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ABSTRACT

In addressing feature redundancy and training instability in CNNs, orthogonality
regularization has emerged as a promising approach. Specifically, a variant termed
kernel orthogonality regularization seeks to optimize models by minimizing the
residual between kernel functions of convolutional filters and the identity matrix.
Contrary to methods that measure the kernel residual as a holistic entity, our ap-
proach introduces a tailored measure that disentangles diagonal and correlation
components from the kernel matrix, thereby mitigating their mutual interference
during training. Models equipped with this strict kernel orthogonality measure out-
perform existing methods in near-orthogonality. Notably, we observe test accuracy
improvements for shallow architectures. However, as model depth increases, the
efficacy of our strict kernel orthogonality approach diminishes.
Given the challenges of strict kernel orthogonality in deeper models and the inher-
ent non-compliance of specific convolutional layers with the kernel orthogonality
definition, we introduce the concept of a relaxation theory, wherein strict orthogo-
nality is a special case. By adopting this relaxed kernel orthogonality regularization,
we observe enhanced model performance in deeper architectures, suggesting it as a
robust alternative to the strict counterpart.
To validate our approach’s efficacy in achieving near-orthogonality and enhancing
model performance, we conduct rigorous experiments with our kernel orthogonality
regularization toolkit on ResNet and WideResNet in CIFAR-10 and CIFAR-100
datasets. We observe state-of-the-art gains in model performance from the toolkit
and obtain more robust models with expressive features. These experiments demon-
strate the efficacy of our toolkit while highlighting the often overlooked challenges
in orthogonality regularization.

1 INTRODUCTION

Despite the widespread adoption and success of deep convolutional neural networks in various
applications Krizhevsky et al. (2012); Simonyan & Zisserman (2015); He et al. (2016); Tan & Le
(2019); Ding et al. (2022), they are not without challenges. Issues such as vanishing gradient Bengio
et al. (1994); Glorot & Bengio (2010), feature statistic shifts Ioffe & Szegedy (2015), and saddle
points Dauphin et al. (2014) hinder the training of CNNs. To mitigate these challenges, researchers
have explored a range of techniques. These include methods for better parameter initialization Saxe
et al. (2014), normalization techniques to stabilize internal activations Ioffe & Szegedy (2015), and
architectures that support residual learning Srivastava et al. (2015); He et al. (2015).

Additionally, there’s a growing interest in methods that focus on the relationships between convolu-
tional filters. Correlation regularization aims to align the correlation information of convolutional
filters with a predefined ideal distribution Liu et al. (2020); Wang et al. (2021). In contrast, orthogo-
nality regularization seeks to ensure that processed convolutional filter information is orthogonal. A
notable subtype of this is the kernel orthogonality regularization, enforces the orthogonality of the
kernel function of the convolutional filters Ozay & Okatani (2016); Harandi & Fernando (2016).

In contrast to the prevailing focus on optimizing measure of the distance between the kernel and the
identity matrix Xie et al. (2017); Bansal et al. (2018) and the influence of the isometry property on
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training Qi et al. (2020); Huang et al. (2018), our work identifies a subtle but significant challenge
in orthogonality regularization. Specifically, when there’s an emphasis on minimizing task loss, the
optimization objective for orthogonality regularization can become challenging to achieve. This
complexity often results in a gap, causing traditional orthogonality regularization to underperform.

To tackle this challenge, we introduce disentangled orthogonality regularization. This method com-
bines the advantages of correlation and orthogonality regularization, aiming to push the distribution
of convolutional filters towards orthogonality stably without compromising the constraint on filter
norms. Our extensive experiments show that this approach surpasses existing methods in achieving
near-orthogonality. While models with shallow architectures benefit from this method, the advantage
wanes as the network depth increases. This observation prompts a pivotal question:

Is the pursuit of strict orthogonality always justified?

In response to this, our findings indicate that while better near-orthogonality should correlates with
enhanced performance, the benefits plateau in deeper models. This calls for a reevaluation of the
existing strict orthogonality paradigm, especially for deep architectures.

Building on these insights, we introduce a relaxation theory. Following its principles, we craft a variant
of the disentangled orthogonality regularization that offers a more flexible approach to orthogonality
in deep networks. This variant specifically addresses certain convolutional filters that were previously
excluded from the kernel orthogonality definition. Additionally, with the introduction of the concept
of transition dimension, filters that were previously included in orthogonality regularization can
now be better optimized, unlocking their full potential. This refined approach effectively overcomes
the challenges associated with strict orthogonality, particularly in the background space of deeper
networks, culminating in improved model performance.

2 RELATED WORKS

The benefits of orthogonality filters were first researched in recurrent neural networks (RNNs) to
address gradient vanishing or exploding problems Arjovsky et al. (2016); Wisdom et al. (2016);
Dorobantu et al. (2016). In the context of RNNs, Casado & Martínez-Rubio (2019) introduced
parameterization from exponential maps to achieve computational efficiency. The trade-offs between
soft and hard orthogonality in RNNs are further elaborated upon in Vorontsov et al. (2017).

Moving to convolutional neural networks (CNNs), the role of orthogonality in stabilizing training
has been highlighted in Rodríguez et al. (2017); Bansal et al. (2018); Xie et al. (2017). Methods to
preserve the orthogonality property during CNN training are investigated in Harandi & Fernando
(2016); Ozay & Okatani (2016), with a focus on Stiefel manifold-based optimization techniques. In
practice, orthogonality regularization has been found to enhance the training of image generation
models Brock et al. (2019; 2017); Miyato et al. (2018); Shukla et al. (2019); Peebles et al. (2020).

A particular focus in the literature has been on the imposition of orthogonality on the convolutional
filters of networks, with empirical results validating this approach Harandi & Fernando (2016); Ozay
& Okatani (2016); Xie et al. (2017); Qi et al. (2020). When it comes to quantifying orthogonality, a
significant portion of research has centered around the residual between the Gram matrix and the
identity matrix. The introduction of Frobenius norm on orthogonality regularization has been a
popular method in previous works, aiming to optimize the Gram matrix by minimizing the Frobenius
norm between the identity matrix and the Gram matrix Xie et al. (2017); Huang et al. (2018).
An improvement to this method was introduced by (Kim & Yun, 2022), which provides a more
balanced approach for handling layers with different filter numbers. On the other hand, the Spectral
Restricted Isometry Property Regularization (SRIP) replaces the Frobenius norm with the spectral
norm, enhancing the network’s generalization ability and achieving state-of-the-art performance
Bansal et al. (2018). Furthermore, (Wang et al., 2020) proposes alternative approaches working on
improving the kernel function, exploring approximations in spaces with desirable properties.

In the domain of correlation regularization, a common strategy involves guiding the distribution
of filters towards a predefined ideal. While (Liu et al., 2020) drew inspiration from the Thomson
Problem, (Wang et al., 2021) aimed to approximate the solution of the Tammes problem. However,
typical correlation regularization techniques derive from the ideal that filters are situated within a unit
sphere, often neglecting the impact of filter norms on training.
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3 DISENTANGLED ORTHOGONALITY AND RELAXATION THEORY

3.1 PRELIMINARY

First, we establish a unified notation, clarify its relevance, and define the terminology in the context:

• Convolutional filters: transformation matrix K of convolutional filters, K ∈ Ro×i×kh×kw , where:

– o: Number of output channels.
– i: Number of input channels.
– kh: Height of the convolutional kernel.
– kw: Width of the convolutional kernel.

The convolutional filters K can be reshaped to Ro×(i×kh×kw),representing o convolutional filters:

K =

 k1

...
ko

 ,where ki induce a linear map ⟨ki, ·⟩ : Ri×kh×kw 7→ R (1)

Convolutional filters K maps the stacked input patches to the output space with dimension Ro.
The normalized filters, denoted by k̃i =

ki

∥ki∥ , form the normalized convolutional filters K̃

• Kernel matrix / Gram matrix: the kernel function of convolutional filters K, denoted as KK⊤,
whose entries are given by the inner product Gramij = ⟨ki,kj⟩. The term orthogonality for
the convolutional filters K specifically refers to the condition where the Gram matrix is equal to
the identity matrix, i.e., KK⊤ = Io×o. In prior research, strict orthogonality regularization is
characterized by an optimization on K to minimize the measure of kernel residual:

∥KK⊤ − Io×o∥ (2)

with better strict orthogonality implying that the measure on residual ∥KK⊤ − Io×o∥ is smaller.

• Over-determined / Less-determined: these terms describe the relationship between the rows and
columns in the reshaped convolutional filters K. Convolutional filters K with o ≤ (i× kh × kw)
is defined as less-determined. In Appendix A.3, we discuss over-determined convolutional filters
K is theoretically inaccessible to strict orthogonality: KK⊤ ̸= Io×o, o > (i× kh × kw)

3.2 STRICT KERNEL ORTHOGONALITY REGULARIZATION, DISENTANGLED NORM

This section elaborates on the concept of the disentangled norm and its derivation. This norm aims to
improve upon traditional orthogonality regularization methods by providing a more nuanced measure
of orthogonality that accounts for both off-diagonal and diagonal properties.

Before exploring the disentangled norm, let’s grasp the motivation behind strict orthogonality regular-
ization. Kernel strict orthogonality regularization tends to push the Gram matrix KK⊤ towards the
identity matrix I . This regularization results in two main effects:

• On diagonal entry: Strict orthogonality aims for the diagonal of the Gram matrix to have unit
values, indicating filters with unit norms:

diag(KK⊤)i = Gramii = ⟨ki,ki⟩ → 1 (3)

Having filters with unit norms is desirable as it ensures that each filter contributes effectively during
the convolution operation. In practice, orthogonality regularization on the diagonal constrains the
variance of the convolutional filters based on their norms. This constraint guarantees that all filters,
even those with smaller norms, contribute effectively, preventing overly weak output features.

• On off-diagonal entry: Strict orthogonality enforces off-diagonal entries towards zero:

Gramij = ⟨ki,kj⟩ → 0 (4)

In practice, this results in reduced correlation between convolutional filters, assisting the network
in minimizing filter redundancy.

3



Under review as a conference paper at ICLR 2024

With these insights, we now turn to the derivation of the disentangled norm, highlighting its advantages
in strict kernel orthogonality optimization.

We now disentangle the diagonal and off-diagonal components from the Gram matrix KK⊤. Since
KK⊤ is a real symmetric matrix, it suffices to consider its lower triangular and the diagonal:

LowerTriangular(KK⊤) =


0 0 · · · 0

⟨k2,k1⟩ 0 · · · 0
...

...
. . .

...
⟨kn,k1⟩ ⟨kn,k2⟩ · · · 0

 ,diag(KK⊤) =

 ⟨k1,k1⟩
...

⟨kn,kn⟩


(5)

Considering that the correlation between two filter Corr (ki,kj) =
⟨ki,kj⟩

∥ki∥∥kj∥ provides a measure of
orthogonality between them regardless of the influence from their norms. Furthermore, the lower
triangular of correlation matrix aligns with the lower triangular of normalized Gram matrix K̃K̃⊤.
In computation of the disentangled norm of the kernel residual:

∥KK⊤ − Io×o∥ =
∥∥∥LowerTriangular(K̃K̃⊤)− 0o×o

∥∥∥
F
+ λ

∥∥diag(KK⊤)− 1o×1

∥∥
F

(6)

∥ · ∥F refer to the Frobenius norm, λ is a balance coefficent between disentangled correlation loss
and diagonal loss. In Appendix A.2, we discuss the motivation of the disentangled norm.

For the sake of computational efficiency, we compute the diagonal of the Gram matrix diag(KK⊤)

from the filter norms of K. With these filter norms, we can derive the normalized matrix K̃. This
allows us to obtain the lower triangular of the normalized Gram matrix LowerTriangular(K̃K̃⊤).

3.3 RELAXATION THEORY, RELAXED KERNEL DISENTANGLED ORTHOGONALITY

3.3.1 RELAXATION ON OVER-DETERMINED LAYERS

In this section, we propose the relaxation theory on kernel orthogonality regularization. As highlighted
in Appendix A.3, over-determined K inherently do not comply with the definition of strict kernel
orthogonality. Given a matrix Ko×n with rows k1,k2, . . . ,ko, where n = i × kh × kw and
o > n, it can be asserted that there always exist filter pairs (ki,kj) in K such that their correlation
Corr (ki,kj) ̸= 0. It is a natural approach to consider relaxing these non-zero correlation pairs from
the orthogonality regularization. Building on this idea, this observation leads to a pivotal question:

How can we identify these pairs in the correlation matrix that should be relaxed?

Directly determining the exact number of pairs that should be relaxed is challenging. However,
by analyzing the components in the lower triangular of the correlation matrix, we can obtain an
approximation of the lowerbound number for the numbers of the pairs that should be relaxed. We
denote the vectorized LowerTriangular of the correlation matrix as c, with the dimension o×(o−1)

2 :

c = vec(LowerTriangular(K̃K̃⊤)), ci ∈ [−1, 1] (7)

For the overdetermined Ko×n, the convolutional filter can form span{k1, . . . ,ko} with a maximum
rank n = min(o, n). As shown in Fig. 1, under this constraint on the rank, we construct an orthogonal
structure with n filters, these filters, which support the rank, are termed as structural filters. We assign
these n structural filters, to the label ℓ (ki) from the index {1, . . . , n}. The rest o− n filters, which
are supposed to adjust the relative distribution of filters for an enhanced representation, are termed as
flexible filters. In addition to classify the filters into two types, we can assign the nearest structural
filter index to the flexible filters in correlation measure and the structural filter index assigned to itself:

1structural (ki) =

{
1 structural filter ki

0 flexible filter ki
, ℓ (ki) = j = argmax

1structural(kj)=1

|Corr(ki,kj)| (8)

In accordance with the equality of (1structural (ki) ,1structural (kj)), (ℓ (ki) , ℓ (kj)), we can catego-
rize the entries cki,kj

in c into four types:

• 1structural (ki) = 1structural (kj) = 1: c(1,1) remain subjected to orthogonality regularization.
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• 1structural (ki) = 1structural (kj) = 0: c(1,0) with a relative small magnitude, since the flexible
filters will be redistributed to alleviate filter redundancy in training to get the better representation.

• 1structural (ki) ̸= 1structural (kj): We can further categorize these type cki,kj

– ℓ (ki) = ℓ (kj): c(0,1) share the same label, thus tend to have large correlation.
– ℓ (ki) ̸= ℓ (kj): c(0,0) have different label, the flexible filter ki may locate in the orthogonal

complement of the structural filter k⊥
j , as shown in the first segment of Fig. 1, k65 ∈ k⊥
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Figure 1: llustration of the relaxed orthogonality regularization on over-determined layers. The first
segment shows the construction of the structural filters and flexible filters. The second segment shows
the assignment of flexible filters to the respective structural filters. The third segement shows the
relaxed c in yellow color under strict orthogonality regularization

Among c(1,0), c(0,1), c(0,0), it is observed that c(0,1) is the category that should primarily be relaxed.
To investigate the card(c(0,1)), card(·) stands for the number of elements in a set. card(c(0,1)) can
be split to a sum of pairs in c based on all structural filter with the same label:

card(c(0,1)) = Σ1structural(ki)=1 card({(ki,kj)|ℓ (ki) = ℓ (kj) ,ki ̸= kj}) (9)

Different filter distributions can lead to variations in card(c(0,1)), we choose to give an approximation
to card(c(0,1)) by Monte Carlo method. For ease of research, we assume that the label assignment of
flexible filter to structural filter follow a uniform distribution, we can approximate the shared-label
correlation pair in c, fixed structural filter in m times Monte Carlo, as depicted in the second segment
in Fig. 1. Um(n) acts as the uniform distribution in m experiment.

˜card(c(0,1)) =
1

m
Σm card(cm(0,1)),∀ki ∈K,1structural(ki) = 0, lm(ki) ∼ Um(n) (10)

˜card(c(0,1)) serve as an approximation to the lower bound of the should-be-relaxed pairs in c:
˜card(c(0,1))→ card(c(0,1)) ≤ card(c(0,1)) + card(c(0,0)) + card(c(1,0)) (11)

We split c into the positive part and the negative part c = c+ − c−. As the positive corre-
lation and negative correlation are symmetric in representation Kuo (2016), let topkk(·) repre-
sent the function that extracts the k-largest elements from a vector. We respectively remove
topkk(c

+) and topkk(c
−), k = ˜card(c(0,1))/2 from the vector c+ and c−. As shown in the third

segment in Fig. 1, the relaxed disentangled orthogonality regularization on over-determined K:

∥KK⊤ − Io×o∥ = ∥c+\ topkk(c+)− 0∥F + ∥c−\ topkk(c−)− 0∥F (12)
For the overdetermined filters K, we enforce the orthogonality on their correlation and remove the
constraint on their norm, the motivation for this discussed in Appendix A.4.

3.3.2 RELAXATION ON LESS-DETERMINED LAYERS

In this section, we introduce a method for relaxation on less-determined layers, to address the declined
performance enhancement observed in deeper models equipped with strict disentangled orthogonality
regularization. Contrary to the focus on convolutional filters K for relaxation on the over-determined
layers, we shift our attention to the data representation X in the relaxation on less-determined layers.

Consider the expressiveness of a transform in a hidden layer given by: Xj = Kj(Xj−1), where Xj

and Xj−1 are the representations at layers j and j − 1:
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• Less expressive: given rank inequality: rank(AB) ≤ min(rank(A), rank(B)), the rank of the
output representation Xj is constrained as:

rank(Xj) ≤ min(rank(Kj), rank(Xj−1)) (13)
If rank(Kj) is too small, it can lead to a collapse in the rank of Xj , reducing the expressiveness
of the representation. This serves as a primary motivation for orthogonality regularization.

• Overly expressive: if Kj is overly expressive, there’s a risk of overfitting to the training data.

Consider splitting Kj as:
[

K∗

K\K∗

]
, where K∗ contains filters producing meaningful features,

while K\K∗ contains filters that optimize training loss but might not generalize well. To mitigate
the effects of non-contributive filters in Kj , regularization techniques like dropout Zagoruyko &
Komodakis (2016) can be employed.

From our analysis, we deduce that there should be an optimal rank∗(Kj), which we denote as
transition dimension. The challenge then becomes finding an approximation to rank∗(Kj). Instead
of imposing strict orthogonality regularization on Roj , we focus on the strict orthogonality on the
transition dimension rank∗(Kj). This approach is referred to as relaxed disentangled orthogonality
regularization on less-determined layers Kj ∈ Roj×(ij×(kh)j ,(kw)j).

Figure 2: Illustration of the concept of the transition dimension. Moving from left to right in the
illustration, The intrinsic dimension of data representation Xj−1 is represented in green plane. The
transition dimension, which formed by K∗

j (Xj−1),K
∗
j with rank(K∗

j ). The output dimension is
denoted by Roj , within which the transition dimension embedded in as a low-rank manifold. The
transition dimension can align with specific Roj with a relative low dimension oj .

Consider the transform Xj = Kj(Xj−1) with transition dimension shown in Fig. 2, To approximate
the transition dimension, we consider three attributes from the dataset and filters in architectures:

• Intrinsic dimension IntDim: Kj should avoid less-expressive from Equation (13), we take the
intrinsic dimension of dataset IntDim, acting as an approximation to min(rank(X)). K∗

j should
satisfy rank(K∗

j ) ≥ min(rank(X)).

• Dataset attribute n: For an infinite-depth network operating on a dataset with n labels, the network
can learn a complex map that disentangle the features into n direction. Thus K∗

j should satisfy
rank(K∗

j ) ≥ n to disentangle features.

• Layerwise capacity LC: The transition dimension should vary depending on the filters width.
This refers to the following condition under the same model: (K1)oj1×·, (K2)oj2×·, oj1 ≥ oj2 ⇒
rank(K∗

1 ) ≥ rank(K∗
2 ), While this layerwise capacity ascent should not be linearly proportional

to the output-channel dimension ascent. We consider the logarithm(10) based on the narrowest
filter width, to corporate with the IntDim from dataset representation: LC = IntDim× log10 (oj)

Based on the discussion above, there comes to the approximation of the rank(K∗
j ):

rank(K∗
j )← ˜rank(K∗

j ) = min [max (IntDim, n) ,LC] (14)

With ˜rank(K∗
j ), we propose the relaxed orthogonality on the specific less-determined layers

Ko×n, o > ˜rank(K∗
j ). The computation of cardinality k (Equation (10)) replace n with ˜rank(K∗

j ):

∥KK⊤ − Io×o∥ = ∥c+\ topkk(c+)− 0∥F + ∥c−\ topkk(c−)− 0∥F + λ
∥∥diag(KK⊤)− 1

∥∥
F

(15)
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4 EXPERIMENTS

Our experiments were conducted on the CIFAR100 and CIFAR10 datasets Krizhevsky (2009). Each
dataset consists of 60,000 images with dimensions 32× 32. CIFAR100 has 100 unique labels, while
CIFAR10 features 10. Adhering to the partitioning method from He et al. (2016), we designated
45,000 images for training and 5,000 for validation from the 50,000 training images. The remaining
10,000 images were used as our test set. In the data preprocessing phase, we applied a random crop
transformation with a 4-pixel padding and a subsequent random horizontal flip to the 32× 32 input
images for augmentation. These images were then normalized using mean and standard deviation
values computed directly from the dataset.

Our choice of models included several classical ResNet architectures He et al. (2016), which were
selected due to their typical and lightweight nature. This included narrow channel variants like
ResNet20, ResNet32, and ResNet56, as well as broader channel variants such as ResNet18 and
ResNet34. Additionally, we explored the ResNet50 model, which features a bottleneck structure, and
the WideResNet 28×10 architecture.

For the training configuration, we adhered to the methodology described in He et al. (2016). For
CIFAR10, we employed the SGD optimizer with a Nesterov Momentum of 0.9, training over 160
epochs. We initiated the learning rate at 0.1, decreasing it by a factor of 10 post the 80th and 120th
epochs using MultiStepLR. For CIFAR100, we trained over 200 epochs with the SGD optimizer and
a Nesterov Momentum of 0.9. The learning rate was initially set at 0.1 and adjusted by a factor of 5
post the 80th, 120th, and 160th epochs. We maintained a batch size of 128 for the SGD optimizer
and deployed two RTX 4090 GPUs for our experiments.

4.1 HYPERPARAMETER SCHEME

In this section, we present our scheme for hyperparameter tuning:

• Balance between Task Loss and Regularization Loss:
Let Ltask denote the task-specific loss (e.g., classification loss) and Lreg represent the orthogonality
regularization. As discussed in Appendix A.2, The proportion of each loss type to the overall loss,
Ltotal, is crucial. It’s imperative to ensure:

Ltask

Ltotal
≥ θ

where θ is a threshold ensuring the significance of the task-specific loss.
To initialize the hyperparameter for orthogonality regularization, we adhere to the following
criterion: ∣∣∣∣∑Lreg

Ltotal
− βreg

∣∣∣∣ ≤ ϵreg

where βreg is the desired balance for regularization, set to 10%, and ϵreg is a tolerance level set to
1%.
During subsequent training, in reference to the Scheme Change for Regularization Coefficients
Bansal et al. (2018), we adjust our method at certain epochs. These include the beginning and
midpoint of the second and third learning stages, as well as the start of the fourth learning stage.
If the sum of the ratios of the regularization terms exceeds the set ratio, it is scaled down to less
than 40%. This strategy ensures a balanced and flexible approach to model training, adjusting the
contribution of different loss components as training progresses.

• Balance between Diagonal Loss and Correlation Loss: When balancing diagonal loss and correla-
tion loss, we prioritize correlation loss as it plays a more critical role in orthogonality regularization.
Similar to the task balance control, at the same epoch where we monitor the balance between
task-specific loss and regularization loss, we set the balance between diagonal loss and correlation
loss to be 10% and ϵdisentangled to 5%.

• Relaxation of Transition Dimension: For the approximation of transition dimension in Equation (14)
the Layerwise Capacity LC and dataset attributes n can directly be obtained from the model and
the dataset. For the intrinsic dimension, we refer to the research of Pope et al. (2021), setting the
intrinsic dimension IntDim = 30 for CIFAR10 and CIFAR100 in the experiments.
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4.2 ON THE PERFORMANCE GAINS UNDER ORTHOGONALITY REGULARIZATION

In the subsequent sections, we systematically examine the impact of orthogonality regularization.
Relaxed disentangled orthogonality, as defined in Section 3.3.1, is applied by default to the over-
determined layers under both strict and relaxed disentangled orthogonality. We set the default
transition dimension for over-determined convolutional filters as ˜rank(K∗

o×n) = n.

Upon analyzing narrow ResNet models, we found that strict orthogonality could might hinder
performance in shallow variants, which are the models with the lowest output dimension in our
experiment. Due to the low-rank nature of this type of ResNet, the strict orthogonality regularization
may lead the convolutional filters to be over-regularized. However, the introduction of the transition
dimension in narrow width ResNet models can still enhance their performance. As the network
depth increased, the advantage of strict orthogonality regularization on the output dimension became
evident. Moreover, relaxed orthogonality regularization on the transition dimension led to further
performance improvement.

In the case of mid-width ResNet models, an increased output dimension, resulting from the convolu-
tional filters with more filters, leads to a more complex data representation. Baseline regularization
methods like Frobenius Xie et al. (2017) and SRIP Bansal et al. (2018) improved model performance,
and the application of relaxed orthogonality showed its advantage in shallow models like ResNet. In
comparison, the overdetermined layer in the bottleneck structure seemed to challenge the effectiveness
of strict orthogonality regularization methods. However, our proposed relaxation on overdetermined
layers not only stabilized the training process but also led to superior performance in ResNet models
with bottleneck structures.

For WideResNet models, the advantages of both baseline strict orthogonality regularization and
relaxed orthogonality on the transition dimension were evident. However, strict disentangled orthog-
onality regularization on the output dimension appeared to be the least effective for performance
improvement. This might be due to the fact that WideResNet models have the highest output dimen-
sion in our experiment, making the introduction of the transition dimension in WideResNet models
very significant.

Table 1: The table showcases test accuracy outcomes for various scenarios, represented as mean and
standard deviation values from three runs with random seeds. Different orthogonality regularization
methods are listed along the rows. The term Vanilla refers to optimization without regularization,
Strict indicates strict disentangled orthogonality regularization in the output space, and Relaxed
represents relaxed disentangled orthogonality in the transition dimension estimated by Equation (14).
WRN 28×10 in the last row represents WideResNet 28×10.

Test Acc Mean/Std Vanilla Frobenius SRIP Strict Relaxed
16-32-64

ResNet20 91.65 ± 0.15 91.68 ± 0.11 91.75 ± 0.15 91.59 ± 0.13 91.90 ± 0.12
ResNet32 92.81 ± 0.21 92.81 ± 0.12 92.85 ± 0.14 92.73 ± 0.19 93.04 ± 0.18
ResNet56 93.25 ± 0.17 93.30 ± 0.16 93.47 ± 0.15 93.17 ± 0.20 93.53 ± 0.09

64-128-256-512
ResNet18 76.51 ± 0.18 76.87 ± 0.13 77.10 ± 0.18 77.09 ± 0.17 77.35 ± 0.11
ResNet34 77.08 ± 0.22 77.43 ± 0.16 77.69 ± 0.12 77.63 ± 0.19 77.85 ± 0.17
ResNet50 77.43 ± 0.16 77.82 ± 0.17 77.71 ± 0.22 78.12 ± 0.13 78.50 ± 0.16

160-320-640
WRN 28×10 79.32 ± 0.16 79.82 ± 0.13 80.11 ± 0.12 79.73 ± 0.22 80.23 ± 0.12

4.3 ON THE NEAR-ORTHOGONALITY UNDER ORTHOGONALITY REGULARIZATION

In this section, we will examine the extent of near-orthogonality under various orthogonality regular-
izations. We will focus on the following models: narrow variants of ResNet (ResNet56), mid-width
variants of ResNet (ResNet18), and the wider variant WideResNet (WRN28×10). For the less-
determined layers, we exhibit the average statistics of all layers in the same output dimension.

Notably, no regularization scheme can achieve perfect orthogonality in the less-determined layers of
the well-trained models. Starting with the narrowest ResNet variant, ResNet56, we observe that due to
its low-dimension output space, the well-trained model under strict disentangled orthogonality almost
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Table 2: In the table, we quantify the near-orthogonality of a specific layer by analyzing the
statistics of the correlation matrix and the diagonal. The mean of the lower triangular part of the
correlation matrix represents the average degree to which filters in a specific transformation approach
zero-correlation. Furthermore, the standard deviation of the correlation indicates the stability of
near-orthogonality. Values separated by ’/’ represent the mean and the average diagonal of the layer

ResNet56 Layer3 Downsample Layer1 [16,144] Layer2 [32,288] Layer3 [64,576]
Vanilla 0.01 ± 0.10/0.03 0.04 ± 0.25/0.06 0.01 ± 0.11/0.05 0.01 ± 0.06/0.18

Frobenius 0.02 ± 0.19/0.13 -0.00 ± 0.05/0.27 -0.00 ± 0.09/0.22 -0.01 ± 0.09/0.42
SRIP 0.01 ± 0.18/0.17 0.00 ± 0.02/0.23 0.00 ± 0.09/0.24 -0.01 ± 0.09/0.45
Strict 0.01 ± 0.13/0.17 0.00 ± 0.00/0.95 -0.00 ± 0.01/0.90 0.00 ± 0.01/1.12

Relaxed 0.00 ± 0.13/0.20 0.00 ± 0.01/0.31 -0.00 ± 0.02/0.30 -0.00 ± 0.03/0.60
ResNet18 Layer3 Downsample Layer2 [128,1152] Layer3 [256,2304] Layer4 [512,4608]
Vanilla 0.01 ± 0.10/0.03 0.04 ± 0.25/0.06 0.01 ± 0.11/0.05 0.01 ± 0.06/0.16
Strict 0.01 ± 0.10/0.11 0.00 ± 0.01/0.26 0.00 ± 0.02/0.16 0.01 ± 0.02/0.18

WRN 28 × 10 Layer3 Downsample Layer1 [160,1440] Layer2 [320,2880] Layer3 [640,5760]
Vanilla 0.01 ± 0.10/0.03 0.04 ± 0.25/0.06 0.01 ± 0.11/0.05 0.01 ± 0.06/0.18
Strict 0.01 ± 0.05/0.03 0.00 ± 0.05/0.06 0.00 ± 0.03/0.06 0.01 ± 0.05/0.31

achieves perfect orthogonality. However, as we move to models with higher output dimensions,
this near-orthogonality property diminishes significantly. The higher the output dimension, the less
likely it is for the manifold associated with a good task loss to overlap with the manifold exhibiting
near-orthogonality.

5 SUMMARY

5.1 RETHINKING STRICT ORTHOGONALITY REGULARIZATION

In response to the question posed in the introduction: While it is possible to maintain strict orthog-
onality, the kernel matrix KK⊤ may not always be the ideal entity for this orthogonality. Our
observations on near-orthogonality, as presented in Table 2, coupled with the enhancement in model
performance depicted in Table 1, indicate that strict orthogonality regularization might not always be
the most effective strategy.

Take, for instance, the ResNet56, as referenced in both Table 2 and Table 1. Although this model
can achieve near-orthogonality during its training phase and also benefit from strict orthogonality
regularization in terms of output dimension, it doesn’t perform as well when compared to the relaxed
orthogonality regularization applied on the transition dimension. This highlights a contradiction
between the model’s increased capacity and the strict orthogonality within output space.

For models characterized by heightened expressivity, typically associated with deeper architectures,
it is crucial to exercise judiciousness when enforcing strict orthogonality on the kernel matrix.

5.2 LIMITATIONS

Our methodology presents certain limitations that warrant further exploration and potential solutions.

• Estimation of Transition Dimension: The current method for estimating the transition dimension
could be enhanced with a more theoretically robust approach. In an ideal scenario, we would
design models that facilitate module-wise relaxation configurations, providing greater adaptability
and refined oversight during the training process.

• Computational Complexity: Our relaxed orthogonality regularization introduces a relatively large
computational challenge. Specifically, the integration of a dual search mechanism within correlation
matrix, targeting both positive and negative boundaries of the relaxation correlation filter pair,
implies that the relaxed orthogonality regularization is typically more resource-demanding than its
strict counterpart. Exploring ways to reduce the computational demands of relaxed orthogonality
regularization warrant further research.
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A APPENDIX

A.1 IMPLICATIONS OF TASK LOSS ON ORTHOGONALITY REGULARIZATION

In this section, we discuss the interplay between task loss and strict orthogonality, particularly within
what we term as the output space. This space, defined by the black coordinate filters, encompasses
the transition dimension, which is of particular interest to our study.

Consider the output space, spanned by the black orthogonal filters. Within this space, the green-
shadowed transition dimension is embedded, which is effectively spanned by a set of linear filters
{k1,k2, . . . ,kn}. However, due to the higher dimensionality of the out space compared to the
transition dimension, we observe "redundant" transition dimension filters, such as kn+1.

 

Figure 3: Depiction of the conflict between strict orthogonality and task loss

During optimization, a conflict arises between the structural filters of the transition dimension and
the task filters. Let’s delve deeper into this conflict by examining two specific filters, kn and kn+1:

• From the perspective of strict orthogonality regularization, purple gradients are imposed that strive
to span a larger transition dimension. This results in the extraction of in-span filter kn from the
transition dimension and the orthogonalization of kn+1, regardless of the existing linear span of
the transition dimension.

• On the other hand, the task loss introduces orange gradients on kn and kn+1, possibly drawing
filters into the current transition dimension. Simultaneously, it rearranges the filter distribution
within the transition dimension to optimize the layer-wise data representation.

When focusing solely on strict orthogonality in the output dimension, issues arise if the purple
gradients become too strong, leading to over-regularization of orthogonality. This may inadvertently
result in a wastage of filters, given that the existing linear span of the transition dimension can
effectively represent most of the input.

Our proposed resolution involves relaxing some highly correlated pairs like (kn,kn+1) from the
correlation orthogonality regularization. By doing so, we believe that such relaxation can assuage the
conflicts in the imagined transition dimension and strike a balance between orthogonality and task
performance.

A.2 GRADIENT ANALYSIS OF STRICT ORTHOGONALITY REGULARIZATION

Given the holistic entity kernel orthogonality regularization in Frobenius norm, this section aims
to provide a deeper understanding of the regularization term and its implications in training. We
can break down the regularization term into two parts: one for the correlation term and one for the
diagonal term. This decomposition allows us to separately analyze the contributions of off-diagonal
and diagonal elements to the regularization.
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We will discuss the reason why insert a scaling factor λ in our strict orthogonality regularization later
in this section. The off-diagonal matrix, for correlation part C which contains only the off-diagonal
entries of KK⊤ − I:

C = KK⊤ − I − diag(KK⊤ − I) (17)

The Frobenius norm of C and its gradient with respect to K are:

∥C∥2F = trace(C⊤C) and ∇K∥C∥2F = 2(KC +CK⊤) (18)

For the diagonal term, let’s define the diagonal matrix D:

D = diag(KK⊤ − I) (19)

The Euclidean norm of D and its gradient with respect to K are:

∥D∥22 = trace(D⊤D) and ∇K∥D∥22 = 2KD (20)

Combining the gradients, the total gradient of L with respect to K is:

∇KL = 2(KC +CK⊤) + 2λKD (21)

This gradient can be used in optimization algorithms to update the matrix K and minimize the loss
function L. However, it’s essential to note that from Appendix A.1 and Table 2, we know due to the
task loss, the kernel matrix cannot be an identity matrix. Furthermore, the residual in the diagonal
part D will be larger than the residual in the correlation part C. As the initial motivation of the
orthogonality regularization is to alleviate filters redundancy, we think it natural to focus the gradinet
on the correlation part, by adjusting the λ coefficient.

A.3 ON THE INHERENT NON-COMPLIANCE OF SPECIFIC CONVOLUTIONAL LAYERS WITH THE
KERNEL ORTHOGONALITY DEFINITION

Consider an overdetermined matrix K of dimension o× (i× kh × kw) where o > i× kh × kw. We
aim to prove that the kernel function KK⊤ cannot be equal to the identity matrix Io×o:

The rank of KK⊤ is at most the rank of K. Since K has more rows than columns (due to the
constraint o > i× kh × kw), its rank is bounded by its column count, i.e., rank(K) ≤ i× kh × kw.
Consequently, rank(KK⊤) ≤ i× kh × kw.

For KK⊤ to be the identity matrix Io×o, the rows of K must be orthonormal. This condition
necessitates that the dot product of any pair of distinct rows is zero.

However, given the dimensionality constraint o > i× kh × kw, it is evident that not all rows of K
can be orthonormal. This is because the maximum number of linearly independent rows a matrix
with i× kh × kw columns can possess is i× kh × kw. As o > i× kh × kw, there are more rows in
K than the maximum permissible number of linearly independent rows. This ensures the existence
of at least one pair of rows that are linearly dependent, contradicting the orthonormality requirement.

In conclusion, given the specified dimensions of K, KK⊤ cannot be Io×o.

A.4 ANALYSIS OF NORM CONSTRAINTS IN OVERDETERMINED CONVOLUTIONAL FILTERS

We enforce an orthogonality structure on n filters in the overdetermined convolutional filters K. If
we further enforce the diagonal to be unitary, an identity submatrix In will be present in K. In the
following section, we delve into the filter norm. Given that the index of the feature is inconsequential
for our discussion, we can, for the sake of research simplicity, rearrange the rows of K to form the
orthogonal structure with unitary norms In. When x is multiplied by In in K, the components of x
remain unchanged.
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Beyond the identity submatrix, the matrix K possesses additional rows. These rows, when multiplied
with x, will produce additional components in Kx. The squared norm of Kx will increase due to
the contribution from these additional components.

The squared norm of Kx is expressed as:

∥Kx∥2 = x⊤K⊤Kx

Due to the presence of In in K, the contribution to the squared norm becomes x⊤x, equivalent to
the squared norm of x. The squared norm contribution from the remaining components will always
be non-negative, as squared norms are inherently non-negative.

Given the inclusion of the identity submatrix In in K, it is evident that the norm of Kx will always
be greater than or equal to the norm of x. Formally:

∥Kx∥ ≥ ∥x∥

The condition of equality will hold true if the additional rows in K yield zero vectors upon multipli-
cation with x. However, in practice, the existence of the identity submatrix ensures that the norm
∥Kx∥ surpasses ∥x∥.
In practice, the cooperation of full orthogonality regularization cause the overdetermined filters
amplifying the magnitude of the input signal. This behavior contradicts the design principle of
overdetermined filters, which are intended to function similarly to skip connections.
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