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Abstract

Recent advances in Large Reasoning Models (LRMs) have demonstrated remark-
able capabilities in solving complex tasks such as mathematics and coding. How-
ever, these models frequently exhibit a phenomenon known as overthinking during
inference, characterized by excessive validation loops and redundant deliberation,
leading to substantial computational overheads. In this paper, we aim to mitigate
overthinking by investigating the underlying mechanisms from the perspective of
mechanistic interpretability. We first showcase that the tendency of overthinking
can be effectively captured by a single direction in the model’s activation space
and the issue can be eased by intervening the activations along this direction. How-
ever, this efficacy soon reaches a plateau and even deteriorates as the intervention
strength increases. We therefore systematically explore the activation space and
find that the overthinking phenomenon is actually tied to a low-dimensional mani-
fold, which indicates that the limited effect stems from the noises introduced by the
high-dimensional steering direction. Based on this insight, we propose Manifold
Steering, a novel approach that elegantly projects the steering direction onto the
low-dimensional activation manifold given the theoretical approximation of the in-
terference noise. Extensive experiments on DeepSeek-R1 distilled models validate
that our method reduces output tokens by up to 71% while maintaining and even
improving the accuracy on several mathematical benchmarks. Our method also
exhibits robust cross-domain transferability, delivering consistent token reduction
performance in code generation and knowledge-based QA tasks. Code is available
at: https://github.com/Aries-iai/Manifold_Steering.

1 Introduction

Building on the versatility of Large Language Models (LLMs) in text generation, particularly their
emergent ability in chain-of-thought (CoT) reasoning [41], the field is now undergoing a transition
toward Large Reasoning Models (LRMs). Exemplified by the OpenAI o-series [28] and the DeepSeek-
R1 series [14], LRMs acquire internal capabilities for long-horizon reasoning through reinforcement
learning with verifiable rewards. These models are able to explore diverse solution paths, reflect on
potential errors, refine intermediate steps, and validate final outputs, mimicking the process of human
problem-solving by scaling inference-time computations [28]. As a result, they excel in domains
such as mathematics [1, 23, 39] and coding [27, 43, 44]. This makes them well-suited for tasks that
demand deep logical analysis and paves the way for their applications in more complex scenarios,
including web search [19] and research assistance [49].
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However, despite the remarkable reasoning capabilities, LRMs often suffer from a critical efficiency
issue known as overthinking [35], where they generate excessive and unnecessary reasoning steps,
even for simple questions. For example, when tasked with a straightforward calculation, like “2 + 3”
[9], an LRM might redundantly validate its approach or explore irrelevant alternatives, significantly
increasing the computation overloads. This overthinking not only impacts inference latencies, posing
great challenges for time-critical applications, but also risks degrading performance by entangling
the model in repetitive verification loops or unproductive reasoning paths [9, 16, 40]. To mitigate
such overthinking in LRMs, several approaches [3, 8, 16, 22] have recently been proposed. They
often utilize external mechanisms to regulate reasoning and prevent overthinking, which can incur
additional computational overhead for probing [16] or be susceptible to performance degradation due
to the reliance on external models [22]. While these methods address overthinking from external and
behavioral perspectives – relying on human-designed workflows and interventions, the underlying
mechanism remains underexplored, posing significant challenges to achieving intrinsic mitigation.

In this paper, we address the overthinking problem of LRMs through mechanistic interpretability [50],
based on an in-depth analysis of their internal states. Specifically, we attribute this phenomenon to
the distinctive activation patterns in the deeper layers of the model and identify a single, interpretable
direction by comparing the differences in the activations between overthinking and concise reasoning.
By manipulating the activations along this direction, we can effectively steer the model away from
overthinking tendencies. However, this intervention is insufficient to fully resolve the problem. As
in Fig. 2(a), the reduction in output tokens does not consistently scale with increasing intervention
strength. This suggests that the computed steering direction is not accurate enough and introduces
unintended interference noise.

To address this issue, we further analyze the model’s activation patterns and find that the overthinking
phenomenon is intrinsically tied to a low-dimensional manifold, which can be well approximated by
a linear subspace. This result sheds light on why high-dimensional steering directions often introduce
noises, as they fail to align with the underlying structure of model activations. To more effectively
mitigate overthinking, we introduce a Manifold Steering method to align the steering direction with
the reconstructed low-dimensional manifold. We first theoretically derive a linear approximation
of the amplitudes of the interference noise and then project the steering direction by nullifying this
approximated term. In this way, we can effectively purify the steering direction and better mitigate
the overthinking issue with larger intervention strength, as depicted in Fig. 2(a).

Extensive experiments on multiple DeepSeek-R1 distilled models [14] of different sizes verify the
effectiveness of our manifold steering method. We first test it on mathematical datasets of varying
difficulty, including GSM8K [10], Math500 [20], AMC2023 [24], and AIME2024 [25]. Our method
achieves up to 71% tokens reduction while consistently maintaining or improving accuracy. Moreover,
it exhibits robust cross-domain transferability, delivering consistent mitigation effects in tasks such as
LiveCodeBench [18] (code generation) and Diamond-GPQA [32] (knowledge-based QA), surpassing
existing methods in both overthinking mitigation and accuracy preservation.

2 Related Work

Mechanistic Interpretability. Mechanistic interpretability [5, 11, 26, 29, 31, 34, 37, 50] seeks to
reverse-engineer the internal computations of LLMs to uncover the causal mechanisms underlying
their behavior, offering fine-grained insights into learned representations and decision processes. A
key technique within this framework involves identifying steering directions [29, 34, 37]—linear
vectors in the activation space that correspond to specific model behaviors. By manipulating these
directions during inference, researchers can precisely control outputs, such as ablating refusal behav-
iors in safety-critical scenarios [2, 45]. Similarly, Cao et al. [7] proposed Bi-directional Preference
Optimization (BiPO), leveraging steering vectors derived from contrasting human preference pairs to
customize attributes like truthfulness and hallucination. These approaches highlight the versatility
of steering directions in manipulating models’ behaviors. Additionally, some efforts have explored
dimensionality reduction in activation spaces: [6] use SVD-based spectral filtering to suppress noise
in residual streams, while others derive steering directions from probabilistic classification of user
history for multi-preference alignment [33]. Our work extends this paradigm to address overthinking
in LLMs [9, 16, 35], a phenomenon characterized by redundant or divergent reasoning trajectories.
By analyzing the latent space, we identify a steering direction that encapsulates overthinking and
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further propose manifold steering, a novel method that projects this direction onto a low-dimensional
manifold to mitigate interference noise, thereby improving its performance.

Overthinking Mitigation. Efforts [3, 8, 16, 22, 30, 42] to mitigate overthinking in LRMs have
gained traction as a means to enhance inference efficiency and output quality. Among them, the
training-based method [30] tend to modify the reward function for length control in reinforcement
learning. However, these incur significant computational costs and are orthogonal to inference-time
interventions like ours, thus warranting no direct comparison in this work. Existing training-free
methods mainly rely on external mechanisms to regulate reasoning. For instance, Dynasor [16]
employs periodic monitoring to detect and halt redundant reasoning, incurring computational over-
head, while Thought Manipulation [22] uses auxiliary models to guide inference, limited by the
external model’s performance. These shortcomings suggest that a more fundamental solution lies in
understanding and modifying the model’s internal reasoning processes. Though some concurrent
works [3, 8] have tried to leverage mechanistic interpretability for achieving it, they only partially
reduce overthinking, quickly encountering bottlenecks due to interference noise in high-dimensional
steering directions. In contrast, we propose manifold steering to project the steering direction onto a
low-dimensional manifold, effectively eliminates interference noise, achieving superior overthinking
mitigation and substantial token reductions across diverse tasks, as demonstrated in Sec. 5.2.

3 Mechanistic Analysis of Overthinking

In this section, we investigate the phenomenon of overthinking within the activation space of Large
Reasoning Models (LRMs) and identify a general mechanism by which ablating a single direction in
the activation space can reduce redundant reasoning steps to some extent.

3.1 Background

Transformers. Decoder-only transformer language models [21, 38] map an input token sequence
x = [x1, . . . , xT ] to a probability distribution over the vocabulary for next-token prediction. Each
token xi is associated with a sequence of residual stream activations h(l)(xi) ∈ Rd across L layers,
initialized by the token embedding h(0)(xi) = Embed(xi). At each layer l ∈ {1, . . . , L}, the
residual stream h(l)(xi) is updated by combining the previous layer’s activation h(l−1)(xi) with two
components: (i) a multi-head self-attention mechanism, which computes a(l)(x1:i) by attending to
prior tokens {xj : j ≤ i} using a causal mask to enforce autoregressive context flow; and (ii) a
multi-layer perceptron (MLP), which applies non-linear transformations to the post-attention state
h(l−1)(xi) + a(l)(x1:i) and produces m(l)(xi). The whole update is expressed as follows:

h(l)(xi) = h(l−1)(xi) + a(l)(x1:i) +m(l)(xi), m(l)(xi) = MLP(h(l−1)(xi) + a(l)(x1:i)). (1)

Through autoregressive aggregation, each h(l)(xi) aggregates context from prior tokens, with the
final token’s residual stream h(l)(x) :→ h(l)(xT ) encapsulating the entire input’s context.

Large Reasoning Models. LRMs are tailored for complex problem-solving and instruction-following,
which leverage structured templates to handle user inputs:

<|begin_of_sentence|><|User|>{instruction}<|Assistant|><think>\n

where the content following <think>\n comprises the model’s reasoning process and final answer,
separated by </think>. Despite the excellent reasoning capabilities of these models, they often
exhibit the overthinking phenomenon [9, 12] during the reasoning process, characterized by repetitive
validation or redundant deliberation. As a high-level cognitive phenomenon, overthinking may
manifest in the model’s residual stream activations, similar to other abstract concepts such as safety
[5] and honesty [50], as widely studied from the perspective of mechanistic interpretability. This
suggests that overthinking and concise reasoning exhibit distinct activation patterns. In the next
section, we systematically examine this hypothesis and investigate whether these activation differences
are sufficient to identify a specific direction that characterizes overthinking – one that, if isolated,
could be ablated to improve reasoning efficiency.
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Figure 1: Visualization of residual stream activations h(l)(x) for Dredundant and Dconcise across different
layers of DeepSeek-R1-Distill-Qwen-7B (R1-7B). Early layers show considerable overlap between
redundant and concise data, while middle-to-late layers exhibit distinct separation.

3.2 Extracting and Ablating an Overthinking Direction

Before extracting an overthinking direction, we first investigate whether the residual stream activations
corresponding to redundant and concise reasoning are separable in the model’s activation space, as this
is a necessary condition for identifying a meaningful and controllable direction. Drawing on [16], we
also focus on mathematical problems, where the overthinking phenomenon is particularly pronounced.
To construct representative data, we first randomly sample questions from the OpenMathInstruct-2
training set [36]. For each model, five responses per question are independently generated. Based on
these responses, we construct two model-specific datasets2 as follows:

• Redundant set Dredundant: consists of questions for which all five responses exceed 16k tokens
and contain hesitation keywords (e.g., “wait”, “alternatively”, etc.) surpassing a specified number.

• Concise set Dconcise: consists of questions for which all five responses are under 1k tokens and
contain none of the hesitation keywords.

As demonstrated in Fig. 1, we visualize the distribution of residual stream activations h(l)(x) for both
Dredundant and Dconcise across different layers of R1-7B. We observe that, while early layers exhibit
substantial overlap between the two distributions, the middle-to-late layers display clear separation.
This separation indicates that the overthinking phenomenon is more prominent in specific layers and
provides empirical support for identifying a meaningful overthinking direction.

We use the difference-in-means technique [4] for extracting the steering direction, which computes
the mean difference in residual stream activations between the redundant and concise data for each
layer l. The overthinking direction r(l) is then defined as:

r(l) =
1

|Dredundant|
∑

x∈Dredundant

h(l)(x)− 1

|Dconcise|
∑

x∈Dconcise

h(l)(x), (2)

where h(l)(x) denotes the residual stream activation of the final token of input x at layer l, with
x being the prompt concatenated with the response for x ∈ Dredundant but only the prompt for
x ∈ Dconcise. The direction r(l) is normalized to unit length, i.e., r(l) = r(l)/∥r(l)∥2. Following [2],
we also select the single most effective direction r(l

∗) and apply it for intervention across all layers.

Finally, to further explore the role of the overthinking direction r(l
∗) in the model’s computations, we

ablate the component aligned with r(l
∗) each residual stream activation h. Specifically, the modified

activation h′ is computed as:
h′ = h− α× r(l

∗)(r(l
∗))⊤h, (3)

where α controls the intervention strength. We apply this ablation to every activation h(l)(xi),
across all layers l and token positions i. The parameter α allows adapting the extent of overthinking
mitigation, balancing the reduction of redundant reasoning with the problem-solving accuracy.

4 Manifold Steering for Robust Intervention

Following our mechanistic analysis in Sec. 3, which identifies a single direction capturing overthinking
in the model’s activation space, we proceed to explore whether increasing the intervention strength α
further reduces redundant reasoning, as expected.

2Details on data selection and dataset composition are provided in the Appendix A.
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4.1 Low-Dimensional Manifold Analysis

To rigorously evaluate the effect of increasing intervention strength α for the direction r(l
∗), derived

via Eq. (2), we test R1-7B’s performance on the Math500 dataset [20], a diverse mathematical test
set, different from the anchor dataset used in Sec. 3.2.

Formulation of Interference Noise. As illustrated in Fig. 2(a), increasing the intervention strength
α initially reduces the token count. However, beyond a certain threshold, the token count ceases
to decrease, and as α continues to increase beyond 1.5, it rebounds, even nearly returning to levels
observed without intervention. This suggests that the intervention direction r(l

∗) may be imprecise
and introduces unintended noise in the model’s activation space, which is defined as interference
noise. Meanwhile, we confirm the model collapse caused by interference noise, as below:

Instruction: What power of 4 is equal to 8? Express your answer.
Response: 10000000000000000000000 · · ·

Thus, we can hypothesize that the r(l
∗), computed via the difference-in-means method in Rd, com-

prises both the overthinking direction roverthinking and an orthogonal3 interference component rother,
such that r(l

∗) = roverthinking + rother. The Eq. (3) actually modifies the activation as follows:

h′(l)(xi) = h(l)(xi)− α

(roverthinking)
⊤h(l)(xi)roverthinking︸ ︷︷ ︸

overthinking component

+(rother)
⊤h(l)(xi)rother︸ ︷︷ ︸

interference component

 . (4)

The rother term perturbs h′(l)(xi), potentially disrupting unrelated capabilities such as normal expres-
sion, especially for large α. This interference explains the token count rebound beyond α = 1.5, as
the intervention affects dimensions irrelevant to overthinking.
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Figure 2: (a) Performance of
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space on Dredundant across differ-
ent hidden layers.

Linear Low-Dimensional Manifold Verification. As shown
above, the direct computation of difference in high-dimensional
activation space leads to noisy estimation due to the existence
of the interference part rother. A straightforward solution is to
estimate the amplitude of rother and remove its influence from the
steering direction r(l

∗). However, it is orthogonal to the overthink-
ing direction roverthinking and is decided by the space of roverthinking.
Inspired by prior work [15] that the activations in LLMs reside
on a low-dimensional manifold M ⊂ Rd, it is reasonable to as-
sume that roverthinking, representing the shift between activations of
redundant and concise reasoning paths, also falls into this mani-
fold. To verify this, we employ a simple linear method – Principal
Component Analysis (PCA), on the activations from the complete
reasoning dataset Dreasoning = Dredundant

⋃
Dconcise at layer l. Let

A(l) = [h(l)(x1), . . . ,h
(l)(xN )] ∈ Rd×N denote the matrix of

activation vectors h(l)(xi) ∈ Rd for inputs xi ∈ Dreasoning. We
compute the covariance matrix and its eigendecomposition as:

C(l) =
1

N − 1
(A(l)− Ā(l))(A(l)− Ā(l))⊤ = U(l)Λ(l)(U(l))⊤,

(5)
where Ā(l) = 1

N

∑N
i=1 h

(l)(xi), U(l) ∈ Rd×d contains the prin-
cipal components, Λ(l) = diag(λ(l)

1 , . . . , λ
(l)
d ), and VR(k) =∑k

i=1 λ
(l)
i∑d

i=1 λ
(l)
i

is the variance ratio. As Fig. 2(b) shows, the top k = 10

components account for over 70% of the variance, indicating that the effective dimension of M,
denoted deff, is significantly smaller than the ambient dimension d. This confirms the low-dimensional
structure of M. This also suggests that the linear manifold composed by the orthogonal basis effec-
tively captures the activations of reasoning trajectories and therefore overthinking direction roverthinking

3The orthogonality of roverthinking and rother is a property arising from the principles of PCA.
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can be estimated using simple linear dimensionality reduction in this subspace. Eventually, this
finding supports our earlier hypothesis (Eq. (2)) that the steering direction r(l

∗) = roverthinking + rother

includes an orthogonal interference component rother, which falls into M⊥.

4.2 Theoretical Analysis of Interference Noise

As discussed in Sec. 4.1, the overthinking phenomenon is tied to the low-dimensional manifold
structure of the activation space. The overthinking direction r(l

∗), computed via Eq. (2), introduces an
orthogonal interference component rother due to computation in high-dimensional spaces. When the
activation dimension d far exceeds the sample size N (d ≫ N ), interference noise even accumulates
in M⊥, inflating rother and disrupting the model’s other normal abilities. To further clarify the
potential effects, we quantify this interference noise in the following theorem.

Theorem 4.1. (Proof in Appendix B) Let PM = U(l)[:, 1 : k](U(l)[:, 1 : k])⊤ be the projection ma-
trix onto the low-dimensional manifold M, where U(l)[:, 1 : k] contains top-k principal components
of the activation covariance C(l) for Dredundant and Dconcise. As the sample sizes grow sufficiently
large, the expected noise norm of rother is:

E[∥rother∥22] = tr
(
(I−PM)Σ

(l)
noise

)
, Σ

(l)
noise =

C(l)

|Dredundant|
+

C(l)

|Dconcise|
. (6)

The trace is significant, indicating that the interference noise is substantial and is greatly likely to
disrupt the model’s normal abilities.

The significant noise norm of rother, as established in Theorem 4.1, suggests that interventions using
r(l

∗) introduce considerable perturbations in M⊥. Moreover, these perturbations can propagate
through layers, amplified by attention mechanisms, non-linear activations, and residual connections,
leading to more substantial shifts in the activation distribution. To understand this, we further analyze
the mean activation shift and its layer-wise amplification in the following theorem.

Theorem 4.2. (Proof in Appendix B) Let r(l
∗) and rother be as in Theorem 4.1, and let the intervention

be applied as in Eq. (4). The mean activation shift at layer l and its amplification through layers are:

∆µ(l) = −α
1

N

N∑
i=1

[(r(l
∗))⊤h(l)(xi)]r

(l∗), ∥∆µ(l)∥2 ∝ α∥rother∥2, (7)

∥∆µ(l+1)∥2 ≥ γ∥∆µ(l)∥2 + αγattnγσσmin(W
(l+1))|(rother)

⊤h(l)(xi)|∥rother∥2, (8)

where α is the intervention strength, h(l)(xi) is the activation at layer l, W(l+1) denotes the
combined MLP and attention weights, γattn and γσ are the minimum amplification factors of the
attention softmax and GeLU non-linearities, σmin(W

(l+1)) is the minimum singular value of the
weights, and γ > 1 is the layer-wise amplification factor.

The shift in M⊥ is significant and grows through layer-wise propagation, driven by attention and
non-linear transformations, severely disrupting the model’s other normal abilities.

4.3 Manifold Steering

The interference direction rother, quantified in Theorem 4.1, causes activation shifts that amplify
through transformer layers and disrupt reasoning (Theorem 4.2). To eliminate this interference, a
simple but effective approach is to set Eq. (6) to 0. Based on this insight, we propose Manifold
Steering, which projects the direction r(l

∗) onto M to mitigate rother.

Formally, let U(l)
eff ∈ Rd×k denote the top-k principal components of the activation covariance in

Eq. (5), spanning M. The manifold direction is obtained by:

r
(l∗)
overthinking = PMr(l

∗) = U
(l)
eff (U

(l)
eff )

⊤r(l
∗), r

(l)
overthinking =

r
(l)
overthinking

∥r(l)overthinking∥2
, (9)

where PM = U
(l)
eff (U

(l)
eff )

⊤ is the projection matrix onto M. The reason why the interference norm

E[∥rother∥22] = tr
(
(I−PM)Σ

(l)
noise

)
= 0 holds is because Σ

(l)
noise is now primarily supported in M,
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Table 1: Performance of Manifold Steering compared to Vanilla, Dynasor, and SEAL on GSM8K,
MATH500, AMC2023, and AIME2024 for varied LRMs. Metrics include Pass@1 (↑) and #Tokens
(↓). Changes relative to Vanilla are shown in yellow for Pass@1 and blue for #Tokens.

GSM8k MATH500 AMC2023 AIME2024Model Methods Pass@1 (↑, %) #Tokens (↓) Pass@1 (↑, %) #Tokens (↓) Pass@1 (↑, %) #Tokens (↓) Pass@1 (↑, %) #Tokens (↓)

Vanilla 76.7 2035 76.4 4762 70.0 7089 26.7 11352
Dynasor 77.1 (+0.4) 1035 (-49%) 77.2 (+0.8) 3694 (-22%) 72.5 (+2.5) 6505 (-8%) 26.7 (+0.0) 10564 (-7%)
SEAL 76.9 (+0.2) 1076 (-47%) 77.8 (+1.4) 3721 (-22%) 70.0 (+0.0) 6418 (-10%) 26.7 (+0.0) 10437 (-8%)R1-1.5B

Ours 77.2 (+0.5) 593 (-71%) 78.6 (+2.2) 3458 (-27%) 72.5 (+2.5) 6236 (-12%) 30.0 (+3.3) 10134 (-11%)

Vanilla 87.5 1143 88.2 3824 87.5 5871 50.0 10784
Dynasor 87.6 (+0.1) 732 (-36%) 88.2 (+0.0) 2723 (-29%) 85.0 (-2.5) 5121 (-13%) 46.7 (-3.3) 9864 (-9%)
SEAL 87.7 (+0.2) 829 (-32%) 87.8 (-0.4) 2651 (-34%) 85.0 (-0.0) 4750 (-19%) 46.7 (-3.3) 9394 (-13%)R1-7B

Ours 87.6 (+0.1) 440 (-62%) 88.4 (+0.2) 2239 (-42%) 87.5 (+0.0) 4440 (-24%) 53.3 (+3.3) 8457 (-22%)

Vanilla 82.7 1217 87.8 4009 85.0 5723 33.3 11278
Dynasor 82.9 (+0.2) 826 (-32%) 88.0 (+0.2) 3171 (-21%) 82.5 (-2.5) 5019 (-12%) 46.7 (+13.4) 9901 (-12%)
SEAL 82.7 (+0.0) 749 (-38%) 87.4 (-0.4) 3091 (-23%) 85.0 (+0.0) 4731 (-17%) 46.7 (+13.4) 9789 (-13%)R1-8B

Ours 82.8 (+0.1) 542 (-55%) 88.0 (+0.2) 2873 (-29%) 85.0 (+0.0) 4400 (-23%) 50.0 (+16.7) 9457 (-16%)

Vanilla 93.2 742 92.8 3496 90.0 5484 66.7 9986
Dynasor 93.4 (+0.2) 596 (-20%) 92.6 (-0.2) 3233 (-8%) 92.5 (+2.5) 4817 (-12%) 63.3 (-3.4) 8941 (-11%)
SEAL 93.6 (+0.2) 583 (-21%) 92.8 (+) 3139 (-10%) 87.5 (-2.5) 4470 (-18%) 60.0 (-6.7) 8563 (-14%)R1-14B

Ours 93.6 (+0.4) 438 (-41%) 92.8 (+0.0) 2074 (-41%) 90.0 (+0.0) 4061 (-26%) 63.3 (-3.4) 8132 (-19%)

    

    

    

    
    

    

    

    

 

    

    

    

    

     

                       

                

     

        
    

    

        

    

 

    

    

    

    

     

     

                       

                

T
o
k

en
s

T
o
k

en
s

A
c
cu

ra
cy

 (
%

)

A
c
cu

ra
cy

 (
%

)

LiveCodeBench GPQA-Diamond

12%

27%

13%

19%

13%

15% 13%

17%

0.5%

1.0% 2.0%

2.0%

1.3%

3.5%

0.5%

     

          

     

     

     

     

     

   

    

    

    

    

     

                       

                

    

      

    

    

    
  

    

 

  

  

  

  

   

                       

                

Figure 3: Cross-domain performance of Manifold Steering for overthinking mitigation on Live-
CodeBench (code generation) and GPQA-Diamond (disciplinary knowledge).

resulting in zero components under I −PM, i.e., M⊥, successfully eliminating perturbations.

h′(l)(x) = h(l)(x)− α× r
(l)
overthinking(r

(l)
overthinking)

⊤h(l)(xi). (10)

The performance of manifold steering is shown in Fig. 2(b) and Sec. 5.2, where we find that, unlike
the original paradigm, our manifold steering enables a sustained reduction in token count.

5 Experiments

5.1 Experimental Setups

We begin by briefly outlining the baseline methods, target LRMs, evaluation datasets, and metrics.
For more detailed descriptions of the experimental settings, please refer to Appendix A.

Baseline Methods. We compare our manifold steering with two latest baselines, including Dyna-
sor [16] and SEAL [8], both chosen for their ability to maintain the model’s original accuracy. For
their settings, we both adopt its official setting. To be aware, Dynasor’s early stopping often omits the
problem-solving process in the final answer, which is impractical for real-world applications. Thus,
we require the model to provide a complete solution upon stopping.

Target LRMs. For a comprehensive evaluation, we select the DeepSeek-R1-Distilled series [14],
comprising models of varying scales and architectures: DeepSeek-R1-Distill-Qwen (R1-1.5B, R1-
7B, R1-14B) and DeepSeek-R1-Distill-Llama-8B (R1-8B). All models use recommended settings:
temperature of 0.6, top-p of 0.95, and a maximum token limit of 16,384.

Evaluation Datasets & Metrics. To evaluate the effectiveness of Manifold Steering, we include
mathematical datasets of varying difficulty: GSM8K [10], MATH500 [20], AMC2023 [24], and
AIME2024 [25]. To further verify the transferability, we use LiveCodeBench [18] for code generation
and GPQA-Diamond [32] for expert-level disciplinary knowledge. All datasets are evaluated using
Pass@1 as the task-solving metric and the average token count (#Tokens) for overthinking mitigation.

Implementation Details. The data for computing steering directions is filtered using the method
outlined in Sec. 3 on the OpenMathInstruct2 dataset [36]. For each model, we specify the layer
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“ Convert the point 0,3  in rectangular coordinates to polar coordinates. Enter your answer in the form 𝑟, 𝜃 , where 𝑟 >  0 and 0 ≤ 𝜃 <  Τ𝟐
𝝅 . ”

Tokens: 1475

“ Okay, so I need to convert the rectangular coordinate (0,3) to polar coordinates. Hmm, I remember that polar coordinates…... But wait, I also remember that sometimes……  Wait 
a second, just to double-check, sometimes people use different notations…… So, I'm pretty confident that (3, π/2) is the correct polar coordinate representation of the point (0,3). ”

Tokens: 538

“ First, I need to determine the polar coordinates (r, θ) for the rectangular point (0, 3). To find r, I‘ll use the…… Next, I’ll calculate the angle…… To convert the rectangular coordinate…… 
Combining the values of r and θ : (r, θ) = (3, π/2). Final Answer……  ”

Standard

α = 0.3

α = - 0.3 Tokens: 1708

“ Alright, so I need to convert the rectangular coordinates (0, 3) to polar coordinates. Hmm, okay, I remember…… Hmm, arctan(3/0). Wait, division by zero is undefined. Hmm, 
that might be a problem……. Wait, is that correct? Let me double-check…… Wait, another way to think about it: if I were to draw a line…… But just to be extra sure, let me recall 
the conversion formulas…... Wait, just to make sure I didn‘t mix up anything, let me recall another way to find θ…… I think I’m confident that the polar coordinates are (3, π/2). 
Wait, just another thought. If I were to plot this…… Thus, the polar coordinates are: (3, π/2). ”

α = - 0.5 Tokens: 2284

“ Alright, so I need to convert the point (0, 3) from rectangular (or Cartesian) coordinates to polar coordinates. Hmm, okay. Let me recall what polar coordinates are…… But wait, in 
this case, x is 0. So…… Hmm, so I can‘t just plug in 0…… But let me think about it a bit more to make sure I’m not making a mistake. So, in the formula…... Alternatively, if the point 
were on the negative y-axis……Wait, let me check if there‘s another way to compute…… Alternatively, I can think of the unit circle……. Hmm, that seems straightforward. But just to 
make sure I didn’t make any mistakes, let me recall another way to…… Okay, so I think I‘ve double-checked that…… Wait, just to be thorough, let me think about another way to 
convert…… Thus, the polar coordinates are: (3, π/2). ”

“ First, I need to determine the…… Next, I'll calculate the angle…… To convert the rectangular coordinates…… Combining the values of r and θ, the polar coordinates are (3, π/2). ”

α = 0.5 Tokens: 501

Figure 4: An example of steering overthinking in model outputs. Forward steering yields concise,
confident responses, eliminating hesitant phrases, while reverse steering induces verbose outputs.

used to compute the steering direction and the intervention strength α as follows: R1-1.5B (layer 27,
α = 0.7), R1-7B (layer 27, α = 0.3), R1-8B (layer 31, α = 0.5), and R1-14B (layer 47, α = 0.3).
During inference, this direction is applied to all layers as stated in Eq. (3).

5.2 Performance of Manifold Steering in Overthinking Mitigation

We conduct experiments on four mathematical datasets of varying difficulty using four LRMs with
different parameter sizes and architectures. Table 1 presents the results, where models are evaluated
for accuracy and redundancy reduction. Based on Table 1, we draw the following observations:

Manifold steering achieves the best performance across all models and datasets. Our method
consistently outperforms baselines on four out-of-distribution mathematical datasets, with particularly
strong results on GSM8K, where it achieves token reduction of 41% ∼ 71% while preserving accuracy.
This is reasonable, as unlike Dynasor, which relies on external monitoring of the model’s certainty,
our method modifies model outputs at the more fundamental feature level to mitigate overthinking
behavior. Moreover, Dynasor’s reliance on external monitoring brings extra computational overhead.
We include a comparison of average time cost to demonstrate this drawback in Appendix E, while
our method incurs nearly no latency. Compared to SEAL, our manifold steering effectively reduces
interference noise, yielding a more precise direction. Additionally, we observe that the overthinking
phenomenon diminishes to some extent as model parameter size increases, which is expected, as
some overthinking stems from models’ inability to solve complex problems.

Overthinking is more pronounced in simpler problems. As presented in Table 1, all methods
exhibit more effective overthinking mitigation on simpler datasets, with GSM8K and MATH500 (∼
40%) showing greater token reduction compared to the more complex AMC2023 and AIME2024
datasets (∼ 20%). This suggests that overthinking is more pronounced in simpler problems, which is
reasonable, as complex problems inherently require larger token budgets and may exceed the models’
internal capabilities, thereby constraining mitigation effectiveness.

5.3 Cross-Domain Transferability for Overthinking Mitigation

To further investigate the transferability of manifold steering for overthinking mitigation, we assess
its performance across two distinct domains: code generation and discipline-specific knowledge,
both separate from the mathematical domain used for steering direction extraction. We utilize two
representative datasets: 1) LiveCodeBench [18], a benchmark of coding challenges that probe
algorithmic and programming expertise, and 2) GPQA-Diamond [32], a carefully curated dataset of
challenging multiple-choice questions targeting expert-level disciplinary knowledge across various
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fields. As shown in Fig. 3, our manifold steering achieves token reduction of 12% ∼ 27% across
both datasets while maintaining accuracy, demonstrating the generalizability of manifold steering to
diverse domains. This cross-domain effectiveness offers multiple benefits: it incurs no additional
computational overhead, adapts seamlessly to varied problem structures, and effectively mitigates
overthinking without requiring domain-specific fine-tuning.

5.4 Directional Analysis and Hyperparameter Tuning

In this section, we first explore the precise impact of the direction computed by manifold steering
on model outputs through case studies, analyzing how steering and its reversal affect response
characteristics to better understand directionality’s role. Then, we conduct hyperparameter tuning.

Directional Analysis. As shown in Fig. 4, applying the steering direction for overthinking mitigation
leads to model outputs that are significantly more concise and confident. Specifically, overthinking
behaviors, such as hesitant phrases (e.g., “wait”), frequent shifts in reasoning (e.g., “alternatively”),
and repetitive self-checking, are largely eliminated. The model generates streamlined responses with
clear, focused reasoning, delivering direct outputs. This effect strengthens as the intervention strength
increases to 0.5. In contrast, when reverse steering is applied, the model becomes markedly more
hesitant, often repeatedly checking. This leads to verbose outputs filled with excessive caution. Thus,
it is crucial to underscore the role of directionality for overthinking.
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Figure 5: Hyperparameter tun-
ing for strength α in R1-7B

Hyperparameter Tuning. We use R1-7B model on MATH500
for this analysis, with results for other models in Appendix C. As
shown in Fig. 5, our manifold steering direction demonstrates ef-
ficacy at a much lower strength of α = 0.1. As α increases, token
counts continue to decrease, with a remarkable 77.1% reduction
observed at α = 0.5. This substantial token reduction highlights
the purity and effectiveness of our steering direction in mitigating
overthinking. However, excessively rapid reasoning, induced by
intervention strengths, can hinder the model’s ability to thoroughly
address complex problems, a phenomenon also observed in human
cognition, leading to a decline in accuracy. To balance the trade-
off between overthinking mitigation and maintaining accuracy, we select an intervention strength of
α = 0.3 as the optimal value for robust performance.

5.5 Cross-Task Transferability of Manifold Steering
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and ours on Advbench.

In this section, we investigate the applicability of manifold steering
to tasks beyond overthinking mitigation, such as refusal feature ab-
lation, to assess its cross-task transferability. Prior studies [2, 45]
demonstrate that while steering directions can suppress refusal fea-
tures in models, some instances persist unless intervention strength
is increased, which risks model collapse. Here, we apply our man-
ifold steering method using the Qwen2.5-7B-Instruct as the target
LLM, computing the steering direction with the same data as in [2].
As shown in Fig. 6, our method achieves a 100% jailbreak success
rate (JSR) on AdvBench [51] while the baseline [2] obtains a JSR of
74% (α = 2.0), with all responses verified as valid through manual
check, which further validates the robust transferability of manifold steering across diverse tasks and
underscores the urgent need for enhanced safety efforts [13, 17, 46, 47, 48] to ensure responsible AI.

6 Discussion and Limitations

Our proposed manifold steering method has demonstrated robust effectiveness in mitigating overthink-
ing, as evidenced by significant token reductions across varying LRMs. However, its applicability to
multi-modal large language models remains unexplored. Additionally, while our approach excels
in controlling overthinking with minimal accuracy trade-offs, its interaction with highly specialized
tasks, such as domain-specific reasoning, e.g., legal or medical analysis, warrants further investiga-
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tion. Moreover, the sensitivity of our method to varying intervention strengths suggests potential for
optimizing dynamic steering strategies, where the strength adapts to task complexity in real-time.

7 Conclusion

In this work, we propose manifold steering, a novel method to address overthinking in LRMs while
preserving task performance without additional computational cost. Specifically, by aligning the
steering direction with the low-dimensional activation manifold, our approach effectively eliminates
the interference noise based on theoretical analysis. Extensive experiments across diverse models and
datasets confirm substantial token reductions and robust cross-task transferability. These findings
underscore the potential of manifold steering to enhance model efficiency and adaptability, opening
new avenues for improving LRMs.
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the dataset).
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included in Sec. 5.1 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiments’ results are stable, and the LLM’s temperature for evaluation
is set to 0.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included it in Sec. 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have included it in Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: What we use are all public resources, and we obtain the owners’ permission.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We only use LLM for evaluation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implement Details

In this section, we will introduce the implementation details of our approach, focusing on the data
selection process for computing the steering direction to mitigate overthinking in each model and the
specific configurations of the baseline methods used for comparison.

A.1 Data Selection for Direction Computation

To construct representative datasets for computing the steering direction to mitigate overthinking, we
begin by randomly sampling 20k questions from the OpenMathInstruct-2 training set [36]. For each
model, we generate five independent responses per question using the official sampling configuration:
a temperature of 0.6, top-p of 0.95, and a maximum length of 16k tokens. These responses form the
basis for constructing two model-specific datasets, the Redundant set (Dredundant) and the Concise
set (Dconcise), as described below:

• Redundant set (Dredundant): This dataset includes questions where all five responses exceed 16k
tokens without terminating and contain more than 20 times of hesitation keywords (e.g., “wait”,
“alternatively”, etc.). To capture meaningful overthinking behavior, we process the responses
using the following template, truncating the response at the occurrence of the hesitation keyword:

<|begin_of_sentence|><|User|>{instruction}<|Assistant|><think>\n
{partial_response}{hesitation keyword}

The truncation at a hesitation keyword is reasonable because overthinking typically emerges
after a certain point in the response, rather than immediately upon encountering the question.
Moreover, through activation visualization, we observe no significant differences in the activation
patterns of different hesitation keywords. Thus we choose “wait” as a consistent marker here.

• Concise set (Dconcise): This dataset includes questions where all five responses are under 1k
tokens and contain none of the hesitation keywords. The template for these responses includes
only the instruction without the response, as they inherently represent concise and focused outputs:

<|begin_of_sentence|><|User|>{instruction}<|Assistant|><think>\n

These selection criteria ensure that Dredundant captures responses exhibiting excessive verbosity and
hesitation, while Dconcise represents efficient and direct responses, providing a clear contrast for
computing the steering direction representing overthinking. To ensure high-quality data, we retain
only 500 samples for each dataset after applying the selection criteria and double checking. For
computing the steering direction, we follow [50] to sample 100 samples from each dataset and employ
the IsolationForest algorithm to filter out outliers. For manifold subspace estimation, we utilize the
entire set of 500 samples from each dataset to capture the full representational structure.

A.2 Baseline Methods

As stated in Sec. 5.1, we select two latest baselines, Dynasor [16] and SEAL [8], for their ability to
preserve the original accuracy in reasoning tasks. Below, we detail the specific settings for them:

General Setting. All large reasoning models adopt the official recommended settings with a
temperature of 0.6, top-p of 0.95, and a maximum length of 16k tokens.

Dynasor. We adopt the official settings for Dynasor. The configuration probes the model every 32
tokens with a “Probe-In-The-Middle” technique and injects a “Final Answer” prompt at each iteration
to ensure complete solutions upon early termination. Generation stops when the Certaindex metric
(H̃) exceeds a predefined confidence threshold. To be aware, Dynasor’s early stopping often omits
the problem-solving process in the final answer, which is impractical for real-world applications.
Thus, we require the model to provide a complete solution in the final answer upon stopping.

SEAL. We adopt the official settings for SEAL [8], using 1k training samples from the Math
dataset [20] to extract the reasoning steering vector. Reasoning processes are segmented into thoughts
using “\n\n” delimiters, classified as execution, reflection, or transition via keyword-based rules
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(e.g., “Alternatively” for transition, “Wait” for reflection). The steering vector is computed at
layer 20 as S = H̄E − H̄RT , where H̄E and H̄RT are average representations of execution and
reflection/transition thoughts, respectively. During greedy decoding, hidden states of “\n\n” tokens at
layer 20 are adjusted as H̃ = H + 1.0 · S.

B Proofs

B.1 Proof of Theorem 4.1

Proof. We derive the expected noise norm of the interference component rother, the part of the
overthinking direction r(l

∗) in the orthogonal complement M⊥ of the low-dimensional manifold M.
The theorem states:

E[∥rother∥22] = tr
(
(I−PM)Σ

(l)
noise

)
, Σ

(l)
noise =

C(l)

|Dredundant|
+

C(l)

|Dconcise|
,

where PM = U(l)[:, 1 : k](U(l)[:, 1 : k])⊤, and U(l)[:, 1 : k] are the top-k principal components of
the activation covariance C(l). We build on prior findings that M is low-dimensional, identified via
PCA on Dreasoning = Dredundant ∪Dconcise, with k = 10 capturing over 70% of the variance, validating
the linear manifold assumption.

Step 1: Define the overthinking direction r(l
∗). Per Eq. (2), r(l

∗) = roverthinking + rother, where
roverthinking ∈ M captures the shift between redundant and concise reasoning, and rother ∈ M⊥ is
interference. We model:

r(l
∗) =

1

|Dredundant|
∑

xi∈Dredundant

h(l)(xi)−
1

|Dconcise|
∑

xi∈Dconcise

h(l)(xi).

Assume activations h(l)(xi) ∼ N (µset,C
(l)), with µredundant or µconcise for each dataset, and C(l)

estimated over Dreasoning. The covariance is:

E[r(l
∗)r(l

∗)⊤] =
C(l)

|Dredundant|
+

C(l)

|Dconcise|
.

Step 2: Define M and derive I − PM. The manifold M is spanned by the top-k eigenvec-
tors of C(l) = 1

N−1A
(l)(A(l) − Ā(l))⊤, where A(l) = [h(l)(x1), . . . ,h

(l)(xN )], and Ā(l) =
1
N

∑N
i=1 h

(l)(xi). The eigendecomposition C(l) = U(l)Λ(l)(U(l))⊤ yields U(l)[:, 1 : k], and:

PM = U(l)[:, 1 : k](U(l)[:, 1 : k])⊤.

The projection onto M⊥ is I − PM, as it removes the M-component. Since U(l)[:, 1 : k] is
orthonormal, PM is idempotent and symmetric, so:

(I−PM)2 = I−PM, (I−PM)⊤ = I−PM.

PCA’s linear basis ensures M⊥ captures the d− k dimensions of noise, critical when d ≫ k.

Step 3: Define rother. Since roverthinking ∈ M, the interference is:

rother = (I−PM)r(l
∗).

This isolates noise in M⊥, which disrupts normal abilities due to high-dimensional computation.

Step 4: Compute the squared norm. Calculate:
∥rother∥22 = [(I−PM)r(l

∗)]⊤(I−PM)r(l
∗) = r(l

∗)⊤(I−PM)r(l
∗),

using the idempotence of I−PM.

Step 5: Take the expectation. Compute:
E[∥rother∥22] = E[r(l

∗)⊤(I−PM)r(l
∗)] = tr((I−PM)E[r(l

∗)r(l
∗)⊤]).

Substitute:

E[r(l
∗)r(l

∗)⊤] = Σ
(l)
noise =

C(l)

|Dredundant|
+

C(l)

|Dconcise|
.

Thus:
E[∥rother∥22] = tr

(
(I−PM)Σ

(l)
noise

)
.
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B.2 Proof of Theorem 4.2

Proof. We derive the mean activation shift ∆µ(l) at layer l due to the intervention (applied as in
Eq. (4).) along the overthinking direction r(l

∗), showing its norm is proportional to α∥rother∥2, and
establish the layer-wise amplification of the shift at layer l + 1. The theorem builds on Theorem 4.1.
Step 1: Derive the mean activation shift. The intervention at layer l is:

h(l)′(xi) = h(l)(xi)− α[(r(l
∗))⊤h(l)(xi)]r

(l∗),

with α > 0. The mean activation before intervention is:

µ(l) =
1

N

N∑
i=1

h(l)(xi),

and post-intervention:

µ(l)′ =
1

N

N∑
i=1

h(l)′(xi) =
1

N

N∑
i=1

(
h(l)(xi)− α[(r(l

∗))⊤h(l)(xi)]r
(l∗)

)
.

Compute:

µ(l)′ = µ(l) − α
1

N

N∑
i=1

[(r(l
∗))⊤h(l)(xi)]r

(l∗).

The mean shift is:

∆µ(l) = µ(l)′ − µ(l) = −α
1

N

N∑
i=1

[(r(l
∗))⊤h(l)(xi)]r

(l∗),

matching the first part of Eq. (7).

Step 2: Decompose the shift and isolate rother contribution. Since r(l
∗) = rM + rother with

rM ⊥ rother, we can decompose:

(r(l
∗))⊤h(l)(xi) = (rM)⊤h(l)(xi) + (rother)

⊤h(l)(xi).

Thus:

∆µ(l) = −α
1

N

N∑
i=1

[(rM)⊤h(l)(xi) + (rother)
⊤h(l)(xi)](rM + rother)

= −α
1

N

N∑
i=1

[(rM)⊤h(l)(xi)]rM − α
1

N

N∑
i=1

[(rM)⊤h(l)(xi)]rother

− α
1

N

N∑
i=1

[(rother)
⊤h(l)(xi)]rM − α

1

N

N∑
i=1

[(rother)
⊤h(l)(xi)]rother.

Let:

sM =
1

N

N∑
i=1

[(rM)⊤h(l)(xi)], sother =
1

N

N∑
i=1

[(rother)
⊤h(l)(xi)].

Then:
∆µ(l) = −αsMrM − αsMrother − αsotherrM − αsotherrother.

Since rM ⊥ rother:

∥∆µ(l)∥22 = α2∥sMrM + sotherrM∥22 + α2∥sMrother + sotherrother∥22
= α2(sM + sother)

2∥rM∥22 + α2(sM + sother)
2∥rother∥22.

Let s = sM + sother. Then:

∥∆µ(l)∥2 = α|s|
√

∥rM∥22 + ∥rother∥22.
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By Theorem 4.1, when the error component rother is present (i.e., ∥rother∥2 > 0), it contributes to
the total norm. The dominant term depends on the relative magnitudes of ∥rM∥2 and ∥rother∥2.
Assuming h(l)(xi) ∼ N (µset,C

(l)) and |s| is a positive constant, we obtain:

∥∆µ(l)∥2 ∝ α∥rother∥2,
when ∥rother∥2 dominates, completing Eq. (7).

Step 3: Derive the layer-wise amplification from rother. For layer l + 1, the activation is:

h(l+1)(xi) = σ
(
W(l+1)Attn(h(l)(xi))

)
,

and post-intervention:
h(l+1)′(xi) = σ

(
W(l+1)Attn(h(l)′(xi))

)
,

where W(l+1) combines MLP and attention weights, Attn is the attention mechanism, and σ is GeLU.
The mean shift is:

∆µ(l+1) = µ(l+1)′ − µ(l+1), µ(l+1)′ =
1

N

N∑
i=1

h(l+1)′(xi), µ(l+1) =
1

N

N∑
i=1

h(l+1)(xi).

To isolate the rother contribution, decompose the single-input shift at layer l:

∆h(l)(xi) = h(l)′(xi)− h(l)(xi)

= −α[(r(l
∗))⊤h(l)(xi)]r

(l∗)

= −α[(rM)⊤h(l)(xi) + (rother)
⊤h(l)(xi)](rM + rother).

The norm is:
∥∆h(l)(xi)∥2 = α|(r(l

∗))⊤h(l)(xi)|∥r(l
∗)∥2

= α|(rM)⊤h(l)(xi) + (rother)
⊤h(l)(xi)|

√
∥rM∥22 + ∥rother∥22.

The component from rother can be isolated by considering its contribution:

∥∆h(l)(xi)∥2 ≥ α|(rother)
⊤h(l)(xi)|∥rother∥2,

when the rother term is significant. Propagate to layer l + 1:

∆h(l+1)(xi) = h(l+1)′(xi)− h(l+1)(xi) ≈ σ′
(
W(l+1)Attn′(h(l)(xi))∆h(l)(xi)

)
,

where Attn′ and σ′ are the Jacobians of attention and GeLU. The attention softmax and GeLU have
minimum amplification factors γattn, γσ > 0, and the linear transformation by W(l+1) satisfies:

∥W(l+1)x∥2 ≥ σmin(W
(l+1))∥x∥2.

Thus:
∥∆h(l+1)(xi)∥2 ≥ γattnγσσmin(W

(l+1))∥∆h(l)(xi)∥2.
Focusing on the rother contribution:

∥∆h(l+1)(xi)∥2 ≥ γattnγσσmin(W
(l+1))α|(rother)

⊤h(l)(xi)|∥rother∥2.
The mean shift norm is:

∥∆µ(l+1)∥2 =

∥∥∥∥∥ 1

N

N∑
i=1

∆h(l+1)(xi)

∥∥∥∥∥
2

.

Assume the layer-wise propagation amplifies the previous shift by γ > 1, reflecting attention and
non-linear effects across layers. Combining the amplification of the existing shift and the new rother
contribution:

∥∆µ(l+1)∥2 ≥ γ∥∆µ(l)∥2 + αγattnγσσmin(W
(l+1))|(rother)

⊤h(l)(xi)|∥rother∥2,
matching Eq. (8). This shows that the rother component causes layer-wise amplification through both
the accumulated shift (first term) and the direct contribution at each layer (second term).

Step 4: Analyze the amplification mechanism. The amplification factors γ > 1, γattn, γσ > 0,
and non-zero σmin(W

(l+1)) ensure that perturbations from rother grow across layers. The first term
γ∥∆µ(l)∥2 represents the propagation of accumulated shift, while the second term represents the
fresh perturbation introduced at layer l+1 due to rother. This dual mechanism ensures the shift grows
across layers, disrupting the model’s normal abilities.
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C Hyperparameter Tuning

In this section, we present the results of tuning the intervention strength α across four models:
DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Llama-8B,
and DeepSeek-R1-Distill-Qwen-14B on MATH500 [20]. As shown in Fig. 7, to achieve an optimal
balance between efficiency and accuracy, we ultimately select α = 0.7 for R1-1.5B, α = 0.3 for
R1-7B, α = 0.5 for R1-8B, and α = 0.3 for R1-14B.
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Figure 7: Impact of intervention strength α on the token reduction and accuracy of R1-1.5B, R1-7B,
R1-8B, and R1-14B on the MATH500 dataset

D Layer Selection for Manifold Steering

The selection of intervention layers is critical for the effectiveness of Manifold Steering. We conduct
a layer-wise analysis across multiple model sizes to determine the optimal intervention points. As
shown in the tables below, we evaluate the performance across different layers by measuring accuracy
and tokens on the MATH500. The results demonstrate that later layers consistently achieve better
performance: Layer 27 for R1-1.5B and R1-7B, Layer 31 for R1-8B, and Layer 47 for R1-14B.

Table 2: Layer-wise performance analysis for R1-1.5B on MATH500.

Vanilla Layer 1 Layer 5 Layer 10 Layer 15 Layer 20 Layer 25 Layer 27
Accuracy (%) 76.4 76.6 77.0 76.4 57.6 74.8 67.4 78.6
# Tokens 4762 4472 4434 4223 1469 3930 1179 3458

Table 3: Layer-wise performance analysis for R1-7B on MATH500.

Vanilla Layer 1 Layer 5 Layer 10 Layer 15 Layer 20 Layer 25 Layer 27
Accuracy (%) 88.2 88.4 88.0 88.2 84.4 80.6 72.2 88.4
# Tokens 3824 3685 3665 3701 2713 1906 1070 2239

Table 4: Layer-wise performance analysis for R1-8B on MATH500.

Vanilla Layer 1 Layer 5 Layer 10 Layer 15 Layer 20 Layer 25 Layer 30 Layer 31
Accuracy (%) 87.8 87.2 87.8 88.2 75.6 86.4 71.8 87.6 88.0
# Tokens 4009 3896 3820 3654 2950 3280 1856 2975 2873

Table 5: Layer-wise performance analysis for R1-14B on MATH500.

Vanilla Layer 1 Layer 5 Layer 10 Layer 15 Layer 20 Layer 25 Layer 30 Layer 35 Layer 40 Layer 45 Layer 47
Accuracy (%) 92.8 92.4 92.4 92.0 92.2 92.6 89.8 80.4 87.4 84.6 82.4 92.8
# Tokens 3496 3384 3420 3095 2958 2857 2398 1814 2207 1836 1625 2074

E Time Latency Analysis

In this section, we analyze the time latency for the DeepSeek-R1-Distill-Qwen-7B model on the
Math500 dataset [20], comparing our approach with Dynasor [16] and SEAL [8]. All experiments
are conducted on an Ubuntu 22.04 system with A800 GPUs. We find that Dynasor exhibits the
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significantly longest time latency, which is reasonable due to its frequent probing of intermediate
states and its unsuitability for parallel processing of large reasoning models. For SEAL, although both
SEAL and our method introduce negligible additional computational cost, SEAL’s token reduction is
less effective than ours, resulting in higher time latency.

Table 6: Average Time Latency on Math500 for different overthinking-mitigation methods in R1-7B.

Methods Original Dynasor SEAL Ours

Time Latency (s) 1.74 39.89 1.37 1.05
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