
Non Vanishing Gradients for Arbitrarily Deep Neural
Networks: a Hamiltonian System Approach

Clara L. Galimberti
Institute of Mechanical Engineering

EPFL, Lausanne, Switzerland
clara.galimberti@epfl.ch

Luca Furieri
Institute of Mechanical Engineering

EPFL, Lausanne, Switzerland
luca.furieri@epfl.ch

Liang Xu
Institute of Mechanical Engineering

EPFL, Lausanne, Switzerland
liang.xu@epfl.ch

Giancarlo Ferrari-Trecate
Institute of Mechanical Engineering

EPFL, Lausanne, Switzerland
giancarlo.ferraritrecate@epfl.ch

Abstract

Deep Neural Networks (DNNs) training can be difficult due to vanishing or explod-
ing gradients during weight optimization through backpropagation. To address this
problem, we propose a general class of Hamiltonian DNNs (H-DNNs) that stems
from the discretization of continuous-time Hamiltonian systems. Our main result
is that a broad set of H-DNNs ensures non-vanishing gradients by design for an
arbitrary network depth. This is obtained by proving that, using a semi-implicit
Euler discretization scheme, the backward sensitivity matrices involved in gradient
computations are symplectic.

1 Introduction

Consider a N -layer deep neural network (DNN)

yj+1 = f(yj ,θj), j = 0, 1, . . . , N − 1 , (1)

where yj ∈ Rnj and θj ∈ Rnθj denote the j-th layer feature vector and set of of parameters, respec-
tively. Moreover, consider a training set for a classification task {(yk0 , ck) ∈ Rn0 × {1, . . . , nc}}sk=1,
where yk0 are the input data and ck are the corresponding labels. In the framework of Deep Learning
(DL), it is common practice to train the DNN (1) by minimizing the empirical risk, i.e.

min
θ0,...,θN−1

1

s

s∑
k=1

L(ykN , ck) (2)

s.t. yj+1 = f(yj ,θj), j = 0, 1, . . . , N − 1,

where L(·, ·) is the loss function. When gradient descent methods are used, the update of the vectors
θj is performed using

θ
(k+1)
j = θ

(k)
j − γ

(k) · ∇
θ
(k)
j
L , (3)

where k is the iteration number and γ(k) > 0 is the optimization step size at each iteration.

Even if DL has achieved remarkable success in various fields like computer vision, speech recognition
and natural language processing [16, 25], the training of DNNs still presents several challenges such
as the occurrence of vanishing or exploding gradients. Both situations are very critical as they imply
that the learning process either stops prematurely or becomes unstable.

Workshop Paper at The Symbiosis of Deep Learning and Differential Equations Workshop at NeurIPS 2021.

At each iteration k of (3), the gradient of the loss function with respect to the parameters needs to
be calculated. By using the chain rule, the gradient for parameter i of layer j is computed through
backpropagation [12] as:

∂L
∂θi,j

=
∂yj+1

∂θi,j

∂L
∂yj+1

=
∂yj+1

∂θi,j

 N−1∏
l=j+1

∂yl+1

∂yl

 ∂L
∂yN

. (4)

The problem of vanishing/exploding gradients is related to the backward sensitivity matrices (BSM),
i.e. the terms

∏N−1
l=j+1

∂yl+1

∂yl
. Indeed, (4) implies that ∂L

∂θi,N−j
vanishes if the term ‖ ∂yN

∂yN−j
‖is

very small. In other words, the training of a DNN might stop before achieving a good prediction
performance. Vice-versa, if ‖ ∂yN

∂yN−j
‖ is very large, the derivative ∂L

∂θi,N−j
becomes very sensitive to

perturbations in the vectors ∂yj+1

∂θi,N−j
and ∂L

∂yN
, and this can make the learning process unstable or

cause overflow issues. Since the BSMs are related to the network depth, both problems are generally
exacerbated when the number of layers N is large [12].

Heuristic methods for dealing with these problems leverage subtle weight initialization or gradient
clipping [12]. More recent approaches, instead, focus on the study of DNN architectures and
associated training algorithms for which exploding/vanishing gradients can be avoided or mitigated
by design [1, 18, 24, 17, 6, 26, 13, 14, 4, 21, 9].

For instance, in [1, 24, 17, 6] unitary and orthogonal weight matrices are used to control the
magnitude of BSMs during backpropagation. Moreover, in [26, 18], methods based on clipping
singular values of weight matrices are utilized to constrain the magnitude of BSMs. These approaches,
however, require expensive computations during training [26, 18, 6], introduce perturbations in
gradient descent [26, 18] or use restricted classes of weight matrices [1, 24, 17].

Recently, it has been argued that specific classes of DNNs stemming from the time discretization
of Ordinary Differential Equations (ODEs) [13, 14, 4, 21, 9] are less affected by vanishing and
exploding gradients. The arguments provided in [13] rely on the stability properties of the underlying
continuous-time nonlinear systems for characterizing relevant behaviors of the corresponding DNNs
obtained after discretization, suggesting to use DNN architectures based on dynamical systems that
are marginally stable, i.e. that produce bounded and non-vanishing state trajectories. Examples
are provided by first-order ODEs based on skew-symmetric maps, which have been used in [13, 4]
for defining anti-symmetric DNNs, and by Hamiltonian-inspired DNNs in [13]. However, these
approaches consider only restricted classes of skew-symmetric weight matrices or particular Hamilto-
nian functions, which limit the representation power of the resulting DNNs. Moreover, the behavior
of BSMs arising in backpropagation has been analyzed only in [4], which however focuses on
DNNs with identical weights in all layers and relies on hard-to-compute quantities such as kinematic
eigenvalues [22, 2].

To address these open points, we propose a class of DNNs stemming from the symplectic discretization
of Hamiltonian systems. We analyze the sensitivity dynamics in discrete-time and prove that the
BSM is symplectic. As a result, the norm of the BSM cannot vanish, irrespective of the network
depth and the choice of layer-varying weights.

2 H-DNN architecture

We propose H-DNNs as the time-discretization of continuous-time Hamiltonian dynamical systems,
as per the standard definition given, for instance, in [23]:1

ẏ(t) = J
∂H(y(t), t)

∂y(t)
, y(0) = y0 , 0 ≤ t ≤ T , (5)

where y(t) ∈ Rn for all t, J ∈ Rn×n is skew-symmetric, i.e., J = −J>. The continuously
differentiable function H : Rn × R→ R is denoted as the Hamiltonian function. We consider,

H(y(t), t) = [σ̃(K(t)y(t) + b(t))]
>
1n , (6)

1In a more general case, one can consider J to be a function of y and t, i.e. J(y(t), t).

2

where 1n denotes the vector of all ones of length n, σ̃ : R→ R is differentiable and applied element-
wise, and its derivative σ(·) = σ̃′(·) acts as the DNN’s activation function. The system (5) can be
rewritten as

ẏ(t) = JK>(t)σ(K(t)y(t) + b(t)) , y(0) = y0 , 0 ≤ t ≤ T . (7)

The H-DNN layer equations are obtained after selecting a discretization method. In this work, we use
semi-implicit Euler (S-IE) [3] as it preserves useful geometric properties of (5). In particular, we will
be interested in the preservation of the symplectic property of its flow. Assuming that the number
of features n ∈ N is even,2 we split the feature vector at each layer j = 0, . . . , N as yj = (pj ,qj)
where pj ,qj ∈ Rn

2 . Then, S-IE discretization of (7) leads to the layer equation[
pj+1

qj+1

]
=

[
pj
qj

]
+ hJK>j σ

(
Kj

[
pj+1

qj

]
+ bj

)
, (8)

where j = 0, 1, . . . , N − 1 and h = T/N . In general, computing the updates (pj+1,qj+1) as per
(8) involves solving a system of nonlinear equations, that is, (pj+1,qj+1) are not explicit functions
of (pj ,qj). We refer the interested reader to [10, 20] for a discussion of deep learning with implicit
layers equations. To make the updates (8) easily computable, one can further assume that

J=

[
0n

2
−X>

X 0n
2

]
, Kj =

[
Kp,j 0n

2

0n
2

Kq,j

]
, bj =

[
bp,j
bq,j

]
, (9)

which yields the explicit layer equations

pj+1 = pj − hX>Kq,j
>σ(Kq,jqj + bq,j), (10)

qj+1 = qj + hXKp,j
>σ(Kp,jpj+1 + bp,j) , (11)

where one can first compute pj+1 through (10), while qj+1 is obtained as a function of pj+1 through
(11).3 Appendix A also presents the layer equations obtained when using forward Euler (FE) and it
illustrates how H-DNNs generalize several architectures recently appeared in the literature [13, 5].

3 Non-vanishing gradients of H-DNNs

Our main result states that the H-DNNs described by (10)-(11) have BSMs lower-bounded in norm
by the value 1 irrespectively of the number of layers. For this purpose, we first introduce the notion of
symplectic matrix. Then, we show that, for any choice of weights in the form (9), the BSM obtained
from S-IE discretization belong to this class. Finally we use symplecticity to show our main result.

Definition 1 (Symplectic matrix) Let Q ∈ Rn×n be a skew-symmetric matrix. A matrix M is
symplectic with respect to Q if M>QM = Q .

Symplectic matrices are usually defined [15] by assuming n ∈ N to be an even integer and Q =[
0n

2
In

2

−In
2

0n
2

]
. In this respect, Definition 1 provides a slightly generalized notion of symplecticity.

Lemma 1 Consider the system (8) and assume that J has the block structure in (9). Then, the
matrices ∂yk+1

∂yk
for j = 1 . . . , N − 1 are symplectic with respect to J, i.e.[

∂yj+1

∂yj

]>
J

[
∂yj+1

∂yj

]
= J. (12)

The proof of Lemma 1 can be found in Appendix B and is built upon Poincaré Theorem (see, e.g.
Theorem 3.3 of Section VI in [15]) and the definition of extended Hamiltonian systems [7].

This result allows us to prove that the BSMs of H-DNNs are always lower bounded in norm by 1.

2This condition can be always fulfilled by performing feature augmentation [8].
3The layer equations (10)-(11) are analogous to those obtained in [13] and [5] by using Verlet discretization.

3

Theorem 1 Consider the H-DNN in (8) and assume that J has the block structure in (9). Then,∥∥∥∥ ∂yN
∂yN−j

∥∥∥∥ ≥ 1 , (13)

for all j = 0, . . . , N − 1, where ‖·‖ denotes any sub-multiplicative norm.

Proof: One has ∂yN
∂yN−j

= ∂yN
∂yN−1

∂yN−1

∂yN−2
· · · ∂yN−j+1

∂yN−j
. Then, by applying iteratively (12)[

∂yN
∂yN−j

]>
J

[
∂yN
∂yN−j

]
= J.

Hence, we have

‖J‖ =

∥∥∥∥∥
(

∂yN
∂yN−j

)>
J

(
∂yN
∂yN−j

)∥∥∥∥∥ ≤
∥∥∥∥ ∂yN
∂yN−j

∥∥∥∥2 ‖J‖ ,
for all j = 0, . . . , N − 1. This inequality implies (13).

The inequality (13) shows that the H-DNN architecture (10)-(11) guarantees non-vanishing BSMs by
construction, irrespectively of the network depth.

For a heuristic method to control the growth of the BSMs, we refer the reader to our work [11].

4 Numerical experiments

We provide a numerical validation4 of the result in Theorem 1. We consider a classification problem
over the 2D “Double moons” dataset (shown in Appendix C) and analyze the norm of BSMs during
the training of a H-DNN with 32 layers (Figure 1a) and fully connected multilayer perceptron
networks (MLPs) with 8 and 32 layers (Figure 1b). Detailed information about the architectures and
the training parameters can be found in Appendix C.

0 200 400 600 800 1000
Iterations

100

101

||
∂y

N
∂y

N
−
ℓ||

Lower bound

5

10

15

20

25

30

De
pt
h
ℓ

(a)

0 200 400 600 800 1000
Iterations

10−2

10−1

100

101

||
∂y

N
∂y

N
−
ℓ||

2

4

6

8

De
pt
h
ℓ

0 200 400 600 800 1000
Iterations

10−39

10−30

10−21

10−12

10−3

||
∂y

N
∂y

N
−
ℓ||

10

20

30

De
pt
h
ℓ

(b)

Figure 1: Evolution of the 2-norm of the BSM during the training of (a) a 32-layer H-DNN and (b) a
multilayer perceptron network with 8 (top) and 32 (bottom) layers.

While the H-DNN and the 8-layer MLP achieve good performance at the end of the training (100%
and 99.7% accuracy over the test set, respectively), the 32-layer MLP completely fails to classify the
data (50% accuracy) due to rapidly vanishing gradients.

Figure 1a validates (13) since no BSM norm is smaller than 1 at any iteration.5 However, this is not
the case for the 32-layer MLP. Figure 1b (bottom) shows that, after 400 iterations, only a few gradient

4The open-source code is available at https://github.com/DecodEPFL/HamiltonianNet.
5Despite the BSM not vanishing, we verify that a stationary point θ? such that∇θL(θ?) = 0 is reached in

approximately 350 iterations.

4

https://github.com/DecodEPFL/HamiltonianNet

norms are different from zero, since
∥∥∥ ∂yN
∂yN−`

∥∥∥ ≈ 0 for ` = 7, . . . , 32. The main cause of such a
premature stop of the learning is therefore directly linked to the phenomenon of vanishing gradients.

We refer the reader to Appendix D for further experiments demonstrating the potential of H-DNNs.

5 Conclusions

We introduced a class of H-DNNs obtained from the time-discretization of Hamiltonian dynamics
and proved that H-DNNs stemming from S-IE discretization do not suffer from vanishing gradients.
Although we limited our analysis to S-IE discretization, one can leverage the rich literature on
symplectic integration [27] for defining even broader classes of H-DNNs with similar properties.

Acknowledgments

Research supported by the Swiss National Science Foundation under the NCCR Automation (grant
agreement 51NF40_180545).

References
[1] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In

International Conference on Machine Learning, pages 1120–1128, 2016.

[2] U.M. Ascher, R.M.M. Mattheij, and R.D. Russell. Numerical solution of boundary value problems for
ordinary differential equations. Classics in applied mathematics. Society for Industrial and Applied
Mathematics (SIAM), 1995.

[3] Uri M. Ascher. Numerical Methods for Evolutionary Differential Equations. Society for Industrial and
Applied Mathematics (SIAM), 2008.

[4] Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. AntisymmetricRNN: A dynamical system view on
recurrent neural networks. In 7th International Conference on Learning Representations, 2019.

[5] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In AAAI Conference on Artificial Intelligence,
2018.

[6] Krzysztof M Choromanski, Jared Quincy Davis, Valerii Likhosherstov, Xingyou Song, Jean-Jacques
Slotine, Jacob Varley, Honglak Lee, Adrian Weller, and Vikas Sindhwani. Ode to an ODE. In Advances in
Neural Information Processing Systems, volume 33, pages 3338–3350, 2020.

[7] Maurice A de Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Springer,
2011.

[8] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. In Advances in Neural
Information Processing Systems, volume 32, pages 3140–3150. 2019.

[9] Weinan E. A proposal on machine learning via dynamical systems. Communications in Mathematics and
Statistics, 5:1–11, 2017.

[10] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Y Tsai. Implicit deep
learning. arXiv preprint arXiv:1908.06315, 2, 2019.

[11] Clara L. Galimberti, Luca Furieri, Liang Xu, and Giancarlo Ferrari-Trecate. Hamiltonian deep neural
networks guaranteeing non-vanishing gradients by design, 2019.

[12] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge, MA,
USA, 2016.

[13] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, 2017.

[14] Eldad Haber, Lars Ruthotto, Elliot Holtham, and Seong-Hwan Jun. Learning across scales—multiscale
methods for convolution neural networks. volume 32, pages 3143–3148, 2018.

5

[15] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, 2006.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[17] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled Cayley
transform. In International Conference on Machine Learning, pages 1969–1978. PMLR, 2018.

[18] Kui Jia, Dacheng Tao, Shenghua Gao, and Xiangmin Xu. Improving training of deep neural networks
via singular value bounding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4344–4352, 2017.

[19] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In ICLR:
International Conference on Learning Representations, pages 1–15, 2015.

[20] Zico Kolter, David Duvenaud, and Matt Johnson. Deep implicit layers - Neural ODEs, Deep Equilibirum
Models, and beyond. http://implicit-layers-tutorial.org/.

[21] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations. In Proceedings of the 35th International Conference
on Machine Learning, volume 80, pages 3276–3285. PMLR, 2018.

[22] Pieter Van der Kloet and Fred L Neerhoff. On characteristic equations, dynamic eigenvalues, Lyapunov
exponents and Floquet numbers for linear time-varying systems. In Proc. International Symposium on
Mathematical Theory of Networks and Systems, MTNS, page 409, 2004.

[23] Arjan van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control. Springer, 2017.

[24] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and learning
recurrent networks with long term dependencies. In International Conference on Machine Learning, pages
3570–3578. PMLR, 2017.

[25] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Michael L. Seltzer, Andreas Stolcke, Dong
Yu, and Geoffrey Zweig. The Microsoft 2016 conversational speech recognition system. In 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5255–5259, 2017.

[26] Jiong Zhang, Qi Lei, and Inderjit Dhillon. Stabilizing gradients for deep neural networks via efficient
SVD parameterization. In Proceedings of the 35th International Conference on Machine Learning, pages
5806–5814. PMLR, 2018.

A H-DNNs and existing architectures

We first introduce H-DNNs obtained using forward Euler (FE) discretization. Then, we show how
existing architectures proposed in [13], [4] and [5] are included in our framework.

Consider the step size h = T/N . Then, the FE discretization of the ODE (7) leads to a N -layer
H-DNN architecture defined as

yj+1 = yj + hJj K>j σ(Kjyj + bj) , j = 0, 1, . . . , N − 1 . (14)

Having set two different architectures for H-DNNs, i.e. using S-IE (10)-(11) and FE (14), we list the
existing architectures [13, 4, 5] and show that they are special cases of H-DNNs. These architectures
stem from the discretization of Marginally Stable (MS) systems with constant weights across layers.
Hence, we call them MSi-DNN (i = 1, 2, 3).

MS1-DNN: In [13], the authors propose to use Verlet integration method to discretize[
ẏ(t)
ż(t)

]
= σ

([
0n

2
K0(t)

−K>0 (t) 0n
2

] [
y(t)
z(t)

]
+

[
b1(t)
b2(t)

])
,

where y, z ∈ Rn
2 . Then, the layer equations are given by{

zj+1 = zj − hσ(K>0,jyj + bj,1)

yj+1 = yj + hσ(K0,jzj+1 + bj,2) .
(15)

6

http://implicit-layers-tutorial.org/

Note that (15) is an instance of H-DNN with S-IE discretization when Kj is assumed to be invertible

and where we set JjK
>
j = In, and Kj =

[
0 K0,j

−K>0,j 0

]
for all j = 0, . . . , N − 1.

MS2-DNN: In [13, 4], the authors propose to use FE to discretize

ẏ(t) = σ(K(t)y(t) + b(t)) ,

where K(t) is skew-symmetric ∀t ∈ [0, T]. Then, the layer equation is given by

yj+1 = yj + hσ(Kjyj + bj) . (16)

In this case, (16) is an instance of H-DNN with FE discretization when Kj is assumed to be invertible
and where we set JjK

>
j = In and Kj = −K>j for all j = 0, . . . , N − 1.

MS3-DNN: In [5], the authors propose to use Verlet integration method to discretize[
ẏ(t)
ż(t)

]
=

[
K>1 (t) 0n

2

0n
2

−K>2 (t)

]
× σ

([
0n

2
K1(t)

K2(t) 0n
2

] [
y(t)
z(t)

]
+

[
b1(t)
b2(t)

])
,

where y, z ∈ Rn
2 . Then, the layer equations are given by{

yj+1 = yj + hK>1,jσ(K1,jzj + bj,1) ,

zj+1 = zj − hK>2,jσ(K2,jyj+1 + bj,2) .
(17)

Note that (17) is an instance of H-DNN with S-IE discretization where we set

Kj =

[
0n

2
K1,j

K2,j 0n
2

]
and Jj =

[
0n

2
In

2

−In
2

0n
2

]
.

In [13] and [5], the DNNs MS1 and MS3 are called Hamiltonian-inspired in view of their similarities
with Hamiltonian models, although a precise Hamiltonian function for the corresponding ODE has
not been provided. Moreover, note that the Verlet discretization used by the authors coincides with
S-IE.

We highlight that a necessary condition for the skew-symmetric n × n matrix Kj to be invertible
is that the size n of input features is even.6 If n is odd, however, one can perform input-feature
augmentation by adding an extra state initialized at zero to satisfy the previous condition [8].

B Proof of Lemma 1

The proof of Lemma 1 is built upon the result of Theorem 3.3 of Section VI in [15] and the definition
of extended Hamiltonian systems [7]. The former proves that the numerical flow of a time-invariant
Hamiltonian system with J =

[
0 I
−I 0

]
is symplectic. The latter will allow us to embed the study of a

time-dependent Hamiltonian function into the time-independent case by defining an extended phase
space of dimension n+ 2 instead of n.

We study the Hamiltonian system (5) in the extended phase space [7], i.e., we define an extended
state vector ỹ = (p,q, ε, t),7 an extended interconnection matrix J̃ =

[
J 0n×2

02×n Ω

]
, Ω =

[
0 −1
1 0

]
and an extended Hamiltonian function

H̃ = H(p,q, t) + ε , such that
dε

dt
= −dH

dt
. (18)

Note that the extended Hamiltonian system defined by H̃ is time-invariant by construction, i.e.
dH̃
dt = 0. Then, following Theorem 3.3 in Section VI of [15], it can be seen that ∂ỹj+1

∂ỹj
is a symplectic

matrix, i.e. it satisfies [
∂ỹj+1

∂ỹj

]>
J̃

[
∂ỹj+1

∂ỹj

]
= J̃. (19)

6For a n× n skew-symmetric matrix A we have, det(A) = det(A>) = det(A−1) = (−1)n det(A). If
n is odd, then det(A) = − det(A) = 0. Thus, A is not invertible.

7Note that permuting the elements of ỹ, the state vector can be re-written as (p̃, q̃) where p̃ = (p, ε) and
q̃ = (q, t).

7

Next, we show that (19) implies symplecticity for the BSM of the original time-varying system (8).
Considering the Hamiltonian (18), we obtain the S-IE layer equations for the extended Hamiltonian
dynamics as per: 

pj+1 = pj − hX> ∂H∂q (pj+1,qj , tj) ,

qj+1 = qj + hX∂H
∂p (pj+1,qj , tj) ,

ej+1 = ej − h∂H∂t (pj+1,qj , tj) ,

tj+1 = tj + h .

(20)

Then, we differentiate each of the equations of the system (20) with respect to each subvector of
ỹj = (pj ,qj , ej , tj) and we rearrange the terms. We obtain8

∂ỹj+1

∂ỹj

In − h
Hpp Hqp 0 Htp

0 0 0 0
0 0 0 0
0 0 0 0

[J 0
0 Ω

]> =

In + h

 0 0 0 0
Hpq Hqq 0 Htq

0 0 0 0
Hpt Hqt 0 Htt

[J 0
0 Ω

]> , (21)

where

Hxy =
∂H(pj+1,qj , tj)

∂x∂y
,

and x, y indicate any combination of two variables in the set {p, q, t}. It remains to verify that (21)
implies symplecticity of ∂yj+1

∂yj
, i.e. it satisfies (12) for:

∂yj+1

∂yj
=

[
∂pj+1

∂pj

∂qj+1

∂pj
∂pj+1

∂qj

∂qj+1

∂qj

]
.

By denoting Γ =
(
In − h

[
Hpp Hqp
0 0

]
J>
)

and Λ =
(
In + h

[
0 0
Hpq Hqq

]
J>
)
, where Γ and Λ are

invertible for almost every choice of step size h, the part of (21) concerning ∂yj+1

∂yj
reads as

∂yj+1

∂yj
Γ = Λ .

The above implies
∂yj+1

∂yj

>
J
∂yj+1

∂yj
= J ⇐⇒ ΛTJΛ = ΓTJΓ ,

where the equality ΛJΛ = ΓJΓ can be verified by direct inspection. We conclude that ∂yj+1

∂yj
is a

symplectic matrix.

It is worth remarking that similar conclusions can be obtained by performing the analysis in
continuous-time before selecting a discretization scheme. Hence, one can prove that the continuous-
time counter-part of H-DNNs has non-vanishing BSMs.

C Implementation details

The DNN architectures and training algorithms are implemented using the PyTorch library.9

We use the “Double moons” dataset shown in Figure 2. It consists of 16,000 2-dimensional points,
that are equally split to obtain the train and test datasets.

The layer equations of the H-DNNs are described in (10)-(11) where we set X to be the identity
matrix. For the MLPs, their layer equation is given by:

yj+1 = σ(Kjyj + bj) ,

8To improve readability, the dimension of the zero matrices has been omitted.
9https://pytorch.org/

8

https://pytorch.org/

Figure 2: Double moons dataset with its corresponding labels (red and blue).

with trainable parameters Kj and bj . We use tanh(·) as activation function for both architectures.
Moreover, we complement each of them with a soft-max output layer.

Training is performed using coordinate gradient descent, i.e. a modified version of stochastic gradient
descent (SGD) with Adam (β1 = 0.9, β2 = 0.999) [13] and minibatches of size 125. We use standard
cross-entropy as the loss function L to minimize in (2), together with the regularization term

αRK(K0,...,N−1,b0,...,N−1) + αNRN (θN) . (22)

The term RK is defined as h
2

∑N−1
j=1

(
‖Kj −Kj−1‖2F + ‖bj − bj−1‖2

)
which favours smooth

weight variations across consecutive layers [13, 5]. The term RN (·) refers to a standard L2 regular-
ization for the output layer. We set αN = 1× 10−4 and α = 5× 10−4.

Following [13], in every iteration of the algorithm, the optimal weights of the output layer are
computed given the last updated parameters of the hidden layers. Then, a step update of the hidden
layers’ parameters is performed by keeping fixed the output parameters. The training consists of
50 epochs and each of them has maximum 10 iterations to compute the output layer weights. The
learning rate, or optimization step size as per γ in (3), is set to 2.5× 10−2.

D Experiments with MNIST dataset

We evaluate our methods on a more complex example: the image classification benchmark MNIST.10

The dataset consists of 28× 28 digital images in gray scale of hand-written digits from 0 to 9 with
their corresponding labels. It contains 60,000 training examples and 10,000 test examples.

Following [13], we use a network architecture consisting of a convolutional layer followed by a
Hamiltonian DNN and an output classification layer. The convolutional layer is a linear transformation
that expands the data from 1 to 8 channels, and the network output is a vector in R10 representing the
probabilities of an image to belong to each of the 10 classes.

We compare the performance of MS1-DNNs (see Appendix A) [13] and H-DNNs (using S-IE
discretization) with 2, 4, 6 and 8 layers, and tanh(·) as activation function. We set h = 0.4 for
MS1-DNNs and h = 0.45 for H-DNNs.

The training consists of 40 epochs with mini-batches of size 100. For the optimization algorithm we
use SGD with Adam [19]. The learning rate, or optimization step size as per γ in (3), is initialized to
be 0.04 with a decay rate of 0.8 at each epoch.

We utilize cross-entropy loss function L and we add a regularization term given by

αRK(K0,...,N−1,b0,...,N−1) + αL2
RL2

(θ) .

The term RK is defined as h
2

∑N−1
j=1

(
‖Kj −Kj−1‖2F + ‖bj − bj−1‖2

)
which favours smooth

weight variations across consecutive layers [13, 5]. The term RL2
(·) refers to a standard L2 reg-

10http://yann.lecun.com/exdb/mnist/

9

http://yann.lecun.com/exdb/mnist/

Table 1: Classification accuracies over training and test sets for the MNIST example when using
MS1-DNN (see Appendix A) [13] and H-DNN architectures. A convolutional layer and an output
layer are added before and after each DNN. The first row, corresponding to 0 layers, refers to a
network with a single convolutional layer followed by an output layer.

Number of MS1-DNN H-DNN
layers Train Test Train Test

0 93.51% 92.64% - -
2 99.20% 97.95% 98.90% 97.60%
4 99.11% 98.23% 99.51% 98.28%
6 99.58% 98.10% 99.53% 98.25%
8 99.80% 98.26% 99.38% 98.35%

ularization over all the DNN trainable parameters. For MS1-DNN, we set α = 1 × 10−3 and
αL2

= 1× 10−3. For H-DNN, we set α = 4× 10−3 and αL2
= 2× 10−3.

In Table 1, we summarize the accuracies of the considered networks on train and test data. The first
row of the table provides, as a baseline, the results obtained when omitting the Hamiltonian DNN
block, i.e., when using only a convolutional layer followed by the output layer. We observe that both
MS1-DNN and H-DNN achieve similar performance. Note that, while the training errors are almost
zero, the test errors are reduced when increasing the number of layers, hence showing the benefit of
using deeper networks. Moreover, these results are in line with test accuracies obtained when using
standard convolutional layers instead of H-DNNs [5].

10

	Introduction
	H-DNN architecture
	Non-vanishing gradients of H-DNNs
	Numerical experiments
	Conclusions
	H-DNNs and existing architectures
	Proof of Lemma 1
	Implementation details
	Experiments with MNIST dataset

