
Preference Controllable Reinforcement Learning
with Advanced Multi-Objective Optimization

Yucheng Yang 1 Tianyi Zhou 2 Mykola Pechenizkiy 1 Meng Fang 3 1

Abstract

Practical reinforcement learning (RL) usually
requires agents to be optimized for multiple
potentially conflicting criteria, e.g. speed vs.
safety. Although Multi-Objective RL (MORL)
algorithms have been studied in previous works,
their trained agents often cover limited Pareto
optimal solutions and they lack precise control-
lability of the delicate trade-off among multiple
objectives. Hence, the resulting agent is not
versatile in aligning with customized requests
from different users. To bridge the gap, we
develop the “Preference controllable (PC) RL”
framework, which trains a preference-conditioned
meta-policy that takes user preference as input
controlling the generated trajectories within the
preference region on the Pareto frontier. PCRL
is compatible with advanced Multi-Objective
Optimization (MOO) algorithms that are rarely
seen in previous MORL approaches. We also
proposed a novel preference-regularized MOO
algorithm specifically for PCRL. We provide a
comprehensive theoretical analysis to justify its
convergence and preference controllability. We
evaluate PCRL with different MOO algorithms
against state-of-the-art MORL baselines in
various challenging environments with up to six
objectives. In these experiments, our proposed
method exhibits significantly better controllability
than existing approaches and can generate Pareto
solutions with better diversity and utilities.
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1. Introduction
Multi-Objective Reinforcement Learning (MORL) has
attracted growing interests in applications of training
sequential decision-making agents that satisfy multiple
objectives. In practice, optimizing for potentially multiple
criteria often involves managing trade-offs between them.
For example, speed vs. safety or distance vs. energy for
robotic control tasks. Many previous MORL methods (Yang
et al., 2019; Abels et al., 2019; Xu et al., 2020; Lu et al.,
2023; Alegre et al., 2023) tried to address the trade-off issue
by optimizing a linearly scalarized objective, which sums
up multiple objectives with preference weights. However,
the Linear Scalarization (LS) approach’s solutions are
limited to a subset of the Pareto optimal solutions, as shown
in Fig. 1. As a result, LS solutions have limited optimality
and are often not well aligned with the trade-off preferences.
However, the Linear Scalarization (LS) approach restricts
solutions to a subset of the Pareto-optimal solutions, as
illustrated in Fig. 1. Consequently, LS solutions often
exhibit limited optimality and may not align well with
trade-off preferences. More recently, Lu et al. (2023)
sought to enhance LS through reward augmentation, but
this can lead to information loss from the original problem.
Additionally, Basaklar et al. (2023) proposed optimizing
cosine similarity for better preference alignment; however,
their approach lacks a mechanism to resolve conflicts
between similarity gradients and objective gradients.

This motivates us to develop a novel MORL framework,
Preference Control (PC) RL, to train a preference control-
lable agent for user’s preference trade-offs with advanced
Multi-Objective Optimization (MOO) algorithms. By lever-
aging well-established MOO methods (Lin et al., 2019;
Mahapatra & Rajan, 2020), our approach overcomes the
limitations of LS and enables the discovery of preference-
specific solutions along the Pareto front. Moreover, inspired
by how certain MOO methods (Désidéri, 2009; Liu et al.,
2021; Xiao et al., 2023) deal with conflicting gradients and
stochastic gradients, we propose a novel MORL-specific
algorithm PreCo. We also conduct a comprehensive theoret-
ical analysis, demonstrating that in MORL’s noisy gradient
setting, PCRL with PreCo can achieve preference-controlled
Pareto-stationary solutions.
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We conducted experiments in environments with conflicting
objectives (Felten et al., 2023) to empirically demonstrate
that (1) our PCRL scheme is compatible with various MOO
methods; and (2) PCRL with PreCo consistently achieves
superior performance across multiple MORL environments.
In particular, our method excels in cases with a large number
of objectives or conflicting objectives.

2. Preliminaries
Multiple Objective Reinforcement Learning In the
multi-objective RL (MORL) setting, agent needs to optimize
possibly conflicting objectives with their separate reward
function. MORL setting can be modeled as Multi-Objective
Markov Decision Process (MOMDP). Unlike the scalar re-
ward function in conventional MDP, the reward function
in MOMDP is vector-valued. A MOMDP is defined as
M = (S,A, P, r, p0, γ), with state space S and action
space A, dynamics P (st+1|, st, at), initial state distribution
p0(s0), and discount factor γ ∈ [0, 1). The vector-valued
function r : S × A → Rm is a multi-objective reward
function with m objectives. A policy π : S → A is a func-
tion mapping states to actions. The multi-objective value
functions for a policy π are:

qπ(s, a) = Eπ

[ ∞∑
i=0

γir(St+i, At+i)|St = s,At = a

]
(1)

vπ(s) = Eπ

[ ∞∑
i=0

γir(St+i, At+i)|St = s

]
(2)

Let vπ ∈ Rm to be the multi-objective value vector of π
under the initial state distribution p0:

vπ = ES0∼p0
[qπ(S0, π(S0))] (3)

Each entry of vπ is a value for an objective. The Pareto
Front is a set of nondominated multi-objective value
functions F := {vπ | ∄π′ s.t. vπ′ ≻ vπ}, where ≻ is the
relation of Pareto dominance such that vπ′ ≻ vπ means
(∀i,vπ′

i ≥ vπ
i ) ∧ (∃j,vπ′

j > vπ
j ). Intuitively, if vπ1 is

dominated by vπ2 , then there is no objective where π1

performs better so π2 is always a better choice than π1. An
optimal MORL agent should have its value vector on the
Pareto front.

Preference Control Preference quantifies the trade-off
among the multiple objectives. We define the set of pref-
erences P := {p ∈ Rm : pT1 = 1,p ≻ 0}. The desired
policy π for preference p should have the value vπ opti-
mizing a similarity metric Ψ(p,vπ), which can be cosine
similarity or what we define in Definition 4.2. The optimal
vπ should be on the Pareto Front with a maximal similarity
to p. In other words, the ideal vπ for preference p should be

on the Pareto front and closest to the intersection of between
the Pareto front and the ray from the origin to the direction
of p.

(a) Non-convex (b) Non-strict convex (c) Strict convex

Figure 1: The plots show results and limitations of optimizing the
two objectives using LS objective maxπp pTvπp . The blue solid
curve is the Pareto front, the colored dotted rays are the preference
directions of p, and the same colored points are the resulted values
vπp . The Pareto front in the left is non-convex, which could
happen with deterministic policies, the middle is convex but not
strictly convex which often happens with discrete action space, and
the right is strictly convex. We observe an obvious gap between
the preferences and the achieved values in all situations. Linear
scalarization can not always discover all Pareto optimal solutions
and the discovered solutions are not in the intersection between the
preference rays and the Pareto front. This explains why optimizing
a similarity Ψ(p,vπ) is necessary for preference control.

Previous works (Yang et al., 2019; Xu et al., 2020; Ale-
gre et al., 2023) have focused on maximizing a linear
scalarization of objectives pTvπ. However, the solution
to maxπ p

Tvπ or maxθ p
Tvπθ is confined to the convex

region of the Pareto front (Chapter 4.7, Boyd & Vanden-
berghe (2004)), excluding the non-convex regions. Lu
et al. (2023) demonstrated that for stochastic policies, the
Pareto front can be treated as convex. Even so, as shown
in Fig. 1b, the solution of linear scalarization (LS) is re-
stricted to a Convex Coverage Set (CCS) (Roijers et al.,
2013), which is only a subset of the full Pareto front. Fur-
thermore, even when the Pareto front is strictly convex,

Figure 2: Illustration
of hypervolume of three
value vectors v1,v2,v3 for
a two objective optimiza-
tion. Their hypervolume is
the volume of the union set
of their dominated regions
(the green shaded area), re-
flecting their diversity and
coverage.

LS is not guaranteed to align
closely with the direction of p,
as illustrated in Fig. 1c. As
a result, LS often fails to dis-
cover all optimal solutions and
is not well-suited for prefer-
ence alignment.

Instead of learning a policy
πp for each possible p ∈ P ,
our goal is to learn an agent
with a conditional policy
π(a|s,p) that achieves Pareto
optimal values vπ(·|·,p) ∈
argmaxπ′ Ψ(p,vπ′

) for any
p ∈ P . For conciseness, we
denote vπ(·|·,p) as vπp in the
following text. There are
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two requirements for the agent. One is to explore the
Pareto front as much as possible, and the other is to have
a performance trade-off close to the input preference.
These two requirements can be evaluated for two metrics:
Hypervolume(HV) for exploration of Pareto front and
Similarity Ψ(p,vπ) for controllability.

Multi-Objective Optimization Methods Previous Multi-
Objective Optimization (MOO) methods deal with how to
manipulate gradients from multiple objectives so that up-
dating with the manipulated gradient can reach Pareto op-
timality. A typical method MGDA (Désidéri, 2009) can
guarantee to update in a common ascending direction and
stops when the Pareto stationary points are reached. Meth-
ods such as CAgrad (Liu et al., 2021) and SDMGrad (Xiao
et al., 2023) can provide Pareto optimal solutions by linear
scalarization with preference as weights. However, as men-
tioned above, optimizing linearly scalarized objective with
weight p can not guarantee a large similarity Ψ(p,vπ).

Methods such as PMTL (Lin et al., 2019) and EPO (Mahap-
atra & Rajan, 2020) apply similarity constraints to reach the
Pareto front with the desired preference, so they can be used
for preference control purpose. In the next section, we show
how these methods can be used for learning π(a|s,p) and
they will be used as baselines for our proposed new MOO
algorithm.

3. Learning preference controllable agent

Figure 3: PCRL updates the agent based on its performance
and the user preference of objectives.

We propose “Preference control (PC) RL” scheme to incor-
porate MOO algorithms to handle the trade-offs between
multiple conflicting objectives. We train a single agent that
can be conditioned on different performance preferences.
Conditional preference p controls the agent’s emphasis on
different objectives and corresponds to a desired point on
the Pareto front. We denote the policy conditioned on a pref-
erence π(·|·,p) as πp. During training, vπp is estimated for
uniform sampled p ∈ P . Then we can evaluate similarity
Ψ(p,vπp) and obtain an update direction for πp. In PCRL
scheme, the update direction can be obtained using any
methods that can incorporate preference on the objectives,
including LS (optimizing maxπp p

Tvπp), or other MOO
methods with extra optimization or regularization of the
similarity (detailed implementations in Appendix B). We

propose a MOO approach specifically for PCRL while these
existing MOO methods and LS will be tested as baselines.
In the following section, we first introduce how to estimate
the vπp values then explain our proposed update method.
We provide theoretical guarantee of our proposed update
method in the next section.

3.1. Objective Estimation

Preference control aims to achieve the desired trade-off on
conflicting objectives. In the previous RL experiments of
MOO methods like (Yu et al., 2020; Liu et al., 2021; Xiao
et al., 2023), the loss of the value function is used as the
objective for MOO, and equal weight is given to all value
losses to balance the multi-objectives. While this may be
appropriate for RL tasks with minimal conflict, in our setting
for preference control, it is essential to align the objective
with the preference, so the objective to be aligned with the
preference should be vπp itself rather than its approximation
loss. Here, we show how to estimate vπp for mainstream
RL algorithms.

When learning πp with value-based methods like
DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018)
and SAC (Haarnoja et al., 2018), we can estimate vπp by

v̂πp = ES0∼p0 [qθ(S0, πp(S0),p)] (4)

where qθ is multi-objective critic network that outputs a
vector of Q-values, it is also conditioned on the prefernece
p, because p controls the policy π thus controlling the value
qπ .

For policy-based methods such as A3C (Mnih et al., 2016),
PPO (Schulman et al., 2017), they update with a whole
episode so vπp can be estimated by episodic returns.

v̂πp = ES0∼p0

[
T∑

t=0

γtr(St, At)

]
(5)

As a result, our scheme is applicable to both discrete action
space and continuous action space. With the estimated value
vector v̂πp , we can evaluate the similarity Ψ(p, v̂πp).

3.2. Updating Procedure

After estimating objective values and similarity for pref-
erence control, we need to manipulate the gradients from
different objectives and update the agent using the manip-
ulated gradient. Our scheme has the following updating
procedure:

1. Get the Jacobian matrix ∇πp v̂
πp :

Each row of the Jacobian matrix ∇πp v̂
πp is a gradient

for one objective. The gradient can be obtained by
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conventional RL methods, such as the policy gradient
and the deterministic policy gradient. An illustrative
diagram (Fig. 9 in Appendix E) provides intuition and
shows how to estimate ∇πp v̂

πp for different RL algo-
rithms.

2. Get similarity gradient ∇πpΨ(p, v̂πp):
Ψ should effectively measure the similarity between
the preference p and the estimated value v̂πp . While
cosine similarity could be a reasonable choice for quan-
tifying the closeness between the value vector and the
preference, it may conflict with the underlying objec-
tives. To address this, we propose a novel design for the
similarity function, combined with a gradient manip-
ulation approach, that is capable of both reaching the
Pareto front and enabling effective preference control.

3. Manipulate the gradients and find the optimal
update direction d∗ by solving:

w∗ ∈ argmin
w

∥d∥,

d ≜ ∇T
πp
v̂πpw + λ∇πpΨ(p, v̂πp)

(6)

d∗ = ∇T
πp
v̂πpw∗ + λ∇πpΨ(p, v̂πp) (7)

This is a min-norm problem similar to MGDA and
SMGrad, but it adds a similarity gradient to every
objective gradient, making the update not only
ascent in a common improving direction but also
closing the value vπp to the preference p. We call
this update PREference COntrol(PreCo) update.
Intuitively, updating with the solution d∗ converges to
where ∥d∗∥ = 0, indicating no direction possible for
common improvment of all objectives thus satisfying
Pareto stationary. We will prove the convergence of
this gradient under our proposed similarity function.

This is a general update procedure that can employ any
RL algorithm for the calculation of the objective gradients
∇πp v̂

πp . In the third step, the gradient manipulation can
also be performed by not only PreCo but also existing MOO
algorithms. In the experiment, we examine our scheme
with PreCo against the baselines with existing MOOs such
as EPO (Mahapatra & Rajan, 2020) CAGrad (Liu et al.,
2021). Computationally, the min-norm problem in the third
step is solved at the policy level with ∇πp v̂

πp instead of
the parameter level with ∇θv̂

πp . The size for a sample of
∇πp v̂

πp is only m×B for a batch of B transitions, while
∇θv̂

πp of size m×M could have a parameter size M ≫ m.
M can even be billions for large models. For those cases,
solving the min-norm problem at the parameter level could
be memory-inefficient and computationally intractable. A
pseudo-code for the PCRL scheme with PreCo update and
more details on the definitions of policy level gradients and
parameter level gradients can be found in Appendix E.

Algorithm 1 PreCo in the theoretical analysis setting

1: Initialize: Preference p, preference-conditioned policy
πp, and weights w0

2: for t = 0, 1, ..., T − 1 do
3: Rollout and estimate the value to get data ξ, ξ′, ζ
4: wt = ΠW(wt−1−

βt[G(πp,t; ξ)
T (G(πp,t; ξ

′)wt−1 + λtgs(πp; ξ
′))])

5: πp,t+1 = πp,t+
αt (G(πp,t; ζ)wt−1 + λtgs(πp,t; ζ))

6: end for

4. Theoretical Analysis
In this section, we provide the formal definition of our pro-
posed similarity function Ψ(·, ·) and the theoretical analy-
sis for the PreCo update. We will prove that it converges
to Pareto stationary points, and the resulting similarity
Ψ(p,vπp) will also converge to stationary points.

Definition 4.1. We define our similarity function as

Ψ(p,v) = −1

2
∥max

i

vi

pi
p− v∥2. (8)

Intuitively, the similarity gradient ∇vΨ(p,v) encourages to
focus on the less optimal objectives to reach the preference
p. A visualization for Φ(p, ·) can be found in Appendix F.

Deep reinforcement learning is inherently stochastic and sen-
sitive to sample complexity. Therefore, we analyze the con-
vergence rate of the proposed PreCo update in the stochastic
gradient setting. The PreCo algorithm that we analyze in
this case is Algorithm 1, where w is the coefficient defined
in Equation (6) and ΠW means the projection to the set
W := {w ∈ Rm : wT1 = 1,w ≻ 0}. Data ξ, ξ′, ζ are
different noise samples when estimating G(πp) and gs(πp)
gradients, which are defined as:

G(πp) = E[G(πp; ξ)] = ∇T
πp
vπp = E[∇T

πp
v̂πp ], (9)

gs(πp) = E[gs(πp, ξ)]

= G(πp)∇vΨ(p,vπp)

= E [G(πp; ξ)∇vΨ(p, v̂πp)] .

(10)

where the expectation is taken w.r.t. the noise ξ, the ith
column of G(πp; ξ) is the gradient of ith objective and
gs(πp) is the similarity gradient.

Algorithm 1 is only for theoretical analysis; In practice, the
weight w does not need to be updated only once every itera-
tion but can be fully optimized for the min-norm problem (6)
and a more practical Algorithm 2 is provided in Appendix E.

4.1. Convergence Analysis

First, we define what Pareto stationary is:
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Definition 4.2. We define π is an ϵ-accurate Pareto station-
ary policy if E[minw ∥G(πp)w∥] ≤ ϵ, where w is a convex
coefficient.

We assume the continuity and smoothness of the objectives.
Assumption 4.1. For every objective i ∈ [m], vi(πp) is
li-Lipschitz continuous and ∇vi(πp) is li,1-Lipschitz con-
tinuous for any preference conditioned policy πp.

This assumption is quite common in RL setting. By the
“branched returns bound" in (Janner et al., 2019),

|vi(π1)− vi(π2)| ≤ 2rmax,i

(
γϵπ

(1− γ)2
+

ϵπ
1− λ

)
, (11)

where rmax,i = maxs,a ri(s, a) and ϵπ can be any scalar
satisfying ϵπ ≥ maxs DTV (π1(·|s), π2(·|s)). Because

max
s

DTV (π1(·|s), π2(·|s)) ≤ DTV (π1, π2) =
1

2
|π1−π2|,

(12)
we can derive

|vi(π1)−vi(π2)| ≤ rmax,i

(
γ

(1− γ)2
+

1

1− λ

)
|π1−π2|,

(13)
and Li can be rmax,i

(
γ

(1−γ)2 + 1
1−λ

)
. Therefore, the Lips-

chitz continuity of objectives is naturally satisfied for con-
ventional RL settings, and we only need to assume the
gradients are also Lipschitz continuous.

Next, we make an assumption on the bias and variance of
the stochastic gradient gi(π; ξ).
Assumption 4.2. For every objective i ∈ [m], the gradients
gi(πp; ξ) is unbiased estimate of gi(πp), and the variances
is bounded by Eξ[∥gi(πp; ξ)− gi(πp)∥2] ≤ σ2.

We also assume bounded gradient.
Assumption 4.3. There exists a constant Cg such that
∥G(πp)∥ ≤ Cg .

Lemma 4.1. The similarity function Ψ(p, ·) is (1 +

maxi
|p|
|pi| ) -Lipschitz smooth and gs(·) is Lipschitz continu-

ous under Assumption 4.1 and Assumption 4.3.

This lemma shows that our proposed similarity function is
Lipschitz smooth. The detailed proof is in Appendix I.1.
PreCo and SDMgrad (Xiao et al., 2023) both belong to
MGDA-variant methods that solve a min-norm problem for
gradient manipulation. Leveraging the fact that gs(πp) is
a positive linear combination of G(πp) and the Lipschitz
smoothness property, we can therefore build upon their
results to prove that PreCo converges to Pareto stationary
points.
Theorem 4.1. Under the Assumptions 4.1-4.3, setting
αt = Θ(m− 1

2T− 1
2 ), βt = Θ(m−1T− 1

2 ), with a con-
stant λ and Lipschitz smooth similarity function Ψ(p, ·),

we have 1
T

∑T−1
t=0 E[minwt

∥G(πp,t)wt∥] = O(mT− 1
2 ).

To achieve an ϵ-accurate Pareto stationary point, it requires
T = O(m2ϵ−2) updates.

Theorem 4.1 shows PreCo converges to Pareto stationary
points when λ is a constant. This theorem applies to our
proposed similarity function Ψ(p, ·).
Theorem 4.2. Under the Assumptions 4.1-4.3, setting
αt = Θ(m− 1

2T− 1
2 ), βt = Θ(m−1T− 1

2 ), with a Lipshitz
smooth similarity function with g′s(πp,t) being convex com-
bination of gi(πp,t) for all t, there can be an increasing λ =

Θ(log T ) and we have 1
T

∑T−1
t=0 E[minwt

∥G(πp,t)wt∥] =
O(mT− 1

2 log T ).

Theorem 4.2 consider a case requiring similarity gradient
to be a convex combination of objective gradients, of which
its design is discussed in Appendix F.2. In this case λ
can increase without an upper limit and eventually gs will
dominate the min-norm solution of (6). Proofs are in Ap-
pendix I.2.

Remark 4.1. In practice, Theorem 4.1 still applies to cases
where λ increases but with an upper limit. Because after λ
gets close to the limit, it can be considered constant. This
offers theoretical justification for implementing PreCo with
Ψ(p, ·) and an increasing λ.

Remark 4.2. The Pareto front is convex (but not necessar-
ily strictly convex) for MORL (Lu et al., 2023), so local
Pareto stationarity (Definition 4.2) is equivalent to Pareto
optimality.

4.2. Controllability Analysis

Controllability in our setting is the similarity between the
desired preference p and the value vπp of the preference-
conditioned policy πp. It is measured by Ψ(p,vπp). We
provide the following results to show how vπp will converge
to the point close to the p direction.

Theorem 4.3. Under the Assumptions 4.1-4.3, setting αt =
Θ(m− 1

2T− 1
2 ), βt = Θ(m−1T− 1

2 ), with a constant λ and
Lipschitz smooth similarity function like Ψ(p, ·), we have
1
T

∑T−1
t=0 E[∥gs(πp)∥]−

2C2
g

λ2 = O(mT− 1
2 ).

Theorem 4.3 provides an intuitive result, that with
constant λ, the norms of the similarity gradient
1
T

∑T−1
t=0 E[∥gs(πp)∥] will converge and be bounded. The

larger λ, the lower the bound
2C2

g

λ2 , and the closer the solution
will reach the stationary points for maximizing similairty.

Theorem 4.4. Under the Assumptions 4.1-4.3, setting
αt = Θ(m− 1

2T− 1
2 ), βt = Θ(m−1T− 1

2 ), with a constant
λ and Lipschitz smooth similarity function like Ψ(p, ·),
there can be an increasing λ = Θ(T

1
2 ) and we have

1
T

∑T−1
t=0 E[∥gs(πp)∥] = O(mT− 1

2 log T ).
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Theorem 4.4 shows PreCO with increasing λ will converge
to the stationary points for the similarity objective. The
proofs of the theorems are in Appendix I.3.
Remark 4.3. Similar to Theorem 4.1, Theorem 4.3 applies
to practical implementations where λ increases but with an
upper limit.

Remark 4.4. The converged stationary points do not guar-
antee to have always high similarity metrics. For ex-
ample, when using Ψ(p, ·), our results show gs(πp) =
G(πp)∇vΨ(p,vπp) converges to 0. However, the
value vπp coincide with the preference p only when
∥∇vΨ(p,vπp)∥ = 0. ∥gs(πp)∥ can also be 0 when
∥∇vΨ(p,vπp)∥ > 0, with G(πp) and ∇vΨ(p,vπp) be-
ing orthogonal or G(πp) = 0. These situations means the
points desired by the preference might not exist on the Pareto
front. We discuss in practice how to deal with unreachable
regions of Pareto front in Appendix H.

The theoretical results show that PreCo can discover not
only Pareto stationary solutions but also preference-specific
solutions. Using a 2-objective MOO example with noisy
gradients in Appendix G, we highlight PreCo’s ability to
find preference-specific solutions in the context of stochastic
and conflicting multi-objective problems.

5. Experiments
Beyond the toy example MOO problem in Appendix G,
which illustrates the theoretical advantages of PreCo, we
conduct experiments in MORL environments to empirically
demonstrate the practical effectiveness of PCRL with PreCo.

Benchmarking Environments Common continuous con-
trol environments like MO-Hopper and MO-Ant (Felten
et al., 2023) feature higher-dimensional spaces but symmet-
ric objectives (e.g., moving north and east), resulting in
strictly convex Pareto fronts. In such cases, low-level RL
implementations (e.g., HER (Andrychowicz et al., 2017),
curriculum design (Alegre et al., 2023)) that improve sample
efficiency are more critical than algorithm design. To isolate
the effects of different multi-objective methods from imple-
mentation details, we focus on empirical analyses in environ-
ments with discrete action spaces, more objectives, and non-
strictly convex Pareto fronts, such as Fruit-Tree and MO-
Reacher. Results for MO-Hopper and MO-Ant are in Ap-
pendix C, where we also demonstrate that PreCo is compat-
ible with these low-level implementation improvements.

Fruit-Tree: A discrete environment with up to a 6-
dimensional reward, presenting significant challenges due
to its six objectives and a non-strictly convex Pareto front.
LS-based methods can only find limited Pareto solutions.

MO-Reacher: A robotic control environment with a con-
tinuous state space and a discrete action space. The four

objectives are highly conflicting.

Evaluation metrics We evaluated the results using two
metrics: hyperVolume(HV) for Pareto front exploration
and Cosine Similarity(CS) for controllability evaluation.
They are measured in test time with preference samples
unseen in training (Appendix D). We report the mean and
standard deviation results of 5 seeds.

Baselines We compare PreCo with existing MOO gradient
manipulation methods in the PCRL scheme and existing
MORL algorithms.

Linear Scalarization (LS): It optimizes maxπp p
T v̂πp . Ex-

isting MORL methods such as Yang et al. (2019); Xu et al.
(2020); Alegre et al. (2023) all optimize the LS objective
with implementation-level modifications.

MOO algorithms: Such as EPO (Mahapatra & Rajan, 2020),
CAGrad (Liu et al., 2021), SDMgrad (Xiao et al., 2023).
They can find a common ascending direction to handle
conflicting gradients.

SOTA MORL methods: State-Of-The-Art (SOTA) MORL
methods such as CAPQL (CAP) (Lu et al., 2023) and
PDMORL (PDM) (Basaklar et al., 2023). They try to ad-
dress the limitations of the LS-based MORL.

More details about the baselines and their implementations
can be found in Appendix B and Table 3.

5.1. Fruit Tree

We evaluate our method against MOO baselines in set-
tings with reward dimensions ranging from 3 to 6. The
HV and CS results, presented in Table 1, demonstrate our
proposed PreCo outperforms the baselines, particularly in
higher-dimensional reward scenarios. The results in Table 2
highlight the significant advantage of our PCRL scheme
with EPO/PreCo (ours) over SOTA MORL methods.

This environment exemplifies a scenario where LS meth-
ods learn only limited solutions for a non-strictly convex
Pareto front. As shown in Fig. 4, in the 3-D reward setting,
PCRL with PreCo successfully discovers the blue points
representing all Pareto solutions. In contrast, the LS agent
learns only a single constant vπp at the red point (a CCS
solution), regardless of the preference input. This occurs
because the red point optimizes the LS objective pT v̂πp

for most p (shown as red rays). The singular learned value
reveals that the LS agent is uncontrollable by p, despite
being conditioned on it.

In the 6-D setting, our implemented LS baseline demon-
strates performance identical to another SOTA MORL al-
gorithm, GPI-LS/PD (Alegre et al., 2023). This observa-
tion highlights that LS-based methods inherently face an
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Method 3D 4D 5D 6D

LS 0.12 ± 0.01 | 0.78 ± 0.03 0.33 ± 0.13 | 0.76 ± 0.05 1.59 ± 0.29 | 0.74 ± 0.01 5.74 ± 0.88 | 0.72 ± 0.01
SDMgrad 0.14 ± 0.01 | 0.78 ± 0.03 0.66 ± 0.02 | 0.72 ± 0.00 2.74 ± 0.09 | 0.66 ± 0.01 13.30 ± 0.15 | 0.72 ± 0.01

EPO 0.15 ± 0.01 | 0.84 ± 0.02 1.04 ± 0.05 | 0.89 ± 0.02 3.98 ± 0.48 | 0.86 ± 0.03 14.97 ± 2.29 | 0.77 ± 0.03
CAGrad 0.14 ± 0.02 | 0.78 ± 0.02 0.30 ± 0.06 | 0.87 ± 0.01 1.23 ± 0.14 | 0.69 ± 0.01 4.93 ± 0.81 | 0.60 ± 0.09
PreCo(Ours) 0.15 ± 0.01 | 0.84 ± 0.02 1.09 ± 0.02 | 0.91 ± 0.01 4.33 ± 0.21 | 0.87 ± 0.01 15.61 ± 0.75 | 0.78 ± 0.03

Table 1: “HV|CS” (higher is better for both) in fruit-tree environment with HV in the scale of 103. Our method consistently
achieves the best optimality (HV) and controllability (CS) from 3-6 objectives.

(a) Protein-Carbs-Fats (b) Protein-Carbs

(c) Protein-Fats (d) Carbs-Fats

Figure 4: (a) shows the 3-D values vπp achieved under
difference preference input p. Blue points are vπp of PreCo
while LS only learns the red point for some runs. The red
point is the optimal LS solution for the preference directions
represented by the red rays. (b) shows the Protein-Carbs
view, (c) shows the Protein-Fats view, and (d) shows the
Protein-fats view.

upper limit when applied to non-strictly convex problems,
regardless of lower-level modifications or enhancements.
PDMORL explicitly optimizes for cosine similarity, which
may introduce conflicts with other objectives. This could
explain why PDMORL achieves high CS but fails to deliver
competitive HV results..

5.2. MO-Reacher

The MO-Reacher presents a challenging environment with
4-dimensional rewards, requiring the agent to reach four
targets illustrated in Fig. 5a. Fig. 5 shows the quantitative
results of HV and CS and Fig. 6 shows the state coverage of
robotic arm tip positions.

The primary difficulty of this environment lies in the fact that
the four objectives are often highly conflicting—moving to-

Method HV CS

LS/GPI-LS 5.74 ± 0.88 0.72 ± 0.01
CAPQL (entropy coef = 0.01) 5.95 ± 1.12 0.72 ± 0.02
PDMORL (with HER) 9.30 ± 0.08 0.89 ± 0.05
EPO 14.97 ± 2.29 0.77 ± 0.03
PreCo (Ours) 15.61 ± 0.75 0.78 ± 0.03

Table 2: PCRL with advanced MOO algorithms such as
EPO and our proposed PreCo outperforms SOTA MORL
methods in Fruit-tree environment.

ward one target typically increases the distance from others.
Therefore, the LS gradient, ∇T

πp
v̂πpp, associated with dif-

ferent preferences p, can exhibit significant conflicts. More-
over, a local optimum for the LS objective maxπp pv̂

πp may
simply involve the agent staying near the origin—a position
that is "equidistant" from all four goals but fails to fully
achieve any of them. As shown in Fig. 6a, unsurprisingly,
LS and SDMgrad that optimize maxπp p

T v̂πp learned only
the ’equidistant’ local optimum. Moreover, when prefer-
ences p are sampled uniformly, the gradients can exhibit
significant variance. This explains why CAGrad also fails
to learn meaningful results, as demonstrated in Appendix G
and discussed in (Xiao et al., 2023), where it is shown that
CAGrad struggles with stochastic gradients. Consequently,
these methods learn only limited solutions that cannot be
effectively controlled by the preference parameter p.

As for existing MORL methods, while both CAPQL and
PDMORL address some limitations of LS, they have no-
table shortcomings. CAPQL relies on reward augmentation,
which may lead to suboptimal behavior due to the informa-
tion loss of the original objectives. Like PCRL with EPO
or PreCo, PDMORL optimizes for similarity but directly
adds cosine similarity to the original objectives. However,
the gradients of cosine similarity and the original objec-
tives can conflict, as it does not leverage conflict-avoidance
techniques from MOO algorithms, thereby failing to deliver
competitive results in this environment.

Fig. 6b shows the state coverage of PreCo and EPO con-
trolled by 4 different p. From left to right they are

[0, 1, 0, 0], [0, 0.67, 0.33, 0], [0, 0.33, 0.67, 0], [0, 0, 1, 0].

The preference [0, 1, 0, 0] means full focus on closing to
the top target, while [0, 0, 1, 0] full focus on the left target.
The first row is EPO and the second is PreCo. Their state
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(a) MO-Reacher (b) Hypervolume (c) Cosine Similarity

Figure 5: HV and CS of MO-Reacher. The dotted line is the
performance of a randomly initialized agent as a reference.

(a) State coverage of Random, LS, SDMgrad, and CAGrad (left
to right). Each state coverage heatmap is the same for different
preference p.

(b) State coverage heatmaps of EPO (top row) and PreCo (bottom
row) under four different preferences p (columns). It shows that
they produce preference-specific policies given different p.

Figure 6: State coverage heatmaps for the positional states of the
tip of the robotic arm. Red for higher density of coverage and blue
for lower. EPO and PreCo exhibit different state coverage con-
trolled by different p, while random, LS, SDMgrad, and CAGrad
show the same state coverage for different preferences.

coverage can be smoothly controlled from more density
to the top to more density to the left. This accords with
their higher results in CS. More experiments in higher di-
mensional continuous control environments can be found
in Appendix C. Our PCRL scheme with advanced MOO al-
gorithms is shown to have competitive performance against
existing MORL methods. Especially when incorporated
with our proposed PreCo algorithm, it consistently outper-
forms existing methods across all environments.

6. Related Works
Existing MORL methods that learn a similar preference-
conditioned policy include (Abels et al., 2019; Chen et al.,
2019; Lu et al., 2023; Basaklar et al., 2023), of which (Abels
et al., 2019; Lu et al., 2023) are LS methods and they care
more about discovering all Pareto optimal policies rather
than the similarity between the weight input and the resulted
value. Chen et al. (2019) employs a setting most similar
to our PCRL since they optimize a Tchebycheff Scalar-
ized (TS) (Ehrgott, 2005) objective for solutions aligned

with the preference directions. However, Xu et al. (2020)
reported the TS aproach has suboptimal performance in
practice, due to the oscillation and stagnation issues, as
noted by Mahapatra & Rajan (2021). In particular, for
MORL, which is sensitive to stochasticity and conflicting
gradients, the convergence of TS can be problematic. Our
baseline implementation of EPO with a small constraint
threshold can be considered as a version of TS tailored to
the MORL setting, designed to mitigate oscillation when
near preference direction. PDMORL (Basaklar et al., 2023)
incorporates cosine similarity for preference alignment but
it is designed specifically for off-policy value-based RL and
its performance relies heavily on the HER (Andrychow-
icz et al., 2017) technique since it often fails without HER
as explained by "underrepresentation" in (Basaklar et al.,
2023). Another potential reason could be gradient conflicts
between the cosine similarity optimization and the original
objectives. CAPQL (Lu et al., 2023) addressed LS limita-
tions by adding a concave augmentation term to the reward,
transforming the original Pareto front into a strictly convex
one. However, this introduces information loss, making the
approach sensitive to the augmentation term’s magnitude.

To our best knowledge, PCRL is the first preference-
conditioned MORL framework to integrate recent advances
in Multi-Objective Optimization (MOO). Among the MOO
algorithms, PMTL and EPO (Lin et al., 2019; Mahapatra
& Rajan, 2020) can be viewed as enhanced versions of
TS for preference-specific optimization. CAGrad and
SDMGrad (Liu et al., 2021; Xiao et al., 2023) originally
optimize only for the average objective, but they can handle
conflicting gradients. MGDA and SDMgrad (Désidéri,
2009; Xiao et al., 2023) also address a min-norm problem
like (6) for gradient manipulation. However, a significant
advantage of our PreCo is that it not only identifies a
common ascending direction but also discovers preference-
specific solutions. Our theoretical analysis of PreCo builds
on some lemmas from Xiao et al. (2023), but incorporating
the similarity gradient from Ψ is a novel contribution, which
complicates the proof. A more detailed discussion of a
broader range of related works can be found in Appendix A.

7. Conclusion
We propose PCRL for preference control in multi-objective
trade-offs, integrating recent MOO algorithms into MORL.
We also introduce PreCo, a novel MOO approach, with
a convergence analysis supporting its ability to learn
preference-specific Pareto-optimal solutions and handle
stochastic gradients. Experiments across multiple RL
environments show that PCRL with PreCo consistently
outperforms baselines, demonstrating its effectiveness in
learning preference-controllable agents. Future work could
enhance the efficiency through curriculum learning.
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A. Related Works
A.1. Meta-policies

Existing MORL methods that learn a similar meta-policy conditioned on a weight or preference include (Abels et al., 2019;
Chen et al., 2019; Lu et al., 2023), of which (Abels et al., 2019; Lu et al., 2023) are LS methods and they care more about
discovering all Pareto optimal policies rather than the similarity between the weight input and the resulted value. (Chen
et al., 2019) employs a setting most similar to our PCRL since they optimize a Tchebycheff Scalarized (TS) (Ehrgott, 2005)
objective for solutions aligned with the preference directions. However, (Xu et al., 2020) reported that (Chen et al., 2019) has
suboptimal performance in practice. This might be due to the oscillation and stagnation issue inherent in the TS approach, as
noted by (Mahapatra & Rajan, 2021). In particular, for MORL, which is sensitive to stochasticity and conflicting gradients,
the convergence of TS can be problematic. Our baseline implementation of EPO with a small constraint threshold can
be considered as a version of TS tailored to the MORL setting, designed to mitigate oscillation when near preference
direction.More recent MORL algorithm (Basaklar et al., 2023) incorporates cosine similarity for preference alignment but it
is designed specifically for off-policy value-based RL and its performance relies heavily on the HER (Andrychowicz et al.,
2017) technique. In contrast, our PCRL with PreCo is a broader MORL framework compatible with both on-policy and
off-policy RL, capable of learning quality policies without HER. Nonetheless, HER can still be integrated into PCRL with
PreCo in off-policy settings to enhance sample efficiency. While not targeting exact preference alignment, (Lu et al., 2023)
addressed LS limitations by adding a concave augmentation term to the reward, transforming the original Pareto front into a
strictly convex one. However, this introduces information loss, making the approach sensitive to the augmentation term’s
magnitude. Their implementation is limited to SAC, using policy entropy as the augmentation term. Compared to (Lu et al.,
2023), our method possesses the theoretical advantages of no information loss and exact preference alignment, which can be
empirically demonstrated by our additional experiment in Appendix B.3. Because of the memory-efficient design of our
PCRL with PreCo, they are also suitable for multi-objective fintuning of Large language models, like Nguyen et al. (2024);
Yang et al. (2024a).

Other RL paradigms employing meta-policies include Goal-Conditioned RL (GCRL) (Sekar et al., 2020; Yang et al., 2022;
Liu et al., 2022) and skill-based RL (SBRL) (Nam et al., 2022; Lee et al., 2019). GCRL is controlled by an additional input
of a target state that it aims to reach. SBRL is conditioned by a skill latent z that often has a lower dimension than the state for
a specific primitive skill. Similar to SBRL, the skill learning methods of Unsupervised Reinforcement Learning (Eysenbach
et al., 2019; Hansen et al., 2020) learns skills without external task rewards by optimizing a Mutual Information Skill
Learning (MISL) (Eysenbach et al., 2022; Yang et al., 2024b) objective I(s; z) = H(s) −H(s|z). Maximizing I(s; z)
encourages the state space coverage to be high and the state distribution to be certain when controlled by a skill z. The
concept of Preference Control (PC) has a resemblance to optimizing I(s; z) = H(s) − H(s|z). The purpose of PCRL
can also be interpreted as optimizing I(v;p) = H(v)−H(v|p) to encourage diverse values on the Pareto front and the
distribution of the values needs to be controlled by preference p.

A.2. Multi-objective optimization

We have already introduced PMTL and EPO (Lin et al., 2019; Mahapatra & Rajan, 2020) that could find preference-specific
solutions and CAGrad, SDMGrad (Liu et al., 2021; Xiao et al., 2023) that optimize for the average objective but can deal
with conflicting gradients. (Désidéri, 2009; Xiao et al., 2023) has the most similarity to our proposed PreCo because they
all solve a min norm problem like 6 for gradient manipulation. The advantage of our PreCo is not only like SDMGrad,
which can provably deal with stochastic gradients, but also can follow a preference like EPO. Our theoretical analysis of
PreCo is based on some results from (Xiao et al., 2023), but incorporating the similarity gradient from Ψ makes it more
complicated and novel. Li et al. (2025) is a method large objective numbers, which could also inspire future MORL design
for simultaneously achieving a large number of tasks.

A.3. Training schemes

We uniformly sample p for every episode during training. Techniques from curriculum reinforcement learning (Narvekar
et al., 2020; Portelas et al., 2020) can also potentially improve the training of PCRL by using a progressing p preference
distribution instead of uniform p ∈ P .
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Baselines LS obj Similarity obj Conflict-avoidance Characteristic

LS ✓ Yang et al. (2019); Xu et al. (2020); Alegre et al. (2023) are LS with implementation-level modifications
SDMgrad ✓ ✓ It is used as an ablation for PreCo with LS regularization instead of similarity regularization.
CAPQL Its reward augmentation can cause information loss of the original problem
PDMORL ✓ It directly adds cosine similarity in the objectives without considering potential gradient conflict
EPO ✓ ✓ Similar to Tchebycheff Scalarization (TS), but it addresses the oscillation issue of TS.
CAGrad ✓ ✓ Only convergence guarantee with average gradient regularization, but we implemented it with similarity
PreCo ✓ ✓ Our proposed algorithm specifically for preference controllable MORL with similarity

Table 3: PCRL with advanced MOO algorithms outperforms SOTA MORL methods in Fruit-tree environment. PDMORL
results are means reported in Basaklar et al. (2023).

B. Implementation of baseline methods
We modify existing MOO algorithms EPO (Mahapatra & Rajan, 2020), CAGrad (Liu et al., 2021), and SDMGrad (Xiao
et al., 2023) for our proposed PCRL scheme and use them as baselines for our proposed PreCo algorithm. In this section, we
explain how these existing baseline MOO algorithms work. Appendix E offers more details for pratical implementation.

B.1. Linear scalarization preference control

Linear Scalarization (LS) For a preference p conditioned policy πp, it is updated by d = ∇v̂πp . Equivalently, it can be
d = pT∇v̂πp , which means to linearly combine the objective gradients with a coefficient equal to the preference p.

SDMGrad Similar to PreCo that needs to solve the min-norm problem (6) for update direction, Our implementation of
SDMGrad solves:

min
w

∥∇T
πp
v̂πpw + λpT∇πp v̂

πp∥ (14)

d = ∇T
πp
v̂πpw∗ + λ∇πp v̂

πp , (15)

where w∗ is the solution for problem (14). The update direction is for πp is d. We can see that this SDMGrad implementation
and our proposed PreCo differ only in the term multiplied by λ. SDMGrad uses LS gradient for preference alignment while
PreCo uses gradient of our proposed similarity function Ψ. This is why SDMGrad can be used as a case for ablation study
of our method.

B.2. Similarity preference control

Exact Pareto Optimal (EPO) MOO methods such as PMTL (Lin et al., 2019) and EPO (Mahapatra & Rajan, 2020) apply
similarity constraints and have two modes for situations of low and high similarity. Based on this idea, we implement the
EPO baseline as: When similarity is low, only similarity gradients ∇πpΨ(w, v̂πp) will be used for update. When similarity
is high enough, a common ascent direction calculated by MGDA (Désidéri, 2009) is used for update.

d = ∇πpΨ(w, v̂πp), if Ψ′(w, v̂πp) > ϵ, (16)

d = ∇T
πp
v̂πp argmin

w
∥∇T

πp
v̂πpw∥, if Ψ′(w, v̂πp) ≤ ϵ, (17)

where ϵ is a threshold of similarity and Ψ′ can be cosine similarity or our proposed Ψ. Equation (17) is the min-norm update
from (Désidéri, 2009), which is equivalent to finding a common ascent direction that maximizes the least improvement
among the objectives:

d = argmax
d

min
i

∇T
πp
v̂
πp

i d (18)

Because most of the time during training, similarity is not high enough and only similarity gradients are applied in updates,
this implementation of EPO can also be seen as an implementation of a relaxed Tchebycheff Scalarization, which avoids
gradient oscillation as claimed in (Mahapatra & Rajan, 2020).

Conflict-Averse Gradient (CAGrad) CAGrad (Liu et al., 2021) tries to find a common ascent direction that is not too far
from the average gradient. In our setting, we modify it to be a common ascent direction not is not too far from the similarity

14



Preference Controllable RL with Advanced Multi-Objective Optimization

gradient.

d = argmax
d

min
i

∇T
πp
v̂
πp

i d s.t. ∥d−∇πpΨ(w, v̂πp)∥ ≤ c∇πpΨ(w, v̂πp), (19)

where c ∈ {r ∈ R | 0 < r < 1} is a constraint constant to keep d close to the similarity gradient ∇πpΨ(w, v̂πp). This
implementation might not apply to the convergence analysis in (Liu et al., 2021). However, as shown by the empirical
results, it works in practice for our PCRL scheme.

B.3. Implementation of SOTA MORL methods

Implementation of CAPQL (Lu et al., 2023) has tried to address LS limitations by adding a concave augmentation term
to the reward, transforming the original Pareto front into a strictly convex one. Then for this "more convex" new problem,
LS can find more optimal solutions. Their implementation only included SAC (Haarnoja et al., 2018), as the entropy
maximization in SAC serves as the reward augmentation. To ensure a fair comparison independent of settings, code-level
implementations, and algorithmic techniques (such as HER (Andrychowicz et al., 2017)), we modified our original LS with
PPO into a "maximum entropy PPO". The modified multi-objective advantages are:

Â(s, a) = R+ E − v̂(s,p) (20)

where R represents the vector of multi-objective episodic returns, E denotes the sum of future policy entropies in the
sampled episode, and v̂(s,p) is the multi-objective vector value conditioned on preference p, approximating both expected
returns and entropies:

min
v̂

E
[
||R+ E − v̂(s,p)||2

]
(21)

With these modifications, our modified "maximum entropy multi-objective PPO" with Linear Scalarization(LS) is optimizing
the concave augumented objective in Eq.(10) from Lu et al. (2023).

To showcase the advantage of our PCRL (Ours) framework with similarity-based methods EPO and PreCo (ours), we test in
the ’simple but hard’ fruit-tree environment. It is simple for RL due to small discrete state and action spaces but challenging
for MORL with 6 objectives and a non-strictly convex Pareto front. This comparison isolates MORL performance from
lower-level RL factors, directly highlighting our method’s strengths.

α/Method Hyper volume(1e3) Cosine Similarity

0 (LS) 5.74± 0.88 0.718± 0.040
0.01 5.95± 1.12 0.722± 0.006
0.05 5.18± 0.36 0.718± 0.040
0.10 1.75± 1.35 0.633± 0.141
EPO 14.97± 2.29 0.77± 0.03

PreCo(ours) 15.61± 0.75 0.78± 0.03

Table 4: HV and CS performance in 6D Fruit-tree environment, the HV value has a unit of 1e3. The comparison is between
PCRL (Ours) framework with similarity-based methods such as EPO and PreCo (Ours) and LS with different strength of
concave augmentation from (Lu et al., 2023)

The results in Table 4 show when the augmentation strength α = 0.01, the performance of CAPQL-modified PPO is
marginally better than the original LS (α = 0), but still significantly worse than similarity-based methods (EPO, PreCo(ours)).
Larger α values lead to performance drops. This result aligns with Remark 5 and Figure 9 in (Lu et al., 2023), which
highlights that such augmentation can cause information loss in the original problem, and excessive augmentation results in
performance degradation. In contrast, our method has the theoretical advantage of overcoming the LS limitation without any
reward augmentation, thus avoiding information loss from the original problem.

Implementation of PDMORL (Basaklar et al., 2023) We implement PDMORL using its official GitHub codebase.

Unfortunately, we encountered several issues with their implementation. It is computationally inefficient, requiring 14 hours
to complete training in the Fruit-Tree environment and over 70 hours for MO-Hopper, even when using an NVIDIA A100
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GPU and 72 CPU cores. In contrast, our PCRL implementation completes training in just 20 minutes for Fruit-Tree and 4
hours for MO-Hopper.

Additionally, while we successfully reproduced the Fruit-Tree results reported in their paper, we were unable to reproduce
the MO-Hopper results. The training appears to fail due to the "underrepresentation" problem mentioned in their paper. This
aligns with the intuition that directly adding cosine similarity to the original objectives, as done in PDMORL, can introduce
gradient conflicts, especially since it lacks conflict-avoidance mechanisms commonly used in MOO algorithms.

Due to these computational inefficiencies and reproducibility issues, we are unable to compare PDMORL for MO-Hopper
and MO-Ant.

C. Additional Experimental results
In this section, we present experimental results in high-dimensional continuous environments and demonstrate the compati-
bility of our method with low-level sample efficiency modifications.

C.1. Continuous Environments

As discussed in Section 5, typical robotic control MORL environments, such as MO-Hopper and MO-Ant, present challenges
for sample-efficient RL but often feature simple and strictly convex Pareto fronts. As a result, these environments fail to
fully reveal the limitations of common LS-based MORL methods. Consequently, the advantages of our PCRL and PreCo
are less pronounced in these settings.

To provide a more comprehensive evaluation, we introduce an additional metric—Overall Non-dominated Ratio (ONR)—to
demonstrate that, while our method may not show a clear advantage in terms of HV and CS, it still outperforms existing
approaches in ONR.

In our setting, the ONR of one method is defined as:

ONR =
the number of this method’s samples that are non-dominated by all samples of all methods

total sample number of this method
(22)

We attempted to implement PDMORL using its official GitHub codebase but encountered reproducibility issues and
computational inefficiencies mentioned in Appendix B.3. As a result, we were unable to compare PDMORL in the
continuous control environments.

C.1.1. MO-HOPPER

The MO-Hopper is a classic continuous robotic control environment, with one objective rewards for going forward in the
x-axis, and the other rewards for jumping high in the z-axis as shown in Fig. 7a. The two objectives are less symmetric
than MO-Ant and there is a clear trade-off in directions. The HV and CS results are shown in Fig. 7. LS and CAPQL have

(a) MO-Hopper (b) Pareto Front (c) Hypervolume (d) Cosine Similarity (e) Overall Non-dominated Ratio

Figure 7: Optimality (HV) and Controllability (CS) of MO-Hopper.
.

relatively much better performance for MO-Hopper than Fruit-Tree and MO-Reacher. This is because the Pareto front of
MO-Hopper is a simple 2-D front that is already strictly convex, adding a concave term will not cause an unacceptable
information loss of the original problem. Our method demonstrated superior performance in HV, while its CS was only
slightly lower than that of CAPQL. CAPQL adds a concave term to the reward to make the augmented Pareto more strictly
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convex, resulting in better CS but the augmentation caused information loss of the original problem, thus causing suboptimal
HV and ONR. Unlike EPO, which employs hard constraints on similarity, our proposed PreCo utilizes soft constraints. This
could be the reason why PreCo can sacrifice a small degree of controllability for a significant enhancement in optimality.
The hopper has to be able to jump before jumping forward, this is why objective 2 is higher than objective 1 for most
methods. As a result, the asymmetric objectives make the discovered Pareto front not as symmetric as that of MO-Ant. We
have a calibration approach to further improve controllability in Appendix H.

C.1.2. MO-ANT

The MO-Ant is a higher dimensional continuous control environment challenging for RL but not necessarily hard for MORL.
The reward is 2-dimensional, with one for x-velocity and one for y-velocity. Although the robotic agent has more complex
dynamics, the objectives appear to be very similar since both involve the movement of the agent, making it relatively easy
for preference control. As shown in Fig. 8, the Pareto front has an intuitive convex shape. The similarity approaches such as
PreCo and EPO have high CS metrics over 0.98. This indicates that our proposed PCRL scheme with similarity optimization
is scalable for higher dimensional environments and has better preference controllability than LS methods such as LS and
SDMgrad. They also have much better ONRs.

(a) MO-Ant (b) Pareto Front (c) Hypervolume (d) Cosine Similarity (e) Overall Non-dominated Ratio

Figure 8: Optimality (HV) and Controllability (CS) of MO-Ant. PreCo (ours) achieves the best CS. Though being the
second best on HV, it achieves the widest spread on the Pareto front in (d). In (b)-(c), methods of blue bars are based on
linear scalarization, while methods of orange bars optimize the similarity.

.
The relative performance of CAPQL drops from lower dimensional Hopper to higher dimensional Ant. The potential
reason could be that it requires learning an actor outputting not only the means but also the log standard deviations of the
action distributions, which is equivalent to learning with an action space of double the original size. As a result, it could
be less sample efficient than other methods that do not need to learn variance or standard deviation, especially for the
high dimensional Ant environment. In contrast, LS has competitive HV and CS in this environment. One reason is that
the symmetric and strictly convex Pareto front does not expose the limitations of LS, and another reason could be that its
simplicity does not complicate the learning of lower-level robotic control.

C.2. Compatiblity with lower-level modifications

Mainstream MORL methods have focused on optimizing the LS objective, often incorporating different low-level modifica-
tions to improve sample efficiency. As summarized in Table 5, Q-envelope (Yang et al., 2019) uses HER (Andrychowicz
et al., 2017), Q-pensive (Hung et al., 2023) combines Q-buffer and HER.

Table 5: Summary of methods and their low-level modifications

Method Modifications

Q-envelope HER
Q-pensive Q-buffer, HER

Intuitively, HER allows reusing experiences from one preference for others, while Q-buffer maintains Q-value snapshots
that optimistically estimate values to leverage this stored information. Since Q-pensieve essentially combines Q-envelope
with Q-buffer, we compare the performance of our PreCo with HER and Q-buffer against Q-pensieve. The results are shown
in Table 6.
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Table 6: Comparison of Q-Pensieve and PreCo (ours) on Fruit-Tree and MO-Reacher environments.

Environment Metric Q-Pensieve PreCo (Ours)

Fruit-Tree HV 6.86± 0.01 15.61± 0.75
CS 0.72± 0.01 0.78± 0.03

MO-Reacher HV 47.36± 0.73 49.55± 0.74
CS 0.89± 0.02 0.91± 0.02

Our PreCo with HER and Q-buffer consistently outperforms Q-Pensieve, the state-of-the-art LS method, across environments
and metrics, achieving higher HV and CS scores.

In non-strictly convex environments such as Fruit-Tree, the advantage is particularly pronounced, as Q-Pensieve’s reliance
on the LS objective limits its ability to discover a broad set of optimal policies. In contrast, in strictly convex settings like
Reacher, the performance gap narrows, as expected.

These results further underscore PreCo’s superiority over LS-based methods and demonstrate its compatibility with low-level
sample efficiency enhancements.

D. Experimental details
The test preferences are p ∈ P with a resolution of 0.1 for each dimension.

For instance, in 3-D cases, these preferences include

[0, 0, 1], [0, 0.1, 0.9], . . . , [0, 1, 0], [0.1, 0, 0.9], . . . , [0.9, 0.1, 0], [1, 0, 0],

with a quantity of 66. There are 286 test preferences for 4-D, 1001 for 5-D, and 3003 for 6-D.

During training, the preferences were sampled uniformly from the convex coefficient set P , making the probability of
sampling an exact test preference nearly zero. Therefore, high CS metric in test time means the ability to generalize to
unseen preferences.

We run 5 seeds for each environment setting, and for each run, we select the best-performing agent as a candidate for testing.
The results are presented as the mean and standard deviation of the 5 candidates.

D.1. MO-Ant

The exact data for bar charts in Fig. 8 is shown in Table 7.

LS SDMgrad CAPQL EPO CAGrad PreCO

HV(∗1e6) 6.81± 0.24 3.67± 1.76 1.53± 0.22 6.75± 0.08 6.79± 0.20 6.85± 0.21
CS 0.988± 0.012 0.937± 0.014 0.976± 0.008 0.989± 0.004 0.988± 0.0004 0.990± 0.004

Table 7: HV and CS performance in MO-Ant environment, the HV value has a unit of 1e6.

For MO-Ant, both SDMgrad and PreCo have λ that increase linearly with each update from 1 to 5. EPO has a constraint
threshold of ϵ = 3e− 4 for cosine similarity Ψ′, which is very small, making it comparable to Tchebycheff Scalarization
and also similar to PreCo with a large constant λt = λ >> 1. CAgrad has constraint c = 0.2. The definitions of c and ϵ can
be found in Appendix B.

D.2. MO-Hopper

The exact data for bar charts in Fig. 7 is shown in Table 9.

For MO-Hopper, both SDMgrad and PreCo have λ increasing linearly with every update from 3 to 11. EPO has a constraint
threshold of ϵ = 3e− 4 for cosine similarity Ψ′. CAgrad has constraint c = 0.1.
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Table 8: Hyper-parameters settings MO-Ant.

Hyper-parameter Value

Discount (γ) 0.99
Optimizer Adam (Kingma & Ba, 2015)
Learning rate for networks 3× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 256
Buffer Size 1× 106

Starting timesteps 2.5× 103

Gradient clipping False
Exploration method Noise
Noise distribution N (0, 0.12)
Noise clipping limit 0.5
Policy frequency (delay) 2
Target network update rate (τ ) 5× 10−3

Maximum episode timesteps 500
Peference sampling every new episode untill max total steps is reached
Evaluation episodes for each test preference 10

LS SDMgrad CAPQL EPO CAGrad PreCO

HV(∗1e6) 2.63± 0.12 2.24± 0.13 2.55± 0.09 2.53± 0.28 0.94 2.67± 0.26
CS 0.933± 0.007 0.922± 0.018 0.978± 0.005 0.963± 0.023 0.932± 0.024 0.957± 0.011

Table 9: HV and CS performance in MO-hopper environment, the HV value has a unit of 1e6.

D.3. MO-Reacher

The exact data for Fig. 5 is shown in Table 11.

For MO-Reacher, both SDMgrad and PreCo have λt increasing linearly with every update from 10 to 20. EPO has a
constraint threshold of ϵ = 3e − 4 for cosine similarity Ψ′, which is very small, making it comparable to Tchebycheff
Scalarization and also similar to PreCo with a large constant λt = λ >> 1. CAgrad employs a constraint constant of
c = 0.1.

D.4. Fruit Tree

For 3-D reward, most runs of LS only learn a very limited number of values like [4.71, 5.39, 5.40] and the values SDMGrad
for most test preferences lie at [4.01, 7.17, 1.47]. They, as the LS approach, discover much fewer Pareto optimal policies
than methods of the similarity approach, which have one value for each test preference. This shows the limitation of linear
scalarization methods. In theory, LS methods have the potential to discover all Pareto optimal policies for MORL (Lu et al.,
2023). However, in practice, this is often not the case. Possible reasons could be the numerical instability inherent in deep
RL, limitations of model capacity, and the fact that the value space is usually not strictly convex.

E. Practical implementation of the update procedure
E.1. Algorithm framework

Our goal is to train a single agent that can be conditioned on different performance preferences and 0-shot adapt to user
preference at test time. During training, we need to uniformly sample preferences from P and let the agent learn to find
Pareto optimal policies with values aligned to p. The procedure is shown in Algorithm 2.
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Table 10: Hyper-parameters settings MO-Hopper.

Hyper-parameter Value

Discount (γ) 0.99
Optimizer Adam (Kingma & Ba, 2015)
Learning rate for networks 3× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 256
Buffer Size 1× 106

Starting timesteps 2.5× 103

Gradient clipping False
Exploration method Noise
Noise distribution N (0, 0.12)
Noise clipping limit 0.5
Policy frequency (delay) 2
Target network update rate (τ ) 5× 10−3

Maximum episode timesteps 500
Peference sampling every new episode untill max total steps is reached
Evaluation episodes for each test preference 10

Algorithm 2 PCRL with PreCo update

1: Initialize:
B: Buffer.
N : Number of training samples for p,
E: Number of training episodes for every p sample,
πθ: Preference-conditioned actor model,
Qϕ for DDPG/TD3 or Vϕ for A3C/PPO: Preference-conditioned critic model with m-dimensional output, where m is
the objective number.

2: for n = 0, 1, ..., N − 1 do
3: Sample preference p ∈ P
4: for e = 0, 1, ..., E − 1 do
5: Rollout with policy πθ(·|·,p)
6: Store transitions (s, a, r,p) in B
7: end for
8: Update Qϕ or Vϕ by minimizing TD error for every objective.
9: Estimate policy-level gradient ∇T

πp
v̂πp by Eq.24/26 for TD3 or Eq.30/37 for PPO.

10: Estimate similarity gradient ∇πpΨ(p, v̂πp) = ∇T
πp
v̂πp∇vΨ(p, v̂πp)

11: Get policy-level update direction d∗ by solving Eq.6 with ∇T
πp
v̂πp and ∇πpΨ(p, v̂πp)

12: Update θ by solving Eq.25 for TD3 or Eq.32/34 for PPO with d∗

13: end for
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random LS SDMgrad CAPQL PDMORL EPO CAGrad PreCO

HV(∗1e8) 13.47 15.66 ± 8.03 20.37 ± 0.37 20.56 ± 0.47 22.69 ± 0.15 9.87 ± 3.11 13.46 ± 9.71 33.11 ± 6.29
CS 0.758 0.652 ± 0.030 0.761 ± 0.001 0.760 ± 0.001 0.754 ± 0.002 0.845 ± 0.078 0.760 ± 0.002 0.906 ± 0.002

Table 11: HV and CS performance in MO-reacher environment, the HV value has a unit of 1e6.

Table 12: Hyper-parameters settings MO-Reacher.

Hyper-parameter Value

Discount (γ) 0.99
Optimizer Adam (Kingma & Ba, 2015)
Learning rate for networks 3× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 250
Gradient clipping False
Exploration method Policy Entropy
Entropy Coefficient 0.001
epsilon-clip for PPO 0.001
Epochs per PPO update 3
Timesteps every update 100
Maximum episode timesteps 250
Number of episodes per preference sample 40
Number of preference samples (for 4D reward) 600
Evaluation episode for each test preference 10

E.2. Policy-level gradient

Solving the min-norm problem (6) with parameter-level gradients ∇θv̂
πp at every gradient update can be memory and

computationally expensive when |θ| is large. Video game playing agents like AlphaZero (Silver et al., 2018) and AlphaS-
tar (Vinyals et al., 2019) can have millions of model parameters. Besides, Large models with billions of model parameters
have become very common with recent developments in Large Language Models (LLMs) (Zhao et al., 2023; Minaee et al.,
2024). To circumvent this issue, we suggest solving the min-norm problem (6) before the gradient propagates to the model
parameter θ. Therefore, ideally, we want to solve the min-norm problem with gradients at the policy-level ∇πp v̂

πp , which
has only a size of batch size B of hundreds at each update; In practice for deep RL implementations, as shown by Fig. 9,
∇πp v̂

πp can also be replaced by the gradients of the value v̂πp with respect to the policy model outputs, such as ∇lp v̂
πp for

logits of categorical distribution policies and ∇µp,σp v̂
πp for means and standard deviations of diagonal Gaussian distribution

policies.

E.2.1. CONTINUOUS ACTION SPACE

Value-based methods like TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) are often used for continuous action
spaces. To avoid computing min-norm with parameter gradient

∇θv̂
πp = E[∇θQ̂(s, a,p)|a∼πθ(s,p)] (23)

We look at their policy formulations. Their policy π(a|s,p) is often a Gaussian or squashed Gaussian distribution
with parameters mean µp(s) and log standard deviation log σp(s). We denote a distribution parameter vector ρp with
ρp(s) = [µp(s), log σp(s)]

T and we can get

∇ρp v̂
πp = E[∇ρpQ̂(s, a,p)] (24)

For each update, the size of each objective gradient ∇ρp v̂
πp

i is 2|A| × B, where B is the batch size and ρ has a size of
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Table 13: Hyper-parameters settings Fruit-tree.

Hyper-parameter Value

Discount (γ) 0.99
Optimizer Adam (Kingma & Ba, 2015)
Learning rate for networks 3× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 100
Gradient clipping False
Exploration method Policy Entropy
Entropy Coefficient 0.001
epsilon-clip for PPO 0.001
Epochs per PPO update 3
Timesteps every update 100
Maximum episode timesteps 100
Number of episodes per preference sample 20
Number of preference samples (for 4D reward) 3000
Evaluation episode for each test preference 10

Figure 9: Backward path of policy update. we can see that the gradient from objectives to the parameters of the actor network
first backpropagate through the probability density of action distribution (for policy-based methods such as A3C/PPO)
or action sample (for value-based methods such as DDPG/TD3), then propagate through the distribution parameters of
policies such as the logits for categorical distribution or µ,Σ for Gaussian distributions. We consider these the policy-level
gradients. They often have a size of O(B), where B is the batch size. Since B is often limited to a few hundreds, the size of
a policy-level gradient would be much smaller than the size of the neural network parameter.
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2|A|. This means that ∇ρp v̂i(s,p) could have a much lower dimension than ∇θv̂i(s,p), thus increasing the memory and
computational efficiency.

After getting the update direction d for ρp by solving the min norm problem (6) with ∇ρp v̂
πp , we update model parameter

θ by solving
max

θ

{
d⊤∇θρp s.t. ∥ρ− ρold∥2 < δ

}
,

which is a trust region formulation that updates ρ in the direction of d while keeping in a local region where d is valid. A
simple and practical implementation for parameter update can be as follows:

max
θ

J (θ) = Es,a [clip(ρp(s, a), ρp(s, a)− ϵ, ρp(s, a) + ϵ)d(s, a)] . (25)

The update of every entry of π is clipped to ϵ, so ∥πθ − πθ∥2 ≤
√
B ∗ ϵ2 = δ, where B is the batch size.

For more expressive models such as diffusion models (Wang et al., 2023) or normalizing flows (Brahmanage et al., 2023),
the mean and covariance gradients would not be adequate. We can instead use the gradient of action samples as policy-level
gradients and we get an update direction

d(s, a) = ∇aQ̂(s, a,p) (26)

for every (s, a) sample in the batch. Then we can perform min-norm with d and update the more expressive policy networks
by reparameterization techniques.

E.2.2. DISCRETE ACTION SPACE

Policy-based methods like A3C (Mnih et al., 2016) and PPO (Schulman et al., 2017) are often used for discrete action
spaces. We can approximate the multi-objective value function v̂πp(s) by a function v̂(s,p) that takes s and p as inputs,
sample the episodic returns as vector R, and calculate the multi-objective advantage function as

Â(s, a) = R− v̂(s,p) (27)

Then, the policy gradient in the model parameter space is

∇θv̂
πp = E

[
∇θπ(a|s,p)
π(a|s,p)

Â(s, a,p)

]
, (28)

And for gradient at the policy space d = ∇πp v̂(s,p), we have

d(s, a) =
1

π(a|s,p)
Â(s, a,p) (29)

for very (s, a) sample. When using policy optimization methods like PPO/TRPO they are

∇θv̂
πp = E

[
∇θπ(a|s,p)
πold(a|s,p)

Â(s, a,p)

]
, (30)

d(s, a) =
1

πold(a|s,p)
Â(s, a,p) (31)

In practical situations, at every update, the size of each objective gradient ∇πp v̂i(s,p) is the batch size B, and the min norm
problem (6) can be performed with gradients of batch size B, which could be much smaller than the parameter size of deep
neural networks, especially when implemented for large language models.

After getting the update direction d = ∇πp v̂(s,p) for πp, we optimize model parameters by

max
θ

{
d⊤∇θπp s.t. ∥πp − πp,old∥2 < δ

}
, (32)

which is a trust region formulation that updates πp in the direction of d while keeping in a local region where d is valid.
This can be practically implemented by an objective as follows:

J (θ) = Es,a [clip(πθ(a|s,p), πθold(a|s,p)− ϵ, πθold(a|s,p) + ϵ)d(s, a)] . (33)
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The update of every entry of π is clipped to ϵ, so ∥πθ − πθ∥2 ≤
√
B ∗ ϵ2 = δ, where B is the batch size.

Trust region formulation with KL-divergence could be more suitable for categorical distribution πp, so another formulation
of parameter update could be

max
θ

{
d⊤∇θπp s.t. πpπp,old < δ

}
. (34)

Whether a KL divergence trust region is theoretically compatible with the solution d of the min norm problem (6) will be
further researched in our future work.

One potential issue of ∇πp v̂(s,p)) is that (πp+α∇πp v̂(s,p)) may not be in the probability simplex. As a result, projecting
it back onto the probability simplex could cause it to deviate from the intended update direction. Since policies for discrete
action spaces are often categorical distributions, one way to avoid this issue is to consider the gradient of lp, which denotes
the logits for policy π(·|·,p) conditioned on preference p, and lp(s) are the logits for π(·|s,p). The logits do not have the
constraint to be in the probability simplex.

∇lpπp(s)

=− π(a|s,p)
[
π(a1|s,p), π(a2|s,p), ..., π(a|s,p)− 1, ..., π(a|A||s,p)

]T
,

(35)

where ∇lpπp(s) is the s-th entry of the jacobian ∇lpπp, and

[π(a1|s,p), π(a2|s,p), ..., π(a|s,p)− 1, ...]
T

is a vector of action space size |A|.

Then, we can get

∇lp v̂
πp(s)

=E
[
− π(a|s,p)
πold(a|s,p)

Â(s, a,p)[π(a1|s,p), π(a2|s,p), ..., π(a|s,p)− 1, ..., π(a|A||s,p)]
]
,

(36)

where ∇lp v̂
πp(s), of size m×A, is the index [:, s, :] for ∇lp v̂

πp tensor, of size m× |S| × |A|.

In every update, the size of the objective gradient ∇lp v̂
πp(i, s) for the objective i has a size of B × |A|. For large language

models, the action space could be the vocabulary size of tens of thousands, so B × |A| could be in millions, but is still much
smaller than the parameter size that is often in billions. Moreover, for large action spaces, π(a|s,p) · π(a′|s,p) could be
much smaller than π(a|s,p), so ∇lp v̂

πp(s, a) can be approximated by

∇lp v̂
πp(s, a) ≈ π(a|s,p)

π(a|s,p)
Â(s, a,p) = Â(s, a,p). (37)

This approximation of ∇lp v̂
πp is what we implemented to replace ∇πp v̂

πp in the min norm problem (6) to avoid solving
min norm with large parameter gradient ∇θv̂

πp . The model parameters are updated by solving (32) using ∇lp v̂
πp as d.

F. More details about the similarity objective
F.1. About proposed similarity function Ψ

For two objective cases, when p = [0.5, 0.5], Ψ(p,v) is shown in Fig. 10. The x-axis is the first element of v and y-axis is
the second element of v. The z-axis is the value of Ψ(p,v).

We can see that the similarity is maximized to 0 only when v0

p0
= v1

p1
. It is also smooth as proved by Lemma 4.1.

F.2. Similarity objective design for better theoretical properties

Theorem 4.2 requires the similarity gradient to be both Lipschitz continuous and convex combinations of the objective
gradients. Which formally means that for an similarity objective Ψ′(p, ·),

∇vΨ
′(p,v) ∈ W,

24



Preference Controllable RL with Advanced Multi-Objective Optimization

Figure 10: Ψ(p, ·) when p = [0.5, 0.5]T

which can not satisfied by ∇vΨ(p,v) = maxi
vi

pi
p− v, because ∇vΨ(p,v) will be 0 when p and v are perfectly aligned.

Moreover, we can not directly normalize ∇vΨ(p,v) by dividing ∥∇vΨ(p,v)∥1, because this will make the normalized
gradient not Lipschitz continuous (the gradient changes drastically when v passes the direction of p).

Our hints to design such a similarity function Ψ′(p, ·) are as follows:

• Its similarity gradient ∇vΨ
′(p,v) could get close to p, when v has a high similarity to the preference p;

• ∇vΨ
′(p,v) should be close to the normalized gradient ∇vΨ(p,v)

∥∇vΨ(p,v)∥1
when the similarity is low.

One possible design is:

∇vΨ
′(p,v) = exp

1−CS(p,v)
η p+ (1− exp

1−CS(p,v)
η )

∇vΨ(p,v)

∥∇vΨ(p,v)∥1
(38)

where CS is the cosine similarity. In this design, ∇vΨ
′(p,v) is always a convex combination between p and ∇vΨ(p,v)

∥∇vΨ(p,v)∥1
,

so itself is always a convex coefficient.

We have for v,v′ ̸= 0:

∥∇vΨ
′(p,v)−∇v′Ψ′(p,v′)∥

∥v′ − v∥

=

∥∥∥∥(exp 1−CS(p,v′)
η − exp

1−CS(p,v)
η

)
p+

(
1− exp

1−CS(p,v′)
η

)
∇v′Ψ(p,v′)

∥∇vΨ(p,v′)∥1
−
(
1− exp

1−CS(p,v)
η

)
∇vΨ(p,v)

∥∇vΨ(p,v)∥1

∥∥∥∥
∥v′ − v∥

≤

∥∥∥∥(exp 1−CS(p,v′)
η − exp

1−CS(p,v)
η

)
p

∥∥∥∥+ ∥∥∥∥exp 1−CS(p,v′)
η − exp

1−CS(p,v)
η

∥∥∥∥
∥v′ − v∥

≤
(1 + ∥p∥)

∥∥∥∥exp 1−CS(p,v′)
η − exp

1−CS(p,v)
η

∥∥∥∥
∥v′ − v∥

(39)
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which is equivalent to proving exp
1−CS(p,v)

η is Lipschitz continuous.

Let p ̸= 0 be fixed. Consider:

CS(v,p) =
⟨v,p⟩
∥v∥∥p∥

, v ̸= 0.

Compute the gradient:

∇vCS(v,p) =
1

∥p∥∥v∥2

(
∥v∥p− ⟨v,p⟩

∥v∥
v

)
.

Bounding its norm:

∥∇vCS(v,p)∥ ≤ 1

∥p∥∥v∥2
(∥v∥∥p∥+ ∥v∥∥p∥) = 2

∥v∥
. (40)

Thus, for ∥v∥ ≥ δ > 0, ∥∇vCS(v,p)∥ ≤ 2
δ , showing CS is Lipschitz continuous with constant 2

δ .

Then for exp
1−CS(p,v)

η , let

f(v) = exp

(
1− CS(v,p)

η

)
and we have

∇vf = −1

η
exp

(
1− CS(v,p)

η

)
∇vCS(v, p).

By Equation (40), we get

∥∇vf∥ ≤ 2

η∥v∥
exp

(
2

η

)
(41)

Then for ∥v∥ ≥ δ:

∥∇vf∥ ≤ 2 exp(2/η)

ηδ
.

Hence, f(v) is Lipschitz continuous on ∥v∥ ≥ δ with constant 2 exp(2/η)
ηδ .

Therefore, ∇vΨ
′(p,v) defined in Equation (38) is both Lipschitz continuous and is a convex coefficient when ∥v∥ ≥ δ,

which is very common in practice with non-zero values.

G. MOO Toy Example
This is an toy example used in SDMGrad (Xiao et al., 2023) to show that in MOO, our proposed PreCo can achieve better
or comparable performance under stochastic settings. Besides, PreCo can find the Pareto optimal point optimizing the
similarity function Ψ(p, ·).

The two objectives L1(x) and L2(x) shown in Fig. 11 are defined on x = (x1, x2)
⊤ ∈ R2,

L1(x) = f1(x)g1(x) + f2(x)h1(x) and L2(x) = f1(x)g2(x) + f2(x)h2(x),

where the functions are given by

f1(x) = max
(
tanh(0.5x2), 0

)
f2(x) = max

(
tanh(−0.5x2), 0

)
g1(x) = log

(
max

(
|0.5(−x1 − 7)− tanh(−x2)|, 0.000005

))
+ 6

g2(x) = log
(
max

(
|0.5(−x1 + 3)− tanh(−x2) + 2|, 0.000005

))
+ 6

h1(x) =
(
(−x1 + 7)2 + 0.1(−x1 − 8)2

)
/10− 20

h2(x) =
(
(−x1 − 7)2 + 0.1(−x1 − 8)2

)
/10− 20.
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(a) Mean objective (b) Objective 1 (c) Objective 2 (d) MGDA

(e) GD (f) CAGrad (g) SDMGrad (h) PreCo [0.4, 0.6] (i) PreCo [0.9, 0.1]

Figure 11: A two-objective toy example.

(a) p = [0.4, 0.6] (b) p = [0.9, 0.1]

Figure 12: Plots showing the Pareto front: The x-axis is L1 and the y-axis is L2. The blue line is the direction of the
preference, for (a) it is p = [0.4, 0.6], and for (b) it is p = [0.9, 0.1]. All three initial points converged to the Pareto optimal
point that intersects with the line of p direction.

Initializations points are from {(−8.5, 7.5), (−8.5, 5), (9, 9)}. The optimization trajectories are visualized in Fig. 11. The
starting point of every trajectory in Fig. 11d-Fig. 11g is given by the • symbol, and the color of every trajectory changes
gradually from red to yellow. The gray horizontal line illustrates the Pareto front, and the ⋆ symbol denotes the global
optimum for the mean objective L0 = 0.5L1 +0.5L2. The setting is the same as in (Xiao et al., 2023) and all other methods
except PreCo optimize for L0. Zero-mean Gaussian noise is added to the gradient of each objective for all the methods
except MGDA. Adam optimizer is adopted with learning rate of 0.002 and 70000 iterations for each run. We can see that
GD and CAGrad can fail to converge to the Pareto front in certain circumstances. Only SDMGrad and our proposed PCGrad
converge to the Pareto front in all cases. Notice that, the preference PreCo in Fig. 11h is p = [0.4, 0.6], as shown in Fig. 12,
we can see that it converges to a point optimizing Ψ(p, [L1, L2]

T ). In addition, Figs. 11i and 12b show for the case where
p = [0.9, 0.1], PreCo also updates to the preference specific Pareto optimal point.

Below is a figure comparing PreCo with existing preference following MOO algorithms such as Tchebycheff scalariza-
tion (Lin et al., 2024)(TS) (Ehrgott, 2005) and smooth Tchebycheff scalarization

In Fig. 13, PreCo first converges to the Pareto front, then as λ goes up, it converges to the preference desired solution.
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Figure 13: Plots showing the results of TS, SmoothTS and PreCo for preference p = [0.1, 0.9]. Our proposed PreCo
converges to the preference-aligned Pareto front for all initialization.

H. Calibration
The reachable Pareto front for PCRL is often not the entire Rm value space, and there are often gaps between the desired
preferences and the values reached. To calibrate the possible misalignment between the input preference and the reached
value in a sample-efficient way, we employ a Gaussian process (GP) based method to model the relationship between the
input of the desired preference and the actual values reached by the agent.

Figure 14: After training, due to general errors in deep learning or unreachable regions of the
Pareto front, there could still be gaps between the actually reached objectives ratios and the
desired preference. The calibration procedure obtains the reachable reachable Pareto front and
modifies the desired preference into an input that results in performance more aligned with the
desired preference.

Figure 15: Example of GP regression for the
(p,vπp ) samples, this case has two objectives
and shows the relation between the first element
of the value and the first element of the preference.
Each red cross point in this plot is a (p0,v

πp
0 ),

where p0,v
πp
0 are the first elements of p,vπp .

After training, there might still be an input p′ with better Ψ(p,vπp′ ) than vπp . We want to find p′ that solves
maxp′ E[Ψ(p,vπp′ )] for any p. we first uniformly sample the values vπp reached by giving the agent preference in-
put from {p ∈ Rm : pT1 = 1}, then perform a GP regression for the (p,vπp) samples. As shown in Fig. 15, some samples
can provide a Gaussian distribution of the mapping ϕ(p) from p to vπp . Based on the distribution of ϕ, for a desired
preference p, we can find a good input p′ to solve

max
p′

E[Ψ(p, ϕ(p′))] (42)

This procedure learns the reachable regions of the agent and calibrates the desired preference into the best input for reaching
the preference. Also, it is general and can be applied to any preference control approach. Here is an empirical example for
calibration:
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Figure 16: Pareto front before and after calibration.

(a) Discovered Pareto Front before cali-
bration

(b) Resampled Pareto Front after calibra-
tion

The colored rays are preferences p. The points with the same color as the preference vector p are value ˆvπp of preference
conditioned policy πp. The left plot is before calibration, p is directly used as the input for πp. The right plot is after
calibration, we know which regions can be reached, so preferences p are not all directions but reachable directions. Also,
the input for πp is p′ by solving (42), resulting in higher similairty and the CS metric improved from 0.991 to 0.997.

I. Theoretical Proofs
I.1. Proof for Lemma 4.1

Lemma 4.1. The similarity function Ψ(p, ·) is (1 + maxi
|p|
|pi| ) -Lipschitz smooth and gs(·) is Lipschitz continuous

under Assumption 4.1 and Assumption 4.3.

Proof. By definition:

Ψ(p,v) = −1

2
∥max

i

vi

pi
p− v∥2 (43)

and

∇vΨ(p,v) = max
i

vi

pi
p− v = d(v,p)p− v (44)

. where d(v,p) denotes maxi
vi

pi
, we have

∥∇vΨ(p,v)−∇v′Ψ(p,v′)∥ = ∥d(v,p)p− v − d(v′,p)p+ v′∥
= ∥d(v,p)p− d(v′,p)p− (v − v′)∥
≤ |d(v,p)p− d(v′,p)|∥p∥+ ∥v − v′∥

(45)

Without loss of generality, we first consider the case where d(v,p)− d(v′,p) ≥ 0. We denote iv = argmaxj
vi

pi

∥d(v,p)p− d(v′,p)p∥+ ∥v − v′∥ = (d(v,p)− d(v′,p))∥p∥+ ∥v − v′∥

≤ (
viv

|piv |
−

v′
iv

|piv |
)∥p∥+ ∥v − v′∥

≤ ∥p∥
|piv |

∥v − v′∥+ ∥v − v′∥

≤ max
i

∥p∥
|pi|

∥v − v′∥+ ∥v − v′∥

≤ (1 + max
i

∥p∥
|pi|

)∥v − v′∥

(46)
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The first inequality is because iv is optimal for v but not necessarily for v′. The case where d(v,p)− d(v′,p) < 0 can be
proved by the same procedure by denote i′v = argmaxj

v′
i

pi
, then

∥d(v,p)p− d(v′,p)p∥+ ∥v − v′∥ = (d(v′,p)− d(v,p))∥p∥+ ∥v − v′∥

≤ (
v′
i′v

|pi′v
|
−

vi′v

|pi′v
|
)∥p∥+ ∥v − v′∥

≤ ∥p∥
|pi′v |

∥v − v′∥+ ∥v − v′∥

≤ max
i

∥p∥
|pi|

∥v − v′∥+ ∥v − v′∥

≤ (1 + max
i

∥p∥
|pi|

)∥v − v′∥.

(47)

Therefore, we have proven

∥∇vΨ(p,v)−∇v′Ψ(p,v′)∥ ≤ (1 + max
i

∥p∥
|pi|

)∥v − v′∥ (48)

and the similarity function for a preference p is 1 + maxi
∥p∥
|pi| Lipschitz smooth.

Next, we prove that gs(πp) = G(πp)∇vΨ(p,vπp) is Lipschitz continuous.

We have:

∥gs(x)− gs(y)∥ = ∥G(x)∇vΨ(p,vx)−G(y)∇vΨ(p,vy)∥
= ∥(G(x)−G(y))∇vΨ(p,vx) +G(y) (∇vΨ(p,vx)−∇vΨ(p,vy))∥

≤
m∑
i=1

∥gi(x)− gi(y)∥∥∇vΨ(p,vx)∥+ ∥G(y)∥∥∇vΨ(p,vx)−∇vΨ(p,vy)∥
(49)

where the inequality is by Cauchy-Schwartz. Since under Assumption 4.1 and Assumption 4.3, ∥G(y)∥ ≤ Cg and
∥gi(x)− gi(y)∥ ≤ li,1∥x− y∥, and

∥∇vΨ(p,vx)−∇vΨ(p,vy)∥ ≤ (1 + max
i

∥p∥
|pi|

)∥vx − vy∥ ≤ (1 + max
i

∥p∥
|pi|

)∥l∥∥x− y∥, (50)

where = [l1, l2, ..., lm]T is the vector of Lipschitz constants of all objectives. Denoting Lm = (1 +maxi
∥p∥
|pi| )∥l∥, we have

∥gs(x)− gs(y)∥ ≤

(
∥∇vΨ(p,vx)∥

m∑
i=1

li,1 + CgLm

)
∥x− y∥ (51)

By definition in Equation (44):

∥∇vΨ(p,vx)∥ = ∥max
i

vx
i

pi
p− vx∥ ≤ ∥max

v
max

i

vi

pi
p∥, (52)

where the inequality is because the values of x should be no larger than the maximum values for the objectives. Denoting

Lp = ∥max
v

max
i

vi

pi
p∥, (53)

we have

∥gs(x)− gs(y)∥ ≤

(
Lp

m∑
i=1

li,1 + CgLm

)
∥x− y∥, (54)

and we define Ls = (Lp

∑m
i=1 li,1 + CgLm). We have proven gs(·) is to be Ls-Lipshitz continuous. Therefore, both claims

of this lemma have been proven.
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I.2. Proof for Theorem 4.1 and 4.2

Before proving Theorem 4.2, we prove Lemma I.1 for the requirements to use the proof idea in (Xiao et al., 2023) for their
theorem.3 and obtain Lemma I.2. To be consistent with their proof, we consider minimizing the negative value and similarity
with gradient descent.
Lemma I.1. Under the Assumptions 4.1-4.3, we have

∥gs(πp,t)∥ ≤ LpCg, E
[
∥gs(πp,t; ξ)− gs(πp,t)∥2

]
≤ L2

pmσ2 (55)

E[∥G(πp,t; ξ)
T (G(πp,t; ξ

′)wt + λgs(πp,t; ξ
′))∥2] ≤ 8(mσ2 + C2

g )
2 + 8L2

pλ
2(mσ2 + C2

g )
2︸ ︷︷ ︸

C1

(56)

E[∥G(πp,t; ζ)wt + λgs(πp,t; ζ)∥2] ≤ 4mσ2 + 4C2
g + 4λ2Lpmσ2 + 4λ2L2

pC
2
g︸ ︷︷ ︸

C2

(57)

E[∥(G(πp,t)w + λπp,t(πp,t))
TG(πp,t)∥∥wt − wt+1∥] ≤ 2(1 + Lpλ)

2C2
g (mσ + Cg)

2︸ ︷︷ ︸
C2

(58)

Proof. Under the Assumptions 4.1-4.3, by (52) and (53), we have

∥gs(πp,t)∥ ≤ ∥G(πp,t)∇vΨ(p,vπp,t)∥ ≤ LpCg, (59)

and
E
[
∥gs(πp,t; ξ)− gs(πp,t)∥2

]
≤ E

[
∥G(πp,t; ξ)−G(πp,t)∥2∥∇vΨ(p,vπp,t)∥2 ≤ L2

pmδ2
]

(60)

The first two claims in (55) are proven.

Next, we have

E[∥G(πp,t; ξ)
T (G(πp,t; ξ

′)wt + λgs(πp,t; ξ
′))∥2]

(i)

≤ 2E[∥G(πp,t; ξ)
TG(πp,t; ξ

′)wt∥2︸ ︷︷ ︸
N1

+2λ2 ∥G(πp,t; ξ)
T gs(πp,t; ξ

′))∥2︸ ︷︷ ︸
N2

], (61)

where (i) is by the Young’s inequality. Next, we provide bounds for E[N1] and E[N2], separately:

E[N1]
(i)

≤E[∥(G(πp,t; ξ)
T −G(πp,t)

T +G(πp,t)
T )(G(πp,t; ξ

′)−G(πp,t) +G(πp,t))∥2]
=E[∥(G(πp,t; ξ)

T −G(πp,t)
T )(G(πp,t; ξ

′)−G(πp,t)) + (G(πp,t; ξ)
T −G(πp,t)

T )G(πp,t)

+G(πp,t)
T (G(πp,t; ξ

′)−G(πp,t)) +G(πp,t)
TG(πp,t)∥2]

(ii)

≤ 4E[∥G(πp,t; ξ)
T −G(πp,t)

T ∥2∥G(πp,t; ξ
′)−G(πp,t)∥2 + ∥G(πp,t; ξ)

T −G(πp,t)
T ∥2∥G(πp,t)∥2

+ ∥G(πp,t)
T ∥2∥(G(πp,t; ξ

′)−G(πp,t)∥2 + ∥G(πp,t)
TG(πp,t)∥2]

(iii)

≤ 4m2σ4 + 8mσ2C2
g + 4C4

g = 4(mσ2 + C2
g )

2, (62)

where (i) follows from Cauchy–Schwarz inequality and wt is a convex coeffiecient, (ii) follows from Young’s inequality
and (iii) follows from Assumption 4.2 and Assumption 4.3. For another term,

E[N2] =E[∥(G(πp,t; ξ)
T −G(πp,t)

T +G(πp,t)
T )(gs(πp,t; ξ

′)− gs(πp,t) + gs(πp,t))∥2]
(i)

≤4E[∥(G(πp,t; ξ)
T −G(πp,t)

T )(gs(πp,t; ξ
′)− gs(πp,t))∥2 + ∥(G(πp,t; ξ)

T −G(πp,t)
T )gs(πp,t)∥2

+ ∥G(πp,t)
T (gs(πp,t; ξ

′)− gs(πp,t))∥2 + ∥G(πT
p,t)gs(πp,t)∥2]

(ii)

≤ 4L2
pm

2σ4 + 8L2
pmσ2C2

g + 4L2
pC

4
g = 4L2

p(mσ2 + C2
g )

2, (63)
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where (i) follows from Young’s inequality, (ii) follows from (59) and (60). Then substituting (62) and (63) into (61), we
can obtain,

E[∥G(πp,t; ξ)
T (G(πp,t; ξ

′)wt + λgs(πp,t; ξ
′))∥2] ≤ 8(mσ2 + C2

g )
2 + 8L2

pλ
2(mσ2 + C2

g )
2 = C1.

We have proved (56). Then, we look at (57) :

E[∥G(πp,t; ζ)wt + λgs(πp,t; ζ)∥2]
=E[∥G(πp,t; ζ)wt −G(πp,t)wt +G(πp,t)wt + λgs(πp,t; ζ)− λgs(πp,t) + λgs(πp,t)∥2]
(i)

≤4E[∥G(πp,t; ζ)−G(πp,t)∥2] + 4E[∥G(πp,t)∥2] + 4λ2E[∥gs(πp,t; ζ)− gs(πp,t)∥2]
+ 4λ2E[∥gs(πp,t)∥2]

(ii)

≤ 4mσ2 + 4C2
g + 4λ2L2

pmσ2 + 4λ2L2
pC

2
g︸ ︷︷ ︸

C2

(64)

where (i) follows from Young’s inequality, and (ii) follows from 59 and 60.

Finally,

E[∥(G(πp,t)w + λπp,t(πp,t))
TG(πp,t)∥∥wt −wt+1∥]

=βtE[∥(G(πp,t)w + λπp,t(πp,t))
TG(πp,t)∥∥G(πp,t; ξ)

T (G(πp,t; ξ
′)wt + λπp,t(θ; ξ

′))∥]
≤βtE[∥(G(πp,t)w + λπp,t(πp,t))

TG(πp,t)∥(∥G(πp,t; ξ)
T (G(πp,t; ξ

′)wt∥+ λ∥G(πp,t; ξ)πp,t(θ; ξ
′)∥)]

=βtE[∥(G(πp,t)w + λπp,t(πp,t))
TG(πp,t)∥(

√
N1 +

√
N2)]

≤βt2(1 + Lpλ)
2C2

g (mσ + Cg)
2 = βtC3, (65)

Lemma I.2. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ), the updates by our method

satisfy

E[∥G(πp,t)wt,λ + λtgs(πp,t)∥2 ≤ 1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2
C1(λt) +

l′1αt

2
C2(λt) + βtC3(λt)

(66)

where w is a fixed convex coefficient, and

l′(πp,t) = −wTv(πp,t)− λtΨ(p, πp,t), (67)
l′1 = max

i
li,1 + λLs (68)

C1 = 8(mσ2 + C2
g )

2 + 8L2
pλ

2(mσ2 + C2
g )

2, (69)

C2 = 4mσ2 + 4C2
g + 4λ2Lpmσ2 + 4λ2L2

pC
2
g , (70)

C3 = 2(1 + Lpλ)
2C2

g (mσ + Cg)
2, (71)

where Ls is the Lipschitz constant for gs(·), defined in (54).

Under Assumptions.(4.1-4.3), previous results show Lemma 4.1 and Lemma I.1 hold. Therefore, we can replace g0 in their
analysis with gs and apply their (33) in our case and it becomes Equation (66). Stochastic gradient samples like G(πp,t, ξ)
have been taken expectations and become G(πp,t) or σ.

This is an intuitive result of convergence analysis for smooth non-convex objective functions using conventional techniques.
Next we prove our main theoretical contributions based on Lemma I.2.
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Theorem 4.1. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ), with a constant λ and

Lipschitz smooth similarity function Ψ(p, ·), we have 1
T

∑T−1
t=0 E[minwt ∥G(πp,t)wt∥] = O(mT− 1

2 ). To achieve an
ϵ-accurate Pareto stationary point, it requires T = O(m2ϵ−2) updates.

Proof. By definition,

∇vΨ(p,v) = max
i

vi

pi
p− v > 0. (72)

So gs(πp) = G(πp)∇vΨ(p,vπp) can be considered as a positive linear combination of objective gradients. We have

E[∥G(πp,t)wt,λ + λgs(πp,t)∥2 = E[∥(G(πp,t)wt,λ + λG(πp,t)w̃t)∥2]
≥ E[min

wt

∥G(πp,t)wt∥2].
(73)

For every time step t, by Equation (66) from Lemma I.2 and constant λ,

E[min
wt

∥G(πp,t)wt∥2] ≤
1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2
C1(λ) +

l′1αt

2
C2(λ) + βtC3(λ)

(74)

We take αt = α and βt = β as constants and telescope (74),

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2] ≤
1

αT
E[l′(πp,0)− l′(πp,T )] +

1

2βT
E[∥w0 −w∥2 − ∥wT −w∥2]

+
1

T

T−1∑
t=0

β

2
C1(λ) +

1

T

T−1∑
t=0

l′1α

2
C2(λ) +

1

T

T−1∑
t=0

βC3(λ)

≤ O(
1

αT
+

1

βT
+ βm2 + αm)

(75)

By setting α = Θ(m− 1
2T− 1

2 ), β = Θ(m−1T− 1
2 ), we can get

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2] = O(mT− 1
2 ).

To achieve an ϵ-accurate Pareto stationary point, it requires T = O(m2ϵ−2) updates.

After proving for cases with constant λ, we need to prove further for cases with increasing λ = Θ(T
1
2 ).

Theorem 4.2. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ), with a Lipshitz smooth

similarity function with g′s(πp,t) being convex combination of gi(πp,t) for all t, there can be an increasing λ = Θ(log T )

and we have 1
T

∑T−1
t=0 E[minwt ∥G(πp,t)wt∥] = O(mT− 1

2 log T ).

Proof. Because the similarity gradients g′s(πp,t) are convex combinations of G(πp,t), let g′s(πp,t) = G(πp,t)w̃t where w̃t

is a convex coefficient, then

E[∥G(πp,t)wt,λ + λtg
′
s(πp,t)∥2 = E[∥(G(πp,t)wt,λ + λtG(πp,t)w̃t)∥2]

≥ E[(1 + λt)
2 min

wt

∥G(πp,t)wt∥2]
(76)

holds because (wt,λ + λw̃t) is also a convex coefficient which can not be more optimal than argminwt
∥G(πp,t)wt∥2. For
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every time step t, by Equation (66) from Lemma I.2,

E[(1 + λt)
2 min

wt

∥G(πp,t)wt∥2] ≤
1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2
C1(λt) +

l′1αt

2
C2(λt) + βtC3(λt)

E[min
wt

∥G(πp,t)wt∥2] ≤
1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2(1 + λt)2
C1(λt) +

l′1αt

2(1 + λt)2
C2(λt) +

βt

(1 + λt)2
C3(λt)

≤ 1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2λ2
t

C1(λt) +
l′1αt

2λ2
t

C2(λt) +
βt

(1 + λt)2
C3(λt)

(i)

≤ 1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2λ2
t

C1(λt) +
(maxi li,1 + λTLs)αt

2λ2
t

C2(λt) +
βt

(1 + λt)2
C3(λt)

(77)

where (i) is by the definition of l′1 in (68). In the proofs of Theroem 1 and 3 of (Xiao et al., 2023), l′1 was considered as
constant. However, for more rigor (it increases with λ), we upper bound it here with O(log T ). We take αt = α and βt = β
as constants and telescope (77), and by λt = Θ(log t), we have

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2] ≤
1

αT
E[l′(πp,0)− l′(πp,T )] +

1

2βT
E[∥w0 −w∥2 − ∥wT −w∥2]

+
1

T

T−1∑
t=0

β

2λ2
t

C1(λt) +
1

T

T−1∑
t=0

(maxi li,1 + λTLs)α

2λ2
t

C2(λt) +
1

T

T−1∑
t=0

β

(1 + λt)2
C3(λt)

= O(
1

αT
+

1

βT
+

βm2

log T
+ βm2 + αm log T + αm)

(78)

By setting α = Θ(m− 1
2T− 1

2 ), β = Θ(m−1T− 1
2 ), we can get

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2] = O(mT− 1
2 log T ),

and proof is done.

Remark I.1. The convergence rate for Theorem 4.2 seems slower than results from (Xiao et al., 2023) because we rigorously
considered the changes in the Lipschitz constant of the (G(πp,t)wt + λgs(πp,t)) caused by increasing λ

I.3. Proof for Theorem 4.3 and 4.4

To be consistent with previous results in MOO literature, we consider minimizing the negative objectives and similarity with
gradient descent.

Theorem 4.3. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ), with a constant λ and

Lipschitz smooth similarity function like Ψ(p, ·), we have 1
T

∑T−1
t=0 E[∥gs(πp)∥]−

2C2
g

λ2 = O(mT− 1
2 ).
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Proof. By Equation (66) from Lemma I.2 and constant λ, we have

E[∥gs(πp,t)∥2] ≤
2

λ2
E[∥G(πp,t)wt,λ + λgs(πp,t)∥2 +

2

λ2
E[∥G(πp,t)wt,λ∥2]

≤ 2

λ2αt
E[l′(πp,t)− l′(πp,t+1)] +

1

λ2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

λ2
C1(λ) +

l′1α

λ2
C2(λ) +

2βt

λ2
C3(λ) +

2C2
g

λ2
.

(79)

By the definition of l′1 in (68), it is a constant when λ is constant. Take αt = α and βt = β as constants telescope (79), we
get

1

T

T−1∑
t=t0

E[∥gs(πp,t)∥2]−
2C2

g

λ2
≤ 2

λ2αT
E[l′(πp,0)− l′(πp,T )] +

1

λ2βT
E[∥w0 −w∥2 − ∥wT −w∥2]

+
1

T

T−1∑
t=t0

β

λ2
C1(λ) +

1

T

T−1∑
t=t0

l′1α

λ2
C2(λ) +

1

T

T−1∑
t=t0

2β

λ2
C3(λ) +

2C2
g

λ2

≤ O(
1

αT
+

1

βT
+ βm2 + αm)

(80)

By setting α = Θ(m− 1
2T− 1

2 ), β = Θ(m−1T− 1
2 ), we can get

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2]−
2C2

g

λ2
= O(mT− 1

2 ).

To achieve an ϵ-accurate stationary point, it requires T = O(m2ϵ−2) updates.

Theorem 4.4. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ), with a constant λ and Lips-

chitz smooth similarity function like Ψ(p, ·), there can be an increasing λ = Θ(T
1
2 ) and we have 1

T

∑T−1
t=0 E[∥gs(πp)∥] =

O(mT− 1
2 log T ).

Proof. Suppose for all time steps t > t0, λt ≥ 1, by Equation (79) we have

E[∥gs(πp,t)∥2] ≤
2

λ2
t

E[∥G(πp,t)wt,λ + λtgs(πp,t)∥2 +
2

λt
E[∥G(πp,t)wt,λ∥2]

≤ 2

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

λ2
t

C1(λt) +
l′1α

λ2
t

C2(λt) +
2βt

λ2
t

C3(λt) +
2C2

g

λ2
t

.

(81)

Take αt = α and βt = β as constants telescope (81) and by the definition of l′1 in (68) we get

T−1∑
t=t0

E[∥gs(πp,t)∥2] ≤
T−1∑
t=t0

2

α
E[l′(πp,0)− l′(πp,T )] +

T−1∑
t=t0

1

β
E[∥w0 −w∥2 − ∥wT −w∥2]

+

T−1∑
t=t0

β

λ2
t

C1(λt) +

T−1∑
t=t0

l′1α

λ2
t

C2(λt) +

T−1∑
t=t0

2β

λ2
t

C3(λt) +

T−1∑
t=t0

2C2
g

λ2
t

≤
T−1∑
t=t0

2

α
E[l′(πp,0)− l′(πp,T )] +

T−1∑
t=t0

1

β
E[∥w0 −w∥2 − ∥wT −w∥2]

+

T−1∑
t=t0

β

λ2
t

C1(λt) +

T−1∑
t=t0

(maxi li,1 + λTLs)α

λ2
t

C2(λt) +

T−1∑
t=t0

2β

λ2
t

C3(λt) +

T−1∑
t=t0

2C2
g

λ2
t

,

(82)
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then by λt = Θ(log t) we have:

1

T

T−1∑
t=t0

E[∥gs(πp,t)∥2] ≤
1

T

T−1∑
t=t0

2

α
E[l′(πp,0)− l′(πp,T )] +

1

T

T−1∑
t=t0

1

β
E[∥w0 −w∥2 − ∥wT −w∥2]

+
1

T

T−1∑
t=t0

β

λ2
t

C1(λt) +
1

T

T−1∑
t=t0

(maxi li,1 + λTLs)α

λ2
t

C2(λt) +
1

T

T−1∑
t=t0

2β

λ2
t

C3(λt) +
1

T

T−1∑
t=t0

2C2
g

λ2
t

= O(
1

αT
+

1

βT
+

βm2

log T
+ βm2 + αm log T + αm+

1

(log T )2
)

(83)

Adding the terms before t0, we have

1

T

T−1∑
t=0

E[∥gs(πp,t)∥2] =
1

T

t0∑
t=0

E[∥gs(πp,t)∥2] +
1

T

T−1∑
t=t0

E[∥gs(πp,t)∥2]

≤ O(
1

T
+

1

αT
+

1

βT
+

βm2

log T
+ βm2 + αm log T + αm+

1

(log T )2
).

(84)

By setting α = Θ(m− 1
2T− 1

2 ), β = Θ(m−1T− 1
2 ), we can get

1

T

T−1∑
t=0

E[∥gs(πp,t)∥2] = O(mT− 1
2 log T ), (85)

and the proof is done.
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