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ABSTRACT

Adversarial training is so far the most effective strategy in defending against ad-
versarial examples. However, it suffers from high computational cost due to the
iterative adversarial attacks in each training step. Recent studies show that it is
possible to achieve Fast Adversarial Training by performing a single-step attack
with random initialization. Yet, it remains a mystery why random initialization
helps. Besides, such an approach still lags behind state-of-the-art adversarial train-
ing algorithms on both stability and model robustness. In this work, we develop a
new understanding towards Fast Adversarial Training, by viewing random initial-
ization as performing randomized smoothing for better optimization of the inner
maximization problem. From this perspective, we show that the smoothing ef-
fect by random initialization is not sufficient under the adversarial perturbation
constraint. A new initialization strategy, backward smoothing, is proposed to ad-
dress this issue and significantly improves both stability and model robustness
over single-step robust training methods. Experiments on multiple benchmarks
demonstrate that our method achieves similar model robustness as the original
TRADES method, while using much less training time (∼3x improvement with
the same training schedule).

1 INTRODUCTION

Deep neural networks are well known to be vulnerable to adversarial examples (Szegedy et al.,
2013), i.e., a small perturbation on the original input can lead to misclassification or erroneous
prediction. Many defense methods have been developed to mitigate the disturbance of adversarial
examples (Guo et al., 2018; Xie et al., 2018; Song et al., 2018; Ma et al., 2018; Samangouei et al.,
2018; Dhillon et al., 2018; Madry et al., 2018; Zhang et al., 2019), among which robust training
methods, such as adversarial training (Madry et al., 2018) and TRADES (Zhang et al., 2019), are
currently the most effective strategies. Specifically, adversarial training method (Madry et al., 2018)
trains a model on adversarial examples by solving a min-max optimization problem:

min
θ

1

n

n∑
i=1

max
x′
i∈Bε(xi)

L(fθ(x
′
i), yi), (1.1)

where {(xi, yi)}ni=1 is the training dataset, f(·) denotes the logits output of the neural network,
Bε(xi) := {x : ‖x− xi‖∞ ≤ ε} denotes the ε-perturbation ball, and L is the cross-entropy loss.

On the other hand, instead of directly training on adversarial examples, TRADES (Zhang et al.,
2019) further improves model robustness with a trade-off between natural accuracy and robust ac-
curacy, by solving the empirical risk minimization problem with a robust regularization term:

min
θ

1

n

n∑
i=1

[
L(fθ(xi), yi) + β max

x′
i∈Bε(xi)

KL
(
s(fθ(xi)), s(fθ(x

′
i))
)]
, (1.2)

where s(·) denotes the softmax function, and β > 0 is a regularization parameter. The goal of
this robust regularization term (i.e., KL divergence term) is to ensure the outputs are stable within
the local neighborhood. Both adversarial training and TRADES achieve good model robustness,
as shown on recent model robustness leaderboards1 (Croce & Hein, 2020b; Chen & Gu, 2020).

1https://github.com/fra31/auto-attack and https://github.com/uclaml/RayS.
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However, a major drawback lies in that both are highly time-consuming for training, limiting their
usefulness in practice. This is largely due to the fact that both methods perform iterative adversarial
attacks (i.e., Projected Gradient Descent) to solve the inner maximization problem in each outer
minimization step.

Recently, Wong et al. (2020) shows that it is possible to use single-step adversarial attacks to solve
the inner maximization problem, which previously was believed impossible. The key ingredient
in their approach is adding a random initialization step before the single-step adversarial attack.
This simple change leads to a reasonably robust model that outperforms other fast robust training
techniques, e.g., Shafahi et al. (2019). However, it remains a mystery why random initialization
is empirically effective. Furthermore, compared to state-of-the-art robust training models (Madry
et al., 2018; Zhang et al., 2019), this approach still lags behind on model robustness.

In this work, we aim to understand the role of random initialization, as well as closing the robustness
gap between adversarial training and Fast Adversarial Training (Fast AT) (Wong et al., 2020). We
propose a new principle towards understanding Fast AT - that random initialization can be viewed as
performing randomized smoothing for better optimization of the inner maximization problem. We
demonstrate that the smoothing effect by random initialization is not sufficient under the adversarial
perturbation constraint. By proposing a new initialization strategy, backward smoothing, which
strengthens the smoothing effect within the ε-perturbation ball, we present a new fast robust training
method based on TRADES (Zhang et al., 2019). The resulting method significantly improves both
stability and model robustness over the single-step version of TRADES (Zhang et al., 2019), while
consuming much less training time (∼ 3x improvement with the same training schedule).

2 RELATED WORK

There exists a large body of work on adversarial attacks and defenses. In this section, we only review
the most relevant work to ours.

Adversarial Attack The concept of adversarial examples was first proposed in Szegedy et al.
(2013). Since then, many methods have been proposed, such as Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2015), and Projected Gradient Descent (PGD) (Kurakin et al., 2016; Madry
et al., 2018). Later on, various attacks (Papernot et al., 2016; Moosavi-Dezfooli et al., 2016; Carlini
& Wagner, 2017; Athalye et al., 2018; Chen et al., 2020; Croce & Hein, 2020a) were also proposed
for better effectiveness or efficiency. There are also many attacks focused on different attack settings.
Chen et al. (2017) proposed a black-box attack where the gradient is not available, by estimating the
gradient via finite-differences. Various methods (Ilyas et al., 2018; Al-Dujaili & O’Reilly, 2020;
Moon et al., 2019; Andriushchenko et al., 2019; Tashiro et al., 2020) have been developed to im-
prove the query efficiency of Chen et al. (2017). Other methods (Brendel et al., 2018; Cheng et al.,
2019; 2020) focused on the more challenging hard-label attack setting, where only the prediction la-
bels are available. On the other hand, there is recent work (Croce & Hein, 2020b; Chen & Gu, 2020)
that aims to accurately evaluate the model robustness via ensemble of attacks or effective hard-label
attack.

Robust Training Many heuristic defenses (Guo et al., 2018; Xie et al., 2018; Song et al., 2018;
Ma et al., 2018; Samangouei et al., 2018; Dhillon et al., 2018) were proposed when the concept of
adversarial examples was first introduced. However, they are later shown by Athalye et al. (2018)
as not truly robust. Adversarial training (Madry et al., 2018) is the first effective method towards
defending against adversarial examples. In Wang et al. (2019), a new convergence quality criterion
was proposed. Zhang et al. (2019) showed the trade-off between natural accuracy and robust ac-
curacy. Wang et al. (2020) proposed to improve model robustness by better utilizing misclassified
examples. Another line of research utilizes extra information (e.g., pre-trained models (Hendrycks
et al., 2019) or extra unlabeled data (Carmon et al., 2019; Alayrac et al., 2019)) to further improve
robustness. Other work focuses on improving training efficiency, such as free adversarial training
from Shafahi et al. (2019) and Fast AT from Wong et al. (2020) using single-step attack (FGSM)
with random initialization. Li et al. (2020) proposed a hybrid approach for improving Fast AT which
is orthogonal to ours. Andriushchenko & Flammarion (2020) proposed a new regularizer promoting
gradient alignment. Yet, it is not focused on closing the robustness gap with state-of-the-arts.

Randomized Smoothing Duchi et al. (2012) proposed the randomized smoothing technique and
proved variance-based convergence rates for non-smooth optimization. Later on, this technique was
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applied to certified adversarial defenses (Cohen et al., 2019; Salman et al., 2019) for building robust
models with certified robustness guarantees. In this paper, we are not targeting certified defenses.
Instead, we use the randomized smoothing concept in optimization to explain Fast AT.

3 WHY RANDOM INITIALIZATION HELPS?

We aim to explain why random initialization in Fast AT is effective, and propose a new under-
standing that random initialization can be viewed as performing randomized smoothing on the inner
maximization problem in adversarial training (Madry et al., 2018). Below, we first introduce the
randomized smoothing technique (Duchi et al., 2012) in optimization.

It is well known from optimization theory (Boyd et al., 2004) that non-smooth objectives are gen-
erally harder to optimize compared with smooth objectives. In general, a smoother loss function
allows us to use a larger step size while guaranteeing the convergence of gradient-based algorithms.
Randomized smoothing technique (Duchi et al., 2012) was proposed based on the observation that
random perturbation of the optimization variable can be used to transform the loss into a smoother
one. Instead of using only the gradient at the original iterate, randomized smoothing proposes to ran-
domly generate perturbed iterates and use their gradients for optimization procedure. More details
are provided in Appendix A. Let us recall the inner maximization problem in adversarial training:

max
δ∈Bε(0)

L(fθ(x+ δ), y). (3.1)

Here, fθ denotes a neural network parameterized by θ. In general, neural networks are non-smooth
due to ReLU activations and pooling layers. This suggests that (3.1) can be difficult to solve, and
using gradient descent with large step size can lead to divergence in the maximization problem. It
also explains why directly using single-step projected gradient ascent without random initialization
fails (Wong et al., 2020). Now, let us apply randomized smoothing to (3.1):

max
δ∈Bε(0)

Eξ∼U(−1,1)L(fθ(x+ δ + εξ), y), (3.2)

where ξ is the perturbation vector for randomized smoothing, and δ is the perturbation vector for
later gradient update step (initialized as zero). Suppose we solve (3.2) in a stochastic fashion (i.e.,
sample a random perturbation ξ instead of computing the expectation over ξ), and using only one
step gradient update. We can see that this reduces to the Fast AT formulation. This suggests that Fast
AT can be viewed as performing stochastic single-step attacks on a randomized smoothed objective
function which allows using larger step size. This explains why random initialization helps Fast AT
as it makes the loss objective smoother and thus easier to optimize.

It is worth noting that Andriushchenko & Flammarion (2020) also provided an explanation of why
Fast Adversarial Training works: random initialization reduces the magnitude of the perturbation
and thus the network becomes more linear and fits better toward single-step attack. While we argue
that the random initialization works as randomized smoothing for smoothing the inner maximization
problem and makes it easier to solve. In fact, our argument is more general and can cover theirs,
because if the loss function is approximately linear, then it will be very smooth, i.e., the second-order
term in the Taylor expansion is very small.

4 PROPOSED APPROACH

4.1 DRAWBACKS OF THE RANDOM INITIALIZATION STRATEGY

Although Fast AT achieves much faster robust training compared with standard adversarial training
(Madry et al., 2018), it exposes several major weaknesses. For demonstration, we exclude the ad-
ditional acceleration techniques introduced in Wong et al. (2020) for accelerating the training speed
(e.g., mix-precision training, cyclic learning rate), and instead apply standard piecewise learning
rate decay used in Madry et al. (2018); Zhang et al. (2019) with the decay point set at the 50-th and
75-th epochs.

Performance Stability As observed in Li et al. (2020), Fast AT can be highly unstable (i.e., large
variance in robust performance) when using traditional piecewise learning rate decay schedule. We
argue that this is because Wong et al. (2020) utilized a drastically large attack step size (10/255,
even larger than the perturbation limit ε), which causes unstable training behavior.
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Table 1: Model robustness comparison among
Fast Adversarial Training, Adversarial Train-
ing, and TRADES, using ResNet-18 model on
CIFAR-10 dataset.

Method Nat (%) Rob (%)
Fast AT (avg. over 10 runs) 84.58 44.52
Fast AT (best over 10 runs) 84.79 46.30
AT (early-stop) 82.36 51.14
TRADES 82.33 52.74
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Figure 1: Comparison of Fast Adversarial
Training performance with different step sizes.

To validate this, we run Fast AT on CIFAR-10 using ResNet-18 model (He et al., 2016) for 10
times with different step sizes. Note that we adopt early-stopping and record the best-performing
model among 100 epochs. As shown in Figure 1, although the single-best robustness performance
is obtained by using step size 10/255, the variance is very high. Moreover, most trials lead to weak
robust performance with a low average and median robust accuracy. On the other hand, we observe
that when using step size 8/255, model robustness is more stable and higher on average. Note that
using a too small step size would by nature hurt model robustness. These observations suggest that
Fast AT cannot achieve the best performance on robust performance and stability simultaneously.

Potential for Robustness Improvement Fast AT uses standard adversarial training (Madry et al.,
2018) as the baseline, and can obtain similar robustness performance. However, later work (Rice
et al., 2020) shows that adversarial training can cause the overfitting problem, while early stopping
can largely improve robustness. Zhang et al. (2019) further achieves even better model robustness
that is much higher than what Fast AT obtains. From Table 1, we observe that there exists an 8%
robust accuracy gap between Fast AT (average over 10 runs) and the best-performing TRADES
model. Even for the best out of 10 trials, there is still a 6% gap. This indicates that Fast AT is still
far from optimal, and there is still big room for further robustness improvement.

4.2 A NAIVE TRY: RANDOMIZED SMOOTHING FOR TRADES

As shown in Table 1, TRADES enjoys better model robustness compared with standard adversarial
training. A naive attempt is to apply randomized smoothing to TRADES and see if this leads to
better robustness than Fast AT. Let us recall the inner maximization formulation for TRADES:

max
δ∈Bε(0)

KL
(
s(fθ(x)), s(fθ(x+ δ))

)
. (4.1)

Similarly, we can smooth this objective and solve the following objective instead:

max
δ∈Bε(0)

Eξ∼U(−1,1)KL
(
s(fθ(x)), s(fθ(x+ δ + εξ))

)
. (4.2)

This leads to the same adversarial example formulation as using random initialization and then
performing single-step projected gradient ascent. We refer to this strategy as Fast TRADES.
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Figure 2: Comparison of Fast TRADES perfor-
mance under different step sizes.
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Figure 3: Hessian maximum eigenvalue com-
parison against training epochs.

We experiment with Fast TRADES using different step sizes, and find that its performance is sen-
sitive to step size, similar to Fast AT. As shown in Figure 2, using a large step size of 8/255 leads
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to very low average and median robust accuracy. We notice that reducing the step size to 6/255
yields a better average robust accuracy, which is also slightly higher than Fast AT. Nevertheless, the
improvements here over Fast AT are not significant. This inspires us to study how to design a better
strategy for more significant improvements.

Recall the results from Section 4.1. Applying overly-large step size in Fast AT and Fast TRADES
can lead to unstable training with deteriorated robustness. This suggests that the randomized smooth-
ing effect might not be strong enough (i.e., the objective function is not smooth enough) to enable
the use of a larger step size. However, unlike the general randomized smoothing setting, one of the
special constraints in the adversarial setting is that random perturbation on the input vector is subject
to the ε-ball constraint, therefore cannot be too large. This means that we cannot further increase the
smoothing effect by simply using larger random perturbations.

To further validate the claim that the random smoothing effect is not sufficient, we carefully study the
loss smoothness under different smoothing techniques. Figure 3 shows the maximum eigenvalue of
Hessian of the loss function at the original examples, randomly perturbed examples, and backward
smoothed examples along the training trajectory until Fast TRADES obtains its best robustness (the
51st epoch). We observe that during the model training process, the randomly perturbed examples
have overall smaller Hessian maximum eigenvalue2 than that of original examples. This suggests
that random smoothing indeed makes the loss function smoother. Moreover, the Hessian maximum
eigenvalue under backward smoothing is much smaller than that under random smoothing, showing
the insufficiency of the random smoothing techniques and the advantages of our proposed backward
smoothing method.

4.3 BACKWARD SMOOTHING
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Figure 4: A sketch of our proposed method.

Now we introduce our proposed method to ad-
dress the above issue. The goal is to fur-
ther boost the smoothing effect of randomized
smoothing without violating the ε-perturbation
constraint. Note that if we are allowed to
use larger random perturbations, we expect that
KL(s(fθ(x)), s(fθ(x+ uξ))) will also be larger,
meaning that the neural network output of the
random initialization fθ(x+ uξ) should be more
different from the original output fθ(x) (as
shown in Figure 4). This inspires us to gener-
ate the initialization point in a backward fash-
ion. Specifically, let us denote the input domain
x ∈ Rd as the input space, and their correspond-
ing neural network output fθ(x) ∈ Rc as the out-
put space, where c is the number of classes for
the classifier. We first generate random points in
the output space just as randomized smoothing
does in the input space, i.e., fθ(x) + γψ, where
ψ ∼ U(−1, 1) is the random variable and γ is
a small number. Then we find the corresponding
input perturbation in a backward fashion and use it as our initialization. An illustrative sketch of our
proposed method is provided in Figure 4.

Now we formalize our proposed method in mathematical language. The key step in our proposed
method is to find the input perturbation ξ such that:

fθ(x+ ξ) = fθ(x) + γψ. (4.3)

In order to find the best ξ∗ to satisfy (4.3), we turn to solve the following problem:

ξ∗ = argmin
ξ∈Bε(0)

KL
(
s(fθ(x) + γψ), s(fθ(x+ ξ))

)
. (4.4)

2The smaller Hessian maximum eigenvalue, the smoother the loss function is.
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Note that ξ is initialized as a zero vector. For the sake of computational efficiency, we solve (4.4)
using single-step PGD in practice. Then, similar to Wong et al. (2020), we use single-step gradient
update for the inner maximization problem:

δ∗ = argmax
δ∈Bε(0)

KL
(
s(fθ(x)), s(fθ(x+ δ + ξ∗))

)
. (4.5)

Finally, we update the neural network parameter θ using stochastic gradients at the adversarial point
x + ξ∗ + δ∗. A summary of our proposed algorithm is provided in Algorithm 1. Note that the
proposed Backward Smoothing seems also compatible with Adversarial Training. However, Adver-
sarial Training does not contain terms using KL divergence loss, which may hinder its performance.
We will show this empirically in Section 5.
Algorithm 1 Backward Smoothing

1: input: The number of training iterations T , number of adversarial perturbation steps K, maxi-
mum perturbation strength ε, training step size η, adversarial perturbation step size α, regular-
ization parameter β > 0;

2: Random initialize model parameter θ0
3: for t = 1, . . . , T do
4: Sample mini-batch {xi, yi}mi=1 from training set
5: Obtain ξ∗ by solving (4.4)
6: Obtain δ∗ by solving (4.5)
7: θt = θt−1 − η/m ·

∑m
i=1∇θ

[
L(fθ(xi), yi) + β · KL

(
s(fθ(xi)), s(fθ(xi + ξ

∗ + δ∗))
)]

8: end for

We notice that Tashiro et al. (2020) proposed an attack which also samples diversified points in the
output space. Yet their method is not focused on randomized smoothing and has a totally different
formulation, and they are generating diversified output points for better attack efficiency rather than
achieving better defense.

5 EXPERIMENTS

In this section, we empirically evaluate the performance of our proposed method. We first compare
our proposed method with other robust training baselines on CIFAR-10, CIFAR100 (Krizhevsky
et al., 2009) and Tiny ImageNet (Deng et al., 2009)3 datasets. We also provide multiple ablation
studies as well as robustness evaluation with state-of-the-art adversarial attack methods to validate
that our proposed method provides effective robustness improvement.

5.1 EXPERIMENTAL SETTING

Following previous work on robust training (Madry et al., 2018; Zhang et al., 2019; Wong et al.,
2020), we set ε = 0.031 for all three datasets. In terms of model architecture, we adopt standard
ResNet-18 model (He et al., 2016) for both CIFAR-10 and CIFAR-100 datasets, and ResNet-50
model for Tiny ImageNet. We follow the standard piecewise learning rate decay schedule as used
in Madry et al. (2018); Zhang et al. (2019) and set decaying point at 50-th and 75-th epochs. The
starting learning rate for all methods are set to 0.1, the same as previous work (Madry et al., 2018;
Zhang et al., 2019). For all methods, we tune the models for their best robustness performances. For
Adversarial Training and TRADES methods, we adopt 10-step iterative PGD attack with step size
2/255 for both. For our proposed method, we set the backward smoothing parameter γ = 1. For
robust accuracy evaluation, we typically adopt 100-step PGD attack with step size 2/255. To ensure
the validity of the model robustness improvement is not because of the obfuscated gradient (Athalye
et al., 2018), we further test our method with current state-of-the-art attacks (Croce & Hein, 2020b;
Chen & Gu, 2020).

5.2 PERFORMANCE COMPARISON WITH ROBUST TRAINING BASELINES

We compare the adversarial robustness of Backward Smoothing against standard Adversarial Train-
ing (Madry et al., 2018), TRADES (Zhang et al., 2019), as well as fast training methods such as

3We do not test on ImageNet dataset mainly due to that TRADES does not perform well on ImageNet as
mentioned in Qin et al. (2019).
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Fast AT (Wong et al., 2020) and our naive baseline Fast TRADES. We also compare with recently
proposed Fast AT+ method (Li et al., 2020) that achieves high robustness with reduced training
time.4 Since our proposed backward smoothing initialization utilizes an extra step of gradient back-
propagation, we also compare with Fast TRADES using 2-step attack for fair comparison.

Table 2: Performance comparison on CIFAR-10
using ResNet-18 model.

Method Nat (%) Rob (%) Time (m)

AT 82.36 51.14 430
Fast AT 84.79 46.30 82
Fast AT (2-step) 83.21 49.91 127
TRADES 82.33 52.74 482
Fast TRADES 83.39 46.98 126
Fast TRADES (2-step) 83.51 48.78 164
Backward Smoothing 82.38 52.50 164

Table 3: Performance comparison on CIFAR-
100 using ResNet-18 model.

Method Nat (%) Rob (%) Time (m)

AT 55.22 28.53 428
Fast AT 60.35 24.64 83
Fast AT (2-step) 56.00 27.84 128
TRADES 56.99 29.41 480
Fast TRADES 60.26 21.33 126
Fast TRADES (2-step) 58.81 25.47 165
Backward Smoothing 56.96 30.50 164

Table 2 shows the performance comparison on the CIFAR-10 dataset using ResNet-18 model. Our
Backward Smoothing method significantly closes the robustness gap between state-of-the-art ro-
bust training methods, achieving high robust accuracy that is almost as good as TRADES, while
consuming much less (∼ 3x) training time. Compared with Fast AT, Backward Smoothing typi-
cally costs twice the training time, yet achieving significantly higher model robustness. Our method
also achieves similar performance gain against Fast TRADES. Note that even compared with Fast
TRADES using 2-step attack and Fast AT using 2-step attack, which costs about the same training
time as ours, our method still achieves a large improvement.

Table 4: Performance comparison on Tiny Ima-
geNet dataset using ResNet-50 model.

Method Nat (%) Rob (%) Time (m)

AT 44.50 21.34 2666
Fast AT 49.58 18.56 575
Fast AT (2-step) 45.74 20.94 817
TRADES 47.02 21.04 2928
Fast TRADES 50.36 17.22 805
Fast TRADES (2-step) 46.92 19.26 1045
Backward Smoothing 46.68 22.32 1035

Table 3 shows the performance comparison on
CIFAR-100 using ResNet-18 model. We can
observe patterns similar to CIFAR-10 experi-
ments. Backward Smoothing achieves slightly
higher robustness compared with TRADES,
while costing much less training time. Com-
pared with Fast TRADES using 2-step attack
and Fast AT using 2-step attack, our method
also achieves a large robustness improvement
with roughly the same training cost. Table 4
shows that on Tiny ImageNet using ResNet-50
model, Backward Smoothing also achieves sig-
nificant robustness improvement over other single-step robust training methods.

5.3 EVALUATION WITH STATE-OF-THE-ART ATTACKS

To ensure that Backward Smoothing does not cause obfuscated gradient problem (Athalye et al.,
2018) or presents a false sense of security, we further evaluate our method using state-of-the-art at-
tacks, by considering two evaluation methods: (i) AutoAttack (Croce & Hein, 2020b), which is an
ensemble of four diverse (white-box and black-box) attacks (APGD-CE, APGD-DLR, FAB (Croce
& Hein, 2020a) and Square Attack (Andriushchenko et al., 2019)) to reliably evaluate robustness;
(ii) RayS attack (Chen & Gu, 2020), which only requires the prediction labels of the target model
(completely gradient-free) and is able to detect falsely robust models. It also measures another ro-
bustness metric, average decision boundary distance (ADBD), defined as examples’ average distance
to their closest decision boundary. ADBD reflects the overall model robustness beyond ε constraint.
Both evaluations provide online robustness leaderboards for public comparison with other models.

We train our method with WideResNet-34-10 model (Zagoruyko & Komodakis, 2016) and evaluate
via AutoAttack and RayS. Table 5 shows that under state-of-the-art attacks, Backward Smoothing
still holds high robustness comparable to TRADES. Specifically, in terms of robust accuracy, Back-
ward Smoothing is only 2% behind TRADES, while significantly higher than AT (Madry et al.,
2018) and Fast AT (Wong et al., 2020). In terms of ADBD metric, Backward Smoothing achieves

4Since Li et al. (2020) does not have code released yet, we only compare with theirs in the same setting
(combined with acceleration techniques) using reported numbers.

7



Under review as a conference paper at ICLR 2021

the same level of overall model robustness as TRADES, much higher than the other two methods.
Note that the gap between Backward Smoothing and TRADES is larger than that in Table 2. We

want to emphasize that this is not mainly due to the stronger attacks5 but the fact that we are using
larger model architectures. Intuitively speaking, larger models have larger capacities and may need
stronger attacks to reach some dark spot in the area.
Table 5: Performance comparison with state-of-the-
art robust models on CIFAR-10 evaluated by Au-
toAttack and RayS.

Method AutoAttack RayS
Metric Rob (%) Rob (%) ADBD

AT 44.04 50.70 0.0344
AT (early-stop) 49.10 54.00 0.0377
Fast AT 43.21 50.10 0.0334
TRADES 53.08 57.30 0.0403
Fast TRADES 43.84 52.05 0.0348
Fast TRADES (2-step) 48.20 54.43 0.0383
Backward Smoothing 51.13 55.08 0.0403
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Figure 5: Robustness stability of different
fast robust training methods.

5.4 STABILITY AND COMPATIBILITY

Figure 5 shows that Backward Smoothing is much more stable than Fast AT with much smaller
variance. Compared with Fast TRADES, Backward Smoothing has achieved similar variance while
obtaining much higher average model robustness. This demonstrates the superiority on robust-
ness stability for Backward Smoothing method. We also wonder whether Backward Smoothing is
compatible with Adversarial Training, i.e., can we use a similar initialization strategy for improv-
ing Fast AT? We test this on CIFAR-10 using ResNet-18 model, and the resulting model achieves
45.53±0.35% robust accuracy, improving the stability of Fast AT as well as the average robustness.
However, the best run out of 10 trials does not achieve better robustness. We conjecture that the
main reason for the deteriorated performance is the different choices of inner maximization loss for
Adversarial Training (Cross-Entropy) and TRADES (KL divergence). Considering the random per-
turbation generated on the output space, the Cross-Entropy loss mainly focuses on the y-logit while
KL divergence is closely related to all logits. This partially explains the above observations.

5.5 ABLATION STUDIES

We also perform a set of ablation studies to provide a more in-depth analysis on Backward Smooth-
ing. Due to the space limit, here we present the sensitivity analysis on smoothing parameter γ and
the step size, and leave more ablation studies in the supplemental materials.

Effect of γ: We analyze the effect of γ in Backward Smoothing by fixing β and the attack step
size. Table 6 summarizes the results. In general, γ does not have a significant effect on the final
model robustness; however, using too large or too small γ would lead to slightly worse robustness.
Empirically, γ = 1 achieves the best performance on both datasets.

Table 6: Sensitivity analysis of γ on the CIFAR-
10 and CIFAR-100 datasets using ResNet-18
model.

Dataset CIFAR-10 CIFAR-100
γ Nat (%) Rob (%) Nat (%) Rob (%)

0.1 82.43 52.13 56.62 29.34
0.5 82.53 52.34 56.95 29.85
1.0 82.38 52.50 56.96 30.50
2.0 82.29 52.42 56.16 29.88
5.0 81.50 52.32 56.10 429.83

Table 7: Sensitivity analysis of the attack step
size on the CIFAR-10 and CIFAR-100 datasets
using ResNet-18 model.

Dataset CIFAR-10 CIFAR-100
Step Size Nat (%) Rob (%) Nat (%) Rob (%)

6/255 81.38 52.38 56.83 29.78
7/255 81.96 52.40 56.61 29.82
8/255 82.38 52.50 56.96 30.50
9/255 82.47 52.16 56.45 29.35
10/255 81.71 52.04 60.85 24.21
11/255 67.43 42.45 40.40 20.92
12/255 65.56 41.12 37.90 18.83

5We also tested the ResNet-18 models in Table 2 with AutoAttack and the gap between Backward Smooth-
ing and TRADES is as small as 0.5%.
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Effect of Attack Step Size: To verify the effect of attack step size, we fix γ and β. From Table 7, we
can observe that different from single-step robust training methods, Backward Smoothing achieves
similar robustness with slightly smaller step size, while the best performance is obtained with step
size 8/255. This suggests that we do not need to pursue overly-large step size for better robustness
as in Fast AT. This avoids the stability issue in Fast AT.

5.6 COMBINING WITH OTHER ACCELERATION TECHNIQUES

Table 8: Performance comparison on CIFAR-
10 using ResNet-18 model combined with cyclic
learning rate and mix-precision training.

Method Nat (%) Rob (%) Time (m)
AT 81.48 50.32 62
Fast AT 83.26 45.30 12
Fast AT+ 83.54 48.43 28
TRADES 79.64 50.86 88
Fast TRADES 84.40 45.96 18
Fast TRADES (2-step) 81.37 47.56 24
Backward Smoothing 78.76 50.58 24

Aside from random initialization, Wong et al.
(2020) also adopts two additional accelera-
tion techniques to further improve training ef-
ficiency with a minor sacrifice on robustness
performance: cyclic learning rate decay sched-
ule (Smith, 2017) and mix-precision training
(Micikevicius et al., 2017). We show that
such strategies are also applicable to Backward
Smoothing. Table 8 provides the results when
these acceleration techniques are applied. We
can observe that both work universally well
for all methods, significantly reducing train-
ing time (in comparison with Table 2). Yet it
does not alter the conclusions that Backward
Smoothing achieves similar robustness to TRADES with much less training time. Also when com-
pared with the recent proposed Fast AT+ method, Backward Smoothing achieves higher robustness
and training efficiency. Note that the idea of Fast AT+ method is orthogonal to ours and we can also
adopt such hybrid approach for further reduction on training time.

6 CONCLUSIONS

In this paper, we propose a new understanding towards Fast Adversarial Training by viewing ran-
dom initialization as performing randomized smoothing for the inner maximization problem. We
then show that the smoothing effect by random initialization is not enough under adversarial pertur-
bation constraint. To address this issue, we propose a new initialization strategy, Backward Smooth-
ing. The resulting method closes the robustness gap to state-of-the-art robust training methods and
significantly improves model robustness over single-step robust training methods.

REFERENCES

Abdullah Al-Dujaili and Una-May O’Reilly. Sign bits are all you need for black-box attacks. In
ICLR, 2020.

Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stanforth, and
Pushmeet Kohli. Are labels required for improving adversarial robustness? In NeurIPS, pp.
12214–12223, 2019.

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial
training. Advances in Neural Information Processing Systems, 2020.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square
attack: a query-efficient black-box adversarial attack via random search. arXiv preprint
arXiv:1912.00049, 2019.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In ICML, 2018.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In ICLR, 2018.

9



Under review as a conference paper at ICLR 2021

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In SP,
pp. 39–57. IEEE, 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled
data improves adversarial robustness. In NeurIPS, pp. 11192–11203, 2019.

Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack. In
SIGKDD, 2020.

Jinghui Chen, Dongruo Zhou, Jinfeng Yi, and Quanquan Gu. A frank-wolfe framework for efficient
and effective adversarial attacks. In AAAI, 2020.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
AISec, pp. 15–26. ACM, 2017.

Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, JinFeng Yi, and Cho-Jui Hsieh. Query-
efficient hard-label black-box attack: An optimization-based approach. In ICLR, 2019.

Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. Sign-
opt: A query-efficient hard-label adversarial attack. In ICLR, 2020.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In ICML, pp. 1310–1320, 2019.

F. Croce and M. Hein. Minimally distorted adversarial examples with a fast adaptive boundary
attack. In ICML, 2020a.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In ICML, 2020b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. Ieee, 2009.

Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kossaifi,
Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial de-
fense. ICLR, 2018.

John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. ICLR, 2015.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering adversarial
images using input transformations. ICLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. In ICML, pp. 2712–2721, 2019.

Andrew Ilyas, Logan Engstrom, Anish Athalye, Jessy Lin, Anish Athalye, Logan Engstrom, Andrew
Ilyas, and Kevin Kwok. Black-box adversarial attacks with limited queries and information. In
ICML, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Bai Li, Shiqi Wang, Suman Jana, and Lawrence Carin. Towards understanding fast adversarial
training. arXiv preprint arXiv:2006.03089, 2020.

10



Under review as a conference paper at ICLR 2021

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using
local intrinsic dimensionality. ICLR, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ICML, 2018.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Seungyong Moon, Gaon An, and Hyun Oh Song. Parsimonious black-box adversarial attacks via
efficient combinatorial optimization. In ICML, pp. 4636–4645, 2019.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In CVPR, pp. 2574–2582, 2016.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In EuroS&P, pp. 372–387. IEEE,
2016.

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein
Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness through local
linearization. In NeurIPS, pp. 13847–13856, 2019.

Leslie Rice, Eric Wong, and J Zico Kolter. Overfitting in adversarially robust deep learning. ICML,
2020.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. In
NeurIPS, pp. 11292–11303, 2019.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers against
adversarial attacks using generative models. ICLR, 2018.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In
NeurIPS, pp. 3358–3369, 2019.

Leslie N Smith. Cyclical learning rates for training neural networks. In WACV, pp. 464–472. IEEE,
2017.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples. ICLR,
2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yusuke Tashiro, Yang Song, and Stefano Ermon. Diversity can be transferred: Output diversification
for white-and black-box attacks. Advances in Neural Information Processing Systems, 33, 2020.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. In ICML, pp. 6586–6595, 2019.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In ICLR, 2020.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training.
In ICLR, 2020.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial
effects through randomization. ICLR, 2018.

11



Under review as a conference paper at ICLR 2021

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In ICML, pp. 7472–7482,
2019.

12



Under review as a conference paper at ICLR 2021

A RANDOMIZED SMOOTHING

Randomized smoothing technique (Duchi et al., 2012) was originally proposed for solving convex
non-smooth optimization problems. It is based on the observations that random perturbation of the
optimization variable can be used to transform the loss into a smoother one. Instead of using only
L(x) and ∇L(x) to solve

minL(x),

randomized smoothing turns to solve the following objective function, which utilizes more global
information from neighboring areas:

minEξ∼U(−1,1)L(x+ uξ), (A.1)

where ξ is a random variable, and u is a small number. Duchi et al. (2012) showed that randomized
smoothing makes the loss in (A.1) smoother than before. Hence, even if the original loss L is
non-smooth, it can still be solved by stochastic gradient descent with provable guarantees.

B ADDITIONAL ABLATION STUDIES

In this section, we conduct additional ablation studies to provide a comprehensive view to the Back-
ward Smoothing method.

B.1 THE EFFECT OF β

We conduct the ablation studies to figure out the effect of β in Backward Smoothing method by
fixing γ and the attack step size. Table 9 shows the experimental results. Similar to what β does in
TRADES (Zhang et al., 2019), here in Backward Smoothing, β still controls the trade-off between
natural accuracy and robust accuracy. We observe that with a larger β, natural accuracy keeps
decreasing and the best robustness is obtained with β = 10.0.
Table 9: Sensitivity analysis of β on CIFAR-10 and CIFAR-100 datasets using ResNet-18 model.

Dataset CIFAR-10 CIFAR-100
β Nat (%) Rob (%) Nat (%) Rob (%)

2.0 84.87 46.46 62.22 24.83
4.0 84.58 50.01 59.03 27.58
6.0 83.96 51.65 57.46 28.66
8.0 82.48 51.88 57.51 29.38

10.0 82.38 52.50 56.96 30.50
12.0 81.63 52.38 56.46 29.95

B.2 DOES BACKWARD SMOOTHING ALONE WORKS?

To further understand the role of Backward Smoothing in robust training, we conduct experiments
on using Backward Smoothing alone, i.e., only use Backward Smoothing initialization but do not
perform gradient-based attack at all. Table 10 and Table 11 show the experimental results. We can
observe that Backward Smoothing as an initialization itself only provides a limited level of robust-
ness (not as good as single-step attack). This is reasonable since the loss for Backward Smoothing
does not directly promote adversarial attacks. Therefore it only serves as an initialization to help
single-step attacks better solve the inner maximization problems.
Table 10: Performance of using Backward
Smoothing alone on CIFAR-10 dataset using
ResNet-18 model.

Method Nat (%) Rob (%)
Fast AT 84.79 46.30
Fast TRADES 84.80 46.25
Backward Smoothing Alone 69.87 39.26

Table 11: Performance of using Backward
Smoothing alone on CIFAR-100 dataset using
ResNet-18 model.

Method Nat (%) Rob (%)
Fast AT 60.35 24.64
Fast TRADES 60.22 19.40
Backward Smoothing Alone 43.47 18.51

B.3 MORE EXPERIMENTS FOR BACKWARD SMOOTHING USING MULTIPLE RANDOM POINTS

We also conducted extra experiments using multiple random points for the Backward Smoothing
method. As can be seen from Table 12, a single random point already leads to similar performance
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Table 12: Sensitivity analysis on the
number of random points used in Back-
ward Smoothing on the CIFAR-10
dataset using ResNet-18 model.

# RandPoints Rob (%) Time (m)

1 52.50 164
2 52.67 204
5 52.70 316

10 52.73 510

Table 13: Performance comparison on CIFAR-
10 dataset using ResNet-18 model (ε =
16/255).

Method Nat (%) Rob (%) Time (m)

AT 62.76 32.03 425
Fast AT 53.72 20.12 89
TRADES 62.09 28.63 470
Fast TRADES 56.55 17.47 137
Fast TRADES (2-step) 53.36 19.11 167
Backward Smoothing 63.47 25.04 164

as multiple random points but saves more time. Note that our target is to improve the efficiency of
adversarial training, therefore, we only use a single random point for randomized smoothing in our
proposed method.

B.4 MORE EXPERIMENTS FOR LARGER ε = 16/255

We also conducted experiments testing the larger ε = 16/255 case. As can be seen from Table
13, Backward Smoothing still achieves significant improvements over other single-step adversar-
ial training algorithms despite that Adversarial training actually obtains better results compared to
TRADES. This verifies the effectiveness of the proposed method.
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