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ABSTRACT

Event extraction (EE) is a valuable tool for making sense of large amounts of
unstructured data, with a wide range of real-world applications, from studying
disease outbreaks to monitoring political violence. Current EE systems rely on
cumbersome mention-level annotations, and event arguments are frequently re-
stricted to ungrounded spans of text, which hinders the aggregation and analysis
of extracted events. In this paper, we define a new abstractive event extraction
(AEE) task that moves away from the surface form and instead requires a deeper
wholistic understanding of the input text. To support research in this direction,
we release a new multilingual, expert-annotated event dataset called LEMONADE,
which covers 16 languages, including several for which no event dataset currently
exists. LEMONADE has 41, 148 events, and is based on the Armed Conflict Loca-
tion and Event Data Project, which has been collecting and coding data on political
violence around the globe for over a decade. We introduce a novel zero-shot AEE
system ZEST that achieves a score of 57.2% F1 on LEMONADE. With our super-
vised model that achieves 71.6% F1, they represent strong baselines for this new
dataset.

1 INTRODUCTION

Event extraction (EE) is an important tool for studying the real world. Its applications span a wide
range of fields, from social sciences (Zubiaga et al., 2014) to biomedicine (Lybarger et al., 2021;
Kim et al., 2003). It is used for early detection and tracking of disease outbreaks (Parekh et al.,
2024; Consoli et al., 2024; Min et al., 2021), monitoring cybersecurity threats (Satyapanich et al.,
2020), studying political conflicts (Hu et al., 2022), protests (Radford, 2020; Zhukov et al., 2019;
Hürriyetoğlu et al., 2022a; Zavarella et al., 2022), and crime (Mostafazadeh Davani et al., 2019).
Because of its costly annotation process, automated EE systems are highly desirable.

In AI research, automated event extraction has been an extensively studied topic in information
extraction (Ji & Grishman, 2008). However, the resulting EE systems have several shortcomings
that keep them from real-world applications (Hürriyetoğlu, 2021; Hürriyetoğlu et al., 2022b; 2023;
2024a). Monitoring socio-political developments perhaps best exemplifies the requirements of event
extraction (automated or not) in the real world.

Entity Normalization and Linking One of the main uses of event data is trend discovery and
aggregate reporting (Li et al., 2019a; 2020b; 2021a; Reddy et al., 2023). Traditional EE systems,
which construct extractions based on text spans (Huang et al., 2024), are ill-suited for this purpose.
This is especially important for entity arguments; most EE systems either do not link entities, or
use tools that link to Wikidata (Wen et al., 2021) or Wikipedia (Li et al., 2019a; 2020a), which do
not necessarily match the expectations of the domain, leading to the need for domain-specific entity
datasets and systems (Wei et al., 2016). As such, an EE system should facilitate event argument
normalization, and support linking entities to a any provided entity database.

High Demand for Annotation Quality Even manual annotation of events is challenging, and
poor annotation quality is especially detrimental as it contributes to biased inferences in high-impact
policy decisions such as international peacemaking efforts (Andrea Ruggeri & Dorussen, 2011).
This often necessitates expert annotations instead of crowdsourcing (Raleigh et al., 2010; Caselli &
Huang, 2012). As such, automatic EE systems should be built and evaluated using high quality data.
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Multilinguality To study the real world, we often need a global view, which necessitates support
for a wide range of languages, especially low-resource ones, as for example much of the political
analysis of outbreaks and conflicts is focused on the global south and the international setting. Ex-
isting event datasets only cover a few languages such as English and Chinese, therefore, EE systems
are not properly evaluated on how well they can be used to study global phenomena.

Flexible Schema and Ontology It is important to support custom schemas and entity lists. Many
codebooks have been developed for events over many decades of work (Azar, 1980; McClelland,
1978; Walker et al., 2006; Gerner et al., 2008; Walker et al., 2006; Halterman et al., 2023a; Tracey
et al., 2022; Duruşan et al., 2022). Oftentimes, scholars define a new domain-specific schema for the
phenomena they want to study de Mesquita et al. (2015). While recent work in zero-shot information
extraction has made advancements in this direction Sainz et al. (2024), they do not generalize well
to arbitrarily varied schemas (Section 5.2).

Intermediate Annotations are not Available In EE literature, the task, datasets and systems are
all typically divide into several parts (Huang et al., 2024), each requiring cumbersome span-level
annotations: 1) event trigger identification, 2) event trigger classification, 3) event argument iden-
tification, 4) event argument classification, 5) entity detection, 6) entity coreference resolution 7)
entity linking, and 8) event coreference resolution. Different works either work on a subset of these
tasks, or lump them together under the names like event detection (1 and 2), or event argument ex-
traction (3 and 4). Even document-level EE (Tong et al., 2022) relies on span-based intermediate
annotations for the task. These intermediate annotations add to the cost of obtaining data for a new
domain, and make high quality annotations even more challenging.

In summary, automatic EE in the real world remains challenging. To study a new phenomena (or
and old phenomena from a new angle), we need high quality data, often multilingual and with
normalized entities across different languages. As an example of the level of effort required, Armed
Conflict Location and Event Data (ACLED) (Raleigh et al., 2010; 2023) is annotated by a team of
200 researchers from around the globe (Sam Jones, 2022). To make matters more challenging, off-
the-shelf tools like entity linkers that work against Wikidata are not applicable to many domains (Wei
et al., 2016). These limitations have remained largely unchanged even with the recent use of large
language models (LLMs) and in-context learning in EE (Wang et al., 2023; Sainz et al., 2024).

In this paper, we attempt to bridge this gap between the real-world requirements and EE research by
making a real event dataset available, and by evaluating the use of NLP technology to assist in real
world EE.

The Abstractive EE (AEE) Problem. Aiming to create a useful tool for real-world EE, we for-
mulate the AEE problem. The distinguishing factor in AEE is that it moves away from the surface
form of the text, and focuses on grounding events on a predefined ontology like an entity database,
or categorical event arguments 1. We define the AEE problem as follows:

Definition 1

We define event extraction codebook C = (T,D, S) where

• T is the set of possible event types,

• Each D ∈ D is a domain such as integers, real numbers, or a set of known entities,

• A list of event signatures S = [(t1, a1,1, . . . , a1,n1
), ...], where ni is the number of argu-

ments for event type ti, and ai,j is an argument with domain Di,j ∈ D

Definition 2

The Abstractive Event Extraction (AEE) problem is: given codebook C = (T,D, S) and writing
w ∈ W , extract abstractive event AEE(w,C) = (ti, v1, ..., vni

) which is the main event Tong et al.
(2022) in w, where ti is the ith event type in T , vj ∈ Di,j and ni is the number of arguments for
event type ti .

1The term abstractive has been used in other NLP tasks like OpenIE (Pei et al., 2023) and summariza-
tion (Radev et al., 2002) to refer to the concept of moving away from the surface form.
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In the example in Figure 1, ti = MobViolence ∈ T , the first two arguments, group 1 and group 2
represent the two sides in the violence, with Di,1, Di,2 being the set of all subsets of possible entities
from the event database, the third argument is a location, and domains of the last two arguments,
Di,4, Di,5, are both booleans.

In AEE, we remove the limitation for arguments to be spans, or explicitly mentioned in the text at
all. In addition to the abovementioned benefits, this also enables the annotation of implicit event ar-
guments. For instance in Figure 1, the higher-level entities like “Dalit Caste Group” require domain-
specific knowledge (the caste system in India in this example), which is provided as a descriptions
in the entity database.

The LEMONADE Dataset. We present an event dataset for the AEE task called LEMONADE
(Large Expert-annotated Multilingual Ontology-Normalized Abstractive Dataset of Events). The
dataset is extracted from the high-quality data annotated by experts at ACLED. This data has been
used by international organizations like The United Nation’s International Organization for Migra-
tion, The International Rescue Committee and The European Commission for tracking and predict-
ing forced displacements and evaluating humanitarian efforts (ACLED, 2023).

Solving the AEE Problem In this paper, we study the following questions:

1. Given a high-quality AEE training dataset, can we perform AEE effectively?
2. It is costly to create a large high-quality AEE training dataset for new domains. Is it possible

to create a zero-shot model for AEE?

The contributions of this paper include:

• A new expert-annotated dataset called LEMONADE. It includes 41, 148 events covering 16
languages, including several languages like Indonesian, Burmese and Nepali that were not
previously studied for events in an academic setting. LEMONADE has many entities that
do not have Wikidata or Wikipedia entries, making it especially challenging and a suitable
testbed for zero-shot entity linking systems.

• Our supervised AEE model achieves 71.6% F1 on LEMONADE, establishing a strong base-
line.

• We propose ZEST, a novel zero-shot system for AEE. To handle the full complexity of
the real-world AEE problem, we decompose the problem into manageable subproblems; of
note is the novel zero-shot entity linking component. The zero-shot ZEST achieves 57.2%
on the LEMONADE, which is 13.5% better than existing zero-shot baselines.

2 RELATED WORK

The task of Event Extraction aims to extract events and their arguments from a given context. The
Message Understanding Conferences (MUC) in the 1990s (Grishman & Sundheim, 1996) were
one of the first endeavors at building automated EE systems (Anderson et al., 2012). The datasets
prepared for MUC pioneered text spans as the unit of some system outputs. Today’s EE research
is based on the task formulation of the ACE05 project (Walker et al., 2006), which divides the task
into subtask at the sentence level with span-based intermediate annotations (Walker et al., 2006). Li
et al. (2021b) extended EE to allow for arguments of an event to be from surrounding sentences,
and Li et al. (2021b) introduce the concept of “most informative span” for arguments. Tong et al.
(2022) introduced the DocEE dataset, where event arguments are scattered across the document,
fully realizing EE as a document-level task.

EE has been extensively studied in the AI community (Ji & Grishman, 2008; Liao & Grishman,
2011; Chen et al., 2015; Liu et al., 2018; Yang et al., 2019; Zhu et al., 2024b; Ren et al., 2024;
Lai, 2022; Li et al., 2022; Zhou et al., 2020). Previous work has employed a variety of approaches
including graph-based modeling, which leverages structured relationships within data (Dutta et al.,
2021; Lai et al., 2020; Zhang et al., 2020) and language modeling (He et al., 2015; Michael et al.,
2018; Li et al., 2019b; Du & Cardie, 2020). Furthermore, joint modeling techniques (Nguyen et al.,
2022; Hsu et al., 2022; Zhang & Ji, 2021) sometimes dubbed end-to-end models (Zheng et al.,

3
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Police registered cases against 160 people after clashes broke out 
between two communities allegedly after casteist songs were played 
during a temple festival at Boomireddipatti village near Nangavalli.
 

On Friday night, some youths belonging to the Vanniyar community 
played caste-related songs. 
Upset by this, some youths from the Arunthatiyar community staged 
a protest, resulting in clashes between the two sides. 
A few people on both sides suffered minor injuries. ...
Police then registered cases against 150 people from the Vanniyar 
community, and ten people from the Arunthatiyar community were 
also booked. 

     MobViolence(
group_1=[

'Other Backward Class Group',
'Vanniyar Caste Group',
'Rioters'

],  
group_2=[

'Arunthatiyar Caste Group',
'Dalit Caste Group',
'Rioters'

],
location=Location(

country='India',
address='Nangavalli, Salem, Tamil Nadu, India',

),
fatalities=0, 
targets_civilians=False,
targets_local_administrators=False)

Arunthatiyar Caste Group: A marginalized community primarily in Tamil Nadu, India ....                                                                    
Vanniyar Caste Group: A community in Tamil Nadu, India ...                                                                                                                  
Dalit Caste Group: Also known as Scheduled Caste or by regional names such as Adi Dravida, refers to a historically ...                  
Other Backward Class Group: Socially disadvantaged groups in India and Nepal, recognized by government policies ...                   
Rioters: Loosely assembled groups or mobs that engage in spontaneous or organized acts of violence ...                                             

Text Input

Abstractive Event Extraction (AEE) Output

Police registered cases against 160 people after clashes broke out 
between two communities allegedly after casteist songs were played 
during a temple festival at Boomireddipatti village near Nangavalli.
 

On Friday night, some youths belonging to the Vanniyar community 
played caste-related songs. 
Upset by this, some youths from the Arunthatiyar community staged 
a protest, resulting in clashes between the two sides. 
A few people on both sides suffered minor injuries. ...
Police then registered cases against 150 people from the Vanniyar 
community, and ten people from the Arunthatiyar community were 
also booked. 

Text Input

Event Extraction (EE) Output

MobViolence(
    mention='clashes',
    entity =[

'some youths from the Arunthatiyar community',
'two sides'
  ],

    Place=[]
)

MobViolence(
    mention='broke out'
    entity=[
  'two communities',
  '160 people',
    ],
    Place=['temple festival'], 
)

Domain
Entities

Figure 1: An example of a “Mob Violence” event from the LEMONADE dataset showing the many
significant differences between AEE and EE on the same text input. For AEE, entities must be
matched to one of the entities in the given domain, whereas EE annotations refer to the entities as
span in the text. AEE identifies that it is a single event, whereas EE classifies it as two, with no way
to annotate the two sides of the conflict consistently across them. AEE notes the two clashing groups
explicitly. Group 1 includes not just “Vanniyar Caste Group” but “Other Backward Class Group”,
the larger group that the Vanniyar caste belongs to under the Indian government definition, as well
as “Rioters” to indicate the presence of rioters. Similarly, group 2 includes not just “Arunthatiyar
Caste Group”, but the larger group “Dalit Caste Group” and the generic rioters group. The larger
group information requires knowledge beyond what is in the text input; this is important to annotate
given the known rivalries between the groups. Furthermore, the location information in AEE is
much more precise than that of EE, enabling spatial analysis.

2019), integrate multiple EE subtasks to improve extraction accuracy. With the recent advances in
generative language models, more research has focused on applying generative methods on event
extraction (Shi et al., 2023; Anantheswaran et al., 2023; Li et al., 2021b; Lu et al., 2021), culminating
in the use of LLMs (Xu et al., 2023; Wang et al., 2023; Qi et al., 2024). We note that AEE is different
from end-to-end approaches, in that it does not rely on intermediate annotations of auxiliary tasks.

Most EE datasets focus on English, and to a lesser extent Chinese (Zhu et al., 2024a; Ren et al., 2024;
Walker et al., 2006). Event extraction datasets for other languages include BKEE (Nguyen et al.,
2024) for Vietnamese, InDEE-2019 (Maheshwari et al., 2019) for 5 Indic languages, MEE (Pouran
Ben Veyseh et al., 2022) for Portuguese, Spanish, Polish, Turkish, Hindi, Japanese and Korean,
Zavarella et al. (2014) for Bulgarian, Romanian and Turkish, and Balali et al. (2022) for Farsi.

While there are several socio-political event databases that use automated tools for extraction (Lee-
taru & Schrodt, 2013; Hallberg, 2012), manual annotation remains the gold standard.

Event extraction in the socio-political domain has long been an important research theme (Raleigh
et al., 2010; Chenoweth & Lewis, 2013; Weidmann & Rød, 2019; Kriesi et al., 2019; Hürriyetoğlu
et al., 2024b). A line of recent work uses language models to detect socio-political events with
nuanced contextual understanding (Tanev, 2024; Tanev & De Longueville, 2023; Mehta et al., 2022;
Slavcheva et al., 2023). Since data scarcity is a critical issue in socio-political event extraction,
finding innovative data utilization strategies has also become a focus (Loerakker et al., 2024; Bakker
et al., 2024; Mutlu & Hürriyetoğlu, 2023; DeLucia et al., 2023; Raj et al., 2022).
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3 LEMONADE, A MULTILINGUAL AEE DATASET FOR THE REAL WORLD

LEMONADE is an expert-annotated event dataset covering 16 languages: English, Spanish, Arabic,
French, Portuguese, Korean, German, Ukrainian, Burmese, Italian, Turkish, Indonesian, Russian,
Farsi, Nepali, and Chinese. These languages are selected for their typological diversity (Clark et al.,
2020), and span several high and low resource languages. To the best of our knowledge, this is the
first event extraction dataset for Burmese, Indonesian and Nepali, and covers the most number of
languages than any other event dataset by far.

In event extraction, intermediate annotations like event mentions and entity mentions are expected
from datasets and systems (Liu et al., 2021). One event can be mentioned multiple times in the
document, and those are called event coreferences. LEMONADE, on the other hand, following AEE,
does away with annotating entity spans and coreferences, and event mentions and coreferences.
Instead, it focuses on actually reporting the event that the document describes.

LEMONADE is based on the Armed Conflict Location and Event Data (ACLED) (Raleigh et al.,
2010). Originally published in 2010, ACLED focused on civil war, subnational and transnational
violent events in 50 unstable countries, it has since expanded to track more types of political violence
event, as well as civil unrest events, in 243 countries and territories in 100 languages in near real-
time (Sam Jones, 2022; ACLED, 2023). We chose this as our data source because in addition to the
wide language coverage, it has high-quality expert annotations, mitigating quality issues present in
many NLP datasets (Campagna et al., 2022).

In the rest of this section, we describe the process of creating LEMONADE.

We preprocess the ACLED data with the goal of transforming it into a format that is more amenable
for AI models, while keeping as much of the information as possible. The main challenge is to
ensure annotations only contain information that can be extracted or inferred from the input. The
steps taken involve data cleaning and reannotation of certain event arguments. The general process
was automated as much as possible, and involved spot-checks and several rounds of improvements
from two authors of this paper.

ACLED Annotation and Review Process. We start from the publicly available expert annotations
of ACLED. ACLED annotations are done by a group of around 200 experts and is updated on a
weekly basis. It sources writings from news media, international organizations, NGO and security
reports, and local partner organizations and select social media channels. It annotates one event per
writing, the main event excluding historical events that are typically mentioned in writings to provide
more context. These writings go through a multi-step review and quality assurance process (ACLED,
2020). The annotation of events is done at a regional level (e.g. the Middle East, Africa etc.) by
experts of those regions. These experts have local language skills and knowledge about regional
conflicts, and many live within the country they cover. The annotations are then merged by a research
manager who reviews these data for inter-coder reliability across the region. Researchers use an
annotation tool that provides them with the up-to-date list of entities and locations, and communicate
with each other to clarify difficult annotation decisions. After merging regional data, another round
of manual reviewing is performed by another expert.

There are 25 politically significant event types covering battles, protests, riots, violence against
civilians, political agreements, arrests and more. Appendix D shows the full list of event types and
the arguments of each one.

Data Filtering and Cleaning We obtain all events from the first 7 months of 2024. Overall, this
includes 112, 885 events, each paired with a writing and an annotated event. After analyzing the
data, we realized that many social media posts in the data are accompanied by an image (e.g. protest
fliers), and the text alone is not enough to annotate the event. Therefore, we exclude social media
posts. We also remove the 1% longest and shortest writings, because very short ones (often from
local partner organizations’ reports) do not include enough context for annotating the event, and
very long texts are often a combination of multiple news articles. This leaves us with 90,035 events
sourced mainly from mostly news articles. A number of ACLED events include multiple writings
and annotations, each one covering one aspect of the event, for example, a national protest that
occurs in multiple cities. We keep one of each event, and are left with 63, 217 events. We further

5
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limit the data to languages that have at least 500 events. We obtain the writings from the provided
URLs, and clean them by removing advertisements etc. using an LLM prompt.

Entity Database ACLED annotates entities involved in each event. We provide a database of 6217
entities that appear in ACLED events in 2024. In each event, entity arguments have a small subset
of this database as their value. This list contains both generic entities (Halterman et al., 2023b) like
“Rioters”, “Women”, “Students”, and specific entities like “Vanniyar Caste Group”.

Often, domain knowledge is required for entity linking in specialized domains. The example in
Figure 1 demonstrates this. There are entities that are explicit mentioned in the source article and
need to be linked to the database, and there are entities whose role in the event is implicit, or are
annotated because of their relationship with an explicit entity.

While it is possible to learn entities of a domain with enough data, we want LEMONADE to en-
able research on zero-shot entity linking in this challenging setting. Therefore, to make domain
knowledge available to models in a realistic way, we also provide a one-paragraph description for
each entity. These descriptions are meant to provide entity linking models with enough context and
domain knowledge to understand domain entities, especially the long tail (Mallen et al., 2023).

Location. Location is a crucial event argument for conflict events. In ACLED, the country and up
to three subnational administrative levels are annotated (ACLED, 2023). In cases where an event
happens in an unknown location within a larger geographic area, or near a city or border, the closest
location is used as the location. In rare cases, other sources like maps are used to pinpoint the exact
location of an event. There are two issues with this approach when used for building or evaluating
AI models. First, because the annotations contain locations that are not inferrable from the writing,
this would encourage models to hallucinate a location. Second, it puts the burden of knowing the
location hierarchy (e.g. which town is in which province) on the shoulders of the AI model. For
these reasons, we provide a simpler definition for location, and reannotate the location argument
to match this definition: “The location argument is the most specific place that is supported by the
writing”.

For reannotation, we use the original ACLED location annotations to consult the OpenStreetMap
geographic database (OpenStreetMap contributors, 2017) to find the full hierarchy of location above
the neighborhood level for each event. We then start from the lowest location level and remove the
items that are not supported by the writing, until we reach one that is. We then keep that location
and all levels above that. A carefully designed LLM prompt was used for this last stage. The final
location arguments were spot-checked by the authors, and 97% of them were correct according to the
above definition. The Location argument in Figure 1 shows an example output of this reannotation
process. In addition, during evaluation (Section 5.1), we first use the same geographic database
to normalize locations, in case the AI model predictions have slight differences such as different
spelling of town names, or a missing province name when the town name is extracted correctly.

Schematization ACLED uses the same event argument roles for all event types, resulting in some
argument roles being always empty for some event types or the argument names being too generic.
we define separate event argument roles for each event type. For example, we remove “fatalities”
argument from “Peaceful Protest” and rename “actor 1” to “Abductor” for the “Abduction or forced
disappearance” event type. We also provide a short description for each event type, and expert
descriptions for each event argument, to facilitate the development of zero-shot models.

Following the recent trend in event extraction, we use Python code to represent annotations. This
has been shown to improve the performance of various supervised (Sainz et al., 2024) and few-
shot (Wang et al., 2023) models because it makes the labels closer to the code data many language
models have been pre-trained on. Furthermore, this enables the use of constrained decoding (Rabi-
novich et al., 2017; Willard & Louf, 2023) algorithms to eliminate malformed outputs. Appendix D
presents the full schema for LEMONADE.

Data splits We provide validation and test sets in 16 languages, and a large training set in English.
The data split is across time, meaning that the events in the training set are from the first 6 months
of 2024, and the events in validation and tests sets are from July 2024. This mimics the real-
world setting where the distribution of events and entities might change over time. Because of this
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Table 1: LEMONADE statistics per language.

Total en es ar fr pt ko de uk my it tr id ru fa ne zh
Train 17000 17000 - - - - - - - - - - - - - - -
Dev 12074 1000 1000 1000 1000 1000 1000 1000 842 724 721 714 703 395 387 316 272
Test 12074 1000 1000 1000 1000 1000 1000 1000 842 724 721 714 703 395 387 316 272

split, 22.1% of entities in the validation and test sets are not seen in the training set. The split
between validation and test sets is random. Table 1 shows the language statistics of LEMONADE,
and Appendix A contains event type and geographical distribution of the dataset.

4 ZEST: A ZERO-SHOT AEE MODEL

LEMONADE is the rare case where a large high quality training set is available, but that is not the
case for many scenarios. In this paper we want to leverage LEMONADE to understand how we can
tackle AEE, without requiring expert annotations for training. We assume no access to training data
in any language, and that only the information about the schema and the domain is provided in the
form the event ontology, and the entity database.

For this, we present a zero-shot system called ZEST. ZEST uses zero-shot in-context learning (i.e.
only instructions). The inputs to AEE, writing w and codebook C, can be really long, with each event
type having its argument signature. It is ineffective, if we present the LLM with the entire codebook.
Our preliminary experiments showed that adding few-shot examples is inadequate, perhaps also due
to the large size of w.

To address the complexity of AEE, we break it down into 3 simpler tasks that are more amenable to
in-context learning:

1. Event Detection (ED) finds the abstractive event type;

2. Abstractive Entity Detection and Linking (EDL) finds a subset of the entity database in-
volved in the abstractive event and assign them to the correct event argument;

3. Abstractive Event Argument Extraction (EAE) finds the event arguments for non-entity
arguments, given the event type.

Note that EDL and EAE are handled differently from each other in ZEST, because the very large
size of the entity domain adds more challenges that a zero-shot system needs to handle. Formally:

Definition 3

Given codebook C = (T,D, S) and writing w ∈ W ,

ED = t,where AEE(w,C) = (t, . . .)

EDL(w,C, t) = V,where AEE(w,C) = (t, v1, . . .) and vi ∈ V

EAE(w,C, t) = [v1, . . .],where AEE(w,C) = (t, v1, . . .)

ZEST Event detection (ED) Given that the list of event types (T ) is relatively small (25 in the case
of LEMONADE), event detection can be done as a zero-shot in-context learning task. The prompt
(Table 5) includes the input writing w and a list of event types and their descriptions. The task is to
return the most likely event type t. We use chain-of-thought (Wei et al., 2023) for this prompt.

ZEST Entity Detection and Linking (EDL) Once the event type is determined, the next step is
to narrow down the list of possible entities that are involved in the event.

We found that in-context learning cannot handle the large number of entities (6217 in the case of
LEMONADE) in the AEE task if they are presented in one prompt. Therefore, we tackle this in two
stages: the first narrows down the number of candidate entities and the second stage further more
closely filters down the set.
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We divide the list of all possible entities into groups of N . We use a simple zero-shot prompt
(Table 6) that given w, t and all entities in each group, removes the irrelevant entities. In practice,
we find that a wide range of values for N works well, and we choose N = 63 (i.e. 100 groups in
the case of LEMONADE) in our experiments.

Given the w and the smaller list of entities and their description, the next step uses another prompt
(Table 7) to find evidence of each entity’s involvement in the event and remove the ones for which we
cannot find any evidence. We find that this formulation is especially helpful in identifying implicit
entities.

The last step is to match each entity with its correct event argument (e.g. is an entity the “victim” or
the “perpetrator” of an “Attack” event?). For this, we use another prompt (Table 8) that given a list
of entities and event arguments, outputs a mapping between the two.

ZEST Event Argument Extraction Given the identified event type and entity arguments, we now
extract all the other arguments using an approach similar to Wang et al. (2023). This is done using
a prompt (Table 9) that given w and the event type signature for t, outputs all non-entity argument
values.

5 EXPERIMENTS AND RESULTS

In addition to the zero-shot setting, we also measure the performance of the system separately in
English and non-English languages (i.e. zero-shot cross-lingual generalization), and unseen actors
(i.e. zero-shot generalization to unseen actors).

5.1 METRICS

To evaluate a predicted event against a gold event from LEMONADE, we first normalize the location
arguments using a lookup in the OpenStreetMap geographic database. We then use simple string
equality to calculate precision, recall and micro-averaged F1 (Manning et al., 2008).

For ED, we compare the predicted event type against the gold event type, and report the micro
averaged ED F1. For EAE, we force the gold event type as the first part of the model output, and
have it generate event arguments and their values {(a′1, v′1), ...}. We then consider this set as the
returned result, and calculate its precision, recall and F1 against the gold {(a1, v1), ...} and report
EAE F1. In other words, two arguments are considered equal if their argument and values match.

We define and choose AEE F1 as our main metric, which is similar to EAE F1, except that if the
predicted event type is incorrect, all arguments are considered incorrect, contributing to both false
positives and false negatives in the calculation of F1.

For entities, we report EDL F1, which is the result of comparing the entity IDs between prediction
and gold. Note that EDL F1 ignores the argument type a. Additionally, we report EDL on two
interesting subsets of entities: entities that have been seen in LEMONADE’s training set, and those
that are unseen.

5.2 SETUP

Supervised Setting If enough training data is available, we show that simply modeling the task as
a sequence-to-sequence task is effective: the model is given w as input, and is trained to predict the
full Python code representing the event. For this setting, we fine-tune several language models on
the English LEMONADE training set. We use the 8-billion parameter version of LLaMA 3.1 (Dubey
et al., 2024) for its strong performance in multilingual benchmarks. We also include LLaMAX (Lu
et al., 2024), which extends LLaMA 3 to more than 100 languages by continual pre-training and the
12B parameter model Mistral-Nemo-Base-2407 for its tokenizer’s better support of non-Latin
scripts. For comparison, we also include the 7-billion parameter version of LLaMA 2 (Touvron
et al., 2023), which has not been specifically trained for non-English languages, though its pre-
training data contains a small amount. The base (non-instruction-tuned) versions of all models are
used.
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We also experiment with translation at test time (Moradshahi et al., 2020), by translating all w in
the test/dev sets into English using GPT-4o. This way, the supervised AEE model receives English
text as input at inference time, which matches its training data more closely.

Zero-shot Setting For all zero-shot experiments, we use GPT-4o version gpt-4o-2024-08-06.
We measure the impact of the zero-shot EDL of ZEST separately. We use constrained decoding
when generating Python code for all settings, so the outputs are always syntactically valid, e.g. the
event arguments are valid for the predicted event type. The most promising zero-shot baseline from
the EE literature is GoLLIE (Sainz et al., 2024), given that it claims to support flexible schemas.
However, while we were able to reproduce its results on the datasets they experimented with, the
outputs were poor when evaluated with even a small change to the “Location” field. We believe this
is due to the limited diversity in event schemas in its training data.

5.3 OVERALL RESULTS

Table 2 shows the result of our supervised and zero-shot systems on the LEMONADE test set, aver-
aged over the 16 languages. LLaMA 3.1, LLaMAX and Mistral NeMo perform similarly, all within
0.2% of each other in the AEE F1 metric. The added language support in LLaMAX has minimal
effect. We attribute this to the fact that in LEMONADE, all outputs are normalized (and therefore in
English), so the models have an easier task generalizing to new languages. Translating the docu-
ments to English, improves the AEE F1 between 1.9% and 4.3%. The LLaMA 2 model which has
not gone through special multilingual pre-training, on the other hand, sees the most benefit from
translation at test time, with an improvement of 9.5% in AEE F1.

As for our zero-shot system ZEST, it is 14.4% and 10.5% behind the best supervised (Mistral Nemo
+ translation) and the best supervised model without translation (LLaMAX) in terms of AEE F1.
The majority of this gap comes from ED (9.8% and 8.3% gap), while EAE is closer (8.2% and
5.0% lower). One area that ZEST shines, is in entity linking accuracy. Specifically, it adds 45.5%
over the baseline of directly generating entities with LLM, and outperforms the supervised models
in the unseen entity setting by at least 32.6% When training data is available for entities, however,
supervised models significantly outperform ZEST.

Table 2: Results of our zero-shot and supervised systems on the test set of LEMONADE. Numbers
are averages over all 16 languages. The highest number for each metric is in bold.

ED F1 EAE F1 AEE F1 EDL F1 (all) EDL F1 (seen) EDL F1 (unseen)
Supervised Models

LLaMA 3.1 (8B) 87.3 77.3 67.5 68.6 80.9 14.1
+ translation at test time 88.5 80.2 71.0 69.9 82.0 17.2
Mistral NeMo (12B) 87.9 76.6 67.3 69.2 81.5 12.1
+ translation at test time 89.6 79.9 71.6 71.3 83.0 17.7
LLaMAX (8B) 88.3 76.7 67.7 68.3 80.5 13.3
+ translation at test time 88.1 79.0 69.6 70.3 82.2 16.3
LLaMA 2 (7B) 82.1 73.3 60.2 64.2 75.6 11.3
+ translation at test time 88.0 79.2 69.7 69.3 80.5 17.2

Zero-shot Models
ZEST 79.8 71.7 57.2 54.0 55.3 50.3
- entity linking 79.8 54.8 43.7 8.5 18.4 0.2

5.4 PER-LANGUAGE RESULTS

We take a closer look at the performance of the best cross-lingual model (LLaMAX without transla-
tion), and ZEST in each individual language. Table 3 shows per-language results on the LEMONADE
test set. The largest gap between the supervised model and ZEST is in English (25% in AEE F1),
which is reasonable given the training data for LLaMAX is in English. We provide the language
acronym mapping in Appendix.
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Our analysis of the outputs show that the variance between languages is mainly due to the different
distributions of event types. For instance, in politically stable countries (where writings in Korean,
Italian, Chinese and German languages come from), almost all event types are of “Protest” type,
and there are no battles or remote violence reported, and we observe that ED score for supervised
methods is really high. Overall, given the abstractive nature of the task, and the fact that the gold
annotations are normalized and in English, the effect of cross-lingual capabilities of the model be-
comes less influential relative to extractive EE.

ZEST outperform the supervised model in Burmese (my). This language, widely spoken in Myan-
mar, has a wide range of event types in LEMONADE, and due to its low-resource nature, is quite
challenging in the cross-lingual setting. Russian, Farsi, Turkish and French are other languages
where the gap is relatively small.

Table 3: AEE F1 of two models on individual languages of the LEMONADE test set.

Model en es ar fr pt ko de uk my it tr id ru fa ne zh
LLaMAX 76.7 72.3 48.9 65.6 66.1 81.3 78.5 62.9 41.2 76.6 64.0 76.4 63.7 67.7 65.9 79.3
ZEST 51.7 60.3 40.9 61.5 52.4 57.4 71.0 54.7 43.8 70.4 60.0 60.1 61.4 63.8 51.9 67.0

6 CONCLUSIONS

This paper introduces the task of abstractive event extraction (AEE), which more closely matches
the requirements of event extraction for real-world applications. We have derived a large high-
quality dataset for the AEE task, in 16 different languages, from the expert-annotated data created
by ACLED.

We introduced ZEST, a novel zero-shot AEE system, that achieves 57.2%. With our supervised
model that achieves 71.6% F1, they represent strong baselines for this new dataset.

Reaching 71.6% with supervised learning, our system can be helpful to human annotators by pro-
viding them with the first draft to accelerate the annotation task. Furthermore, errors do occur in
human-annotated data. The automatically generated results can be used to double check human an-
notations. During the error analysis of ZEST for example, we discovered a few missing entities in
the manual annotations. In contrast, we note that the original EE formulation that refers to entities
as spans in the text is not useful for event analysts, nor can it be used to help human annotators.

ETHICS STATEMENT

No human subjects were involved in this study. We will release LEMONADE in accordance with the
ACLED Terms of Use. ACLED data do not contain personally identifiable information (e.g. names
of individuals or mobile device IDs), and cannot be used to track individuals. No crowdsourcing
was performed as part of this paper.

REPRODUCIBILITY

Appendix C contains the hyperparameters of all fine-tuned models. Section 5.2 includes more details
on the specific models and LLMs used. All LLM prompts used in ZEST are listed in Appendix B.

Section 5.1 explains the metrics used. We provide a detailed description of the preprocessing steps
of the LEMONADE dataset in Section 3, and its statistics in Section 3 and Appendix A.

We are also attaching an anonymized version of our code for ZEST, and a sample of the LEMONADE
dataset to this submission. We will publicly release the code and the full dataset upon publication.
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De Longueville. Tracking COVID-19 protest events in the United States. shared task 2: Event
database replication, CASE 2022. In Ali Hürriyetoğlu, Hristo Tanev, Vanni Zavarella, and Er-
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A LEMONADE STATISTICS

Tables 4 and Figure 2 show the distribution of event types and country-level locations of events in
LEMONADE respectively.
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Table 4: The number of event types in all splits of LEMONADE. While imbalanced, the distribution
of event types tracks that of the real world. For example, by far the most common among these
events are peaceful protests.

Event Type Count
GovernmentRegainsTerritory 6
NonStateActorOvertakesTerritory 55
ArmedClash 2775
ExcessiveForceAgainstProtestors 30
ProtestWithIntervention 993
PeacefulProtest 24805
ViolentDemonstration 910
MobViolence 2015
AirOrDroneStrike 1218
SuicideBomb 4
ShellingOrArtilleryOrMissileAttack 1161
RemoteExplosiveOrLandmineOrIED 480
Grenade 93
SexualViolence 54
Attack 3231
AbductionOrForcedDisappearance 304
Agreement 68
Arrest 631
ChangeToArmedGroup 362
DisruptedWeaponsUse 641
BaseEstablished 12
LootingOrPropertyDestruction 780
NonViolentTransferOfTerritory 19
OtherStrategicDevelopment 500

(a) Train set (b) Validation set (c) Test set

Figure 2: Distribution of event locations in LEMONADE. Note that the dataset includes more spe-
cific locations, but here we only plot the country level. In addition to being linguistically diverse,
LEMONADE is also geographically diverse. The distribution of the train set is skewed towards India,
because it only contains English events.

B ALL PROMPTS FOR ZEST

Here we provide the prompts used in ZEST. Some prompts are edited for brevity. The full text of
prompts can be obtained from our code. The syntax used is the Jinja2 template language, which sup-
ports Python-like loops ({% for %}{% endfor %}), conditions ({% if %}{% endif %}),
variables ({{ var }}) and comments (#).
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# instruction
You are tasked with determining the best matching Event types for a given

news article. You will be provided with annotation guidelines and a
news article to analyze. Your goal is to identify the most relevant
event types and rank them in order of their match to the article
content.

# input
Here is the news article you need to analyze:
{{ article }}

Now, carefully review the annotation guidelines for various event types:

{% for ed in event_definitions.items() %}
[{{ loop.index }}] "{{ ed[0] }}": {{ ed[1] }}

{% endfor %}

1. For each event type, determine how well it matches the article content
. Consider the following factors:

- How closely the event description aligns with the main focus of the
article

- The presence of key actors or entities mentioned in the event type
description

- The occurrence of specific actions or outcomes associated with the
event type

2. Rank the event types based on their relevance to the article content.
Only include event types that have a meaningful connection to the
article.

3. Output your results using the following format:
- List the relevant event types in descending order of match quality
- Use the ">" symbol to separate the event types

Your output should look like this:

[Explain your reasoning for the event types you decide to include, and
their order]

event_type_1 > event_type_2 > ...

Remember to exclude any event types that are not relevant to the article
content. Provide only the ranked list of event types in your final
answer.

Table 5: Prompt for event type detection (ED).
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# instruction
Your task is to select all entities involved in a news article from a

provided list. An entity is an individual, group, or organization
involved in an event. This includes:

- Organized armed groups with political purposes
- Named entities
- General terms describing participants like "Rioters", "Protestors", "
Civilians", "Labour Group", etc.

# input
News article:
{{ article }}

The event you should focus on is the {{ event }} event, which happened in
{{ country }}.

Guidelines:
1. Read the entire article carefully.
2. Identify groups, organizations, and individuals involved in the

described events.
3. Note both specific names and generic terms used for participants.
4. Consider entities that may be implicitly involved.
5. For politicians, include the name of their political party or group as

well, if available in the entity list.
6. Include both specific and generic entities when applicable (e.g., a

political party leading a protest should be counted as two entities:
the party name and "Protestors"), if available in the entity list.

7. Include characteristics like ethnicity or religion as separate
entities when mentioned (e.g., "Latin American Group" or "Women"), if
available in the entity list.

8. Err on the side of inclusion if unsure about an entity’s involvement.

From the following list, select entities involved in the event described
in this news article:

{% for entity in potential_entities %}
[{{ loop.index }}] {{ entity }}
{% endfor %}

Provide your answer listing one entity name per line:
entity name 1
entity name 2
...

Table 6: Prompt for the first stage of Entity Detection and Linking (EDL).
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# instruction
In this task, an "entity" refers to an individual, group, or entity

involved in the event described in the news article. entities can
include:

1. State forces
2. Rebels
3. Militias
4. Identity groups
5. Demonstrators
6. Civilians
7. External or other forces

Most entities in political violence events are organized armed groups
with a political purpose. They use violence for political means and
are typically named entities. However, entities can also include
unorganized groups like rioters, as well as protestors and civilians.

Your task is to find supporting evidence for each of the specified
entities in the given article.

# input
Follow these steps carefully:

1. First, you will be provided with the full text of the news article:

{{ article }}

2. Next, you will be given a list of entities involved with the {{
event_type }} event to search for:

{% for e in entities %}
{{ e }}

{% endfor %}

3. Identify all supporting evidence of each given entity. These could be
spans involving:
- The exact entity name or variations of its name
- Descriptive phrases that identify the entity
- Phrases that could be used to infer the involvement of the entity

4. If there are multiple evidence for the involvement of an entity,
output all of them.

5. For each evidence you find for an entity, provide your answer in the
provided structure.
Notes:
- Include the original entity name in the ‘entity_original‘ field to
denote which entities the evidence is for.
- The character index starts at 0 for the first character of the
article.
- If there are multiple evidences for an entity, provide multiple ‘
entitiespan‘s for it.
- If no evidence is found for an entity, respond with a mostly empty ‘
entitiespan‘ and only fill the ‘explanation‘ field.

Remember to be precise in your span detection and provide clear
explanations for each evidence span.

Table 7: Prompt for the second stage of Entity Detection and Linking (EDL).
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# instruction
An "entity" refers to an individual, group, or entity involved in an

event. Most entities in political violence events are organized armed
groups with a political purpose. They use violence for political

means and are typically named entities. However, entities can also
include unorganized groups like Rioters, Protestors and Civilians.

An entity can be a generic term like "Students" or "Protestors", or a
specific political group, militia, or armed group

Never use an individual’s name as an entity. If a politician is mentioned
, use the name of the political party or group they belong to.

Sometimes, a specific entity is accompanied by a generic entity. For
example, a political party leading a protest should be counted as two
actors: the political party, and "Protestors".

You will be given a news article, an event extracted from it, and a list
of actors. Your task is to assign each entity to the correct event
argument based on the information provided in the news article.

# input
First, carefully read the following news article:
{{ article }}

Now, consider the following event extracted from the article:
{{ event }}

Here is the list of actors to be assigned to event arguments:
{% for e in entities %}
- {{ e }}
{% endfor %}

You need to assign each actor to one of the following event arguments. Do
not modify any other part of the event.

{% for field in actor_fields %}
- {{ field }}
{% endfor %}

To complete this task, follow these steps:

1. Analyze the news article and the extracted event carefully.
2. For each actor in the provided list, determine their role in the event

based on the information in the news article. Note that some actors
may not be involved in the event at all, in which case, simply ignore
those.

3. Assign each actor to the most appropriate event argument.
4. If an event argument doesn’t have a corresponding actor, leave it as

an empty list.

Output the completed event arguments with the assigned actors in the
given JSON format. Note that you should always include the full name
of the actor.

Table 8: Prompt used for assigning entities to their correct event argument. A Pydantic schema is
also given to the model to follow.
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# instruction
You are an AI assistant tasked with extracting event arguments from a

given news article. You will be provided with annotation guidelines
for an event type and a news article to analyze.

# input
{{ article }}.
Extract the arguments of the main event in this article, which is of type

{{ event_type }}.
For "entity" arguments, note that an entity can be a generic term like "

Students" or "Protestors", or specific political groups, militia,
armed groups, etc. Never use an individual’s name as an entity.

Sometimes, a specific entity is accompanied with a generic entity. For
example if a political party is leading a protest, both the political
party’s name and the "Protestors" should be included as entities.

When identifying an entity, provide as much information as possible.

Table 9: Prompt used for EAE.

C HYPERPARAMETERS

All fine-tuned models were fine-tuned with batch size 128 for 5 epochs. The final model check-
point was selected for evaluation. Learning rate of 2 × 10−5, cosine learning rate scheduler and
AdamW (Loshchilov & Hutter, 2017) optimizer are used.

Training is done on a machine with 4 NVIDIA A100 GPU with 80GB, using DeepSpeed (Rasley
et al., 2020) and the Transformers (Wolf et al., 2019) library.

For access to GPT-4o model, we used the OpenAI API. For access to OpenStreetMap, we used the
publicly hosted version via Nominatim https://nominatim.openstreetmap.org/

D FULL SCHEMA OF LEMONADE

The following is the full schema of LEMONADE, after conversion to Python code, in Pydan-
tic (Colvin et al., 2024) format. Abstract classes (denoted by ABC are only meant to group
event types together and store common event arguments, are not counted as an event type, and
are not used by ZEST. Docstrings are modified from the ACLED codebook (ACLED, 2023).
WomenTargetedCategory and Location are two event types.

class Battle(ACLEDEvent, ABC):
"""
A "Battle" event is defined as a violent interaction between two organized armed groups at a particular
time and location. "Battle" can occur between armed and organized state, non-state, and external groups,
and in any combination therein. There is no fatality minimum necessary for inclusion. Civilians can be

harmed in the course of larger "Battle" events if they are caught in the crossfire, for example, or
affected by strikes on military targets, which is commonly referred to as "collateral damage" (for more,
see Indirect Killing of Civilians). When civilians are harmed in a "Battle" event, they are not

recorded as an "Actor", nor is a separate civilian-specific event recorded. If any civilian fatalities
are reported as part of a battle, they are aggregated in the "Fatalities" field for the "Battle" event.

The specific elements of the definition of a "Battle" event are as follows:
Violent interaction: the exchange of armed force, or the use of armed force at close distance, between
armed groups capable of inflicting harm upon the opposing side.

Organized armed groups: collective actors assumed to be operating cohesively around an agenda, identity,
or political purpose, using weapons to inflict harm. These groups frequently have a designated name and
stated agenda.

The "Battle" event type may include: ground clashes between different armed groups, ground clashes between
armed groups supported by artillery fire or airstrikes, ambushes of on-duty soldiers or armed militants

, exchanges of artillery fire, ground attacks against military or militant positions, air attacks where
ground forces are able to effectively fire on the aircraft, and air-to-air combat.

Cases where territory is regained or overtaken without resistance or armed interaction are not recorded as
"Battle" events. Instead, they are recorded as "NonStateActorOvertakesTerritory" under the "

StrategicDevelopment" event type
"Battle" event type has the following subtypes:
- GovernmentRegainsTerritory: Government forces or their affiliates regain control of a location from
competing state forces or non-state groups through armed interaction.

- NonStateActorOvertakesTerritory: A non-state actor or foreign state actor captures territory from an
opposing government or non-state actor through armed interaction, establishing a monopoly of force
within that territory.
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- ArmedClash: Armed, organized groups engage in a battle without significant changes in territorial
control.

"""

location: Location = Field(..., description="Location where the event takes place")
fatalities: Optional[int] = Field(

...,
description="Total number of fatalities, if known",

)

class GovernmentRegainsTerritory(Battle):
"""
Is a type of "Battle" event. This event type is used when government forces or their affiliates that are
fighting against competing state forces or against a non-state group regain control of a location
through armed interaction. This event type is only recorded for the re-establishment of government
control and not for cases where competing non-state actors exchange control. Short-lived and/or small-
scale territorial exchanges that do not last for more than one day are recorded as "ArmedClash".

"""

government_force: List[str] = Field(
...,
description="The government forces or their affiliates that regain control of the territory",

)
adversary: List[str] = Field(

...,
description="The competing state forces or non-state group that lose control of the territory. Can be

State Forces, Rebel Groups, Political Militias, Identity Militias or External Forces",
)

class NonStateActorOvertakesTerritory(Battle):
"""
Is a type of "Battle" event. This event type is used when a non-state actor (excluding those operating
directly on behalf of the government) or a foreign state actor, through armed interaction, captures
territory from an opposing government or non-state actor; as a result, they are regarded as having a
monopoly of force within that territory. Short-lived and/or small-scale territorial exchanges that do
not last for more than one day are recorded as "ArmedClash" events. In cases where non-state forces
fight with opposing actors in a location many times before gaining control, only the final territorial
acquisition is recorded as "Non-state actor overtakes territory". All other battles in that location are
recorded as "ArmedClash".

"""

non_state_actor: List[str] = Field(
...,
description="The non-state actor overtaking territory. Can be Rebel Groups, Political Militias,

Identity Militias or External Forces",
)
adversary: List[str] = Field(

...,
description="The opposing government or non-state actor from whom the territory was taken. Can be

State Forces, Rebel Groups, Political Militias, Identity Militias or External Forces",
)

class ArmedClash(Battle):
"""
Is a type of "Battle" event. This event type is used when two organized groups like State Forces, Rebel
Groups, Political Militias, Identity Militias or External Forces engage in a battle, and no reports
indicate a significant change in territorial control.

‘side_1‘ and ‘side_2‘ denote the two sides of the armed clash.
Excludes demonstrations that turn violent, riots, and other forms of violence that are not organized armed

clashes.
"""

side_1: List[str] = Field(
...,
description="Groups involved in the clash. Can be State Forces, Rebel Groups, Political Militias,

Identity Militias or External Forces",
)
side_2: List[str] = Field(

...,
description="Groups involved in the clash. Can be State Forces, Rebel Groups, Political Militias,

Identity Militias or External Forces",
)
targets_local_administrators: bool = Field(

...,
description="Whether this violence is affecting local government officials and administrators -

including governors, mayors, councilors, and other civil servants.",
)
women_targeted: List[WomenTargetedCategory] = Field(

...,
description="The category of violence against women, if any. If this violence is not targeting women,

this should be an empty list.",
)

class Protest(ACLEDEvent, ABC):
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"""
A "Protest" event is defined as an in-person public demonstration of three or more participants in which
the participants do not engage in violence, though violence may be used against them. Events include
individuals and groups who peacefully demonstrate against a political entity, government institution,
policy, group, tradition, business, or other private institution. The following are not recorded as "
Protest" events: symbolic public acts such as displays of flags or public prayers (unless they are
accompanied by a demonstration); legislative protests, such as parliamentary walkouts or members of
parliaments staying silent; strikes (unless they are accompanied by a demonstration); and individual
acts such as self-harm actions like individual immolations or hunger strikes.

Protestor are noted by generic actor name "Protestor". If they are representing a group, the name of that
group is also recorded in the field.

"Protest" event type has the following subtypes:
- ExcessiveForceAgainstProtestors: Peaceful protestor are targeted with lethal violence or violence
resulting in serious injuries by state or non-state actors.

- ProtestWithIntervention: A peaceful protest is physically dispersed or suppressed without serious
injuries, or protestor interact with armed groups or rioters without serious harm, or protestors are
arrested.

- PeacefulProtest: Demonstrators gather for a protest without engaging in violence or rioting and are not
met with force or intervention.

"""

location: Location = Field(..., description="Location where the event takes place")
protestors: List[str] = Field(

...,
description="List of protestor groups or individuals involved in the protest",

)

class ExcessiveForceAgainstProtestors(Protest):
"""
Is a type of "Protest" event (Protest events include individuals and groups who peacefully demonstrate
against a political entity, government institution, policy, group, tradition, business, or other private
institution.) This event type is used when individuals are engaged in a peaceful protest and are

targeted with lethal violence or violence resulting in serious injuries (e.g. requiring hospitalization)
. This includes situations where remote explosives, such as improvised explosive devices, are used to
target protestors, as well as situations where non-state actors, such as rebel groups, target protestors
.

"""

# Possible "Interaction" codes include: 16, 26, 36, 46, 56, and 68.

perpetrators: List[str] = Field(
...,
description="Entities perpetrating the violence. Can be State Forces, Rebel Groups, Political Militias

, Identity Militias, External Forces",
)
targets_civilians: bool = Field(

...,
description="Indicates if the ’ExcessiveForceAgainstProtestors’ event is mainly or only targeting

civilians. E.g. state forces using lethal force to disperse peaceful protestors.",
)

fatalities: Optional[int] = Field(
...,
description="Total number of fatalities, if known",

)

class ProtestWithIntervention(Protest):
"""
Is a type of "Protest" event. This event type is used when individuals are engaged in a peaceful protest
during which there is a physically violent attempt to disperse or suppress the protest, which resulted
in arrests, or minor injuries . If there is intervention, but not violent, the event is recorded as "
PeacefulProtest" event type.

"""

perpetrators: List[str] = Field(
...,
description="Group(s) or entities attempting to disperse or suppress the protest",

)
fatalities: Optional[int] = Field(

...,
description="Total number of fatalities, if known",

)

class PeacefulProtest(Protest):
"""
Is a type of "Protest" event (Protest events include individuals and groups who peacefully demonstrate
against a political entity, government institution, policy, group, tradition, business, or other private
institution.) This event type is used when demonstrators gather for a protest and do not engage in

violence or other forms of rioting activity, such as property destruction, and are not met with any sort
of violent intervention.

"""

# Possible "Interaction" codes include: 60, 66, and 67.

counter_protestors: List[str] = Field(
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..., description="Groups or entities engaged in counter protest, if any"
)

class Riot(ACLEDEvent, ABC):
"""
"Riot" are violent events where demonstrators or mobs of three or more engage in violent or destructive
acts, including but not limited to physical fights, rock throwing, property destruction, etc. They may
engage individuals, property, businesses, other rioting groups, or armed actors. Rioters are noted by
generic actor name "Rioters". If rioters are affiliated with a specific group - which may or may not be
armed - or identity group, that group is recorded in the respective "Actor" field. Riots may begin as
peaceful protests, or a mob may have the intention to engage in violence from the outset.

"Riot" event type has the following subtypes:
- ViolentDemonstration: Demonstrators engage in violence or destructive activities, such as physical
clashes, vandalism, or road-blocking, regardless of who initiated the violence.

- MobViolence: Rioters violently interact with other rioters, civilians, property, or armed groups outside
of demonstration contexts, often involving disorderly crowds with the intention to cause harm or

disruption.

"""

location: Location = Field(..., description="Location where the event takes place")
fatalities: Optional[int] = Field(

...,
description="Total number of fatalities, if known",

)
targets_civilians: bool = Field(

...,
description="Indicates if the ’Riot’ event is mainly or only targeting civilians. E.g. a village mob

assaulting another villager over a land dispute.",
)
group_1: List[str] = Field(

..., description="Group or individual involved in the violence"
)
group_2: List[str] = Field(

...,
description="The other group or individual involved in the violence, if any",

)
targets_local_administrators: bool = Field(

...,
description="Whether this violence is affecting local government officials and administrators -

including governors, mayors, councilors, and other civil servants.",
)
women_targeted: List[WomenTargetedCategory] = Field(

...,
description="The category of violence against women, if any. If this violence is not targeting women,

this should be an empty list.",
)

class ViolentDemonstration(Riot):
"""
Is a type of "Riot" event. This event type is used when demonstrators engage in violence and/or
destructive activity. Examples include physical clashes with other demonstrators or government forces;
vandalism; and road-blocking using barricades, burning tires, or other material. The coding of an event
as a "Violent demonstration" does not necessarily indicate that demonstrators initiated the violence and
/or destructive actions.

Excludes events where a weapon is drawn but not used, or when the situation is de-escalated before
violence occurs.

"""

class MobViolence(Riot):
"""
Is a type of "Riot" event. A mob is considered a crowd of people that is disorderly and has the intention
to cause harm or disruption through violence or property destruction. Note that this type of violence
can also include spontaneous vigilante mobs clashing with other armed groups or attacking civilians.
While a "Mob violence" event often involves unarmed or crudely armed rioters, on rare occasions, it can
involve violence by people associated with organized groups and/or using more sophisticated weapons,
such as firearms.

"""

class ExplosionOrRemoteViolence(ACLEDEvent, ABC):
"""
"ExplosionOrRemoteViolence" is defined as events as incidents in which one side uses weapon types that, by

their nature, are at range and widely destructive. The weapons used in "ExplosionOrRemoteViolence"
events are explosive devices, including but not limited to: bombs, grenades, improvised explosive
devices (IEDs), artillery fire or shelling, missile attacks, air or drone strikes, and other widely
destructive heavy weapons or chemical weapons. Suicide attacks using explosives also fall under this
category. When an "ExplosionOrRemoteViolence" event is reported in the context of an ongoing battle, it
is merged and recorded as a single "Battles" event. "ExplosionOrRemoteViolence" can be used against
armed agents as well as civilians.

"ExplosionOrRemoteViolence" event type has the following subtypes:
- ChemicalWeapon: The use of chemical weapons in warfare without any other engagement.
- AirOrDroneStrike: Air or drone strikes occurring without any other engagement, including attacks by
helicopters.
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- SuicideBomb: A suicide bombing or suicide vehicle-borne improvised explosive device (SVBIED) attack
without an armed clash.

- ShellingOrArtilleryOrMissileAttack: The use of long-range artillery, missile systems, or other heavy
weapons platforms without any other engagement.

- RemoteExplosiveOrLandmineOrIED: Detonation of remotely- or victim-activated devices, including landmines
and IEDs, without any other engagement.

- Grenade: The use of a grenade or similar hand-thrown explosive without any other engagement.
"""

location: Location = Field(..., description="Location where the event takes place")
targets_civilians: bool = Field(

...,
description="Indicates if the ’ExplosionOrRemoteViolence’ event is mainly or only targeting civilians.

E.g. a landmine killing a farmer.",
)
fatalities: Optional[int] = Field(

...,
description="Total number of fatalities, if known",

)
attackers: List[str] = Field(..., description="Entities conducting the violence")
targeted_entities: List[str] = Field(

..., description="Entities or actors being targeted"
)
targets_local_administrators: bool = Field(

...,
description="Whether this violence is affecting local government officials and administrators -

including governors, mayors, councilors, and other civil servants.",
)
women_targeted: List[WomenTargetedCategory] = Field(

...,
description="The category of violence against women, if any. If this violence is not targeting women,

this should be an empty list.",
)

class ChemicalWeapon(ExplosionOrRemoteViolence):
"""
Is a type of "ExplosionOrRemoteViolence" event. This event type captures the use of chemical weapons in
warfare in the absence of any other engagement. ACLED considers chemical weapons as all substances
listed as Schedule 1 of the Chemical Weapons Convention, including sarin gas, mustard gas, chlorine gas,
and anthrax. Napalm and white phosphorus, as well as less-lethal crowd control substances - such as

tear gas - are not considered chemical weapons within this event type.
"""

class AirOrDroneStrike(ExplosionOrRemoteViolence):
"""
Is a type of "ExplosionOrRemoteViolence" event. This event type is used when air or drone strikes take
place in the absence of any other engagement. Please note that any air-to-ground attacks fall under this
event type, including attacks by helicopters that do not involve exchanges of fire with forces on the

ground.
"""

class SuicideBomb(ExplosionOrRemoteViolence):
"""
Is a type of "ExplosionOrRemoteViolence" event. This event type is used when a suicide bombing occurs in
the absence of an armed clash, such as an exchange of small arms fire with other armed groups. It also
includes suicide vehicle-borne improvised explosive device (SVBIED) attacks. Note that the suicide
bomber is included in the total number of reported fatalities coded for such events.

"""

class ShellingOrArtilleryOrMissileAttack(ExplosionOrRemoteViolence):
"""
Is a type of "ExplosionOrRemoteViolence" event. This event type captures the use of long-range artillery,
missile systems, or other heavy weapons platforms in the absence of any other engagement. When two armed
groups exchange long-range fire, it is recorded as an "ArmedClash". "ShellingOrArtilleryOrMissileAttack

" events include attacks described as shelling, the use of artillery and cannons, mortars, guided
missiles, rockets, grenade launchers, and other heavy weapons platforms. Crewed aircraft shot down by
long-range systems fall under this event type. Uncrewed armed drones that are shot down, however, are
recorded as interceptions under "DisruptedWeaponsUse" because people are not targeted (see below).
Similarly, an interception of a missile strike itself (such as by the Iron Dome in Israel) is also
recorded as "DisruptedWeaponsUse".

"""

class RemoteExplosiveOrLandmineOrIED(ExplosionOrRemoteViolence):
"""
Is a type of "ExplosionOrRemoteViolence" event. This event type is used when remotely- or victim-activated

devices are detonated in the absence of any other engagement. Examples include landmines, IEDs -
whether alone or attached to a vehicle, or any other sort of remotely detonated or triggered explosive.
Unexploded ordnances (UXO) also fall under this category.

SVBIEDs are recorded as "Suicide bomb" events, while the safe defusal of an explosive or its accidental
detonation by the actor who planted it (with no other casualties reported) is recorded under "
DisruptedWeaponsUse".

"""
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class Grenade(ExplosionOrRemoteViolence):
"""
Is a type of "ExplosionOrRemoteViolence" event. This event type captures the use of a grenade or any other

similarly hand-thrown explosive, such as an IED that is thrown, in the absence of any other engagement.
Events involving so-called "crude bombs" (such as Molotov cocktails, firecrackers, cherry bombs, petrol
bombs, etc.) as well as "stun grenades" are not recorded in this category, but are included under

either "Riot" or "StrategicDevelopment" depending on the context in which they occurred.
"""

class ViolenceAgainstCivilians(ACLEDEvent, ABC):
"""
ACLED defines "ViolenceAgainstCivilians" as violent events where an organized armed group inflicts
violence upon unarmed non-combatants. By definition, civilians are unarmed and cannot engage in
political violence. Therefore, the violence is understood to be asymmetric as the perpetrator is assumed
to be the only actor capable of using violence in the event. The perpetrators of such acts include

state forces and their affiliates, rebels, militias, and external/other forces.
In cases where the identity and actions of the targets are in question (e.g. the target may be employed as

a police officer), ACLED determines that if a person is harmed or killed while unarmed and unable to
either act defensively or counter-attack, this is an act of "ViolenceAgainstCivilians". This includes
extrajudicial killings of detained combatants or unarmed prisoners of war.

"ViolenceAgainstCivilians" also includes attempts at inflicting harm (e.g. beating, shooting, torture,
rape, mutilation, etc.) or forcibly disappearing (e.g. kidnapping and disappearances) civilian actors.
Note that the "ViolenceAgainstCivilians" event type exclusively captures violence targeting civilians
that does not occur concurrently with other forms of violence - such as rioting - that are coded higher
in the ACLED event type hierarchy. To get a full list of events in the ACLED dataset where civilians
were the main or only target of violence, users can filter on the "Civilian targeting" field.

"ViolenceAgainstCivilians" event type has the following subtypes:
- SexualViolence: Any event where an individual is targeted with sexual violence, including but not
limited to rape, public stripping, and sexual torture, with the gender identities of victims recorded
when reported.

- Attack: An event where civilians are targeted with violence by an organized armed actor outside the
context of other forms of violence, including severe government overreach by law enforcement.

- AbductionOrForcedDisappearance: An event involving the abduction or forced disappearance of civilians
without reports of further violence, including arrests by non-state groups and extrajudicial detentions
by state forces, but excluding standard judicial arrests by state forces.

"""

location: Location = Field(..., description="Location where the event takes place")
targets_local_administrators: bool = Field(

...,
description="Whether this violence is affecting local government officials and administrators -

including governors, mayors, councilors, and other civil servants.",
)
women_targeted: List[WomenTargetedCategory] = Field(

...,
description="The category of violence against women, if any. If this violence is not targeting women,

this should be an empty list.",
)

class SexualViolence(ViolenceAgainstCivilians):
"""
Is a type of "ViolenceAgainstCivilians" event. This event type is used when any individual is targeted
with sexual violence. SexualViolence is defined largely as an action that inflicts harm of a sexual
nature. This means that it is not limited to solely penetrative rape, but also includes actions like
public stripping, sexual torture, etc. Given the gendered nature of sexual violence, the gender
identities of the victims - i.e. "Women", "Men", and "LGBTQ\+", or a combination thereof - are recorded
in the "Associated Actor" field for these events when reported. Note that it is possible for sexual
violence to occur within other event types such as "Battle" and "Riot".

"""

fatalities: Optional[int] = Field(
...,
description="Total number of fatalities, if known",

) # Is very very rare, only 7 events in English for 2024
perpetrators: List[str] = Field(..., description="The attacker(s) entity or actor")
victims: List[str] = Field(

...,
description="The entity or actor(s) that is the target or victim of the SexualViolence event",

)

class Attack(ViolenceAgainstCivilians):
"""
Is a type of "ViolenceAgainstCivilians" event. This event type is used when civilians are targeted with
violence by an organized armed actor outside the context of other forms of violence like ArmedClash,
Protests, Riots, or ExplosionOrRemoteViolence. Violence by law enforcement that constitutes severe
government overreach is also recorded as an "Attack" event.

Attacks of a sexual nature are recorded as SexualViolence.
If only property is attacked and not people, the event should be recorded as LootingOrPropertyDestruction
event type.

Excludes discovery of mass graves, which are recorded as "OtherStrategicDevelopment" events.
"""

fatalities: Optional[int] = Field(
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...,
description="Total number of fatalities, if known",

)
attackers: List[str] = Field(..., description="The attacker entity or actor(s)")
targeted_entities: List[str] = Field(

..., description="The entity or actor(s) that is the target of the attack"
)

class AbductionOrForcedDisappearance(ViolenceAgainstCivilians):
"""
Is a type of "ViolenceAgainstCivilians" event. This event type is used when an actor engages in the
abduction or forced disappearance of civilians, without reports of further violence. If fatalities or
serious injuries are reported during the abduction or forced disappearance, the event is recorded as an
"Attack" event instead. If such violence is reported in later periods during captivity, this is recorded
as an additional "Attack" event. Note that multiple people can be abducted in a single "Abduction/

forced disappearance" event.
Arrests by non-state groups and extrajudicial detentions by state forces are considered "Abduction/forced
disappearance". Arrests conducted by state forces within the standard judicial process are, however,
considered "Arrest".

"""

abductor: List[str] = Field(..., description="The abductor person or group(s)")
abductee: List[str] = Field(

...,
description="People or group(s) that were abducted or disappeared. Note that multiple people can be

abducted in a single AbductionOrForcedDisappearance event",
)

class StrategicDevelopment(ACLEDEvent, ABC):
"""
This event type captures contextually important information regarding incidents and activities of groups
that are not recorded as "Political violence" or "Demonstration" events, yet may trigger future events
or contribute to political dynamics within and across states. The inclusion of such events is limited,
as their purpose is to capture pivotal events within the broader political landscape. They typically
include a disparate range of events, such as recruitment drives, looting, and incursions, as well as the
location and date of peace talks and the arrests of high-ranking officials or large groups. While it is
rare for fatalities to be reported as a result of such events, they can occur in certain cases - e.g.

the suspicious death of a high-ranking official, the accidental detonation of a bomb resulting in the
bomber being killed, etc.

Due to their context-specific nature, "StrategicDevelopment" are not collected and recorded in the same
cross-comparable fashion as "Political violence" and "Demonstration" events. As such, the "
StrategicDevelopment" event type is primarily a tool for understanding particular contexts.

"StrategicDevelopment" event type has the following subtypes:
- Agreement: Records any agreement between different actors, such as peace talks, ceasefires, or prisoner
exchanges.

- Arrest: Used when state forces or controlling actors detain a significant individual or conduct
politically important mass arrests.

- ChangeToArmedGroup: Records significant changes in the activity or structure of armed groups, including
creation, recruitment, movement, or absorption of forces.

- DisruptedWeaponsUse: Captures instances where an explosion or remote violence event is prevented, or
when significant weapons caches are seized.

- BaseEstablished: Used when an organized armed group establishes a permanent or semi-permanent base or
headquarters.

- LootingOrPropertyDestruction: Records incidents of looting or seizing goods/property outside the context
of other forms of violence or destruction.

- NonViolentTransferOfTerritory: Used when actors acquire control of a location without engaging in
violent interaction with another group.

- OtherStrategicDevelopment: Covers significant developments that don’t fall into other Strategic
Development event types, such as coups or population displacements.

"""

location: Location = Field(..., description="Location where the event takes place")

class Agreement(StrategicDevelopment):
"""
Is a type of "StrategicDevelopment" event. This event type is used to record any sort of agreement between

different armed actors (such as governments and rebel groups). Examples include peace agreements/talks,
ceasefires, evacuation deals, prisoner exchanges, negotiated territorial transfers, prisoner releases,

surrenders, repatriations, etc.
Excludes agreements between political parties, trade unions, or other non-armed actors like protestors.
"""

group_1: List[str] = Field(
..., description="Group or individual involved in the agreement"

)
group_2: List[str] = Field(

...,
description="The other group or individual involved in the agreement",

)

class Arrest(StrategicDevelopment):
"""
Is a type of "StrategicDevelopment" event. This event type is used when state forces or other actors
exercising de facto control over a territory either detain a particularly significant individual or
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engage in politically significant mass arrests. This excludes arrests of individuals for common crimes,
such as theft or assault, unless the individual is a high-ranking official or the arrest is politically
significant.

"""

detainers: List[str] = Field(
..., description="The person or group(s) who detains or jails the detainee(s)"

)
detainees: List[str] = Field(

..., description="The person or group(s) being detained or jailed"
)

class ChangeToArmedGroup(StrategicDevelopment):
"""
Is a type of "StrategicDevelopment" event. This event type is used to record significant changes in the
activity or structure of armed groups. It can cover anything from the creation of a new rebel group or a
paramilitary wing of the security forces, "voluntary" recruitment drives, movement of forces, or any

other non-violent security measures enacted by armed actors. This event type can also be used if one
armed group is absorbed into a different armed group or to track large-scale defections.

"""

armed_group: List[str] = Field(
..., description="The name of armed group that underwent change"

)
other_actors: List[str] = Field(

...,
description="Other actors or groups involved. E.g. the government that ordered a change to its army.",

)

class DisruptedWeaponsUse(StrategicDevelopment):
"""
Is a type of "StrategicDevelopment" event. This event type is used to capture all instances in which an
event of "ExplosionOrRemoteViolence" is prevented from occurring, or when armed actors seize significant
caches of weapons. It includes the safe defusal of an explosive, the accidental detonation of

explosives by those allegedly responsible for planting it, the interception of explosives in the air, as
well as the seizure of weapons or weapons platforms such as jets, helicopters, tanks, etc. Note that in
cases where a group other than the one that planted an explosive is attempting to render an explosive

harmless and it goes off, this is recorded under the "ExplosionOrRemoteViolence" event type, as the
explosive has harmed an actor other than the one that planted it.

"""

attackers: List[str] = Field(
..., description="The entity or actor(s) responsible for the remote violence"

)
disruptors: List[str] = Field(

...,
description="The entity or actor(s) disrupting the explosion or remote violence",

)
targets_local_administrators: bool = Field(

...,
description="Whether this violence is affecting local government officials and administrators -

including governors, mayors, councilors, and other civil servants.",
)
women_targeted: List[WomenTargetedCategory] = Field(

...,
description="The category of violence against women, if any. If this violence is not targeting women,

this should be an empty list.",
)

class BaseEstablished(StrategicDevelopment):
"""
Is a type of "StrategicDevelopment" event. This event type is used when an organized armed group
establishes a permanent or semi-permanent base or headquarters. There are few cases where opposition
groups other than rebels can also establish a headquarters or base (e.g. AMISOM forces in Somalia).

"""

group: List[str] = Field(
..., description="Entity or group(s) establishing the base"

)

class LootingOrPropertyDestruction(StrategicDevelopment):
"""
Is a type of "StrategicDevelopment" event. This event type is used when actors engage in looting or
seizing goods or property outside the context of other forms of violence or destruction, such as rioting
or armed clashes. This excludes the seizure or destruction of weapons or weapons systems, which are

captured under the "DisruptedWeaponsUse" event type. This can occur during raiding or after the capture
of villages or other populated places by armed groups that occur without reported violence.

"""

perpetrators: List[str] = Field(
..., description="The group or entity that does the looting or seizure"

)
victims: List[str] = Field(

..., description="The group or entity that was the target of looting or seizure"
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)
targets_local_administrators: bool = Field(

...,
description="Whether this violence is affecting local government officials and administrators -

including governors, mayors, councilors, and other civil servants.",
)
women_targeted: List[WomenTargetedCategory] = Field(

...,
description="The category of violence against women, if any. If this violence is not targeting women,

this should be an empty list.",
)

class NonViolentTransferOfTerritory(StrategicDevelopment):
"""
Is a type of "StrategicDevelopment" event. This event type is used in situations in which rebels,
governments, or their affiliates acquire control of a location without engaging in a violent interaction
with another group. Rebels establishing control of a location without any resistance is an example of

this event.
"""

actors_taking_over: List[str] = Field(
..., description="The entity or actor(s) establishing control."

)
actors_giving_up: List[str] = Field(

..., description="The entity or actor(s) giving up territory, if known."
)

class OtherStrategicDevelopment(StrategicDevelopment):
"""
Is a type of "StrategicDevelopment" event. This event type is used to cover any significant development
that does not fall into any of the other "StrategicDevelopment" event types. Includes the occurrence of
a coup, the displacement of a civilian population as a result of fighting, and the discovery of mass
graves.

"""

group_1: List[str] = Field(
..., description="Group or individual involved in the StrategicDevelopment"

)
group_2: List[str] = Field(

...,
description="The other group or individual involved in the violence, if any",

)

class WomenTargetedCategory(str, Enum):
CANDIDATES_FOR_OFFICE = "Women who are running in an election to hold a publicly elected government
position"

POLITICIANS = "Women who currently serve in an elected position in government"
POLITICAL_PARTY_SUPPORTERS = "political party supporters"
VOTERS = "Women who are registering to vote or are casting a ballot in an election"
GOVERNMENT_OFFICIALS = "Women who work for the local, regional, or national government in a non-partisan
capacity"

ACTIVISTS_HRD_SOCIAL_LEADERS = (
"Women who are activists/human rights defenders/social leaders"

)
RELATIVES_OF_TARGETED_GROUPS = "Women who are subject to violence as a result of who they are married to,
the daughter of, related to, or are otherwise personally connected to (e.g. candidates, politicians,
social leaders, armed actors, voters, party supporters, etc.)"

ACCUSED_OF_WITCHCRAFT = "Women accused of witchcraft or sorcery, or other mystical or spiritual practices
that are typically considered taboo or dangerous within some societies (excluding women who serve as
religious leaders in religious structures that are typically not viewed as taboo or dangerous, such as
nuns, female priests, or shamans)"

GIRLS = "Girls who are under the age of 18; they may be specifically referred to by age or explicitly
referred to as a child/girl"

class Location(BaseModel):
"""
The most specific location for an event. Locations can be named populated places, geostrategic locations,
natural locations, or neighborhoods of larger cities.

In selected large cities with activity dispersed over many neighborhoods, locations are further specified
to predefined subsections within a city. In such cases, City Name - District name (e.g. Mosul - Old City
) is recorded in "specific_location". If information about the specific neighborhood/district is not
known, the location is recorded at the city level (e.g. Mosul).

"""

country: str = Field(
...,
description="Normalized name of a country, e.g. United States",

)
address: str = Field(

...,
description="Full address or location description including all geographic levels upto the

neighborhood level, including village/city, district, county, province, region, country, if available.
Exclude street names, buildings, and other specific landmarks.",

)
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The languages included in LEMONADE are in Table 10.

Table 10: Mapping of language acronyms.

Acronym Full Name
en English
es Spanish
ar Arabic
fr French
pt Portuguese
ko Korean
de German
uk Ukrainian
my Malay
it Italian
tr Turkish
id Indonesian
ru Russian
fa Persian (Farsi)
ne Nepali
zh Chinese
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