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Abstract

Commuting Origin-destination (OD) flows, capturing daily population mobility
of citizens, are vital for sustainable development across cities around the world.
However, it is challenging to obtain the data due to the high cost of travel surveys
and privacy concerns. Surprisingly, we find that satellite imagery, publicly available
across the globe, contains rich urban semantic signals to support high-quality OD
flow generation, with over 98% expressiveness of traditional multisource hard-to-
collect urban sociodemographic, economics, land use, and point of interest data.
This inspires us to design a novel data generator, GlODGen (Global-scale Origin-
Destination Flow Generator), which can generate OD flow data for any cities of
interest around the world. Specifically, GlODGen first leverages Vision-Language
Geo-Foundation Models to extract urban semantic signals related to human mobility
from satellite imagery. These features are then combined with population data to
form region-level representations, which are used to generate OD flows via graph
diffusion models. Extensive experiments on 4 continents and 6 representative cities
show that GlODGen has great generalizability across diverse urban environments
on different continents and can generate OD flow data for global cities highly
consistent with real-world mobility data. We implement GlODGen as an automated
tool, seamlessly integrating data acquisition and curation, urban semantic feature
extraction, and OD flow generation together. It has been released at https:
//github.com/tsinghua-fib-lab/generate-od-pubtools.

1 Introduction

Commuting origin-destination (OD) flows profile the regular population movement in daily life
between every two urban regions within a given urban area [55], providing a critical foundation for
various applications. For example, OD flows are essential inputs for simulations and analyses in
traffic management and urban planning, serving as the travel demands of citizens for developing more
informed policies [12, 66]. Recent studies have also explored the potential of OD flows in supporting
research related to the United Nations Sustainable Development Goals (SDGs) on community
detection [15], urban resilience [52, 28], pubic health [37] and environmental protection [81], further
demonstrating their importance. Therefore, obtaining OD flows holds great significance for cities
around the world, especially as they increasingly support interdisciplinary research efforts that span
traditional and emerging urban challenges [55, 6].

However, it is very challenging to obtain this valuable data. Traditional methods for obtaining OD
flows, such as door-to-door travel surveys [55] and the aggregation of large-scale individual mobility
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Figure 1: An illustration of replacing the traditional hard-to-collect urban data by easily accessible
global public data (e.g., satellite imagery and population data) in OD flow generation.

trajectories [11, 34, 22, 49], are often infeasible in target cities due to high costs and privacy concerns.
Although recent studies have explored physical [85, 64, 6] and computational [51, 53, 63, 44, 58,
57, 56] models for OD flow generation, these approaches face key limitations. Physical models rely
solely on population distribution and adopt overly simplistic assumptions, ignoring urban semantic
differences and resulting in limited accuracy. Computational models perform better but still rely on
hard-to-obtain, expensive, and fine-grained inputs such as sociodemographics, infrastructure data,
land use, and points of interest (POIs), which limits their applicability to only one or a small number
of data-rich, developed cities.

Recent studies [73, 82, 69, 25, 36, 50, 79, 30, 72, 24, 26, 61, 10, 54, 2, 1] have demonstrated that
satellite images, publicly available around the world, can provide important urban semantics related to
human activities in urban regions. For example, residential structures identifiable in satellite imagery
often indicate regions with high outbound commuting demand, while the presence of commercial
buildings typically corresponds to regions with concentrated inbound flows. In contrast, sparsely
built-up areas tend to exhibit lower levels of human activity and mobility. Therefore, satellite imagery
holds the potential to serve as an alternative to the hard-to-obtain inputs required by traditional
computational OD generation models, and supports the generation of OD flows for cities with limited
data, as shown in Figure 1.

Accordingly, we propose GlODGen (Global-scale Origin-Destination Flow Generator), which
incorporates satellite imagery combined with population data as input for representing urban regions,
and leverages recently developed vision-language geo-foundation models [84, 42] to extract high-
quality semantic features for OD flow generation in any city worldwide. Specifically, satellite imagery
is first preprocessed by cropping and stitching it according to the boundaries of each urban region.
This step removes irrelevant pixels and avoids the noise outside the regions. Then, with the help
of RemoteCLIP [43], the semantic features of urban regions are extracted. Finally, the extracted
regional features are combined with population data to profile the urban space as input for the
state-of-the-art OD flow generation model, WEDAN [56], and generate OD flows. To investigate the
validity of adopting only the publicly available satellite imagery and population data as input, we
conduct experiments on representative urban areas in the U.S., Europe, China, Brazil, and Africa.
We surprisingly find that totally publicly available data can serve as a perfect alternative to the
hard-to-obtain inputs mentioned above and generate OD flows with high consistency with real-world
data. This may shed light on the potential for extending OD flow generation to any city worldwide
with the help of ubiquitous satellite imagery and population data, which is of great significance for the
sustainable development of cities around the world. To facilitate practical use, we release GlODGen
as an open-source tool at https://github.com/tsinghua-fib-lab/generate-od-pubtools,
which seamlessly automates the collection and preprocessing of satellite imagery and population
data, urban semantic feature extraction, and OD flow generation together.

The contributions of this paper can be summarized as follows:
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Figure 2: Cases of satellite imagery for urban regions.

• We find that publicly available satellite imagery and population data can replace hard-to-obtain
urban data, such as sociodemographics, infrastructure data, land use, and POIs, to profile the urban
space for inferring human mobility and generate OD flows.

• We propose GlODGen, a novel OD flow generator that leverages vision-language geo-foundation
models to extract high-quality semantic features from satellite imagery and generate OD flows via
graph diffusion models.

• We implement GlODGen as an efficient tool, which integrates data acquisition, curation and
preprocessing, urban semantic feature extraction, and OD flow generation together. With only the
boundaries of urban regions given, GlODGen can provide the OD flow data for cities of interest
with only a single line of code.

• We conduct experiments on representative urban areas around the world to demonstrate the effec-
tiveness of GlODGen, which may pave the way for research on generating OD flows for global
cities and contribute to lowering the barrier of data access for sustainable urban development.

2 Preliminaries

2.1 Definitions and Problem Formulation

Definition 1. City. A city refers to a large, integrated urban area such as New York City, London, or
Beijing. Our study focuses on commuting movements that occur within the spatial boundaries of a
city.

Definition 2. Urban Region. Urban regions R = {ri|i = 1, 2, ..., N} are the basic spatial units
within a city for the OD flow generation task. Population movements are modeled between these
regions.

Every region corresponds to its unique satellite imagery, which consists of 2D, bird’s-eye views
captured from satellites covering the region, as illustrated in Figure 2.
Definition 3. Commuting OD Flow. This refers to the number of people Frorg,rdst who live in
one urban region rorg and work in another urban region rdst. It captures the regular, static daily
movement from home to the workplace and remains relatively stable for a long time.

PROBLEM 1. Commuting OD Flow Generation. Given a city and its region division, generate the
commuting OD flows F = {Frorg,rdst |rorg, rdst ∈ R} that represent the daily commuting patterns
of the city. The generated OD flows should be as consistent as possible with real-world human
mobility patterns.

2.2 Related Works

Urban Representation Learning via Satellite Imagery. Satellite imagery has been demonstrated
to carry rich information about human activities, making it a feasible basis for profiling urban
regions and generating OD flows. Specifically, satellite imagery offers a comprehensive overview
of urban development from a macro perspective, while also enabling detailed analysis of regional
contents at a micro level. At a coarse spatial level, satellite imagery has been leveraged to infer socio-
economic indicators through tailored supervised and self-supervised learning methods, facilitating
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Figure 3: The framework and data pipeline of GlODGen.

the extraction of high-level semantic representations of urban areas. These indicators include poverty
levels [5, 4, 25, 36, 50, 79, 73, 27, 41, 82, 24, 61, 10, 2, 1, 72], crop yields [45, 46, 59, 71, 78, 80],
land cover [31, 69, 62], commercial activeness [30, 40], and environmental metrics [72, 77, 76, 20,
60, 82, 54, 27]. At a finer spatial scale, satellite imagery has been extensively utilized to monitor
urban geospatial features, enabling the identification of various socio-physical entities such as streets,
airplanes, vehicles, and recreational facilities like baseball fields [74, 75, 39, 73, 83, 76, 20, 67, 76, 14].
These capabilities collectively highlight the strong potential of satellite imagery as a powerful and
scalable modality for comprehensively representing urban regions, thereby enabling the generation of
high-quality OD flow data around the world.

OD Flow Generation. OD flow obtaining, the task of obtaining OD flows for urban areas of
interest lacking human mobility data, is an important yet traditionally costly and time-consuming
process that relies on travel surveys [55, 3, 34]. Researchers have explored alternative data sources
related to individual trajectories, such as call detail records (CDRs) [11, 34] and cellular network
accesss (CNAs) [22, 49] to efficiently access OD flows. However, these methods face challenges
regarding data accessibility and privacy concerns. To avoid these issues, researchers have introduced
model-based methods for generating OD flows, which are often categorized into two distinct types.
The first is physical models, e.g., the gravity model [85] and radiation model [64], which model the
population movement by mimicking physical laws, such as Newton’s law of universal gravitation
and the emission and absorption of the radiation process. These models are overly simplistic and are
unable to effectively model the complexity inherent in human mobility. The second category is data-
driven computational models that leverage machine learning and deep learning techniques to generate
OD flows based on various urban factors, including sociodemographics, POI distributions, etc. [51,
53, 63, 44, 58, 57]. These methods achieve superior performance via sophisticated model structures
but the high requirements for input data limits their applicability, especially in underdeveloped areas.
Our framework leverages global publicly available data to replace the hard-to-collect features for
profiling urban regions and generating OD flows. This breaks the barrier of data accessibility while
reserving the superior performance advantages of computational models.

3 GlODGen: Commuting Origin-destination Flow Generator

In Figure 3, we illustrate the conceptual structure of the framework. It comprises three stages: satellite
imagery preprocessing, urban semantic feature extraction, and origin-destination flow generation.

Satellite Imagery Preprocessing. For each region in the city, GlODGen first identifies specific tiles
of satellite imagery corresponding to each region and downloads them from any online platform,
such as Google Earth and Esri World Imagery. A tile refers to a smaller, square-shaped portion of
a larger satellite image, which is created by dividing the satellite image of the whole world into
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manageable pieces. This tiling process facilitates more efficient obtaining and processing, especially
when working with large-scale satellite images. With all tiles obtained, the next phase involves
concatenation and cropping, shaping the images to match the exact contours of each region. This
procedure is critical for ensuring that the imagery faithfully represents the geographical and physical
attributes of each region, creating an accurate visual portrayal. During cropping, the image content
beyond region boundaries is removed and zero-padded to preserve spatial accuracy and exclude
irrelevant information, as formalized below:

Mr(x, y) =

{
1, if (x, y) ∈ Boundary(r)
0, otherwise

(1)

where (x, y) denotes the pixel coordinates, Mr is the mask of region r. The image is then masked by
Mr to remove the irrelevant parts, which is detailed in the equation below:

Ifinal = Iraw ⊙Mr (2)

where Iraw is the raw satellite image, Ifinal is the final satellite image of region r, and ⊙ denotes the
element-wise multiplication operation. Once processed, the satellite images for the regions appear as
depicted in Figure 2.

Urban Semantic Feature Extraction. After completing the previous step, every region in the
specified area is assigned a satellite image to represent its unique characteristics and functions, as
illustrated in Figure 3. However, the raw pixel data from the images are unsuitable for direct use as
urban regional features, due to the presence of excessive noise and irrelevant, redundant information
unrelated to human mobility. As such, a feature extraction model is needed to process the satellite
imagery, enabling the distillation of the most significant semantic information related to OD flows.
This model could be any structure, such as VGG [65], ResNet [29], or ViT [18], and we choose
the vision encoder from the large multimodal model, which also has the special design to handle
the satellite images, RemoteCLIP [43]. Pre-trained with natural language supervision for the vision
encoder, the large multimodal model exhibits zero-shot capabilities, allowing it to extract versatile
semantic features from satellite imagery for various downstream tasks. We adopt RemoteCLIP as the
semantic feature extractor in our framework. Specifically, we input the preprocessed satellite image
of each region to the vision encoder of RemoteCLIP, whose output is a 1024-dimension high-level
feature that captures the urban semantics of that urban region. During this stage, we only use the
vision encoder of RemoteCLIP with the pre-trained weights frozen. Because recent works have
demonstrated that finetuning the foundation model on the specific task will lead to forgetting the
general knowledge learned from the pre-training and result in overfitting [17, 35, 32]. This process is
formalized as follows:

Er = V(Ir), (3)

where Ir is the satellite image of region r, V is the vision encoder of RemoteCLIP, and Er is the
1024-dimension feature vector of region r. The final input to the OD flow generation model is built
by merging the semantic features, extracted from satellite images, with the population of region r, as
shown below:

Xr = [Er, Pr], (4)

where Pr means the population of r and []̇ denotes a concatenation operation. Xr is the final features
profiling region r, which will be input into the OD flow generation model before being processed by
a multi-layer perceptron (MLP) whose parameters are trained while training the following OD flow
generation model. In this way, the vision encoder can provide a general and versatile representation
of the region, while the representation is further refined to fit the specific task of OD flow generation.

Origin-destination Flow Generation. We adopt WEDAN [56], a state-of-the-art OD flow generation
model based on graph denoising diffusion [38, 47, 70, 23, 7, 21], to generate OD flows. In WEDAN,
urban regions are represented as nodes and OD flows as weighted directed edges in a graph. The
model follows a conditional generation paradigm, where node attributes serve as guidance for the
denoising process and generating the directed edges and corresponding weights. In other words, the
semantic characteristics of urban space are leveraged as conditioning inputs, guiding the denoising
process to produce realistic and spatially consistent OD flows. Benefiting from its formulation of the
city-wide OD network as a directed, weighted graph, WEDAN is capable of generating OD flows
that closely align with real-world population mobility patterns. In our framework, the urban semantic
feature Xr extracted for each region is used as the node attribute input, guiding the generation of

5



edge directions and weights during the denoising process. The procedure can be described as follows:

pθ(F
t−1|Ft, CR) = N (Ft−1;µθ(F

t, t, CR), (1− ᾱt)I), (5)

where

µθ(F
t, t, CR) =

1
√
αt

(Ft − βt√
1− ᾱt

ϵθ(F
t, t, CR)). (6)

In the formulas, CR = {Xr|r ∈ R} is the semantic features of urban regions within the city, t is the
diffusion step, I is the identity matrix, ϵθ means denoising networks, µθ denotes µ of the Gaussian
distribution, αt = 1 − βt and ᾱt =

∏t
i=1 αi refer to the noise scheduler. The denoising network

utilized here is the graph transformer network [19], which predicts the noise needed to be removed
from the current graph state Ft to reach the previous state Ft−1.

4 Experiments

In this section, we conduct experiments to answer two key research questions:

• RQ1: For precision, can entirely public data, satellite imagery, and population data, sufficiently
represent urban spatial characteristics and support the generation of high-quality OD flows?

• RQ2: For generalizability, does GlODGen demonstrate cross-continental transferability, enabling
it to generate OD flows in diverse global cities with the help of global public input data?

All experiments were conducted on a single NVIDIA GeForce RTX 4090 GPU (24GB) and an Intel
Xeon Platinum 8358 CPU @ 2.60GHz. For all trainable models, we performed the grid search to
select optimal hyperparameters. The same training, validation, and testing splits were used when
training all models and evaluating the performance.

4.1 Performance of Public Satellite Imagery and Population Data (RQ1)

We begin by evaluating the effectiveness of publicly available satellite imagery and population data in
supporting OD flow generation. Specifically, we compare the performance of several existing OD flow
generation models using two different types of input: (1) traditional fine-grained features that are often
costly or difficult to obtain, and (2) publicly accessible features. In this experiment, we use detailed
sociodemographic attributes, economic indicators, and POI distributions as the traditional inputs, and
satellite imagery combined with population data as the public inputs. To evaluate representational
capacity across input types, we apply two groups of existing models commonly used for OD flow
generation: physical models, including the classical gravity and radiation models, which rely solely
on population distribution act as lower-bound reference of performance; Computational models,
including Random Forest [51], DeepGravity [63], GMEL [44], NetGAN [8], and WEDAN [56],
which support richer semantic inputs and allow us to assess the performance impact of different input
data sources. A detailed introduction of the models is provided in Appendix B.1.

Dataset. In this part, we use the dataset [56] from the United States to conduct experiments. This
dataset totally consists of 3,333 urban areas, including 3,233 counties and 100 metropolitans. Each
urban area is associated with its region division: census tracts within counties and census block
groups within metropolitans. The dataset contains two parts: (1) city characteristics in urban
regions, including population structure, education level, poverty, income, vehicle ownership, and
other socioeconomic indicators from the American Community Survey (ACS) and (2) OD flow
data between urban regions provided by the National Census Bureau through the Longitudinal
Employer-Household Dynamics Origin-Destination Employment Statistics (LODES) [9].

Experimental Settings. To systematically evaluate the performance of different models and input
types, we adopt root mean square error (RMSE), normalized RMSE (NRMSE), and common part
of commuting (CPC) as metrics. We split the 3,333 urban areas into 8:1:1 proportions for training,
validation, and testing. The evaluation metrics are averaged over all test urban areas. All experiments
are repeated 5 times with different random seeds with average results and standard deviations reported.

Experimental Results. As shown in Table 1, public data demonstrates performance close to that
of traditional hard-to-obtain urban data. We can see that the performances of global public data
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Table 1: Performance of existing OD flow generation models on test urban areas in the United States
with different input data. Traditional hard-to-obtain urban data and global public data are put together
for better comparison. The former’s results are shown in the upper line, while the latter’s are shown
in the lower line. Perc. in the table indicates percentage of the performance (CPC) achieved by
the model trained with publicly available data relative to that of the model trained with traditional
hard-to-collect fine-grained data. Gap means the remaining performance gap in RMSE between
the model trained with publicly available data and the model trained with traditional hard-to-collect
fine-grained data.

CPC↑ Perc. RMSE↓ Gap NRMSE↓

Gravity Model 0.321 ± 0.02 - 174.0 ± 10.4 - 2.222
Radiation Model 0.347 ± 0.04 - 196.9 ± 11.7 - 2.502

Random Forest 0.494 ± 0.02 - 100.4 ± 6.5 - 1.282
0.480 ± 0.03 97.1% 114.0 ± 7.1 -13.5% 1.455

DeepGravity 0.449 ± 0.01 - 92.9 ± 9.9 - 1.186
0.427 ± 0.05 95.1% 99.9 ± 12.0 -7.5% 1.275

GMEL 0.462 ± 0.01 - 94.3 ± 4.0 - 1.204
0.451 ± 0.02 97.6% 105.4 ± 7.9 -11.8% 1.345

NetGAN 0.517 ± 0.05 - 89.1 ± 17.0 - 1.138
0.468 ± 0.06 90.5% 98.0 ± 12.3 -10.0% 1.251

WEDAN 0.634 ± 0.01 - 64.06 ± 3.3 - 0.818
0.623 ± 0.02 98.3% 67.88 ± 6.1 -5.9% 0.867

are slightly less accurate than those of traditional hard-to-collect information, but the deviations are
almost indistinguishable. Across all models based on the data-driven schema, public data achieve over
90% of the performance of traditional features. This indicates that such data can further effectively
profile and represent spatial characteristics in a manner comparable to traditional hard-to-obtain
inputs. Moreover, computational models based on public data significantly outperform classic
physical models, demonstrating the superior performance and widespread applicability of public data,
including satellite imagery and population data.

4.2 Generalization Across Continents (RQ2)

In this part, we conduct experiments that transfer the OD flow generation model from one trained
continent to another and investigate the generalization ability of GlODGen with global publicly
available satellite imagery and population data. Specifically, we use the data from the United States
to train the GlODGen model, and then transfer it to the United Kingdom for evaluation.

Dataset. The training data in the United States is the same as the dataset used in Section 4.1. The test
data in the United Kingdom is from the Office for National Statistics (ONS) [48], which provides
population-level commuting flows between all census units. Specifically, the data contains OD flows
of 326 Local Authority Districts (LAD). In each district, the whole area is divided into urban regions
by the boundaries of Middle layer Super Output Areas (MSOA).

Experimental Settings. We use 90% urban areas in the United States as the training data and the
remaining 10% as the validation data to tune the hyperparameters. The trained GlODGen model
is then transferred to the United Kingdom for generating OD flows. Generated OD flows will be
compared with the ones from census data and evaluated by metrics introduced in Section 4.1. Metrics
are the average of all LADs. We also introduce existing models to perform the same task and
evaluate their performance as baselines. It is worth noting that existing models are only provided with
population data and inter-region distances as input. This limitation is unavoidable, as fine-grained
urban features that align across training and testing cities are typically unavailable in cross-continental
experimental settings.

Experimental Results. As shown in Table 2, the proposed framework can be transferred between
different continents with a robust performance. Compared with the baseline models, our framework
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Table 2: Performance comparison of baseline methods with geographically distributed population and
our proposed framework profiling urban regions based on global public data on the United Kingdom.
All the methods are trained in the United States and evaluated in the United Kingdom. IMP. denotes
improvement percentage relative to the baselines.

Model CPC↑ IMP. RMSE↓ IMP. NRMSE↓ IMP.

Gravity Model 0.240 ± 0.01 -27.5% 101.6 ± 3.42 +48.9% 1.752 ± 0.06 +48.9%
Radiation Model 0.323 ± 0.07 -2.4% 211.6 ± 4.27 -6.4% 3.647 ± 0.07 -6.4%

Random Forest 0.334 ± 0.03 +0.9% 223.2 ± 3.42 -12.2% 3.847 ± 0.06 -12.2%
DeepGravity 0.359 ± 0.04 +8.5% 157.0 ± 7.90 +21.1% 2.706 ± 0.13 +21.1%

GMEL 0.362 ± 0.01 +9.4% 149.1 ± 10.00 +25.0% 2.570 ± 0.17 +25.1%

NetGAN 0.331 ± 0.06 - 198.9 ± 15.21 - 3.429 ± 0.26 -
GlODGen 0.485 ± 0.03 +46.5% 72.68 ± 2.13 +63.5% 1.253 ± 0.04 +63.5%

can achieve a promising performance and outperform baselines on all metrics with a large margin,
i.e., 34.0% improvement on CPC, and 28.5% improvement on RMSE and NRMSE. This indicates
that 1) public data, i.e., satellite imagery and population data, can effectively be transferred between
different continents; 2) the proposed framework can improve the transferability of the computational
OD flow generation models; 3) computational models based on public data can beat physical models
in cross-continental transfer experiments, supporting a great improvement on global scale OD flow
generation. This strongly supports the conclusion that our framework is highly suitable for generating
OD flows across diverse urban areas worldwide.

4.3 Case Studies on Typical Urban Areas Worldwide (RQ1 & RQ2)

To further validate the effectiveness of the proposed data generator, we collect human mobility-related
data from all over the world and apply the OD flow generation to the corresponding urban areas.
Specifically, we collect the data from the following typical urban areas and detailed data processing
is provided in Appendix B.3.

• Europe. We select London and Paris as representative cities in Europe. The OD flow data for
London is sourced from ONS [48], while the data for Paris is synthesized by Sebastian et al. [33]
using the 2015 French population census provided by the National Institute of Statistics and
Economic Studies (INSEE) [68]. Urban regions in Paris are defined at the commune level.

• China. We collect OD flow data for Beijing and Shanghai, two major metropolitan centers in China.
The Beijing dataset is provided by a leading internet location service provider. The Shanghai data
is extracted from Call Detail Records (CDRs) by China’s largest telecommunications company,
following the method proposed by Iqbal et al. [34]. Urban regions in both cities are defined by
subdistricts. All data was collected in 2016.

• Brazil. Julio et al. [13] extracted OD flows for the Rio de Janeiro Metropolitan Area (RJMA) in
2014 using CDRs. Urban regions are defined by Municípios.

• Africa. We use OD flow data extracted from CDRs collected in Senegal in 2013 as part of
the D4D Challenge [16], processed following Iqbal et al. [34]. Urban regions are defined by
Arrondissements.

It is worth noting that real-world OD flow data is inherently difficult to collect. Datasets differ
in sampling methods, temporal coverage, and spatial granularity, and often contain noise or bias.
As such, they do not serve as perfect ground truth, but only as approximate references. In our
evaluation, we focus on comparing the spatial patterns and distribution characteristics between
generated and observed data, aiming to assess the plausibility and consistency of the generated flows
under real-world constraints.
Experimental Results. Based on the data collected from the representative urban areas above, we
apply the proposed GlODGen framework to generate OD flows and compare the results with the
corresponding real-world data. Given the heterogeneous data sources, varying sampling methods,
and inherent noise across regions, a unified error-based evaluation metric is not applicable for direct
comparison. To quantitatively assess the alignment between the generated and observed OD flows, we
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(a) Beijing (ρ =0.741) (b) Shanghai (ρ =0.623) (c) London (ρ =0.361)

(d) Paris (ρ =0.465) (e) Rio (ρ =0.816) (f) Senegal (ρ =0.477)

Figure 4: Correlation analysis between generated OD flows and the flows extracted from diverse
mobility-related data sources for typical urban areas around the world.

compute the Spearman rank correlation coefficients, visualized as rank-aligned normalized flow curve
in Figure 4. Specifically, the data-oriented curve is constructed by the ascending ordered sort of the
OD flow oriented from collected data, and the generated flow is also sorted in the same order. Then,
the two curves are normalized to the same range and smoothed for better visualization. Although
the distribution of the collected data is more skewed, the two curves are aligned with each other in a
very similar manner, indicating that the generated OD flows are consistent with the real-world data in
terms of data distribution. It is important to note that due to differences in data quality and sources,
these correlation values are not directly comparable across cities. In addition, we qualitatively assess
spatial patterns by visually comparing the generated and observed OD distributions on a case-by-case
basis in Appendix B.4, under varying regional conditions, to provide a more intuitive understanding
of the framework’s performance. The experimental results show that the OD flows generated by
GlODGen closely align with the real-world data in terms of distributional structure, as evidenced by
the high Spearman rank correlations observed in most cases. Although lower correlations may arise
due to limitations in the reference data itself, high correlation values provide strong empirical support
for the credibility and applicability of the proposed framework.

5 Discussion

Conclusion We find that the global publicly available data, i.e., satellite imagery and population
data, has a strong representational power for profiling urban regions and supporting the generation
of OD flows across diverse urban areas worldwide. Notably, public data can achieve 98% of the
performance of the traditional hard-to-obtain urban data. Building on this insight, we propose a
novel data generator, GlODGen, which can generate realistic OD flows for any urban area worldwide.
GlODGen integrates vision-language geo-foundation models to extract urban semantic features from
satellite imagery and region-level population statistics and generates OD flows through a graph
denoising diffusion-based approach. Extensive experiments across all over the world validate both
the representational power of public data and the generalizability of GlODGen. For the convenience
of practical use, we release GlODGen as an open-source tool, which can automatically complete the
data acquisition, curation, preprocessing, urban semantic feature extraction, and OD flow generation
with only the boundaries of urban regions given.
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Limitations and Boarder Impact GlODGen currently has two main limitations. First, the OD
flow generation model is primarily trained on U.S. data. While we demonstrate strong cross-
continental generalization with the aid of satellite imagery, broader geographic coverage would
improve robustness. Second, the generator produces only static commuting OD flows, limiting its
applicability to dynamic, fine-grained tasks such as time-dependent traffic analysis. Despite these
limitations, GlODGen can benefit various domains, including urban planning, transportation design,
energy consumption, carbon emissions, and public health research.

Ethical Claims All individual-level location data used in this study have been rigorously anonymized.
Additionally, all computations are conducted locally, with no reliance on cloud-based infrastructure,
to guarantee both privacy and data security.
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paper’s contributions and scope?
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Justification: See Abstract and Section 1.
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made in the paper.
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are not attained by the paper.
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Justification: See Section 5.
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Justification: Our work is not about theoretical results.
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by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4 and Github link provided in the paper.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
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the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Github link provided in the paper.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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example, train/test split, initialization, random drawing of some parameter, or overall
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of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have provided the license information in the Github repository.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: We use LLMs for checking the writing errors in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Additional Details of GlODGen

A.1 Forward Diffusion Process

We give an introduction to the OD generation model based on graph diffusion in this part. Like the
traditional diffusion model, graph diffusion-based models include two main processes: the forward
diffusion and the reverse denoising process. During training, the forward diffusion process is utilized
to create the training dataset for the denoising network. This process involves gradually adding
small Gaussian noise to the original OD flow data, eventually transforming them into pure noise that
adheres to a standard Gaussian distribution, as illustrated in the formula below:
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q(F t
ij |qt−1),
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where F t
ij denotes the flow starting at ri flowing into rj at t-th diffusion step, N is the Gaussian

distribution, βt is the noise level at time t, and I is the identity matrix.

The denoising process works in reverse of the forward diffusion process, which is already described
in the main paper.

A.2 Training

The OD flow generation model requires training on diverse datasets to generalize effectively across
global scales. We employ data from the whole United States to expose the model to varied mobility
patterns, including those from developed and underdeveloped areas.

To generate training samples, the forward process is employed to produce OD flows with varying
degrees of noise. Node inputs consist of semantic features extracted from satellite images and
population data, while edge inputs are formed by noisy OD flows sampled from the forward process.
The model is designed to predict the Gaussian noise disturbances to be removed at each noise
level. The training employs the mean squared error (MSE) as the loss function, and optimization
is conducted using the Adam optimizer, consistent with [57]. The loss function is formulated as
follows:

L = Et,ϵ∼N (0,I)

[
∥ϵ− ϵθ(F

t, t, CR)∥22
]

(8)

where ∥ · ∥ denotes the L2 norm.

B Experimental Details

B.1 Detailed Introduction of Existing OD Flow Generation Models

• Random Forest. [51] The Random Forest model is a type of ensemble learning method
that builds multiple decision trees and combines their outputs to make a final prediction. It
is a popular choice for its simplicity and effectiveness in handling complex relationships
between various urban indicators profiling urban regions and OD flows.

• DeepGravity. [63] DeepGravity is a multi-layer perceptron (MLP)-based model inspired by
the traditional gravity model. It models the process of decision making of destination choice
as a classification problem and uses the softmax function to calculate the probability of each
destination. With the outflow given, the model can generate the OD flows by multiplying the
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probability of each destination and the outflow. In this paper, we directly generate the OD
flows by using the model because there is no outflow for any urban areas around the world.

• GMEL. [44] GMEL is a graph-based model that uses the graph structure of the urban
regions to generate the OD flows. It models the urban regions by aggregating the features of
the regions and the features of the connections between the regions. After the geo-contextual
embedding learned from the model, random forest is used to generate the OD flows based
on the urban region embeddings.

• NetGAN. [8] NetGAN is a generative adversarial network (GAN)-based model that mini-
mizes the Wasserstein distance between the random walk sequences of the generated and
real OD flows, where the mobility flow networks are represented as graphs. The original
NetGAN model is designed for unweighted networks. We adapt it to weighted networks by
using the weighted adjacency matrix of the urban regions. The weighted matrix is the OD
matrix of the city.

• WEDAN. [56] WEDAN is a graph denoising diffusion-based model that uses the graph
structure of the urban regions to generate the OD flows. It models the urban regions as
nodes and OD flows as the directed weighted edges. The model uses the conditional graph
denoising diffusion process to generate the OD flows given the urban region features of the
city.

B.2 Details of Evaluation Metrics

For evaluation, we adopt root mean square error (RMSE), normalized RMSE (NRMSE), and common
part of commuting (CPC) as metrics, with the computations detailed below:

RMSE =

√
1

|F|
∑

ri,rj∈R
||Fij − F̂ij ||22,

NRMSE =
RMSE√

1
N2

∑
ri,rj∈R ||Fij − F̄ij ||22

,

CPC =
2
∑

ri,rj∈R min(Fij , F̂ij)∑
ri,rj∈R Fij +

∑
ri,rj∈R F̂ij

(9)

where F̄ represents the expectation of the OD flows F, which is extracted from collected data.

B.3 Data Processing for Typical Urban Areas Around the World

• United States OD flows of urban areas in the United States are collected and provided
by the National Census Bureau through the Longitudinal Employer-Household Dynamics
Origin-Destination Employment Statistics (LODES) [9]. This dataset provides commuting
flows across all census blocks. In line with previous studies [51, 44, 53, 63], we aggregate
this data to the census tract level, which defines the regions in our work, while counties
represent areas. This dataset offers extensive population coverage and high accuracy, making
it widely used in research related to human mobility. In this work, we utilized data collected
in 2018.

• China. OD flow data are collected for Beijing and Shanghai, two key cities in China.
The OD flow data for Beijing is provided by a major internet location service provider
in China. Data from Shanghai are extracted from CNAs, provided by China’s largest
telecommunications company, using the method proposed by Iqbal et al. [34].

• Brazil. Julio et al. [13] utilized CDRs to extract OD flows of the Rio de Janeiro Metropolitan
Area (RJMA) in 2014. Urban regions in RJMA are defined by Municípios. This dataset
provides total flows including repeated records of the same individuals. Therefore, there is a
certain degree of bias.

• Africa. We identified the dataset of CDRs within Senegal in 2013 [16]. The data was
processed to extract OD flows using the method proposed by Iqbal et al. [34]. Urban regions
in Senegal are defined by Arrondissements. In Africa, the collection of mobility-related data
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is much more challenging due to the lack of comprehensive and up-to-date infrastructure and
limited technological resources, and funding of large-scale data gathering efforts. Because
of the sparsity and scarcity, the spatial granularity of the data cannot be further refined.

B.4 Spatial Visualization of Compraison between Generated and Collected OD Flows

We would like to clarify that some visualizations for Beijing, Shanghai, Rio de Janeiro, and a region
in Senegal also appear in a separate submission currently under review at Scientific Data. In
that paper, we present a large-scale dataset of commuting OD flows for 1,625 global cities, generated
using the data generator GlODGen introduced in this work, to support research on sustainable urban
development.

The core contributions and goals of the two submissions are fundamentally different:

• The Scientific Data submission focuses on the global-scale dataset as a scientific contribution.

• The present paper focuses on the automated generator (GlODGen) and its methodology for world-
wide OD flow generation, which highlights the potential of generalization for urban areas around
the world.

Although these cities appear in both papers, the visualizations are styled differently and are used
for distinct purposes: In Scientific Data, they are presented to validate the quality and scope of the
dataset, whereas, in this work, they demonstrate the data generator’s generalizability and applicability
across diverse global cities. We emphasize that the experimental results are not reused, but rather, the
same generated data is used in different contexts to support complementary contributions in the two
submissions.

The experimental results of spatial visualization are shown in the following.

To demonstrate the potential of our framework, which relies solely on public data, for generating OD
flows globally, we conduct experiments in urban areas including the representative cities in the United
States, Europe, China, Brazil, and Africa. Since OD flow data of these diverse areas are collected
from different data sources with different sampling biases and noise, we cannot use a unified standard
to evaluate the generation of these areas and compare generated OD flows with flows from data in
terms of traditional error-based metrics. We visually and qualitatively compare the spatial distribution
of the generation and data in a case-by-case manner under different scenarios and data conditions to
provide an intuitive understanding of the performance of our framework.

B.4.1 China

We generate OD flows for Beijing and Shanghai, two representative cities in China. The visually
qualitative comparisons of the generation and data are shown in Figure 5. Figures from above to
below are Beijing and Shanghai respectively and the left column is the generation, while the right
column is OD flows from data. The generated OD flows exhibit a notable spatial similarity to the
data, with the city center and boundary shapes accurately reflected in their spatial distribution. The
agreement between generated flows and observed data under the given sampling scheme highlights
the framework’s validity. Nonetheless, slight discrepancies exist. For instance, flows from Beijing’s
suburbs to the city center are underrepresented, and generated flows for Shanghai’s outskirts are
somewhat denser than observed. These differences could stem from the unique urban characteristics
of large cities, in which global public data may not fully follow a uniform regularity.

B.4.2 Europe

The Greater London and Greater Paris Metropolitan Areas are chosen as representative regions in
Europe. The visually qualitative comparisons of the generation and data are shown in Figure 6.
Figures from above to below are London and Paris respectively and the left column is the generation,
while the right column is OD flows from data. The generated OD flows exhibit substantial similarity
to the data. The city boundary is distinctly represented by blue OD flows, while the dense red and
yellow lines highlight the city center. Unlike the results observed in China, the generated flows for
London successfully capture long-distance OD flows between the city center and the outskirts. In
Paris, the generation accurately reflects the limited long trip flows, suggesting that our framework
effectively captures Paris’s centralized urban structure and efficient planning.
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(a) Generated OD flows in Beijing (b) Data-oriented OD flows in Beijing

(c) Generated OD flows in Shanghai (d) Data-oriented OD flows in Shanghai

Figure 5: Visualization of the generated and data-oriented OD flows in Beijing and Shanghai. The
generated OD flows show high consistency with the data-oriented data in both cities, demonstrating
the effectiveness of GlODGen in capturing real-world mobility patterns.

B.4.3 Brazil

We select the Rio de Janeiro Metropolitan Area as the representative urban area for Brazil. The
spatial visualization is presented in Figure 7, demonstrating strong consistency between the generated
OD flows and the data. This result highlights the similarity in urban structure and human mobility
patterns between Rio de Janeiro and the United States, suggesting that global public data and OD
flows from the United States may effectively support OD flow generation for Brazil.

B.4.4 Africa

Considering the scarcity of data in Africa, we select a representative country in Africa, Senegal, to
generate and evaluate our framework. OD flows of Senegal are aggregated from CDRs. The spatial
visualization results are presented in Figure 8. As shown, the generated OD flows closely resemble
the actual CDR data in terms of spatial distribution. Specifically, the generated OD flow data for
Senegal correctly identifies the city center and the urban boundary, which highlights the capability of
our framework in accurately modeling mobility patterns even in underdeveloped urban areas.
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(a) Generated OD flows in London (b) Data-oriented OD flows in London

(c) Generated OD flows in Paris (d) Data-oriented OD flows in Paris

Figure 6: Visualization of the generated and data-oriented OD flows in London and Paris. The
generated OD flows show high consistency with the data-oriented data in both cities, demonstrating
the effectiveness of GlODGen in capturing real-world mobility patterns.

(a) Generated OD flows in Rio de Janeiro (b) Data-oriented OD flows in Rio de Janeiro

Figure 7: Visualization of the generated and data-oriented OD flows in Rio de Janeiro. The generated
OD flows show high consistency with the data-oriented data, demonstrating the effectiveness of
GlODGen in capturing real-world mobility patterns.

B.5

We conduct a feature importance analysis to investigate the importance of different input features for
the OD flow generation. Specifically, we compare the performance degradation of the generation
with only one input feature at a time. The results are shown in Table 3. The experimental settings
are the same as Table 1. From a theoretical perspective, this is because satellite imagery inherently
contains a degree of redundancy related to population information. Previous studies have shown that
satellite imagery can be used to estimate population distribution. As a result, using satellite imagery
alone can still achieve relatively good performance. However, using population data alone provides
an insufficient characterization of urban regions and largely eliminates the representation of regional
heterogeneity (e.g., regions with the same population but different functional roles contribute very
differently to mobility patterns).
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(a) Generated OD flows in Senegal (b) Data-oriented OD flows in Senegal

Figure 8: Visualization of the generated and data-oriented OD flows in Senegal. The generated OD
flows show high consistency with the data-oriented data, demonstrating the effectiveness of GlODGen
in capturing real-world mobility patterns.

Table 3: Comparison of the feature importance of population data and satellite imagery for the OD
flow generation.

Input Feature CPC RMSE NRMSE
Population + Satellite 0.623 67.88 0.867

Population Only 0.394 137.06 1.750
Satellite Only 0.500 92.42 1.180
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