N×K ,
a binary matrix. We focus on the asymptotic regime of large networks, i.e., N can be arbitrarily
large or even N →∞. We assume that each content can be propagated from one user to multiple
users following an independent network diffusion process.

Assumption 1 (Bernoulli Independent Cascade Model). Let s′ be the next state. For each k ∈ [K],
we assume there is an underlying connectivity matrix Ak ∈ Rn×n such that

P(s′i,k = 1|s) =
∑
j∈[N ]

Ak
i,jsj,k, (1)

And we assume s′i,k’s are independent conditioned on s.

Here Ak
i,j measures the level of influence user j has over user i for the k-th content. Therefore, the

aggregate “influence” received by user i is
∑
j A

k
i,jsj,k. We model the status of user i as a Bernoulli

variable, which is parameterized by the aggregate “influence” received by user i.

Our model is closely related to the independent cascade model (Kempe et al., 2003). In IC model,
the activation probability takes of the form P(s′i,k = 1|s) = 1 −

∏
j(1 −Ak

i,jsj,k). A limitation
is that efficient estimation of IC model requires edge-level observations (Chen et al., 2013; Wang
& Chen, 2017). Assumption 1 can be viewed as an linearized approximation to IC model, i.e.,
1 −

∏
j(1 − Ak

i,jsj,k) ≈
∑
jA

k
i,jsj,k when all the A values are tiny (see Assumption 3). In
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Appendix F, we extend the assumption to the generalized linear setting and establish the regret bound
for our algorithm.

Consider a parameterized network diffusion model based on user features and content features. Let
the i-th user be associated with a user feature vector xi ∈ Rd1 , for all i ∈ [N ]. Let the k-th content
be associated with a content feature θk ∈ Rd2 , for all k ∈ [K]. We assume that the influence is linear
with respect to both user and content feature.
Assumption 2 (Content-Dependent Linear Tensor Model). There exists a d1 × d1 × d2 tensor
T ∗ ∈ Rd1d1d2 such that

Ak
i,j = 〈T ∗, xi ⊗ xj ⊗ θk〉,

where ⊗ denotes outer product and 〈, 〉 denotes inner product.

Note that this is different from the linear MDP model commonly studied in the theoretical RL
literature (Jin et al., 2020). We focus on large networks where N can be arbitrarily large. We also
assume each individual user has bounded influence over its neighbors and the diffusion process has a
natural decay property.
Assumption 3 (Uniform transition probability upper bound). There exists a constant C > 0 such
that ‖A‖∞ ≤ C

NK .

Assumption 4 (Diffusion decay). There exists ∆ > 0 such that
∑
i∈[N ] A

k
i,j ≤ 1−∆ for all k, j.

Assumption 4 says that influence from any seed user has a discounting nature; without this assumption,
some seed user may have infinite-long influence and make the diffusion process unbounded. This
assumption also implies that, the “influence" of any seed user-content pair would last O(1/∆) time
steps on average.

2.2 REINFORCEMENT LEARNING MODEL

We formulate the influence maximization problem as an infinite-horizon discounted MDP. Define
the state space as S = {0, 1}N×K where 1 refers to activated user-content pair. At each timestep,
the agent observes the current network state s and picks an action a ∈ A := [N ]× [K] to activate
one user-content pair. Let sa be the post-action state, i.e., sa = s+ 1a. Then the state of network
transitions following the network diffusion process, i.e., Assumptions 1,2. Since users are activated
independently from one another, the state-transition law of the MDP admits a product structure:

P(s′|s, a) =
∏

i∈[N ],k∈[K]

P(s′i,k|s, a).

At each state-action pair, the agent receives a reward r(s, a) =
∑
i,k vi,ksi,k measuring the amount

of influence over the network. For examples, if we let vi,k ≡ 1, then we have r(s, a) = ‖s‖1, which
counts the number of active users. Without lost of generality, we assume vi,k ≤ 1. Let π : S 7→ A
be a decision policy. We measure the value of policy π at state s as a cumulative sum of discounted
rewards

V π(s) = Eπ
[ ∞∑
t=1

γt−1r(st, at)
∣∣∣s1 = s

]
.

Recall Assumption 4 that the influence of any action lasts 1/∆ time steps. Thus, a natural choice
of the discount factor to be γ = 1 − o(∆). Finally, the policy optimization problem is to find
π∗ = argmaxπ V

π(s).

Relation between Discounted MDP and Bandit IM model. The discounted MDP formulation
differs from the bandit IM optimization in two ways. (1) Our policy is dynamic and makes state-
dependent decisions, while the bandit approach would make a batch of decisions only at the beginning
of the diffusion process; (2) In both cases, the optimization objectives are sums of total influences
from all seed users. The difference lies in how to measure the per-seed influence. In IM bandit,
the per-seed influence is a cumulative sum calculated after the diffusion process is over. In our
formulation, the per-seed influence is a cumulative γ-discounted sum of rewards from this seed’s
descendants. If we choose γ = 1 − o(∆), these values differ by only o(1) and we can make the
difference arbitrarily small.

4



Under review as a conference paper at ICLR 2023

3 MODEL-BASED RL FOR INFLUENCE MAXIMIZATION (MORIMA)

To reduce the statistical complexity, we adopt a model-based RL approach for exploring the unknown
network and learning the optimal policy. Our approach alternates between model estimation and
policy update. Our algorithm calculates a bonus function based on the collected data and and add it
to the reward, which dynamically trades-off between exploitation and exploration. We also adopt a
slow switching technique to reduce computational burden.

Tensor ridge regression for model estimate. Under the linear tensor model (Assumption 2), we
can use tensor ridge regression to perform model-based RL. This reduces the statistical complexity
since the dimension of the unknown parameter is smaller. Furthermore, this approach only requires
node-level feedback, While previous bandits approaches for IC model require edge-level feedback
(Chen et al., 2013; Wen et al., 2017; Wu et al., 2019).

Specifically, let sa be the altered state after applying action a. Observe that, conditioned on (s, a),
the random variable s′i,k satisfies a linear relation:

E[s′i,k|s, a] =
∑
jA

k
i,j(sa)j,k =

〈
T ∗, xi ⊗

(∑
j xj · (sa)j,k

)
⊗ θk

〉
.

Denote for short φi,k(s, a) = xi ⊗
(∑

j xj · (sa)j,k

)
⊗ θk ∈ Rd1d1d2 , and φti,k = φi,k(st, at). At

time t, after observing the history (s1, a1, . . . , st−1, at−1, st), we estimate the tensor model by :

T̂t = argmin
T

t−1∑
τ=1

K∑
k=1

N∑
i=1

(〈T , φτi,k〉 − (sτ+1)i,k)2 + λ‖T ‖22, (2)

where ‖T ‖22 is calculated by vectorizing T . This allows an analytical solution:

T̂t = Σ−1
t−1Bt−1, (3)

where

Σt−1 = λI +

t−1∑
τ=1

K∑
k=1

N∑
i=1

φτi,k · (φτi,k)>. Bt−1 =

t−1∑
τ=1

K∑
k=1

N∑
i=1

φτi,k · (sτ+1)i,k. (4)

Notice that the sizes of the covariance matrix Σt−1 and the right-hand-side term Bt−1 are d× d and
d, respectively, where d = d2

1d2 � N .

Optimistic Planning with truncated-reward model. To avoid the worst-case O(NK) reward, we
identify a high probability upper bound Λ for the rewards and truncate the reward as r̃(s, a) =

min{r(s, a),Λ}. Then based on the ridge regression estimation T̂t, we add a bonus term bt(s, a) to
the truncated reward r̃ and solve for an optimistic Q-functionQ∗

T̂t,r̃+bt
(s, a) using the model estimate.

Specifically, we can choose Λ = 6
∆2 log(4NKT 3). For T̂t, we define the reward bonus as

bt(s, a) =
2γΛ

1− γ

N∑
i=1

K∑
k=1

(1 ∧ βt · ‖φi,k(s, a)‖Σ−1
t−1

), (5)

where we use the notation 1 ∧ x = min{1, x} and

βt =
(24

∆

√
CA/(NK) · d · log(1 +NKL2t/(dλ)) + 4

)
log(8N2K2t2/δ) +

√
λ‖T ∗‖2 (6)

with L being an upper bound of ‖φti,k‖2 and d = d2
1d2.

This choice of βt ensures with high probability, Q∗
T̂t,r̃+bt

(s, a) is an upper bound of Q̃∗(s, a), which
is the optimal Q-function for ground-truth transition with truncated-reward. We calculate the optimal
truncated Q-function Q∗

T̂t,r̃+bt
(s, a) using value iteration with truncation (Algorithm 2).
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Slow switching. To reduce computation overhead, we adopt a slow switching technique from
bandit and RL literatures (Abbasi-Yadkori et al., 2011; Zhou et al., 2021b). The idea is that we only
update model and policy when enough new data has been collected, via checking the covariance
matrix. Specifically, say the most recent switching happens at time t, we choose to switch at time t′
only if

det(Σt′−1) > 2 det(Σt−1).

After switching, we calculate the optimistic Q-function Qt′ = Q∗
T̂t′ ,r̃+bt′

(s, a). Then we pick actions

greedily using Q′t, i.e., a = argmaxaQt′(s, a), until the next switching.

Algorithm 1 Model-based RL for Influence Maximization (MORIMA)

1: Initialize Σ1 = λI , B1 = 0. Z = det(Σ1).
2: Calculate T̂1 and b1(s, a) and compute Q1 = Q∗

T̂1,r̃+b1
(s, a).

3: Take the greedy action with respect to Q1: a1 = argmaxaQ1(s1, a).
4: for t = 2, · · · , do
5: Calculate Σt−1 and Bt−1 according to Eqn. (4).
6: if det(Σt−1) > 2Z then
7: Calculate T̂t and bt(s, a) according to Eqn. (3) and Eqn. (5).
8: Compute the optimistic Q-function Qt = Q∗

T̂t,r̃+bt
(s, a) (Algorithm 2).

9: Set Z = det(Σt−1).
10: else
11: Set Qt = Qt−1.
12: end if
13: Take the greedy action with respect to Qt: at = argmaxaQt(st, a).
14: end for

Algorithm 2 Truncated Value Iteration

1: Input: parameter T , reward r̃(s, a), bonus term b(s, a).
2: Initialize Q(s, a) = Λ

1−γ .
3: while Not Converged do
3: Q(s, a)← min{ Λ

1−γ , r̃(s, a) + b(s, a) + γEs′∼PT (·|s,a) maxa′ Q(s′, a′)}
4: end while
5: Return: Optimistic Q function Q(s, a).

Full algorithm. We put together the pieces and present the full Algorithm 1. The algorithm makes
only O(d log(T )) model updates and policy updates until time T . Each model update can be done
efficiently using least square regression. Policy updates require solving a new planning problem
which can be combinatorially hard. In practice, one can solve the planning problem using approximate
dynamic programming (Powell, 2007) or Monte-Carlo Tree Search (MCTS) methods (Browne et al.,
2012), and we will use a two-step lookahead scheme in our experiments. For theoretical analysis, we
assume access to a planning oracle that is able to find the optimal policy with respect to a known
model T̂ . Relaxing such assumption to an approximated planning oracle can be also be done with
minor algorithmic and analysis modifications.

4 REGRET ANALYSIS

In this section, we provide regret analysis for Algorithm 1. We define the regret for the infinite-horizon
discounted MDP as in (Zhou et al., 2021b).

Definition 1. For any possibly non-stationary policy π, the infinite-horizon discounted regret is
defined as

Regret(T ) =

T∑
t=1

∆t, where ∆t = V ∗(st)− V πt (st),
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where V ∗ is the optimal value function, and V πt is defined as

V πt (s) = Eπ
[ ∞∑
i=0

γir(st+i, at+i)|s1, . . . , st−1, st = s
]

Now we present our main theorem.
Theorem 2. Let Assumptions 1-4 hold. With probability at least 1 − δ, Algorithm 1 satisfies the
following regret upper bound:

Regret(T ) ≤ Õ
( 1

∆2(1− γ)2
·
(
d
√
C/∆ +

√
dNK

)
·
√
T
)

+ polylog(T )-terms,

where d = dim(T ∗) = d2
1d2.

We see that the dominant term of the regret is Õ
(

1
∆2(1−γ)2 ·

(
d
√
C/∆ +

√
dNK

)
·
√
T
)

. Notice
that the worst-case reward would scale with NK, while we managed to reduce the scaling of the
regret to 1/∆2.

4.1 PROOF SKETCH OF THEOREM 2

Next, we provide a proof sketch and defer the complete proof to Appendix C.
Proof. High probability upper bounds for the size of active user-content pairs. We utilize the
diffusion decay assumption (Assumption 4) to provide a high probability upper bound on the number
of active user-content pairs. We show that for any policy π, with probability at least 1− p, we have
for all t ≥ 1,

‖st‖1 ≤ O(
1

∆2
log

4t2

p
). (7)

We see that although we have in totalNK user-content pairs, the number of active ones is constrained
by a constant intrinsic to the network diffusion dynamics.

Sharper bounds for the confidence region. We derive a batched version of Bernstein-type
self-normalized bounds from (Zhou et al., 2021b) and show that with high probability for all t,
‖T̂t − T ∗‖Σt−1 ≤ βt, where βt can be chosen as Õ(σ

√
d + 1) and σ2 is the upper bound of

var[(st+1)i,k|st, at]. Combing Eqn. (7) and Assumption 3, we have

var[(st+1)i,k|st, at] ≤ E[(st+1)i,k|st, at] =
∑
j

Ak
i,j(stat)j,k ≤

C

NK
(‖st‖1 + 1) ≤ Õ(

C

NK∆2
).

Then βt = Õ(
√

dC
NK /∆ + 1), which improves upon βt = Õ(

√
d) given by the sub-Gaussian type

self-normalized bounds.

Surrogate regret of the truncated-reward model. Since we essentially run our algorithm against
the truncated-reward model, we define the surrogate regret as R̃egret(T ) =

∑T
t=1(Ṽ ∗(st)−Ṽ πt (st)),

where Ṽ ∗ and Ṽ πt are computed using the truncated reward r̃(s, a) = min{r(s, a),Λ}. By Eqn. (7),
with probability at least 1 − 1/(2NKT ), under any policy, we have r(st, at) ≤ ‖st‖1 ≤ Λ =

Õ(1/∆2) for all t ≤ T . This means with high probability we have r(st, at) = r̃(st, at) and
hence the true regret and the surrogate regret is similar. Specifically, we will show Regret(T ) ≤
R̃egret(T ) + 1/(1− γ).

Bonus term. Let P(s′|s, a) be the true transition probability and P̂(s′|s, a) be the empirical estimate.
As a typical result in MDP theory, we require b(s, a) ≥ γ‖V ‖∞ · ‖P(·|s, a)− P̂(·|s, a)‖1 to ensure
optimism. We exploit the fact that P(s′|s, a) and P̂(·|s, a) is factorized, i.e., P(·|s, a) = ⊗Ni=1 ⊗Kk=1

Pi,k(·|s, a) and P̂(·|s, a) = ⊗Ni=1 ⊗Kk=1 P̂i,k(·|s, a), which stem from the independence assumption
(Assumption 1). This gives us ‖P(·|s, a)− P̂(·|s, a)‖1 ≤

∑N
i=1

∑K
k=1 ‖Pi,k(·|s, a)− P̂i,k(·|s, a)‖1.

Notice that Pi,k(·|s, a) is a Bernoulli distribution, then by Assumption 2 we have ‖Pi,k(·|s, a) −
P̂i,k(·|s, a)‖1 ≤ 2(1 ∧ |〈T ∗ − T̂ , φi,k(s, a)〉|). Therefore, the bonus term can be chosen as Eqn. (5)
and we ensure optimism at each time.
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Regret decomposition. We have the following regret decomposition for the surrogate regret.

R̃egret(T ) ≤ O
{ 1

1− γ

[ T∑
t=1

bts(st, at) +
2γΛ

1− γ

√
T log

1

δ
+
( Λ

1− γ
M
)]}

,

where M = M(T ) is the total number of switches and we will show that M = Õ(d). Then the
dominant term of the regret is

1

1− γ

T∑
t=1

bts(st, at) = Õ
( 1

(1− γ)2∆2

)
· βT ·

T∑
t=1

N∑
i=1

K∑
k=1

(1 ∧ ‖φi,k(st, at)‖Σ−1
ts−1

)

≤ Õ
( 1

(1− γ)2∆2

)
· βT · Õ(

√
dNKT +MNK).

where ts denotes the last switch up to time t, and the last inequality follows from a variant of Elliptical
Potential Lemma. Plug in the choice of βT and we derive the result.

4.2 EXTENSION TO GENERALIZED LINEAR INDEPENDENT CASCADE MODELS

In this subsection, we briefly show how to extend our algorithm and regret bound to generalized
linear IC models. The details can be found in Appendix F.
Assumption 5 (Generalized Linear Independent Cascade (GLIC) Model). Let s′ be the next state.
For each k ∈ [K], we assume there is an underlying connectivity matrix Ak ∈ Rn×n such that

P(s′i,k = 1|s) = µ
(∑

j

Ak
i,jsj,k

)
, (8)

where µ : R→ R satisfies µ(0) = 0 and 1/κ ≤ µ′ ≤ 1 for some κ ≥ 1. And we assume s′i,k’s are
independent conditioned on s.

Given Assumption 5, there are two major differences extending MORIMA to GLIC models: (1) new
objective of tensor model estimation under GLM, which does not have analytical solutions; and (2)
new optimistic planning, which is analyzed following new tensor estimate. We have the following
regret bound for MORIMA under GLIC.
Theorem 3. Let Assumption 5, Assumptions 2-4 hold. With probability at least 1− δ, Algorithm 1
satisfies the following regret upper bound:

Regret(T ) ≤ Õ
( κ

∆2(1− γ)2
·
(
d
√
C/∆ +

√
dNK

)
·
√
T
)

+ polylog(T )-terms,

where d = dim(T ∗) = d2
1d2.

5 EXPERIMENTS

We experiment with MORIMA (Algorithm 1) for influence maximization on both synthetic networks
and a large-scale Twitter social network.

Synthetic networks. We run benchmark experiments on two synthetic networks. The first cascade
network (see Appendix E Figure 2a), consisting of N = 300 users and K = 4 content types, is
constructed to bear a hierarchical structure with users with high, medium, and low influences, with
9-dimensional user feature and 3-dimensional content features (see Appendix E for details). The
second network is constructed to have a star-like structure, consisting of N = 70 users of various
influence levels and K = 1 contents (see AppendixE Figure2b for details). Experiment result of the
first network is reported in Figure 1(a), and result of the second star network is reported in Appendix
E Figure 3.

Twitter social network. We further conduct experiments using the Twitter Social Network dataset
(Leskovec & Krevl, 2014), which represents real-world social networks. The dataset contains ∼80k
nodes and∼1 million directed edges, where a directed edge (u, v) means the node u follows the node
v on Twitter. We randomly sample multiple sub-graphs from the Twitter network and construct K

8
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(a) Synthetic cascade network (300 nodes)
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(b) Twitter network (1966 nodes)
Figure 1: Real-time discounted sum of rewards of IM on synthetic and Twitter networks. Averaged
results with 85% CI bands are included.

networks corresponding to different topics/content types. For the sampled networks, we first pick
out n1 nodes with most out-degrees and then include all their `-hop neighbors, with n1 = 8, ` = 5.
We construct a connectivity tensor over these networks by randomly drawing edge weights from
[0, 0.1] and normalizing tensor row sums to 0.9. Next we apply non-negative Tucker decomposition
(Kossaifi et al., 2019) to extract the Tensor core model T ∗, user features (of dimension d1 = 10)
and content features (of dimension d2 = 2). Thus, we have generated a large-scale topic-aware
Twitter diffusion network with K = 3 content types, N = 1966 nodes, and 38023 edges for dynamic
influence maximization.

Implementation and Baselines. Exactly solving for the optimal policy, even if the network is
fully known, requires solving a combinatorially hard planning problem and is intractable. In our
experiment, we adopt the two-step lookahead approximate dynamic programming scheme (Powell,
2007) as the planning oracle for Algorithm 2 of MORIMA. In the implementation of Algorithm 1, we
set γ = 0.9, λ = 1 for synthetic networks and λ = 0.01 for the Twitter network.

For comparison with MORIMA, we also test the following baselines: (i) the naive random policy
that uniformly selects a user-content pair to activate; (2) the IMLinUCB (Wen et al., 2017) which is
combinatorial linear bandits baseline that was originally designed for non-adaptive online IM. To
make a fair comparison with the two-step lookahead oracle, we run IMLinUCB every 2 timesteps
and play the 2 selected actions spontaneously; (3) MORIMA without slow switching, where we force
the Q-function to be updated at each time step; (4) MORIMA with known Aks - purely planning with
a fully know model - it would be a performance upper bound of the reinforcement learning algorithm.

Results and analysis. We report the averaged discounted cumulative rewards and its empirical
confidence region of our experiments in Figure 1, where each test is repeated on synthetic networks
for 20 times and Twitter network for 5 times. In Figure 1 (a), we observe that the discounted
sum of reward of MORIMA reaches the same level of the performance upper bound with true A
in less than 100 rounds on synthetic network, showing that our algorithm can quickly explore the
unknown network and learn to make optimal decisions. In Figure 1 (b), we observe that MORIMA
can still match the performance of the planning oracle in large real social network with thousands of
users. Across all experiments, our reinforcement learning-based MORIMA significantly outperforms
IMLinUCB because it can adaptively make decisions based on current state while IMLinUCB does
not take state into consideration. Further, slow switching did not hurt the performance of MORIMA
while greatly reducing the computation complexity from O(T ) parameter updates to O(d log T ).

6 CONCLUSION

In this paper, we study the problem of content-aware online adaptive influence maximization and
formulate the problem as an infinite-horizon discount MDP. We propose MORIMA, a model-based
reinforcement learning algorithm that learns optimal policy using only node-level feedback under the
IC model. We provide a Õ(d

√
T/∆ +

√
dNKT ) regret bound for our algorithm, which is the first

sublinear regret bound of online adaptive influence maximization problem. We empirically validated
the effectiveness of our algorithm on synthetic and real-world social networks.

9
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A LIMITATIONS AND BROADER IMPACT

As a common limitation for all previous work on influence maximization, it is computationally
infeasible to find the exact optimal policy, especially when applied to real-world networks with
millions of nodes. Therefore, the scalability of our proposed algorithm comes at the cost of using
approximations. Given a certain computational budget constraint, the optimality of the policy needs
to be traded-off towards affordable computational and storage complexity. In our experiments, we
use Monte-Carlo methods, parallel computation and randomized tree search (dynamic programming)
methods for approximating the optimal policies. While the real-world social network graph in our
experiment is in the same scale as the graphs used in previous online IM studies, scaling up to larger
network is an important future work of ours.

In the paper, we propose a model-based RL algorithm to learn the optimal policy for online adaptive
influence maximization problems, which can be applied to advertisements for promoting beneficial
ideas, new knowledge, and innovative products across social networks. However, such algorithms
might be exploited to propagate fake news or rumors through the social networks. Addressing the
ethical concerns also needs to be considered in future work.

B A SHARPER BOUND FOR THE CONFIDENCE REGION

B.1 MAIN LEMMA

Lemma B.1 (Confidence Region). Let Assumptions 1-4 hold. With probability at least 1 − δ, we
have for all t ≥ 1,

‖T̂t − T ∗‖Σt−1 ≤ βt,
where

βt =
(24

∆

√
C/(NK) · d · log(1 +NKL2t/(dλ)) + 4

)
log(8N2K2t2/δ) +

√
λ‖T ∗‖2.

and L = sup ‖φti,k‖2, d = d2
1d2.

Before the proof of Lemma B.1, we introduce two lemmas below:
Lemma B.2 (High probability bounds for the number of active user-content pairs). Let Assumptions 1-
4 hold. For any possibly non-stationary policy π, with probability at least 1 − δ, we have for all
t ≥ 1,

‖st‖1 ≤
2

∆
(

2

∆
log

2t2

δ
+ 1).

Lemma B.3 (Bernstein-type self-normalized bound, batched version (Zhou et al., 2021a)). Let
{Ft}∞t=1 be a filtration, {xit, yit}t≥1,1≤i≤m be a stochastic process such that xit ∈ Rd is Ft-
measurable and yit ∈ R is Ft+1-measurable. Assume that conditioned on Ft, {y1

t , · · · , ymt } are
independent, and

|yit| ≤ R, E[yit|Ft] = 〈T ∗, xit〉, var[yit|Ft] ≤ σ2, ‖xit‖2 ≤ L,

then with probability at least 1− δ, the following holds simultaneously for all t ≥ 1:

‖T̂t − T ∗‖Σt−1
≤ βt,

∥∥∥ m∑
i=1

t−1∑
τ=1

xiτ (yiτ − 〈T ∗, xiτ 〉)
∥∥∥

Σ−1
t−1

≤ βt −
√
λ‖T ∗‖2.

where T̂t = Σ−1
t−1Bt−1, Σt−1 = λI +

∑m
i=1

∑t−1
τ=1 x

i
τ (xiτ )>, Bt−1 =

∑m
i=1

∑t−1
τ=1 x

i
τy
i
τ , and

βt = 8σ
√
d log(1 +mtL2/(dλ)) log(4m2t2/δ) + 4R log(4m2t2/δ) +

√
λ‖T ∗‖2.

proof of Lemma B.1. We use Lemma B.3 for batched stochastic process {φti,k, (st+1)i,k}. Notice
that we can choose σ2 to be the upper bound of var[(st+1)i,k|st, at], and

var[(st+1)i,k|st, at] ≤ E[(st+1)i,k|st, at] =
∑
j

Ak
i,j(stat)j,k ≤

C

NK

∑
j

(stat)j,k ≤
C

NK
(‖st‖1+1).
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where we used the assumption that Ak
i,j ≤ C

NK . By Lemma B.2, we have with probability at least
1− δ/2, for all t,

‖st‖1 ≤
2

∆
(

2

∆
log

4t2

δ
+ 1).

Therefore, when the above inequalities hold, we have

var[(st+1)i,k|st, at] ≤
C

NK
(

2

∆
(

2

∆
log

4t2

δ
+ 1) + 1) ≤ C

NK
(

3

∆
)2 log

4t2

δ
.

By Lemma B.3 with m = NK, R = 1, and σ2 = C
NK (3/∆)2 log 4t2

δ , we have

βt =
24

∆

√
C/(NK) · d · log(4t2/δ) log(1 +NKL2t/(dλ)) log(8N2K2t2/δ)+4 log(8N2K2t2/δ)+

√
λ‖T ∗‖2,

which is smaller than the result stated in the lemma.

B.2 DEFERRED PROOFS IN SUBSECTION B.1

proof of Lemma B.2. First, we bound the expectation of ‖st‖1. By the transition, we have

E[(st+1)i,k|st, at] =
∑
j

Ak
i,j(stat)j,k

Therefore,
E[‖st+1‖1|st, at] =

∑
i,j,k

Ak
i,j(stat)j,k

Recall that we have assumed that for any content k and any user j,∑
i

Ak
i,j ≤ 1−∆.

Then we have

E[‖st+1‖1|st, at] ≤ (1−∆)
∑
j,k

(stat)j,k = (1−∆)‖stat‖1 ≤ (1−∆)(‖st‖1 + 1), (9)

where the last inequality holds since the action alters at most one entry of the state.

Next, notice that conditioned on (st, at), ‖st+1‖ is the summation of NK independent Bernoulli
random variables. By Bernstein inequality, we have with probability at least 1− δt,

‖st+1‖1 − E[‖st+1‖1|st, at] ≤ 2(

√∑
i,k

var[(st+1)i,k|st, at] log
1

δt
+ log

1

δt
).

Since the variance of a Bernoulli random variable is bounded by its expectation, we have

‖st+1‖1 − E[‖st+1‖1|st, at] ≤ 2(

√
E[‖st+1‖1|st, at] log

1

δt
+ log

1

δt
),

Therefore, by Equation (9), we have

‖st+1‖1 ≤ (1−∆)(‖st‖1 + 1) + 2

√
(1−∆)(‖st‖1 + 1) log

1

δt
+ 2 log

1

δt

≤ (1−∆)(‖st‖1 + 1) +
∆

2
(‖st‖1 + 1) +

2

∆
(1−∆) log

1

δt
+ 2 log

1

δt

= (1−∆/2)(‖st‖1 + 1) +
2

∆
log

1

δt
,

where we used at+ b/t ≥ 2
√
ab for the last inequality.

Finally, we set δt = δ
2t2 so that

∑
t δt ≤ δ and take union bound over all t ≥ 1. By solving the

recursion, we have with probability at least 1− δ,

‖st‖1 ≤
2

∆
(

2

∆
log

2t2

δ
+ 1)

for all t ≥ 1.
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proof of Lemma B.3. We consider a “serialized” stochastic process. Let Gt,i = σ(Ft, y1
t , . . . , y

i−1
t ).

When 1 ≤ i ≤ m, we have Gt,i ⊆ Gt,i+1; while when i = m + 1, we have Gt,m+1 =
σ(Ft, y1

t , . . . , y
m
t ) ⊆ Gt+1,1 = Ft+1. Then we know that

G1,1 ⊆ G1,2 ⊆ · · · ⊆ G1,m ⊆ G2,1 ⊆ G2,2 ⊆ · · · ⊆ G2,m ⊆ · · · ⊆ Gt,1 ⊆ Gt,2 ⊆ · · · ⊆ Gt,m ⊆ . . .

is a filtration. Clearly we have xit is Gt,i-measurable and yit is Gt,i+1-measurable. By the conditional
independence assumption, we also have

yit|Gt,i =d yit|Ft, y1
t , . . . , y

i−1
t =d yit|Ft.

Therefore, by Theorem 4.1 of Zhou et al. (2021a), we have with probability at least 1 − δ, for all
t ≥ 1 and i = 1, . . . ,m,

‖T̂t,i − T ∗‖Σt,i
≤ βt,i,

and ∥∥∥ t−1∑
τ=1

m∑
j=1

xjτ (yjτ − 〈T ∗, xjτ 〉) +

i∑
j=1

xjt (y
j
t − 〈T ∗, x

j
t 〉)
∥∥∥

Σ−1
t,i

≤ βt −
√
λ‖T ∗‖2,

where

T̂t,i = Σ−1
t,i Bt,i, Σt,i = λI +

t−1∑
τ=1

m∑
j=1

xjτ (xjτ )> +

i∑
j=1

xjt (x
j
t )
>, Bt,i =

t−1∑
τ=1

m∑
j=1

xjτy
j
τ +

i∑
j=1

xjty
j
t ,

and

βt,i = 8σ
√
d log(1 + tiL2/(dλ)) log(4t2i /δ) + 4R log(4t2i /δ) +

√
λ‖T ∗‖2, ti = m(t− 1) + i.

Then the result of Lemma B.3 follows by setting i = m.

C PROOF OF THEOREM 2

Additional Notation.

Let t1 = 1, and for s ≥ 1, the next switching time ts+1 is recursively defined as

ts+1 = min{t|det(Σt−1) > 2 det(Σts−1)}.

Denote the set of switching times by W = {t1, t2, . . . , tM} where M is the total number of switches.
We have 1 = t1 < t2 < · · · < tM ≤ T < tM+1. We slightly abuse the notation and use ts to denote
the last switch up to time t, i.e., ts ≤ t < ts+1. Then by slow switching we mean Qt = Q∗

T̂ts ,r̃+bts
.

Recall the definition of the regrets

Regret(T ) =

T∑
t=1

(V ∗(st)− V πt (st)), R̃egret(T ) =

T∑
t=1

(Ṽ ∗(st)− Ṽ πt (st)),

where V,Regret are defined with the original untruncated model and Ṽ , R̃egret are defined with the
truncated-reward model.

Key Lemmas. Before the proof of Theorem 2, we introduce several key lemmas.
Lemma C.1 (optimism). Let Assumptions 1-4 hold. Set the bonus term to be

bt(s, a) =
2Λγ

1− γ

N∑
i=1

K∑
k=1

(1 ∧ βt · ‖φi,k(s, a)‖Σ−1
t−1

).

Then with probability at least 1− δ, we have the optimistic condition Q̃∗(s, a) ≤ Qt(s, a) holds for
all t ≥ 1.

Furthermore, we have for any V (s) such that 0 ≤ V (s) ≤ Λ/(1− γ),

γ|Es′∼P(s′|s,a)V (s′)− Es′∼PT̂t (s′|s,a)V (s′)| ≤ bt(s, a).
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Lemma C.2 (surrogate regret). Let Assumptions 1-4 hold. Assume that T log(1/γ) ≥ log(2NKT ).
For any policy π, we have the following connection of the regrets of the two MDPs.

Regret(T ) ≤ R̃egret(T ) +
1

1− γ
.

Lemma C.3 (regret decomposition (Zhou et al., 2021b)). Let Assumptions 1-4 hold. Assume at
each time step t, the results of Lemma C.1 holds. Then with probability at least 1− δ, we have the
following regret decomposition

R̃egret(T ) ≤ 1

1− γ

[
2

T∑
t=1

bts(st, at) +
2γΛ

1− γ

√
T log

1

δ
+ γ
(

2Λ/(1− γ) + ET

)]
.

where ET is the switching error

ET =
T∑
t=1

Vt(st+1)− Vt+1(st+1).

Lemma C.4 (bounding the number of switches). Let Assumptions 1-4 hold. The total number of the
switches M incurred by Algorithm 1 is bounded as

M <
1

log 2
d log

(d+NKTL2/λ

d

)
+ 1,

where L = sup ‖φti,k‖2.

Next we state the proof of Theorem 2.

proof of Theorem 2. Combing Lemma C.1, Lemma C.2, and Lemma C.3, we have with probability
at least 1− 2δ, when T log(1/γ) ≥ log(2NKT ),

Regret(T ) ≤ 1

1− γ

[
2

T∑
t=1

bts(st, at) +
2γΛ

1− γ

√
T log

1

δ
+ γ
(

2Λ/(1− γ) + ET

)]
+

1

1− γ
.

Next we provide an upper bound for
∑T
t=1 bts(st, at). By Lemma C.1 we know that

bts(st, at) ≤
2γΛ

1− γ
βT

N∑
i=1

K∑
k=1

(1 ∧ ‖φi,k(st, at)‖Σ−1
ts−1

).

For any (i, k), define Σt,i,k = Σt−1 +
∑i−1
j=1

∑K
l=1 φ

t
j,l(φ

t
j,l)
>+

∑k
l=1 φ

t
i,l(φ

t
i,l)
>. By the definition

that ts+1 = min{t|det(Σt−1) > 2 det(Σts−1)}, we have det(Σts+1−2) ≤ 2 det(Σts−1). Therefore,
when ts ≤ t < ts+1 − 1, we have

det(Σt,i,k) ≤ det(Σt) ≤ det(Σts+1−2) ≤ 2 det(Σts−1).

By Lemma D.4, this implies

‖φi,k(st, at)‖2Σ−1
ts−1

≤ 2‖φi,k(st, at)‖2Σ−1
t,i,k−1

.
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Then we have
T∑
t=1

N∑
i=1

K∑
k=1

(1 ∧ ‖φi,k(st, at)‖Σ−1
ts−1

)

=
∑

t+1∈W

N∑
i=1

K∑
k=1

(1 ∧ ‖φi,k(st, at)‖Σ−1
ts−1

) +
∑

t+1/∈W

N∑
i=1

K∑
k=1

(1 ∧ ‖φi,k(st, at)‖Σ−1
ts−1

)

≤MNK +

√√√√NKT
∑

t+1/∈W

N∑
i=1

K∑
k=1

(1 ∧ ‖φi,k(st, at)‖2Σ−1
ts−1

)

≤MNK +

√√√√2NKT
∑

t+1/∈W

N∑
i=1

K∑
k=1

(1 ∧ ‖φi,k(st, at)‖2Σ−1
t,i,k−1

)

≤MNK +

√√√√2NKT

T∑
t=1

N∑
i=1

K∑
k=1

(1 ∧ ‖φi,k(st, at)‖2Σ−1
t,i,k−1

)

≤MNK +

√
2NKT · 2d log

dλ+NKTL2

dλ
,

where the last inequality follows from Lemma D.3. This implies
T∑
t=1

bts(st, at) ≤
2γΛ

1− γ
βT

(
MNK +

√
4NKdT log

dλ+NKTL2

dλ

)
.

Next we bound the switching error ET . Since there are in total M switches, we know that there are
at most M non-zero terms in the summation of ET . Then we have

ET =

T∑
t=1

(Vt(st+1)− Vt+1(st+1)) ≤ Λ

1− γ
M.

Plugging the result of Lemma C.4, we have ET = Õ( Λ
1−γ d).

Therefore, we have the final regret upper bound when T log(1/γ) ≥ log(2NKT ):

Regret(T ) ≤ Õ
( 1

∆2(1− γ)2
·
(
d
√
C/∆ +

√
dNK

)
·
√
T
)

+ polylog(T )-terms,

where d = dim(T ∗) = d2
1d2. When T log(1/γ) ≤ log(2NKT ), the above inequality trivially

holds.

C.1 DEFERRED PROOFS

proof of Lemma C.1. For simplicity, define P̂ = PT̂t , which is the estimated transition distribu-

tion obtained using T̂t. Notice that Pi,k(·|s, a) is a Bernoulli distribution with success probability
〈T ∗, φi,k(s, a)〉, while Pi,k(·|s, a) is a Bernoulli distribution with success probability 〈T̂t, φi,k(s, a)〉.
Therefore, we have

‖Pi,k(·|s, a)− P̂i,k(·|s, a)‖1 ≤ 2(1 ∧ |〈T ∗ − T̂t, φi,k(s, a)〉|).

By Lemma B.1, with probability at least 1− δ, we have ‖T ∗ − T̂t‖Σt−1 ≤ βt for all t ≥ 1. Then by
Cauchy Inequality, the above term can be further bounded as

‖Pi,k(·|s, a)− P̂i,k(·|s, a)‖1 ≤ 2(1 ∧ βt · ‖φi,k(s, a)‖Σ−1
t−1

).

By Lemma D.2, we have

‖P(·|s, a)− P̂(·|s, a)‖1 ≤
∑
i,k

‖Pi,k(·|s, a)− P̂i,k(·|s, a)‖1 ≤ 2
∑
i,k

(1 ∧ βt · ‖φi,k(s, a)‖Σ−1
t−1

).

Then by Lemma D.1, we know the desired result holds.
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proof of Lemma C.2. Define π∗ as the optimal policy under the original model. Then we have

V ∗(st)− Ṽ ∗(st) = V ∗(st)− Ṽ π
∗
(st) + Ṽ π

∗
(st)− Ṽ ∗(st)

≤ V ∗(st)− Ṽ π
∗
(st)

= Eπ
∗
[ ∞∑
i=1

γi−1r(si, ai)
∣∣∣s1 = st

]
− Eπ

∗
[ ∞∑
i=1

γi−1r̃(si, ai)
∣∣∣s1 = st

]
,

where the inequality holds because Ṽ ∗(st) is the optimal V-function with respect to the truncated-
reward model.

Notice that by Lemma B.2 with δ0 = 1/(2NKT ), we know that for policy π∗, with probability at
least 1− δ0, we have ‖si‖1 ≤ Λ = 6

∆2 log(4NKT 3) for all 1 ≤ i ≤ T . Therefore, with probability
at least 1− δ0, r(si, ai) = r̃(si, ai) for all 1 ≤ i ≤ T . Then

V ∗(st)− Ṽ ∗(st) = Eπ
∗
[ ∞∑
i=1

γi−1(r(si, ai)− r̃(si, ai))
∣∣∣s1 = st

]
= Eπ

∗
[ T∑
i=1

γi−1(r(si, ai)− r̃(si, ai))
∣∣∣s1 = st

]
+ Eπ

∗
[ ∞∑
i=T+1

γi−1(r(si, ai)− r̃(si, ai))
∣∣∣s1 = st

]

≤ (1− δ0) · 0 + δ0

T∑
i=1

γi−1NK +NK
γT

1− γ

≤ 1

1− γ
δ0NK +

1

1− γ
δ0NK =

1

T (1− γ)
,

where the last inequality holds when T log(1/γ) ≥ log(2NKT ).

On the other hand, we have

V πt (st)− Ṽ πt (st) = Eπ
[ ∞∑
i=0

γt+i(r(st+i, at+i)− r̃(st+i, at+i))
∣∣∣s1, · · · , st

]
≥ 0.

Therefore,

Regret(T ) ≤ R̃egret(T ) +

T∑
t=1

[(V ∗(st)− Ṽ ∗(st))− (V πt (st)− Ṽ πt (st))] ≤ R̃egret(T ) +
1

1− γ
.

proof of Lemma C.3. Define Vt(s) = maxaQt(s, a). By the assumption that Q̃∗(s, a) ≤ Qt(s, a),
we have Ṽ ∗(s) ≤ Vt(s). Then

∆̃t = Ṽ ∗(st)− Ṽ πt (st) ≤ Vt(st)− Ṽ πt (st) = Qt(st, at)− Ṽ πt (st),

where the last equality holds since at ∈ argmaxaQt(st, a), i.e., we take the action at greedily
according to Qt.

The optimal truncated Q-function Q∗
T̂ts ,r̃+bts

(s, a) (Algorithm 2) satisfies the following truncated
Bellman equation:

Q∗T̂ts ,r̃+bts
(s, a) = min{Λ/(1− γ), r̃(s, a) + bts(s, a) + γEs′∼PT̂ts (·|s,a) max

a′
Q∗T̂ts ,r̃+bts

(s′, a′)}.
(10)
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Then we have

∆̃t = min
{
r̃(st, at) + bts(st, at) + γEs′∼PT̂ts (·|st,at)Vt(s

′),Λ/(1− γ)
}

−
(
r̃(st, at) + γEs′∼P(·|st,at)Ṽ

π
t+1(s′)

)
≤
(
r̃(st, at) + bts(st, at) + γEs′∼PT̂ts (·|st,at)Vt(s

′)
)
−
(
r̃(st, at) + γEs′∼P(·|st,at)Ṽ

π
t+1(s′)

)
=bts(st, at) + γ

(
Es′∼PT̂ts (·|st,at)Vt(s

′)− Es′∼P(·|st,at)Ṽ
π
t+1(s′)

)
=bts(st, at) + γ

(
Es′∼PT̂ts (·|st,at)Vt(s

′)− Es′∼P(·|st,at)Vt(s
′)
)

+ γ
(
Es′∼P(·|st,at)Vt(s

′)− Es′∼P(·|st,at)Ṽ
π
t+1(s′)

)
.

For the second term, since |Vt(s′)| ≤ Λ/(1− γ), by Lemma C.1, we have

γ
(
Es′∼PT̂ts (·|st,at)Vt(s

′)− Es′∼P(·|st,at)Vt(s
′)
)
≤ bts(st, at).

For the last term, we have

γ
(
Es′∼P(·|st,at)Vt(s

′)− Es′∼P(·|st,at)Ṽ
π
t+1(s′)

)
=γξt + γ

(
Vt(st+1)− Ṽ πt+1(st+1)

)
,

where

ξt =
(
Es′∼P(·|st,at)(Vt(s

′)− Ṽ πt+1(s′))− (Vt(st+1)− Ṽ πt+1(st+1))
)
.

Therefore, we have

T∑
t=1

∆̃t ≤
T∑
t=1

(
Vt(st)− Ṽ πt (st)

)
≤ 2

T∑
t=1

bts(st, at) + γ

T∑
t=1

ξt + γ

T∑
t=1

(
Vt(st+1)− Ṽ πt+1(st+1)

)
.

For the last term above, we have

T∑
t=1

(
Vt(st+1)− Ṽ πt+1(st+1)

)
=

T∑
t=1

(
Vt+1(st+1)− Ṽ πt+1(st+1)

)
+

T∑
t=1

(
Vt(st+1)− Vt+1(st+1)

)
︸ ︷︷ ︸

ET

=

T−1∑
t=0

(
Vt+1(st+1)− Ṽ πt+1(st+1)

)
+
[
VT+1(sT+1)− Ṽ πT+1(sT+1)− V1(s1) + Ṽ π1 (s1)

]
+ ET

≤
T∑
t=1

(
Vt(st)− Ṽ πt (st)

)
+ 2Λ/(1− γ) + ET .

Notice that {ξt} is a martingale difference sequence. Therefore, by Azuma-Hoeffding inequality, we
have with probability at least 1− δ,

T∑
t=1

ξt ≤
2Λ

1− γ

√
T log

1

δ
.

19



Under review as a conference paper at ICLR 2023

To summarize, we have

R̃egret(π) ≤
T∑
t=1

(
Vt(st)− Ṽ πt (st)

)
≤ 2

T∑
t=1

bts(st, at) +
2γΛ

1− γ

√
T log

1

δ
+ γ
( T∑
t=1

(
Vt(st)− Ṽ πt (st)

)
+ 2Λ/(1− γ) + ET

)
,

which implies

R̃egret(π) ≤ 1

1− γ

[
2

T∑
t=1

bts(st, at) +
2γΛ

1− γ

√
T log

1

δ
+ γ
(

2Λ/(1− γ) + ET

)]
.

proof of Lemma C.4. On the one hand, we have

det(ΣT )

det(Σ0)
≥
M−1∏
s=1

det(Σts+1−1)

det(Σts−1)
> 2M−1.

On the other hand, we also have

det(ΣT )

det(Σ0)
= det(Σ−1

0 ΣT ) ≤
(Tr(Σ−1

0 ΣT )

d

)d
=
(Tr(I + λ−1

∑
i,k,t φ

t
i,k(φti,k)>)

d

)d
≤
(d+NKTL2/λ

d

)d
.

Therefore, M < 1
log 2d log

(
d+NKTL2/λ

d

)
+ 1.

D AUXILIARY LEMMAS

Lemma D.1. Let P(s′|s, a) and P̂(s′|s, a) be two transition probabilities. Assume that 0 ≤ r(s, a) ≤
Λ. Let Q∗ be optimal Q-function for MDPMP,r. Let Q̂∗ be the optimal truncated Q-function for
MP̂,r+b, which satisfies the following equation

Q̂∗(s, a) = min{Λ/(1− γ), r(s, a) + b(s, a) + γEs′∼P(·|s,a) max
a′

Q̂∗(s′, a′)}.

Then if

b(s, a) ≥ γΛ

1− γ
‖P(·|s, a)− P̂(·|s, a)‖1,

we have
Q̂∗(s, a) ≥ Q∗(s, a) for all (s, a).

Furthermore, we have for any V (s) such that 0 ≤ V (s) ≤ Λ/(1− γ),
γ|Es′∼P(s′|s,a)V (s′)− Es′∼P̂(s′|s,a)V (s′)| ≤ b(s, a).

Lemma D.2 (Factorization). If P(·|s, a) = ⊗Ni=1Pi(·|s, a), P̂(·|s, a) = ⊗Ni=1P̂i(·|s, a), then

‖P(·|s, a)− P̂(·|s, a)‖1 ≤
N∑
i=1

‖Pi(·|s, a)− P̂i(·|s, a)‖1.

Lemma D.3 (Lemma 11 in (Abbasi-Yadkori et al., 2011)). For any {xt}Tt=1 ⊆ Rd, let Σt =

λI +
∑T
t=1 xtx

>
t , then we have

T∑
t=1

(1 ∧ ‖xt‖2Σ−1
t−1

) ≤ 2d log
dλ+ TL2

dλ
,

where L = sup ‖xt‖2.
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Lemma D.4 (Lemma 12 in (Abbasi-Yadkori et al., 2011)). Let A,B ∈ Rd×d be two positive definite
matrices and A � B. Then for any x ∈ Rd, we have

‖x‖2A ≤ ‖x‖2B ·
det(A)

det(B)
.

E ADDITIONAL EXPERIMENTS

E.1 SYNTHETIC CASCADE NETWORK

We conduct experiments on cascade synthetic networks as shown in Figure 2a. There are K = 4
identical networks are associated with different contents; each cascade network has N = 300 nodes
with high/medium/low influential power, 5/20/275 nodes respectively. More specifically, the five
high nodes can activate theirselves and each others at the next time step with probability 0.1; the
high nodes can activate the medium nodes with probability 0.2; the medium nodes can only activate
the low nodes with probability 0.12. Therefore, these networks would appreciate the high nodes as
better actions with more delayed reward. In addition, the d2 = 3-dim content features for K = 4
contents are {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0.3, 0.3, 0.4)}; the d1 = 9-dim user features are one-hot
for each type of nodes associated with each dimension of content features. Finally, the underlying
linear dynamic T ∗ can be easily computed for desired probabilities of edges. The experiment result
of the cascade synthetic networks is reported in Figure1a.
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(a) Cascade network (300 nodes for each content)

t = 1 t = 2 t = 3

inactive node

active node

seed node

decayed node after diffuse

(b) Star-shape network (70 nodes)

Figure 2: Synthetic network visualization. (a) Cascade network. Four identical networks are
associated with different content; their nodes are colored differently. The node activation could not
happen across content. The cascade network has nodes with high/medium/low influential power,
5/20/275 nodes respectively. (b) Star-shape network. This network has three influential nodes; the
center one can activate the other two influential nodes. Only edges with positive probability are
visualized.
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Figure 3: Real-time discounted sum of rewards on synthetic star-shape graph (Fig.2b). The
synthetic network has static underlying dynamics T ∗ generating diffusion probabilities from each
node to all other nodes. Each line is averaged from 20 trajectories; 85% CI bands are included.

E.2 SYNTHETIC STAR-SHAPE NETWORK

We conduct additional experiments on another synthetic network as shown in Figure 2b, where a
better action has more delayed reward and making decision at each time step is appreciated. This
synthetic network has three influential nodes out of total N = 70 nodes, while the center one is the
best choice and has the ability to activate the other two influential nodes. Also the central influential
node has delayed but higher expected reward than expected reward by activating either of other two
neighboring influential nodes. For simplicity, we set only one content is available here, K = 1 and
d2 = 1. The d1 = 6 user features are one-hot vectors, indicating their neighborhood subgraph. The
discount factor of reward is γ = 0.9.

In Figure 3, we compare the performance of our MORIMA to MORIMA with known Ak as upper
bound and IMLinUCB as baseline. The details of these algorithms are the same as in section 5.
MORIMA exhibits its great power to explore the unknown graph efficiently; its learning curve at
the first 40 time steps overlaps with MORIMA while knowing the true dynamics Ak. In addition,
the sum of cumulative rewards of MORIMA and the upper bound stay at the same high level.
Furthermore, we observe that the learning procedure of IMLinUCB takes much longer and converges
to a much lower level. The classic IM setting, activating k seeds at once for every k step, shows its
limit while adaptive decision making leads to a better result.

We ran all experiments on our internal cluster with 8 CPUs, 128G memory per task.
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F EXTENSION TO GENERALIZED LINEAR MODEL

In this section, we show how to extend our algorithm and regret bound to generalized linear models.
We first re-state below the modified assumption on the transition model.
Assumption 6 (Generalized Bernoulli Independent Cascade Model). Let s′ be the next state. For
each k ∈ [K], we assume there is an underlying connectivity matrix Ak ∈ Rn×n such that

P(s′i,k = 1|s) = µ(
∑
j

Ak
i,jsj,k), (11)

where µ : R→ R satisfies µ(0) = 0 and 1/κ ≤ µ′ ≤ 1 for some κ ≥ 1. And we assume s′i,k’s are
independent conditioned on s.

F.1 MORIMA FOR GENERALIZED LINEAR MODEL

Next, we state the changes to our algorithm. Under this assumption, we cannot simply use ridge
regression to get an empirical estimation of T ∗. Instead, we estimate the tensor model by

T̂t = argmin
T

Lt(T ) ≡
∥∥∥λT +

t−1∑
τ=1

K∑
k=1

N∑
i=1

[
µ(〈T , φτi,k〉)− (sτ+1)i,k

]
φτi,k

∥∥∥
Σ−1

t−1

, (12)

where φti,k and Σt are defined as in Section 3.

We still perform optimistic planning with respect to the truncated-reward model, where the reward
bonus term bt(s, a) is replaced with

bt(s, a) =
4κγΛ

1− γ

N∑
i=1

K∑
k=1

(1 ∧ βt · ‖φi,k(s, a)‖Σ−1
t−1

), (13)

which is the original bonus term multiplied by 2κ. We adopt the same slow switching method as
before.

F.2 REGRET ANALYSIS

We have the following regret bound, which is the original bound multiplied by κ.
Theorem 4 (Re-state Theorem 3). Let Assumption 5, Assumptions 2-4 hold. With probability at least
1− δ, Algorithm 1 satisfies the following regret upper bound:

Regret(T ) ≤ Õ
( κ

∆2(1− γ)2
·
(
d
√
C/∆ +

√
dNK

)
·
√
T
)

+ polylog(T )-terms,

where d = dim(T ∗) = d2
1d2.

F.3 PROOF SKETCH OF THEOREM 3

The proof of Theorem 3 only differs from the proof of Theorem 2 slightly. Next we examine through
the proof of Theorem 2 and state the corresponding lemmas in the generalized linear model setting.

First, we have exactly the same result for the high probability bounds for the number of active
user-content pairs.
Lemma F.1 (High probability bounds for the number of active user-content pairs). Let Assumption 5,
Assumptions 2-4 hold. For any possibly non-stationary policy π, with probability at least 1− δ, we
have for all t ≥ 1,

‖st‖1 ≤
2

∆
(

2

∆
log

2t2

δ
+ 1).

The next two lemmas justify the choice of the bonus term.
Lemma F.2 (Confidence Region). Let Assumption 5, Assumptions 2-4 hold. With probability at least
1− δ, we have for all t ≥ 1,

Lt(T ∗) ≤ βt,
where βt is defined as in Eqn. (6).
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Lemma F.3 (Optimism). Let Assumption 5, Assumptions 2-4 hold. Set the bonus term to be

bt(s, a) =
4κΛγ

1− γ

N∑
i=1

K∑
k=1

(1 ∧ βt · ‖φi,k(s, a)‖Σ−1
t−1

).

Then with probability at least 1− δ, we have the optimistic condition Q̃∗(s, a) ≤ Qt(s, a) holds for
all t ≥ 1.

Furthermore, we have for any V (s) such that 0 ≤ V (s) ≤ Λ/(1− γ),
γ|Es′∼P(s′|s,a)V (s′)− Es′∼PT̂t (s′|s,a)V (s′)| ≤ bt(s, a).

proof of Theorem 3. We can verify that Lemma C.2, Lemma C.3, and Lemma C.4 also hold for the
generalized linear model. Therefore, the exact same proof of Theorem 2 applies with Lemma C.1
replaced with Lemma F.3. The result only differs by a factor of κ.

F.4 DEFERRED PROOFS OF LEMMAS

proof of Lemma F.1. Notice that we have assumed µ(0) = 0 and µ′ ≤ 1. Therefore for z > 0,
µ(z) = µ(z)− µ(0) ≤ z − 0 = z. Then

E[(st+1)i,k|st, at] = µ(
∑
j

Ak
i,j(stat)j,k) ≤

∑
j

Ak
i,j(stat)j,k.

Then the result holds by applying the same proof of Lemma B.2.

proof of Lemma F.2. We have

Lt(T ∗) =
∥∥∥λT ∗ +

t−1∑
τ=1

K∑
k=1

N∑
i=1

[
µ(〈T ∗, φτi,k〉)− (sτ+1)i,k

]
φτi,k

∥∥∥
Σ−1

t−1

≤ ‖λT ∗‖Σ−1
t−1

+
∥∥∥ t−1∑
τ=1

K∑
k=1

N∑
i=1

[
µ(〈T ∗, φτi,k〉)− (sτ+1)i,k

]
φτi,k

∥∥∥
Σ−1

t−1

≤ ‖λT ∗‖λI−1 +
∥∥∥ t−1∑
τ=1

K∑
k=1

N∑
i=1

[
µ(〈T ∗, φτi,k〉)− (sτ+1)i,k

]
φτi,k

∥∥∥
Σ−1

t−1

≤
√
λ‖T ∗‖2 + (βt −

√
λ‖T ∗‖2)

= βt,

where the last but one inequality holds by applying Lemma B.3 with the same variance upper bound
as in the proof of Lemma B.1.

proof of Lemma F.3. Let P̂ = PT̂t . By the assumption that µ′ ≤ 1, we still have

‖Pi,k(·|s, a)− P̂i,k(·|s, a)‖1 ≤ 2(1 ∧ |〈T ∗ − T̂t, φi,k(s, a)〉|)
≤ 2(1 ∧ ‖T ∗ − T̂t‖Σt−1

· ‖φi,k(s, a)‖Σ−1
t−1

).

By Lemma F.2, with probability at least 1− δ, we have Lt(T ∗) ≤ βt and then Lt(T̂t) ≤ βt for all
t ≥ 1. Therefore, we have

2βt ≥ Lt(T̂t) + Lt(T ∗)

≥
∥∥∥λT̂t +

t−1∑
τ=1

K∑
k=1

N∑
i=1

[
µ(〈T̂t, φτi,k〉)− (sτ+1)i,k

]
φτi,k − λT ∗ −

t−1∑
τ=1

K∑
k=1

N∑
i=1

[
µ(〈T ∗, φτi,k〉)− (sτ+1)i,k

]
φτi,k

∥∥∥
Σ−1

t−1

=
∥∥∥[λI +

t−1∑
τ=1

K∑
k=1

N∑
i=1

[
µ′(〈T̃ , φτi,k〉)

]
φτi,k(φτi,k)>

]
· (T̂t − T ∗)

∥∥∥
Σ−1

t−1

≥ 1/κ · ‖Σt−1 · (T̂t − T ∗)‖Σ−1
t−1

= 1/κ · ‖T̂t − T ∗‖Σt−1 ,
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where we use Lagrange Mean Value Theorem in the first equality and µ′(·) ≥ 1/κ. Then the desired
result holds by applying Lemma D.2 and Lemma D.1 in the same way as the proof of Lemma C.1.
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