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ABSTRACT

In recent years, the design and transfer of neural network models have been widely
studied due to their exceptional performance and capabilities. However, the com-
plex nature of datasets and the vast architecture space pose significant challenges
for both manual and automated algorithms in creating high-performance mod-
els. Inspired by researchers who design, train, and document the performance
of various models across different datasets, this paper introduces a novel schema
that transforms the benchmark data into a Knowledge Benchmark Graph (KBG),
which primarily stores the facts in the form of performance(data,model). Con-
structing the KBG facilitates the structured storage of design knowledge, aiding
subsequent model design and transfer. However, it is a non-trivial task to retrieve
or design suitable neural networks based on the KBG, as real-world data are often
off the records. To tackle this challenge, we propose transferring existing mod-
els stored in KBG by establishing correlations between unseen and previously
seen datasets. Given that measuring dataset similarity is a complex and open-
ended issue, we explore the potential for evaluating the correctness of the simi-
larity function. Then, we further integrate the KBG with Large Language Models
(LLMs), assisting LLMs to think and retrieve existing model knowledge in a man-
ner akin to humans when designing or transferring models. We demonstrate our
method specifically in the context of Graph Neural Network (GNN) architecture
design, constructing a KBG (with 26,206 models, 211,669 performance records
and 2,540,064 facts) and validating the effectiveness of leveraging the KBG to
promote GNN architecture design.

1 INTRODUCTION

Designing neural networks (NNs) has traditionally been a complex and iterative process that relies
heavily on human expertise and extensive experimentation (He et al., 2021). Manually crafting ar-
chitectures requires a deep understanding of both the data and the underlying algorithms, posing
significant challenges when dealing with diverse and intricate datasets. To alleviate this burden, au-
tomated methods have been developed to explore the vast architecture space more efficiently (Li &
Talwalkar, 2019; Real et al., 2019; Zoph & Le, 2017). Recently, Large Language Models (LLMs)
like GPT-4 have emerged as powerful tools that can assist in neural network design (Tornede et al.,
2024). Leveraging their expansive knowledge and reasoning capabilities, LLMs can generate archi-
tectural suggestions and configurations for various types of neural networks, such as Convolutional
Neural Networks (Zheng et al., 2023; Yu et al., 2023), Recurrent Neural Networks (Guo et al., 2024),
and Graph Neural Networks (GNNs) (Wang et al., 2023a; Wei et al., 2023; Wang et al., 2024), of-
fering new avenues for automating and enhancing the model design process.

Despite these advancements, designing NN architectures for unseen datasets remains time-
consuming and demands iterative fine-tuning of configurations to achieve optimal performance on
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Figure 1: An illustration of constructing Knowledge Benchmark Graph and retrieving models.

specific tasks. This intricate procedure necessitates a profound understanding of both theoretical
concepts and practical data considerations. Existing automated algorithms, such as traditional neural
architecture search methods (He et al., 2021), aim to streamline this process but often do not lever-
age prior knowledge, frequently starting from scratch without considering existing design patterns or
performance insights. Moreover, while LLMs have shown promise in suggesting NN architectures
(Wang et al., 2023a; Dong et al., 2023), they tend to produce commonplace designs and may lack
meticulousness in hyperparameter tuning (Wang et al., 2024). These limitations arise because they
do not possess the detailed, structured knowledge necessary for customized model design tailored
to specific datasets and tasks.

Recognizing these challenges, we observe that a wealth of design knowledge already exists in the
form of benchmark data (Chitty-Venkata et al., 2023; Wang et al., 2024; Ying et al., 2019b), where
scholars and experts have documented the performance of various models across different datasets.
However, this valuable resource has not been effectively leveraged. To bridge this gap, we propose a
novel schema that transforms benchmark data into a Knowledge Benchmark Graph (KBG) capable
of storing the “data-model-performance” information. As shown in Fig. 1, entities in the KBG may
include datasets and models, which can be further annotated with statistical properties, semantic
descriptions, hyperparameter settings (see more details in Fig. 2). Then, the facts in KBG can
capture the performance between data and models, including loss, accuracy, etc. This structured
knowledge facilitates the retrieval and utilization of prior design insights, thereby aiding subsequent
model design and transfer.

Intuitively, with a KBG that describes the “data-model-performance” relationship, automated algo-
rithms only need to retrieve a well-performing model for a given dataset. However, utilizing this
KBG to design an NN model is non-trivial. The KBG is constructed based on observed data and
existing models, yet the data encountered by users are frequently unseen before (i.e., not included in
the KBG). Consequently, establishing the relevance between datasets becomes a critical challenge
that must be addressed. To tackle this challenge, we establish interconnections between datasets
and models within the KBG. We evaluate the unsupervised relevance among datasets based on their
statistical properties and semantic descriptions. This approach allows us to infer relationships and
complete the KBG for datasets lacking direct performance records. However, it is worth noting that
how to construct similarity between datasets is still an open and challenging topic. Not only should
we consider the similarity of the data structure, domain, description, and statistics, but we also need
to consider whether one model performs similarly on the two datasets. To aid future work on data
similarity in model design, we propose a novel metric that prioritizes relevant insights effectively.

To validate that the above KBG idea can promote model design, we subsequently propose to in-
tegrate LLMs with the KBG to assist LLMs in designing the NN models. This integration enables
automated algorithms to think and retrieve existing model knowledge in a manner akin to human ex-
perts when designing or transferring models. We demonstrate this process specifically in the context
of Graph Neural Network architecture design, validating the potential of constructing and leveraging
the benchmark KG to enhance LLM-driven network design. Our contributions are summarized as:

• We introduce a novel schema that transforms benchmark data into a Knowledge Benchmark
Graph, summarizing the “data-model-performance” relationships. This KBG can also record in-
formation such as data statistics, model architecture, and model hyperparameters, which facilitate
the structured storage of design knowledge to aid subsequent model design and transfer.

• To handle unseen data, we propose to model the relevance between datasets derived from inherent
data characteristics. Furthermore, we also develop a novel evaluation metric to discuss how well
the relevance scores prioritize useful insights.
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• We validate the KBG idea in the context of GNN architecture design, where we construct a graph
with 26,206 models, 211,669 performance records and 2,540,064 facts. Besides, we integrate the
KBG with LLMs to promote the performance and efficiency of designing neural networks.

2 RELATED WORKS OF AUTOMATED MACHINE LEARNING

Automated Machine Learning (AutoML) has emerged as a critical approach to automate the design
and optimization of machine learning models. Traditional AutoML methods aim to streamline the
model development process by automatically processing data (Nargesian et al., 2017; Khurana et al.,
2017), performing neural architecture search (NAS) (Ren et al., 2020), and tuning hyperparameters
(Shahriari et al., 2016) without requiring extensive human expertise. The goal of neural network
design is to identify the best-performing model F ∗ for an unseen dataset Du from a large space F:

M(F ∗;Du) = max
F∈F

M(F ;Du), (1)

where M(F ;Du) evaluates how a model F performs on dataset Du. This automation reduces the
barriers for non-experts while enhancing the efficiency of model development for experts. Despite its
potential, traditional AutoML faces significant challenges, particularly in its scalability and ability
to generalize across a wide variety of datasets and tasks. On the one hand, the search space for
neural architectures and hyperparameters is vast, making it computationally expensive to explore all
possible configurations (typically several GPU hours or days) (Salehin et al., 2023; Liu et al., 2022),
even accelerated by AutoML algorithms. On the other hand, the performance predictions of AutoML
models are often limited to the datasets they are trained on, leading to suboptimal generalization to
unseen data (Wen et al., 2019; Zheng et al., 2020).

Recently, to address the efficiency issue, there is a line of training-free AutoML methods (Mellor
et al., 2020; Lopes et al., 2021) that estimates the suggested model performance by using a sin-
gle forward or backward computation on a single minibatch of data without full-training (Tanaka
et al., 2020; Xing et al., 2024). They design various score functions to evaluate the trainability and
expressivity of the model, and prune the less promising models to reduce the search space (Xing
et al., 2024). Although they share a similar object to our work, they still rely on the concrete train-
ing process to evaluate the model performance. Instead, we regard the “data-model-performance”
information as a knowledge base to retrieve the suitable models without actual training.

AutoML with Large Language Models. Large Language Models (LLMs), such as GPT-4 (LLM,
2023) and LLaMA (LLM, 2024), have recently garnered significant attention for their capabilities,
positioning them as powerful tools for automating various tasks (including model designs). Un-
like traditional AutoML methods that rely heavily on search-based techniques, LLMs offer a more
flexible and scalable alternative by leveraging their vast pre-trained knowledge to suggest model
structures based on textual descriptions of the task at hand (Wei et al., 2023; Wang et al., 2023a;
Dong et al., 2023; Wang et al., 2024).

In the context of AutoML, LLMs can interpret human-specified requirements through natural lan-
guage prompts, enabling them to generate corresponding neural architectures tailored to specific
tasks (Wang et al., 2024). For instance, users can guide LLMs to produce customized neural net-
work configurations by providing detailed prompts that include dataset characteristics, desired per-
formance metrics, and architectural preferences. Some approaches integrate LLMs as controllers
within a NAS framework, where the LLM generates candidate architectures that are then evaluated
and refined iteratively (Zheng et al., 2023; Zhang et al., 2023; Wang et al., 2023a). Specifically,
by leveraging their few-shot learning capabilities (Brown et al., 2020), LLM controllers can uti-
lize the optimization trajectory written in text to decide which model to validate next, incorporating
additional domain-specific knowledge as a reference (Zhang et al., 2024; Nasir et al., 2024; Wang
et al., 2024)—for example, recognizing that the GraphSAGE (Hamilton et al., 2017a) model is bet-
ter suited for handling dense graphs. Additionally, LLMs can assist in generating code for model
implementation, further streamlining the development process (Cheng et al., 2023).

Despite these advancements, challenges remain in fully leveraging LLMs for AutoML tasks. LLMs
may lack detailed domain-specific knowledge required for tuning hyperparameters or may generate
architectures that are common but not necessarily optimal for a given dataset (Wang et al., 2024).
Integrating LLMs with structured knowledge sources, such as KGs or deep learning benchmarks,
can enhance their capability to produce more customized and effective neural network designs.
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Figure 2: An architectural diagram of the Knowledge Benchmark Graph.

3 PROBLEM DEFINITION

In equation 1, it is quite time-consuming to obtain the accurate performance {M(F ;Du)} of many
candidate models F ∈ F on an unseen dataset Du. To efficiently obtain M(F ;Du) when searhc-
ing for F ∗, some classic methods have been proposed in the early years. For example, Domhan
et al. (2015) propose to explore the learning curves to predict the performance of a model on a
dataset. Furthermore, one-shot NAS proposes the weight sharing mechanism to avoid the compu-
tational overhead of training many candidate models (Pham et al., 2018). However, these methods
still require a non-negligible computational overhead, since they all need to train models somehow.
Inspired by many well-established benchmarks Chitty-Venkata et al. (2023), we may recommend
those benchmark models F b ∈ Fb that are effective for benchmark data sets Db ∈ Db to unseen data
Du. In such a way, the complex model design problem in equation 1 can be simplified as follows.

Definition 1 (The Problem of Retrieving Models from Benchmark to Unseen Data) Given an
unseen dataset Du and a model search space Fb with performance records on benchmark datasets
Db, the goal is to find an effective model F b for Du by measuring the similarity between benchmark
Db with unseen Du, and retrieving most effective models from Fb:

max
F∈F

M(F ;Du) ∝ max
F∈Fb

M(F ;Db) · S(Db, Du), (2)

where S(Db, Du) evaluates the similarity between benchmark data set Db with unseen data Du.

There are two main intuitions behind Def. 1. First, if the given data is one we have seen before, we
only need to find the one model with the outstanding performance from a well-established bench-
mark record (see Sec. 4). Secondly, as we only need to design models for unseen data Du, we can
find the benchmark dataset Db ∈ Db that is similar to Du, and then transfer the most effective mod-
els from Fb on Db to Du. This approach aligns with the intuitive principle: “Similar datasets prefer
similar models” (Bardenet et al., 2013). It is worth noting that transfer learning (Pan & Yang, 2009)
focuses more on how to reuse a specific model in a source domain on a target domain to alleviate
the data scarce issue. Def. 1 focuses more on how to quickly recommend a model F b from massive
benchmark models Fb and data sets Db that can achieve high performance on unseen data Du.

To leverage benchmark data, two challenges need to be addressed: 1) Organizing Benchmark
Data: The organization of benchmark data largely affects storage efficiency and information re-
trieval effectiveness. We address this challenge by proposing the knowledge benchmark graph
(KBG) in Sec. 4. 2) Retrieve Effective Models: As the benchmark knowledge does not directly
translate to unseen datasets, developing a robust S(·) that prioritizes the most relevant Db for Du

and selecting the most suitable models to Du based on the identified similar datasets are non-trivial
tasks. We propose the retrieval method in Sec. 5 to address this challenge. Since S(·) is the founda-
tion of this novel retrieval process, we further propose a comprehensive evaluation metric in Sec. 6.

4 BENCHMARK KNOWLEDGE GRAPH CONSTRUCTION

Benchmark data, traditionally stored in tabular formats (Ying et al., 2019a; Dong & Yang, 2020;
Qin et al., 2022), contains valuable information about model performance across various datasets.

4



Published as a conference paper at ICLR 2025

Using traditional tabular formats to represent diverse model structures across multiple datasets poses
challenges, such as missing values and inefficient storage, which complicates data management and
retrieval. To better utilize the benchmark data, we transform it into a Knowledge Benchmark Graph
(see Fig. 2). The KBG can organizes datasets, models, and performance as entities and relations,
enabling flexible, context-aware queries based on relationships between entities rather than simple
row-column searches. This structure improves data accessibility and interpretability, allowing LLMs
to process and respond to queries more effectively. We next introduce the KBG in detail.

Entity and Its Attributes. To record the “data-model-performance” information, the KBG mainly
has following entities:
1. Data: As a fundamental component, Data:{data ID, data Name, data Property}

records information about the datasets.
• data Property:{statistics:{· · · }, description:{· · · }} are the attributes that

provide high-level information about the dataset, including statistical features and a semantic
description. Detailed feature information and examples are provided in the Appx.A.3.

2. Model: A neural network model generally consists of three main parts: model architec-
ture, hyperparameters, and software/hardware configurations. To reduce redundancy, KBG
uses Model:{model ID, model Name, model Property} to store models and model-
specific attributes (typically numerical, such as dropout ratio), while common attributes are stored
as other entity types (see Other Entity Types for more details).
• model Property:{numerical Features:{· · · }} are the attributes that include the

numerical configurations of the model, such as learning rates, epochs, and hidden units.
3. Other Entity Types: These entities store categorical features of datasets and models, using the

format entity Type:{entity ID, entity Name} with actual entity names introduced
below. Generally, they can be divided into three groups.
• Common Attributes: task and modality are essential for determining the relatedness of

datasets and models and for selecting suitable ones.
• Data-related Attributes: Semantic aspects of the datasets, such as their domain and
heterogeneity (for graph datasets), are represented as entities.

• Model-related Attributes: Important categorical features for models include software/hardware
information like operating System, CPU, and GPU, model architecture components like
architecture Graph and layer Operator, and hyperparameter configurations like
optimizer.

Because the categorical features are widely shared across datasets and/or models, transforming them
into entities reduces the complexity in the storage and allows a higher extendibility for new cate-
gories. On the other hands, the numerical features and semantic descriptions are often unique to the
corresponding entities, thus keeping them in the attributes is more applicable.

Relations. There are two types of relations in the KBG:
1. Performance: KBG utilize the hyper-relational facts (Rosso et al., 2020) r(eh, et, {ro :

vo}No
o=1), to store the performance of different models on various datasets, such

as hasPerformance(data ID,model ID,{Accuracy:· · ·,Loss:· · ·,· · · }). Gen-
erally, hasPerformance(data ID,model ID) is regarded as main triplet, while
{Accuracy:· · ·,Loss:· · · } are role-value pairs {ro : vo}No

o=1.
2. Feature: The relations between the datasets/models and their kinds of properties are stored as bi-

nary facts hasFeature:{data ID/model ID, feature ID}, where the actual relation
names vary with the corresponding features.
• As shown in Fig. 2, such relations include has domain, has task, has modality,
has architecture, has hardware, and has HPO, etc.

5 RETRIEVING MODELS WITH KBG

Based on the KBG constructed in Sec. 4, it is now important to retrieve the similar datasets and
and relevant models for unseen data. Thus, we design dataset similarity score S(·, ·) and model
relevance score R(·, ·) for retrieval correspondingly.

Data Similarity. Following Def. 1, designing an effective dataset similarity score S(·) is the crucial
part. As a first approach, we directly use the statistical features of datasets to measure the similarity.
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Let the feature vectors of the benchmark dataset Db and the unseen dataset Du be represented as
d-dimensional vectors vb and vu, respectively. The dataset similarity score S(vb,vu) is defined as:

S(vb,vu) := 1− 1

d

∑
d′≤d

min
{
(vb

d′ − vu
d′)p, α

}
,

where α represents the maximum allowable difference for any feature dimension, and p is a power
parameter that controls the sensitivity to feature differences. Both α and p are hyperparameters. The
similarity is ranged within [0, 1] with a higher value for a more similar dataset. Empirically, we set
p = 1

3 and α = 0.8 to mitigate the impact of outlier feature differences.

Model Relevance. While S(·, ·) helps prune the model search space, directly transforming models
from the most similar Db to Du can not guarantee a good performance. Moreover, a less similar
dataset may also assist defining the model performance on Du. Thus, to better decide the relevance
of model F to Du, it is necessary to aggregate the model performances on multiple benchmark
datasets that are similar to Du. The model relevance score R(·, ·) is defined as:

R(F ;Du) =
∑

Db∈Dc

M(F ;Db) · S(Db, Du), (3)

where Dc = {Db|S(Db, Du) ≥ δ,Db ∈ Db}. R(·, ·) is a reflection of Def. 1 which captures both
the model’s historical performance and the similarity of the benchmark dataset to the unseen dataset.

Please note that this paper focuses more on how to avoid training as much as possible by leveraging
the prior information of KBG itself. So that we only propose relatively simple S(Db, Du) and
R(F ;Du) to demonstrate the feasibility of the proposed method. The more advanced and accurate
designs of the scores can be easily combined with ours with a computational overhead.

6 EVALUATING DATA SIMILARITY

As discussed in Sec. 3, the quality of data similarity metric S(Db, Du) largely affects the model
retrieval performance. However, given the novelty of the problem, there lacks a comprehensive
evaluation metric to assess the effectiveness of S(Db, Du). While the performance on Du is an in-
tuitive measurement, it does not directly indicate whether the model transfer is successful. Thus, we
first introduce factors that directly reflects the transfer performance of retrieved models in Sec. 6.1.
Then based on these factors, we propose a novel evaluation metric for S(Db, Du) in Sec. 6.2.

6.1 FACTORS OF DATA SIMILARITY EFFECTIVENESS

When retrieving models from the KBG for Du , sufficiently similar Db datasets should yield models
that perform well on Du. Thus, the effectiveness of S(Db, Du) is measured by how well top-
performing models from Db transfer to Du. Formally, the problem can be defined as follows:

Definition 2 (The Problem of Transferring Models in KBG to Unseen Data) Given an unseen
dataset Du and a model search space Fb with performance records on benchmark datasets Db stored
in KBG, the goal is to design a dataset similarity metric S(·) such that, if S(Db, Du) ≥ δ and a
subset of models satisfies Fc = {F ∈ Fb | M(F ;Db) ≥ τ}, then the probability that M(F ;Du) is
close to M(F ;Db) (within an error tolerance ϵ) is at least ∆:

P
(
M(F ;Du) ≥ M(F ;Db)− ϵ | F ∈ Fc

)
≥ ∆, (4)

where δ and τ are the thresholds for similarity and performance, ϵ is the error tolerance, and ∆ is
the probability lower-bound.

Following Def. 2, S(·, ·) is evaluated by two key factors, ϵ and ∆. The value ϵ measures how well
transferred models maintain high performance, while ∆ represents the probability of successful
transfer given ϵ . Intuitively, a smaller error tolerance ϵ lowers the success probability ∆ , and an
effective S(·, ·) should to minimize ϵ while maximizing ∆.
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Figure 3: The probability that the trans-
ferred model’s performance is within ϵ.

We further study the relationships between ϵ and ∆ with
S(·, ·) defined in equation 3 and the KBG constructed
from NAS-Bench-Graph (Qin et al., 2022). We select
one dataset from KBG as Du and treat the most simi-
lar remaining dataset as Db. In order to compare per-
formances across different datasets, we define M(·) as a
relative measure of performance, comparing a model F to
the theoretically optimal model F ∗ in Fb, M(F ;Db) :=
Mabs(F ;Db)
Mabs(F∗;Db)

. We transfer models with performance no
less than τ = 0.990 on Db to Du and compute the trans-
ferred performance error ϵ and confidence ∆. As shown
in Fig. 3, ∆ increases monotonically with ϵ, and when ϵ
is within 0.04, ∆ is at least 20% for all datasets. This also
confirms the feasibility of transferring high-performing
models to similar datasets.
Remark 6.1 How to design a good similarity metric S(Db, Du) is an open question. The core idea
of Def. 2 is that a better similarity metric should lead to smaller ϵ but larger ∆ in equation 4. The
Def. 2 serves as an guidance for subsequent work to evaluate different S(Db, Du).

6.2 DATA SIMILARITY EVALUATION

Following Def. 2, retrieved models Fc from Db to Du have a better transferability if they have a
higher possibility ∆ of being transferred with a low performance drop ϵ. This is equivalent to lifting
the ϵ-∆ curve to the upper left corner and results in a large area under the curve, as illustrated in
Fig. 3. Thus, we can quantify the transferability T (·) of Fc by measuring the area under the ϵ-∆
curve, i.e. T (Fc) :=

∫ ϵmax

0
∆(ϵ)dϵ. ϵmax is a hyper-parameter that limits the largest transferred

error, as a too large error is meaningless. Considering that the exact relationship between ϵ and ∆ is
unknown and needs to be empirically evaluated, we use the estimated version of T (·) in practice:

T̂ (Fc) =
1

N

ϵmax∑
0

∆(ϵ), (5)

where N is the number of estimated ϵ values. A more transferable Fc has a larger score close to 1,
showing the performances of Fc sustain across two datasets. This score serves as the ground truth
similarity between Db and Du, and a good S(Db, Du) should align with this observation.

Then, given a set of benchmark datasets {Db
i}i and a set of candidate models {Fc

i}i separately
selected from each benchmark dataset with the same standard, we evaluate S(·, ·) by the linearity
between the similarity and the transferability. Following the definition of R2 score, we define the
Relevance Linearity Score (RLS) as:

RLS(S) = 1−
∑

Db
i∈{Db

i}i
(S(Db

i , D
u)− T̂ (Fc

i ))
2∑

Db
i∈{Db

i}i
(S(Db

i , D
u)− T̂avg)2

,

where T̂avg = 1/|{Db
i}i| ·

∑
Db

i∈{Db
i}i

(T (Fc
i )) is the average transferability score of {Fc

i}i. A
higher RLS indicates a better linearity between the similarity and the transferability, suggesting that
S(·, ·) correctly ranks the dataset similarity by the model performances on the unseen datasets.

7 EXPERIMENT

7.1 EXPERIMENT SETUP

Table 1: The statistics of KBG
# Models # Datasets # Perf. Rec. # Entities # Facts

26,206 9 211,669 211,712 2,540,064

Implementation Details. To verify the
effectiveness of KBG and integration of
LLMs with KBG, the benchmark datasets
used in our experiments is the NAS-
Bench-Graph dataset (Qin et al., 2022),
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Table 2: The initial performance comparison (absolute accuracy) of GNN designed by different
works. We mark the best performance in bold, and and second best in underline.

Type Model Cora Citeseer PubMed CS Phys. Photo Comp. arXiv

Manual

GCN 80.97 69.90 77.46 88.65 90.85 89.44 83.16 71.08
GAT 80.83 70.70 75.93 88.72 89.47 89.93 81.35 71.24

SAGE 79.47 66.13 75.50 87.81 91.43 88.29 81.46 70.78
GIN 79.77 63.30 76.74 81.08 86.67 87.37 73.95 61.33

ChebNet 79.40 67.03 75.13 89.50 89.75 86.65 79.10 70.87
ARMA 78.33 66.20 75.00 89.87 88.88 86.55 78.47 70.87
k-GNN 78.06 30.97 75.38 83.81 88.98 86.45 76.31 63.18

Classic
Random 77.87 66.64 74.16 81.78 90.59 89.04 76.61 68.93

EA 78.23 66.40 72.88 87.03 88.07 87.30 77.56 68.28
RL 73.44 65.35 75.44 86.17 88.15 89.48 77.70 68.00

AutoML

GNAS 78.55 63.25 73.04 86.04 89.54 87.27 70.96 69.94
Auto-GNN 78.58 65.60 76.07 89.06 89.26 89.34 77.49 70.62

GPT4GNAS 78.50 67.46 73.89 89.26 89.44 89.12 77.21 68.98
GHGNAS 79.13 67.35 74.90 89.15 88.94 89.42 77.04 69.66

DesiGNN-init 80.31 69.20 76.60 89.64 92.10 91.19 82.20 71.50

Sim.
Kendall 67.73 69.20 71.80 88.56 91.56 88.90 76.85 71.49
Overlap 79.36 67.30 71.80 88.56 89.95 90.37 76.85 71.68

Ours 82.53 69.20 76.53 89.32 90.34 90.37 76.61 71.68

which includes performance records for 26,206 GNNs (Zhou et al., 2020) evaluated across 9 differ-
ent graph datasets. The search space consists of GNN model architectures, represented as directed
acyclic graphs (DAGs) with 4 nodes and 9 possible layer types. The 9 datasets used in the evalua-
tion are: Cora, Citeseer, Pubmed, CS, Physics, Photo, Computers, Arxiv, and Proteins. The detailed
statistics are provided in Tab.8 and Appx. A.3. 1

Evaluation Metric. The performance of a suggested model design F ∈ F on an unseen dataset Du

is evaluated as its accuracy M(F ;Du). For retrieval methods, F is directly retrieved from KBG
based on the performance records of similar datasets Db\Du, i.e., removing the records to related to
Du from KBG. While for AutoML methods, F is generated by the their algorithms.

Baselines. We compare our approach against a diverse range of baselines:

• Manually Designed GNNs: We include several popular GNNs commonly used in the literature,
such as GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2017), GraphSAGE (Hamilton et al.,
2017b), GIN (Xu et al., 2019), ChebNet (Defferrard et al., 2016), ARMA (Bianchi et al., 2019),
and k-GNN (Morris et al., 2019).

• Classical NAS Algorithms: We compare against Random Search (Li & Talwalkar, 2019), Evo-
lutionary Algorithms (Real et al., 2019), and Reinforcement Learning (Zoph & Le, 2017).

• AutoML Methods for GNNs: We include state-of-the-art AutoML methods specifically designed
for GNN architecture search, such as GNAS and Auto-GNN (Gao et al., 2020; Zhou et al., 2022).

• LLM-Based AutoML Methods: Given the recent success of large language models (LLMs)
in AutoML, we include GPT4GNAS (Wang et al., 2023a), GHGNAS (Dong et al., 2023), and
DesiGNN (Wang et al., 2024) as LLM-based AutoML baselines.

• Similarity Metrics: As we retrieve model designs based on data similarity in Sec. 5, we compare
against other similarity metrics such as Kendall (You et al., 2020) and Overlap (Wang et al., 2024),
which measure similarity based on performance differences of one model across different datasets.

7.2 EFFECTIVENESS OF RETRIEVING MODEL DESIGNS WITH KBG

The key to applying the KBG is whether an effective model from a similar dataset is still effective
on the unseen dataset. To validate this, we simply retrive the best performing model from the most
similar benchmark datasets to the unseen data, and report its performance on the unseen data. As
shown in Tab. 2, our naive retrieval method achieves the best or second-best performance on 4 out of
8 datasets, and is competitive on the remaining 4 datasets. Given that other methods require repeated
training, which is time-intensive, this result demonstrates the effectiveness of using a KBG to as-
sist model design. Additionally, compared to Kendall and Overlap, which rely on supervised model

1The code is available at https://github.com/liuhanmo321/kgnas.
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Table 3: The RLS of different similarity metrics in initial model suggestion.
Metric Cora Citeseer PubMed CS Phys. Photo Comp. Arxiv

L1 0.452 0.126 0.003 0.020 0.013 0.310 0.025 0.014
L2 0.498 0.064 0.012 0.007 0.040 0.328 0.036 0.012

Ours 0.435 0.340 0.004 0.025 0.002 0.252 0.043 0.027
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Figure 5: ϵ-∆ curve when considering Cora, Physics, and Arxiv as unseen datasets. The legends
denote the benchmark datasets and their similarites to the unseen datasets. τ is fixed to 0.980.

performance on unseen data, our metric achieves better performance with only intrinsic dataset char-
acteristics. This highlights the effectiveness of leveraging dataset characteristics for model transfer.

7.3 THE STUDY ON THE IMPACT OF τ , ϵ, AND ∆
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(b) Effect of τ on the performance.
Figure 4: Effect of performance threshold τ on ϵ, ∆ and performance.

With the dataset similarity
metric validated as effec-
tive for model design, we
further investigate the def-
inition of model transfer-
ability based on Def.2. Re-
call that an effective can-
didate model set Fc (≥ τ )
should have a high suc-
cess probability (∆) with a
low error threshold (ϵ). As
shown in Fig. 4, we study the impact of increasing τ on ϵ and ∆. Fig. 4a illustrates that maintaining
a high ∆ at a low ϵ is challenging, a trend consistent across all values of τ . However, when com-
paring Fig. 4a to Fig. 4b, we observe that the transferred models with a smaller ϵ generally exhibit
better performances. This underscores the importance pursuing a small ϵ for successful model trans-
ferability. Additionally, Fig. 4b supports our assumption that a better-performing model (larger τ )
from a benchmark dataset is more likely to perform well on an unseen dataset. The figures on other
datasets are presented in the Appx.A.6.

7.4 THE STUDY ON THE SIMILARITY SESIGN WITH EVALUATION METRIC

As shown in Fig. 5, we study how the similarity between Du and Db affects the model transfer
performance. Intuitively, a more similar Db should have a higher possibility ∆ of transfering models
within a low performance drop ϵ, which is reflected in a larger area under the ϵ-∆ curve. The results
in Fig. 5 show that the current similarity metric provides a a generally accurate ranking for the top
three similar datasets. However, it still fails to rank the truly most similar dataset as the highest.

Following RLS defined in Sec. 6.2, we next present scatter plots between transferability score T̂ (Fc),
i.e. the ϵ-∆ curve area, and dataset similarity in Fig. 6. We expect the curve area to be linear to the
similarity, but the results indicate that the current similarity metric is flawed in achieving this goal.
However, when comparing the RLS (R2 score) with the model performance in Tab. 2, we observe
that when the metric has a higher RLS on an unseen dataset, the retrieved similar dataset tends to
have more transferrable model design. For example, our S(·, ·) has a higher RLS on Cora, and the
retrieved model has the best performance as well. This validates the effectiveness of using linearity
as an evaluation metric for dataset similarity. Furthermore, we evaluate the different designs of
S(·, ·) with RLS in Tab. 3. It can be seen that no single metric is effective for all datasets. More
detailed comparisons and analysis are provided in Appx. A.7.
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Figure 6: The linearity between the dataset similarity and the area below ϵ-∆ curve. The R2 score
denotes the RLS metric.

7.5 IMPACT OF USING DIFFERENT SIZES OF Dc ON MODEL SUGGESTION

The previous experiments focused on recommending models using a single similar dataset. How-
ever, the KBG structure allows recommendations from multiple similar datasets. In Tab. 4, we
analyze how incorporating different datasets affects model performance with R(·) defined in equa-
tion 3. When more similar datasets are considered, the recommended models can outperform those
from initially less optimal datasets. However, the improvement is inconsistent, likely due to the cur-
rent simplistic combination method. With a more sophisticated approach to measure data similarity,
leveraging multiple similar datasets is expected to result in better model recommendations.

Table 4: The effectiveness of model relevance score R(·) with different |Dc|. |Dc|=1 is the same as
the naive recommendation. We mark the best performance in bold, and and second best in underline.

Method Cora Citeseer PubMed CS Phys. Photo Comp. arXiv

DesiGNN-init 80.31 69.20 76.60 89.64 92.10 91.19 82.20 71.50

R(·), |Dc|=1 82.53 69.20 76.53 89.32 90.34 90.37 76.61 71.68
R(·), |Dc|=2 79.16 68.40 75.63 89.57 92.05 91.19 83.39 70.33
R(·), |Dc|=3 79.63 68.73 76.46 89.45 92.11 91.48 81.02 71.09

7.6 INCOOPERATION WITH LARGE LANGUAGE MODEL

As an important application scenario of KBG, we present the study on the effectiveness of incoop-
erating LLMs with KBG to suggest models in Tab. 5. Given an unseen dataset, we first retrieve
candidate models Fc from KBG with R(·) in equation 3. Then we require the LLM to infer or select
a model F ′ from Fc. Afterwards, we repeatedly retrieve another set of candidates whose architec-
tures and performances across Dc are both similar to F ′ and ask LLM to refine F ′. Results show
that combining KBG with LLM outperforms the initial models from DesiGNN and only KBG. Be-
sides, it can be seen that selecting a model design with LLMs is more effective than inferring one.
This shows that retrieved models are already effective, and forcing LLMs to infer a new model
design may not be necessary. Experiment details are provided in Appx.A.8.

Table 5: The performance of incooperating LLMs with KBG to suggest models.
Type Method Cora Citeseer PubMed CS Phys. Photo Comp. arXiv

Initial DesiGNN-Init 80.31 69.20 76.60 89.64 92.10 91.19 82.20 71.50
KBG-Init 82.53 69.20 76.53 89.32 90.34 90.37 76.61 71.68

Refined KBG+LLM Infer 80.32 69.56 76.60 89.53 92.61 91.87 81.26 71.69
KBG+LLM Select 80.54 69.06 77.23 89.53 92.61 91.95 82.34 72.05

8 CONCLUSION

In conclusion, the Knowledge Benchmark Graph (KBG) presents a novel approach to enhance neural
network design by structuring benchmark data into a graph that stores model performance across
various datasets. The KBG facilitates efficient and automated model designs for unseen datasets
by retrieving insightful knowledge from prior benchmarks. However, this paper still leave several
challenges unsolved. For example, we may construct more accurate similarity functions between
seen dataset and unseen one. Besides, it is meaningful to combine existing benchmarks together to
build a larger KBG to support model design in different domains. In the subsequent research, we
will aim to combine KBG with automatic learning systems and take a step towards a smarter and
more efficient neural network design process.
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A APPENDIX

A.1 KNOWLEDGE GRAPH DEFINITION

A knowledge graph (KG), denoted as G = {E,R,H}, is a structured representation of knowledge,
where E represents the set of entities, R the set of relations, and H the set of facts. Each fact h ∈ H
is expressed as a triple (e1, r, e2), where e1, e2 ∈ E are entities, and r ∈ R is a relation that connects
them. These facts illustrate how entities are linked by specific relations, forming a graph structure
that can be queried for relevant information. To incorporate more detailed information, entities and
relations can have their own attributes, denoted as Q, where Q = {(qi, vi)} represents a set of key-
value pairs, with qi as the attribute type (key) and vi as the corresponding value. When relations are
enriched with attributes, they are referred to as hyper-relations and their facts become quadruples
(e1, r, e2, Q).

A.2 ADDITIONAL RELATED WORKS

Another line of research focuses on leveraging existing dataset-model relationships to recommend
models for unseen datasets (Wu et al., 2020; Tan et al., 2024). Different from our approach aimed
at designing new models, these methods prioritize the application of pre-trained models, which
are combined with their specifications to form learnware—a structured knowledge representation
for future model recommendations. To enable effective matching between learnware and unseen
datasets, (Wu et al., 2020) employs a reduced kernel mean embedding method. More recently,
Beimingwu (Tan et al., 2024) has integrated the learnware application pipeline into a comprehensive
platform, encompassing preparation, matching, and deployment processes.

A.3 KNOWLEDGE BENCHMARK GRAPH INFORMATION

Here we provide the examples about the structures of the Knowledge Benchmark Graph (KBG).
We use the Nas-Bench-Graph, which is a benchmark dataset with performance records on 26,206
models for 9 graph datasets, to construct the KBG. The important entities are Data and Model, as
they are the have attributes for their detailed informaiton.

• Data: as claimed in the main text, the Data entity represents the dataset used for training
and evaluating the models. As we are using the graph datasets, the numerical features are
extracted from the graph structure by using the NetworkX library https://networkx.
org/. In case the graph is too large to be processed, we randomly sample subgraphs of the
original graph to calculate its statistics and note the corresponding attributes with ’local’.
Fot other data modalities, their numerical features can be replaced by the corresponding
statistical characteristics. The attributes of the Data entity include:

– node feature: the number of node features.
– edge feature: the number of edge features.
– node count: the number of nodes.
– edge count: the number of edges.
– num classes: the number of node classes.
– density: the density of the graph, calculated by the NetworkX library.
– connected components: the set of vertices in a graph that are linked to each

other by paths.
– average degree: the average degree of all the nodes in the graph.
– average clustering coefficient: the degree to which nodes in a graph

tend to cluster together.
– average degree centrality: the average fraction of connected nodes across

the whole graph.
– average eigenvector centrality: the average influence of all nodes in the

graph.
– local average clustering coefficient: the average clustering coeffi-

cient of the subgraphs.
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Figure 7: The structure of the Data entity in the KBG.

– local average betweenness centrality: the average sum of the fraction
of all-pairs shortest paths that pass through a node of the subgraphs.

– local graph diameter: the length of the shortest path between the most dis-
tanced nodes of the subgraphs.

– local average closeness centrality: the average reciprocal of the sum
of the shortest path distances from a node to all other nodes of the subgraphs.

– description: the semantic description of the dataset.
–

The example is shown in Fig. 7.

• Model: the model contains the following attributes.:

– num post layers: the number of embedding layers before passing the raw node
features into the GNN.

– num prev layers: the number of embedding layers after receving the hidden em-
beddings from the GNN.

– dimension: the dimension of the hidden embeddings.
– dropout: the drop out rate of the model.
– learning rate: the learning rate of the model.
– weight decay: the weight decay during optimization.
– num epoch: the number of epochs of training the model.

And the example is shown in Fig. 8a.

As for the relations, the most important relation is hasPerformance that records the performance
information of the KBG. An example is shown in Fig. 8b and its attributes include:

• perf(acc test: ..., acc valid: ..., loss: ...): the performance
information of the testing and validation accuracies and the loss on the test set is recorded
in the form of a dictionary.

• latency: the model training time.

• para: the number of parameters of the optimized model.

• task: the task for the corresponding performance record.

The entity and relation statistics of the extracted KBG is shown in Tab. 6 and Tab. 7. Please note
that the search space Fc contains 26,206 variants of model architectural designs, but considering the
fine-grained hyper-parameters of different models, we finally have 211,669 model instances in the
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(a) The example of model entity. (b) The example of hasPerformance relation.

Figure 8: Effect of performance threshold τ on ϵ, ∆ and performance.

Table 6: The entity statistics of KBG.

Entity Category Entity Type Num Instances

Dataset
Dataset 9
Domain 4
Heterogeneity 2

Model

Model 211,669
Optimizer 2
GPU 2
CPU 2
OS 2
Structure Topology 9
Layer Structure 9

Common Task 1
Modality 1

Total Number 12 211,712

KBG, which leads to the increased number facts. However, in the actual model design retrieval, only
the architectural design is considered, thus the valid number of models is still 26,206.

Subsequent to Nas-Bench-Graph, many methods are developed to improve the GNN design ef-
fectiveness via proposing a more effective search space. Early efforts explicitly incorporate link
information into designing (Di et al., 2021; WANG et al., 2021), enhancing node classification
and link prediction. Subsequent studies introduced fine-tuning search spaces, improving pre-trained
GNN adaptation (WANG et al., 2024), while others developed data-adaptive GNNs that dynamically
adjust receptive fields based on graph properties (Wang et al., 2023b). There are also AutoGNN
methods explored message-passing function search on knowledge graphs, enhancing model expres-
siveness but remaining constrained to specific KG structures (Di & Chen, 2023). As the search space
design is an orthogonal task to our work, we do not compare our method with these methods in the
main text and stick to Nas-Bench-Graph.

A.4 BENCHMARK DATA INFORMATION

The datasets used in the benchmark data are: Cora (Sen et al., 2008), Citeseer (Sen et al., 2008),
Pubmed (Sen et al., 2008), CS (Shchur et al., 2018), Physics (Shchur et al., 2018), Photo (Shchur
et al., 2018), Computers (Shchur et al., 2018), Arxiv (Hu et al., 2020), and Proteins (Hu et al.,
2020). The statistics of the datasets are shown in Tab. 8. On the other hand, the models used in
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Table 7: The relation statistics of KBG.

Relation Category Relation Type Num Instances

Dataset

hasDomain 9
hasHeterogeneity 9
hasTask 9
hasModality 9

Model

hasOptimizer 211,669
hasGPU 211,669
hasCPU 211,669
hasOS 211,669
hasArchGraph 211,669
hasLayerOperator 1 211,669
hasLayerOperator 2 211,669
hasLayerOperator 3 211,669
hasLayerOperator 4 211,669
hasTask 211,669
hasModality 211,669

Dataset-Model hasPerformance 211,669

Total Number 16 2,540,064

the benchmark data have 9 unique topologies with 4 nodes in the directed acyclic graph (DAG)
and 9 different layer operations, [’GCN’, ’GAT’, ’SAGE’, ’Skip’, ’GIN’, ’Cheb’, ’FC’, ’ARMA’,
’Graph’], in each node.

Table 8: List of datasets used in the benchmark data.

Dataset Nodes Edges Classes Description
Cora 2,708 5,429 7 Citation

Citeseer 3,327 4,732 6 Citation
Pubmed 19,717 44,338 3 Citation

CS 18,333 81,894 15 Coauthor
Physics 34,493 247,962 5 Coauthor
Photo 7,487 119,043 8 Shopping

Computers 13,381 245,778 10 Social
Arxiv 169,343 1,166,243 40 Citation

Proteins 132,534 39,561,252 112 Protein

A.5 FULL EXPERIMENTS ON THE MODEL RETRIEVAL SCORE

The full results of the Tab. 2 with standard deviation is provided in Tab. 9. Because the similarity
based retrieval methods always find the same model across different runs, the standard deviation is
not reported.

A.6 ADDITIONAL EXPERIMENTS ON THE IMPACT OF τ , ϵ, ∆

In addition to the results in Sec. 7.3, we provide the case studies on the other two datasets Cora and
Physics in Fig. 9 and Fig. 10. Across the three datasets, we can observe a increasing trend of ∆ with
ϵ, which further validates the observation in Sec. 7.3. A higher τ will generally result in a higher
transferred performance on all three datasets, which is also supportive to our observation.
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Table 9: The performance of different baseline methods on the datasets used with standard deviation.

Model Cora Citeseer PubMed CS Physics Photo Computer arXiv

GCN 80.97±0.39 69.90±1.26 77.46±0.61 88.65±0.57 90.85±1.20 89.44±0.48 83.16±0.55 71.08±0.16
GAT 80.83±0.47 70.70±0.71 75.93±0.26 88.72±0.73 89.47±1.14 89.93±1.75 81.35±1.26 71.24±0.10

SAGE 79.47±0.31 66.13±0.90 75.50±1.14 87.81±0.18 91.43±0.29 88.29±1.03 81.46±0.73 70.78±0.17
GIN 79.77±0.38 63.30±1.26 76.74±0.86 81.08±3.09 86.67±0.86 87.37±1.01 73.95±0.16 61.33±0.70

ChebNet 79.40±0.57 67.03±1.02 75.13±0.49 89.50±0.36 89.75±0.87 86.65±0.77 79.10±2.26 70.87±0.10
ARMA 78.33±0.69 66.20±0.75 75.00±0.51 89.87±0.35 88.88±1.09 86.55±3.35 78.47±0.57 70.87±0.17
k-GNN 78.06±0.47 30.97±3.56 75.38±0.97 83.81±0.58 88.98±0.54 86.45±0.21 76.31±1.34 63.18±0.38

Random 77.87±2.41 66.64±1.32 74.16±1.68 81.78±9.41 90.59±0.94 89.04±2.55 76.61±3.56 68.93±1.82
EA 78.23±1.04 66.40±2.63 72.88±2.11 87.03±2.64 88.07±2.41 87.30±1.38 77.56±6.42 68.28±2.95
RL 73.44±8.11 65.35±2.40 75.44±1.24 86.17±5.09 88.15±4.24 89.48±1.35 77.70±3.07 68.00±4.71

GNAS 78.55±1.20 63.25±5.87 73.04±1.64 86.04±7.88 89.54±1.52 87.27±2.96 70.96±9.66 69.94±1.71
Auto-GNN 78.58±2.18 65.60±2.69 76.07±0.77 89.06±0.42 89.26±1.51 89.34±1.75 77.49±3.41 67.62±1.72

GPT4GNAS 78.50±0.37 67.46±0.76 73.89±0.86 89.26±0.38 89.44±1.94 89.12±2.26 77.21±5.26 68.98±1.22
GHGNAS 79.13±0.45 67.35±0.44 74.90±0.57 89.15±0.81 88.94±2.57 89.42±1.99 77.04±3.96 69.66±1.28
DesiGNN 80.31±0.00 69.20±0.16 76.60±0.00 89.64±0.08 92.10±0.00 91.19±0.00 82.20±0.00 71.50±0.00

Kendall 67.73 69.20 71.80 88.56 91.56 88.90 76.85 71.49
Overlap 79.36 67.30 71.80 88.56 89.95 90.37 76.85 71.68

Ours 82.53 69.20 76.53 89.32 90.34 90.37 76.61 71.68
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Figure 9: Effect of τ on ϵ and ∆.

A.7 COMPLEX DATASET SIMILARITY COMPARISON

In this section, we extend our experiment on different dataset similarity metrics. In the main con-
text, we compared several simple simialrities, and here we propose include a more complex simi-
larity metric, the Personalized PageRank (PPR) algorithm, to further evaluate the dataset similarity
metrics.

When implementing PPR, the original similarities S(Db, Du) calculated by the dataset features
serve as the initial weights of edges. Considering that the unseen dataset Du do not have model
performance information, we neglect the performance relations between Db and benchmark models
Mb as they are less helpful for dataset similarity.
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Figure 10: Effect of τ on ϵ and performance.
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Table 10: The RLS of different similarity metrics in initial model suggestion.

Metric Cora Citeseer PubMed CS Phys. Photo Comp. Arxiv

Simple-L1 0.452 0.126 0.003 0.020 0.013 0.310 0.025 0.014
Simple-L2 0.498 0.064 0.012 0.007 0.040 0.328 0.036 0.012
Simple-Ours 0.435 0.340 0.004 0.025 0.002 0.252 0.043 0.027
Complex-PPR 0.853 0.768 0.278 0.340 0.344 0.316 0.485 0.493

The experiment results are shown in Tab.10. A higher RLS indicates that the dataset similarity metric
can better find a similar dataset. The best values are shown in bold and second best in underline.

Results show that, our metric obtains a better performance than other naive metrics for its surpres-
sion on the overly large feature differences. When further considering the edge information among
datasets, the PPR algorithm significantly improves the dataset similarity quality over the naive meth-
ods. This further validates the essence of constructing the knowledge benchmark graph. However,
the linearity is still not high enough (maximally 1), indicating that there is still room for improve-
ment in the dataset similarity metric design.

A.8 DETAILS IN COMBINING KBG WITH LLM

When combining KBG and LLM to suggest model designs, we position LLM as a model design
optimization tool that could understand and leverage the information retrieved from KBG. As we
are agnoistic to the LLM designs, we use the GPT-4 model as the representative LLM in our exper-
iments. The detailed procedure is as follows:

1. Given a KBG and unseen dataset Du, find similar datasets Dc to Du with dataset similarity
score S(·, ·).

2. Retrieve promising candidate models Fc with the model relevance score R(·) based on Dc.
3. Provide information of Du, Dc, Fc and historical results and instruct the LLM to infer

(design a new model based on Fc) or select (pick the most suitable model from Fc) a model
F ′ for Du.

4. Evaluate and record the performance of F ′ on Du.
5. Retrieve another set of Fc from KBG based on: 1) relevance R(·) to Du and 2) similar

model architectures to F ′.
6. Repeat steps 3-5 until the computation budget is exhausted or the performance of F ′ is

satisfactory.

When retrieving the candidate models Fc at the step 5, we combine the model relevance score R(·)
with the model archietectural similarity (noted as W(·)) to find more suitable models. To calculate
W(·), we first transform the topology and layer operations of the benchmark models into binary
vectors w of 0s and 1s. Each element of w stands for a part of arthitecture design, and 1 means that
benchmark models have the same architecture as the current model design F ′. Then, we average the
elements in w as the model architecture similarity W(F, F ′) for F ∈ Fb, F ̸= F ′. Finally, we use
βR(F ;Du) + (1 − β)W(F, F ′) as the final model relevance for selecting next set of candidates,
where β is the weight hyper-parameter and set to 0.8 in our experiments.

When designing the prompts for LLMs, we adopt an intuitive and effective prompting practice with-
out excessive tuning because we aim to validate the effectiveness of our KBG as extra knowledge
in assisting LLMs design models. Following the prior examples in Wang et al. (2023a); Dong et al.
(2023); Wang et al. (2024), the prompts are organized into five textual components:

1. Task description
2. Model space description
3. Optimization trajectory
4. Candidate models from KBG
5. Role-play instruction for Infer/Select strategies

22



Published as a conference paper at ICLR 2025

These textual segments are updated (specifically, components (3) and (4)) and combined into a single
prompt template during each iteration before sending to GPT-4 API for the response. Especially,
when receiving the response from LLM, we require the LLM to provide the structure topology and
layer operations of the recommended model, along with the recommendation reason.

Afterwards, we extract the structure topology and layer operations to build the model automatically.
Then, the recommended model is tested on the unseen dataset to obtain the performance feedback,
which will be further combined with the model details and appended to the optimization history
in the prompt for the next iteration. More importantly, the recommended model will serve as the
anchor for retrieving the next round of similar models from KBG, thereby improving the model
performance over time.

Thoughout the process, the only constraint applied to LLMs is that they cannot recommend a model
already tested in the optimization history, which can be enforced by proper instruction. Please note
that our KBG can capture the similarity between datasets and models, which is fundamentally a
filtering mechanism that only retrieves the most relevant and effective knowledge before sending
them to LLMs for reference. Therefore, we did not apply further filtering to LLM’s suggestions so
that the effectiveness of our KBG in this study could be directly observed.

A.9 CASE STUDY OF MODEL RETRIEVAL ON THE KBG

To help understand our process, we first breifly introduce the pipeline of retrieving initial model
designs from KBG for unseen dataset below.

1. Given a KBG with becnhmark datasets Db and unseen dataset Du, we calculate the dataset
similarity score S(Db, Du) between Du and each Db ∈ Db based on their statistical fea-
tures.

2. Select the similar datasets Dc = {S(Db, Du) ≥ δ|Db ∈ Db} to Du up to a threshold δ.
3. Calculate the relevance score R(·) of the benchmark models Fb towards Du based on their

performances on Dc.
4. Select the candidate models Fc = {R(F b) ≥ τ |F b ∈ Fb} for Du up to a threshold τ .
5. Recommend Fc to Du.

For a case study, suppose cora dataset is the unseen dataset Du, the more concrete steps are:

1. Calculate the dataset similarity between cora and other benchmark datasets, whose similar-
ities are listed in Tab. 11.

2. Then set the threshold δ to 0.7 and obtain the candidate datasets Dc = {Comp.,Photo}.
3. Calculate the model relevance R(F ;Du) of the benchmark models towards cora based on

their performances on Dc = {computers, photo}. Suppose a model F has the reletiave
performance of 0.8 on computers and 0.7 on photo, then

R(F ;Du) = 0.8× 0.735902 + 0.7× 0.724709 ≈ 1.095.

4. Select models with relevance score higher than τ .
5. Recommend the selected models to cora.

Table 11: The similarity between cora and other benchmark datasets.

Dataset Comp. Photo Citeseer Pubmed CS Phys. arxiv

Similarity 0.735902 0.724709 0.69855 0.698388 0.688489 0.665778 0.647834

A.10 EXPERIMENTS ON APPLYING KBG TO IMAGE CLASSIFICATION BENCHMARK

In the main experiments, we demonstrated the effectiveness of our framework in the graph domain.
In this section, we further validate its generalization ability by applying it to the computer vision
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domain. This demonstrates that our framework is extensible across different data modalities and
model designs.

This generalizability is achieved through our comprehensive ontology, which specifies how to orga-
nize dataset features, model architectures, and performance information into the Knowledge Bench-
mark Graph (KBG) without relying on domain-specific knowledge. Additionally, both our dataset
similarity metric and model relevance metric depend solely on the constructed KBG, ensuring the
framework’s adaptability across domains.

We conduct experiments on the NATS-Bench dataset (Dong et al., 2021), a benchmark in the com-
puter vision domain for image classification tasks. NATS-Bench contains performance records for
three image datasets and 15,645 unique topological architectures.

Dataset Features and KBG Construction For this experiment, we extract features of the image
datasets by transforming the statistical information of raw images into vectors and summarizing each
statistical feature across all samples. The remaining construction procedures follow our standard
framework.

Using the NATS-Bench data and our KBG ontology, we constructed a CV-KBG (Knowledge Bench-
mark Graph for Computer Vision). The CV-KBG was then used to calculate dataset similarity scores
as defined in Sec. 5. The results are shown in Tab. 12.

Table 12: Dataset similarity scores for the datasets ImageNet16-120, Cifar10 and Cifar100 that are
used in NATS-Bench.

ImageNet16-120 Cifar10 Cifar100
ImageNet16-120 1.000000 0.177472 0.311604

Cifar10 0.177472 1.000000 0.510925
Cifar100 0.311604 0.510925 1.000000

The results align with intuitive expectations: CIFAR-10 and CIFAR-100 are closely related, while
ImageNet16-120 is more similar to CIFAR-100 than to CIFAR-10, reflecting the greater diversity of
image classes in CIFAR-100.

Model Retrieval for Unseen Datasets Next, we simulated unseen datasets by excluding one
dataset and retrieving the best models from the remaining similar datasets for the unseen dataset,
whose results are shown in Tab. 13.

Table 13: Comparison between optimal and retrieved models for unseen datasets. The test accuracy
of the retrieved models was compared with the accuracy of the optimal models, with rankings of the
retrieved models shown in parentheses.

ImageNet16-120 Cifar10 Cifar100
Optimal 38.27 89.16 61.18

Retrieved 38.27 (1/15625) 88.96 (6/15625) 60.44 (14/15625)

These results validate that our retrieval method is effective in identifying high-performing models
for unseen datasets in the computer visions domain. This demonstrates the generalization ability
and practical utility of our framework.
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