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Abstract—Traffic accident has become a significant health and development threat with rapid urbanizations. An accurate urban

accident forecasting enables higher-quality police force pre-allocation and safe route planning for both traffic administrations and

travelers, maximumly reducing injuries and damages. Off-the-shelf short-term accident forecasting methods, which focus on modeling

static region-wise correlations with existing neural networks, mostly performed on hour levels and with single step. However, given the

dynamic nature of road networks and expanding urban areas, it is challenging when the spatiotemporal granularity of forecasting

improves as the rareness of accident records and complexity of long-term future dependencies. To address these challenges, we

propose a unified framework RiskSeq, to foresee sparse urban accidents with finer granularities and multiple steps in spatiotemporal

perspective. In particular, we design region-wise proximity measurements and temporal feature differential operations, and embed

them into a novel Differential Time-varying Graph Convolution Network to dynamically capture traffic variations. Considering the

hierarchical spatial dependencies and obvious context influences, a hierarchical sequence learning structure is devised by introducing

contextual factors into a step-wise decoder. The multi-scale spatial risks are learned jointly to boost the risk predictions based on risk-

gather and risk-assign networks. Extensive experiments demonstrate our RiskSeq can increase 5 to 15 percent performances on two

datasets.

Index Terms—Traffic accident forecasting, spatiotemporal data mining, graph convolutional network, urban computing

Ç

1 INTRODUCTION

TRAFFIC accident has become into one of the biggest public
health threats as World Health Organization (WHO)

reported approximately 1.25 million people have died on
roads during 2015 [1]. With constantly increasing number of
vehicles, traffic accident forecasting is of great significance
to reduce traffic injuries and ensure urban safety. For exam-
ple, with some newly proposed models for predicting
daily statewide accident risks, the fatality rate of traffic acci-
dents in Tennessee has been reduced by 8.16 percent in 2016
[2]. Therefore, a spatiotemporal finer-grained and multi-
granularity accident forecasting can not only benefit the pub-
lic safetymanagements but also enhance the service qualities
of various intelligent transportation systems, including real-
time safe route recommendations for individual drivers and
other location-based services.

There have been a wide range of researches delving into
time-series predictions, inlcuding particle swarm optimiza-
tion (PSO)-based [3], [4], [5] and ARIMA-based [6] methods.
And general spatiotemporal predictions [7], [8], [9], [10], [11]
have also been further studied. Nevertheless, all these existing

works focus on continuous element forecasting. Regarding
the issue of traffic accident forecasting, differing from those
above-mentioned intensive and continuous predictions, it can
be seen as a sporadic event forecasting. Specifically, traffic
accident forecasting can be further classified into different cat-
egories with regard to the temporal granularities of long-term
(daily predictions) and short-term (hourly or temporal finer-
grained predictions) aswell as the number of prediction steps,
as summarized in Table 1. In particular, regarding long-term
forecasting, methods like deep dynamic fusion network
(DFN) [12], Hetero-ConvLSTM [13] and classfication-and-
regression tree [13]were proposed to predict future daily risks
by modeling the spatiotemporal heterogeneous data. How-
ever, these long-term forecasting approaches could not be
directly used to address the more practical issue of real-time
accidents predictions. To this end, early approaches for short-
term accident predictions were proposed based on traditi-
onal machine learning [14], [15]. Nevertheless, none of these
approaches have considered both the spatial and temporal
correlations jointly. Recently, deep learning techniques inclu-
ding LSTM [16], autoencoder-based [17], and spatiotemporal
attention-based [18], [19] were employed to address the chal-
lenging task by modeling citywide traffic risks during differ-
ent periods as sequences, and these methods are all single
temporal granularity and suffer the zero-inflated issue due to
sporadic distributions of short-term accidents [20].

Unfortunately, predictions with single temporal step
including both long-term traffic risk predictions and single-
step short-term works, cannot independently support urban
transportation applications since the durations of urban trips
may be 15 minutes to hours in modern metropolis [21]. Fur-
ther, traffic administrative agencies at different levels should
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have various spatial granularity requirements on predicting
traffic risks due to their different jurisdiction scopes. Therefore,
a spatiotemporal multi-granularity risk prediction, which ena-
bles adjustable predictive horizons and multiple spatial scales
for risk predictions, is spontaneously required for satisfying
the diversified requirements of transportation services, rang-
ing from sequential urban route planning to multiple spatial-
level traffic controlling. Recent pioneering multi-step predic-
tion methods have been widely used in the field of traffic. For
instance, [22] employed attention-enhanced encoder-decoder
mechanisms to capture temporal correlations in road speeds,
and [10], [23] utilized hierarchical graph structures to recur-
sively extract sequential dependencies in taxi demands and
traffic flows. Despite the superiority of graph convolution and
hierarchical structure have been demonstrated, these methods
on predicting continuous elements cannot be directly applied
to predict accidents due to the sporadic nature and less con-
spicuous temporal tendency of accidents. Typically, Fig. 1
reports the newly observed time-varying region-wise correla-
tions and differential associations among urban traffics and
accidents1 in both NewYork City (NYC) and Suzhou Industry
Park (SIP). These kinds of spatiotemporal correlations and dif-
ferential associations have never been considered in previous
accident predictions, and may inherently reduce the perform-
ances of previous works. Furthermore, as shown in Fig. 1a,
there only exist two accident records during one selected
10-min interval in NYC, so the prediction performances will
deteriorate with the increase of time steps. Therefore, it is even
challenging to achieve urban traffic risk predictionswith a spa-
tiotemporalmulti-granularity perspective.

In this paper, we propose a novel deep learning network to
foresee citywide accident risks in a spatiotemporalmulti-granu-
larity fashion, where multiple spatial scales and temporal steps
are jointly predicted. Specifically, we first summarize the sparse
spatiotemporal traffic-related information into two categories
and correspondingly provide respective solutions. Then we
explicitly model correlations between time-varying traffic sta-
tuses and accidents with a carefully designedDifferential Time-
varying Graph Convolutional Network (DT-GCN). Finally, we
alleviate the sequential error accumulation by feeding step-wise
contextual factors into the decoder and further boost the perfor-
mance of multi-step discrete accident prediction by leveraging
three-scale highly correlated forecasting tasks. The contributions
of ourwork are summarized as follows.

� To our best knowledge, this is the first work target-
ing spatiotemporal multi-granularity urban traffic

risk prediction where the sporadic event prediction
is transferred into a learnable self-adaptive ranking
task. It provides a paradigmatic DNN-based solution
to spatiotemporal multi-granularity forecasting of
sporadic events.

� We take an initial step to systematically deal with the
spatiotemporal sparsity challenges according to their
origins. Based on observations in short-term traffics
and accidents, we provide a novel node-wise proxim-
ity measurement and signal-wise differential opera-
tion integrated DT-GCN, to extract the time-varying
region-wise correlations among urban traffics and
accidents, and further benefit GCN community.

� We devise a novel hierarchical learning structure,
Context-Guided LSTM, to decode multi-step risks in
three spatial scales. The step-wise context is injected
into the decoder to learn region-context interactions
and consequently guides the multi-scale learning
with risk assignment and gathering layers.

The rest of this paper is organized as follows. We first
give preliminaries and formal definitions in Section 2. Then
we detail our spatiotemporal multi-granularity accident
forecasting in Section 3. Then extensive experiments and
substantial ablation studies are conducted and demon-
strated in Section 4. The related works are briefly reviewed
in Section 5, followed up by further discussion in Section 6.
Finally, we conclude our paper in Section 7.

2 PRELIMINARIES AND DEFINITIONS

In this section, we first present the preliminaries and some
basic definitions of this paper, then formally define the
problem studied in this paper.

In our work, we first divide the study area into qmedium-
sized rectangular regions (‘rectangular regions’ in short).
Each rectangular region consists of several small-sized

TABLE 1
Summarization of Traffic Accident Prediction

Time
granularity

Single Step Multiple
steps

Long-term [24], [2] [12], [13]

Short-term [14],[25],[26],[17], [20],
[16], [19], [27]

Our work

Fig. 1. Novel observations in the joint analysis of urban traffics and acci-
dents. Subfigure (a) illustrates the correlations between congestion
propagations and accident risks, the correlations between accident con-
currences and similar road structures, as well as an the example of
dynamic region-wise dependencies according to commute and tidal
flows. Subfigure (b) illustrates the obvious differential associations
between traffics and accidents, and here ‘Delta’ refers to the traffic vol-
ume variations within two adjacent intervals.

1. Note here the differential associations indicate the correlations
among the variation of traffic volumes within adjacent time intervals
and subsequent accidents in same subregions.
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square subregions (‘subregions’ in short). The hierarchical
division of NYC city is illustrated in Fig. 2. We assume there
are totallym subregions in the study area, and subsequently
model them subregions with an urban graph.

Definition 1 (Urban Graph). The study area can be defined as
an undirected graph, called Urban GraphGðV; EÞ. Here, V ¼
fv1; v2; . . . ; vmg, where vi denotes the i-th square-shaped urban
subregion. Given two vertexes vi; vj 2 V, the edge eij 2 E
within these two vertexes indicates the connectedness between
these two subregions, where

eij ¼
1 iff the traffic elements within two

subregions have strong correlations
0 otherwise:

8<
:

(1)

Note that the traffic elements of a vertex consist of two
aspects, static road network features and dynamic traffic
features. And for each subregion, we adaptively select the
most r correlated nodes in the urban graph as its neighbors
to reduce the computational complexity where r is the per-
centage of the selected neighbors versus the total nodes in
the graph, then the corresponding nonzero items in affinity
matrix As and ADt

o (introduced in the next section) refer to
the subregions with strong correlations.

The dynamic traffic features of subregion vi in a specific
time interval Dt can be modeled by ld parts, e.g., (a) the
intensity of human activities, represented by traffic volume
TVviðDtÞ; (b) the traffic conditions, represented by the aver-
age traffic speed aviðDtÞ; and (c) the level of traffic accident
risks rviðDtÞ. Formally, traffic features are defined as below.

Definition 2 (Static Road Network Features). For urban
subregion, vi 2 V, the static features of road networks within
the subregion, cover ls statistical spatial attributes of the num-
bers of road lanes, road types, road segment lengths and widths,
snow removal priorities and the numbers of overhead electronic
signs, for all road segments inside, can be denoted as a fixed-
length vector si. The static road network features of the entire
urban region can be formulated as S ¼ fs1; s2; . . . ; smg.

Definition 3 (Dynamic Traffic Features). For vi 2 V, the
dynamic traffic features of vi within a given interval Dt can be
formulated as fviðDtÞ ¼ fTVviðDtÞ; aviðDtÞ; rviðDtÞg. rviðDtÞ
is the summation of the number of accidents weighted by the
corresponding severity levels2. In particular, rviðDtÞ ¼

P3
j¼1 j � tDtvi ðjÞ, where j indicates the type of accident severity,

tDtvi ðjÞ denotes the number of accidents of type j. So the accident
risk distributions and the dynamic traffic features of the entire
urban domain within Dt can be represented by RðDtÞ ¼
frv1ðDtÞ; rv2ðDtÞ; . . . ; rvmðDtÞg and FðDtÞ ¼ ffv1ðDtÞ; fv2
ðDtÞ; . . . ; fvmðDtÞg, respectively.

Definition 4 (Multi-granularity Spatiotemporal Traffic
Accident Prediction). Given static road network features S
and the historical dynamic traffic features FðDtÞ Dt ¼ 1;ð
2; . . .T Þ:, our task is to predict both coarse-grained and fine-
grained accident distributions OCðDt0Þ and OF ðDt0Þ, along
with the selected M high-risk subregions VMðDt0Þ, where
Dt0 ¼ T þ 1; T þ 2; . . .T þ r and r denotes the length of the
target spatiotemporal accident series to forecast.

All the mathematical notations that will be used in this
paper have been defined and listed in Table 2.

3 SPATIOTEMPORAL MULTI-GRANULARITY

TRAFFIC ACCIDENT FORECASTING

The spatiotemporal multi-granularity perspective in our
task can be explained as predicting accidents for multiple
time steps in both coarse-grained and fine-grained spatial
granularities. In this section, we first show the overview of
our proposed spatiotemporal multi-granularity traffic acci-
dent prediction framework RiskSeq, and elaborate its differ-
ent modules.

3.1 Framework Overview

As illustrated in Fig. 3, our proposed framework RiskSeq
includes a data preprocessing component and two main
modules: i) DT-GCN encoder module, and ii) Context-
Guided LSTM decoder.

3.2 Data Preprocessing

Given the specific characteristics of traffic accidents, such
as sparse and sporadic distribution, incomplete and

Fig. 2. Hierarchical division of NYC.

TABLE 2
Description of Notation

Symbol Description

m Number of subregions in the urban graph

V ¼ fvig Spatial urban graph node set of subregions

E 2 Rm�m Edges between connected nodes

As 2 Rm�m Static affinity matrix

ADt
o 2 Rm�m Dynamic overall affinity matrix in Dt

S 2 Rm�ls Static road network features in subregions

RðDtÞ 2 Rm�1 Citywide fine-grained risks in Dt

FðDtÞ 2 Rm�ld Citywide dynamic traffic features in Dt

OF 2 Rm�r Citywide fine-grained risks in predicted r
intervals

OC 2 Rq�r Citywide coarse-grained risks in predicted
r intervals

VM 2 RM�r High-risk subregions in predicted r
intervals

2. We define three accident risk types: minor accidents, injured acci-
dents, and fatal accidents [26]. We assign weights 1, 2, and 3 to the three
types, respectively.
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heterogeneous multi-source information collection, we pro-
pose a series of strategies to jointly mitigate these issues.

3.2.1 Addressing Spatial Heterogeneities

in Accident Prediction

As described in [27], high-risk regions tend to be focused on
downtown, leading to spatial imbalance and neglect the rel-
atively high-risk rural areas. Thus, in our work, the subre-
gions are organized hierarchically as illustrated in Fig. 2.
The medium-sized rectangular regions and square-shaped
subregions are responsible for collecting coarse-grained and
fine-grained accident distributions, respectively. Then mul-
tiple spatial scales of distributions can be predicted and
high-risk subregions in different medium-sized rectangular
regions are highlighted with considering local risk statuses,
especially benefiting urban areas in periphery.

3.2.2 Tackling Dual-Sparsity Challenges

in Accident Prediction

According to sparsity origins of sparse datasets, we catego-
rize the sparsity information into two scenarios, intrinsic
sparsity and fake sparsity. Regarding intrinsic sparsity, the
sensed data is sparse and sporadic distributed due to the
inherent sparse nature of itself. For instance, given interval
Dt, there are seldom traffic accidents and most items in
RðDtÞ are zeros. For fake sparsity, the sensed data is sponta-
neously intensive, and this kind of sparsity is caused by the
sparse distribution of sensing devices. For example, the traf-
fic flows of road intersections captured by stationary sur-
veillance cameras are fictitiously sparse due to the sparse
sensor deployments. We demonstrate these two cases in
Fig. 4. Given the sparse nature of these two kinds of data,
directly applying machine learning including deep learning
methods will fall into zero-inflated issue [28], which pre-
dicts all results as zero values.

Overcoming Zero-Inflated Issue in Intrinsic Sparsity Issue.
Deep Neural Networks (DNNs) suffer from zero-inflated

issues and predict invalid results if the nonzero items in
training labels are extremely rare [20], [28]. To discriminate
a large number of zero risk values in short-term intervals
and enhance the training feasibility, a priori knowledge-
based data enhancement (PKDE) strategy is proposed. Spe-
cifically, for interval Dt, we transform zero items in risk sets
RðDtÞ to negative values that are different from each other
and discriminated by their subregion-level statistical acci-
dent records.

Specifically, we replace zero-value risk of vi in each time
interval with the negative statistical accident intensity pvi :

pvi ¼ b1log2"vi þ b2; (2)

where "vi is the statistical accident indicator quantifying the
accident frequency of vi among all subregions. b1 and b2 are
the coefficients to maintain symmetry between the range of
the absolute value of pvi and true risk values. It reflects the
fact that a zero-item subregion is with lower accident risk
than subregions with accidents, and the subregion with
lower accident risk indicator has a lower accident probabil-

Fig. 3. Framework overview of RiskSeq.

Fig. 4. Illustration of intrinsic sparsity and fake sparsity. (a) There only
exists 6 accidents in one 10-min interval of Jan, 01, 2017 in NYC, indicat-
ing the intrinsic sparsity of events like accidents. (b) There are only 23
deployed cameras in approximate 11 km2 but flows are everywhere, indi-
cating a fake sparsity.
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ity, preserving the ranks of actual accident risks. The trans-
formation ensures the accident intensity value negative and
different from each other, enlarging the gap between the
positive and negative samples.

Complementing Sparse Sensing Data in Fake Sparsity Issue.
The collected real-time traffic information for accident pre-
diction is usually insufficient [29]. Fortunately, the dynamic
traffic statuses tend to have interactive effects with the spa-
tial road network structures [30]. We thus adopt a co-sensing
strategy based on spatiotemporal deep factorizationmachine
(ST-DFM) [31], by taking advantage of the static and contex-
tual information.

The road network similarities between subregions are
first extracted by static affinity matrix As where the item
asði; jÞ in As denotes static affinity between subregion vi
and vj. The static affinity can be calculated by

asði; jÞ ¼
1 if subregion vi and

vj are adjacent

e�JSðsi sjk Þ otherwise:

8<
: (3)

Here, the JS function is the Jensen-Shannon divergence [32]
which measures the similarity between two distributions.

ST-DFM contains the Compressed Interaction Network
(CIN) module and the DNN module. Multi-source features
within three spatiotemporal fields i.e. static spatial features,
dynamic traffic features and timestamps are embedded into
a fixed-length vector. The CIN module learns the field-wise
interactions in a vector-wise level while the DNN module
projects features into high-level representations and finally
obtains complex feature combinations. We infer speed val-
ues by feeding traffic volumes and corresponding static and
contextual information at the same subregion into ST-DFM
and vice versa. Therefore, the ST-DFM can be trained with
the intersections of two real-time traffic datasets within the
same spatiotemporal scopes and the citywide traffic infor-
mation can thus be maximumly inferred.

3.3 DT-GCN Based Spatiotemporal Encoder

In this section, we elaborate our proposed Differential Time-
varying Graph neural Network (DT-GCN). As shown on the
left part of Fig. 1a, the occurrences of accidents force the
traffic flows to accumulate, eventually leading to the risk
propagation along adjacent road segments. And subregions
share similar both static (e.g., intersection structures) and
dynamic traffic patterns may suffer accident concurrences
with the same weather during near intervals. The core idea
of GCN is to aggregate adjacent information and obtain
local patterns with the designed aggregation matrix and
learnable convolution kernels. Therefore, we inherit GCN
as the basic framework in DT-GCN spatiotemporal encoder,
taking advantage of its potential in modeling non-euclidean
correlations and subregion-wise risk propagations [30].
Here, we further propose the time-varying overall affinity
and differential association generator as the aggregation
matrix and novel graph signal operation by identifying dis-
tinct observations in very short-term accident datasets.

3.3.1 Time-Varying Overall Affinity Matrix

Since it is difficult to capture accident patterns directly, we
introduce general traffic statuses such as speeds, flows to help

the prediction [33], [34]. Intuitively, the traffic statuses reveal
spatial dependencies among each subregion [35], [36] and this
kind of dependency is recently verified tobe time-varying [36],
[37], as described in Fig. 1a. Besides, a visualization of the
backward differences of taxi trips/traffic flows on two data-
sets is shown in Fig. 1b. The undulant changes of traffic flows
also provide the evidence for the necessity to model the time-
varying correlations. Therefore, to specifically address our
spatiotemporal multi-granularity predictions, we propose a
time-varying overall affinity matrix Ao for measuring and
aggregating the inter-subregion time-varying proximities.
The time-varying overall affinity is calculated by three per-
spectives, (i) affinity of road network features, (ii) affinity of
dynamic traffic statuses and (iii) transitions of traffic flows
between subregions, where the former one is responsible for
static similarity extraction while the latter two are responsible
for capturing the dynamic spatial correlations. In interval Dt,
the item aDt

o ði; jÞ in ADt
o denotes the dynamic overall affinity

within subregions vi and vj:

aDt
o ði; jÞ ¼ e

�JSðs�
i

s�
j

��� Þ þ g � e�JSðCDt
i

CDt
j

��� Þ þ b � trDtij ; (4)

CDt
i includes the traffic volume TVviðDtÞ and average speed

aviðDtÞ of subregion vi within the same interval Dt in each
day of last week. The trDtij is the element in matrix TRDt and
describes the average transitions of the interval Dt during
last week. Notice that we modify the weights of static spa-
tial attributes of subregions based on their different effects
on accidents with an attention-based scheme. Also, the acci-
dent-based static features of subregion vi can be denoted as
s�i . Further, a weighted factor g, b are used to adjust the pro-
portion that each traffic proximity measurement accounts
for the overall affinity. With such overall affinity, distant
subregions but have potential accident-related correlations
regarding traffic characteristics can also be connected
dynamically. To transform the affinity matrix into spectral
domain and utilize the first-order approximation, we calcu-
late the normalized adjacent matrix ADt

C with ADt
o [38]. First,

we derive BDt:

BDt ¼ ADt
o þ Im; (5)

where Im is the identity matrix of m�m. Second, we calcu-
late FDt by

FDt ¼
’11 0 . . . 0
0 ’22 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . ’mm

2
6664

3
7775; (6)

where ’ii ¼
Pm

j¼1 bij and bij is the element in matrix BDt.
Then, we can obtain time-varying affinity-based normalized
adjacent matrix for aggregation by

ADt
C ¼ FDt

� ��1
2BDt FDt

� ��1
2
: (7)

3.3.2 Differential GCN for Extracting Spatiotemporal

Features

It is observed that accidents or events in the road network
are more relevant to abnormal variations of urban traffic

3790 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 08,2022 at 02:07:07 UTC from IEEE Xplore.  Restrictions apply. 



conditions [33], [39]. The intuition can be explained that the
larger variations of fundamental traffic elements indicate
the abnormal changes in the road network, thus increasing
the possibility of accident occurrences. Fortunately, most
cases of accidents in Fig. 1b verify the correctness of this
intuition. To this end, we introduce a differential association
generator to calculate differential images within adjacent
time intervals. By feeding the differential images into GCN,
the propagations and interactions of abnormal changes in
traffic can be modeled and the immediate correlations
between traffic condition variations and accidents are
learned. Given Dt, the differential vector Q

!Dt
can be com-

puted by

Q
!Dt ¼ DðDtÞ � DðDt� 1Þ; (8)

where DðDtÞ ¼ dv1ðDtÞ; dv2ðDtÞ; . . . ; dvmðDtÞ
� �

and dviðDtÞ ¼
fTVviðDtÞ; aviðDtÞg. For all subregions in Dt, by combining
their dynamic traffic features and the corresponding differ-
ential vectors, we generate a united feature tuple UðDtÞ ¼
FðDtÞ; Q!Dt

� �
.

3.3.3 Long-Term and Short-Term Encoders

Traffic statuses and risks in subsequent time steps are deter-
mined by both long-term expectations like seasonal influen-
ces and short-term instantaneous statuses such as recent
trends and unexpected incidents [23]. Here, we separately
encode long-term expectations and short-term statuses. Spe-
cifically, as illustrated in Fig. 3, given Dt, we first retrieve the
fine-grained united feature tuples Uð�Þ for the same interval
Dt in the last t weeks and the recent t days respectively,
and denote them as the weekly and daily components of the
training sample. Next, the average values of observations
are calculated for both the corresponding weekly and daily
components of this sample, and are taken as two distinctive
inputs of the long-term DT-GCN encoder. After then, we
take the most recent h time intervals as the short-term
instantaneous traffic inputs of our DT-GCN encoder.3 The
detailed architecture of one individual DT-GCN is demon-
strated in Fig. 5, where � denotes element-wise addition in
residual shortcut connections [40]. For interval Dt, we
denote the corresponding feature tuple set as UDt

� . The GCN

works recursively as,

Hnþ1 ¼ Leaky ReLUðADt
C HnWnÞ where H0 ¼ UDt

� ; (9)

Here Hn and Wn indicate the hidden representations of the
nth layer graph convolution block and the weights of the
corresponding convolution kernels, respectively. The learn-
able kernels can automatically distinguish the importances
of region-wise correlations and aggregate adjacent graph
representations from three different perspectives of the
time-varying overall affinity. By employing several residual
connections, we also combine the low-level convolution
feature maps with the high-level feature maps to capture
the multi-hop node-wise correlations, and subsequently
enhance the graph representation [41]. Noted that the Batch
Normalization (BN) operations are inserted into every 2
GCN layers to avoid gradient explosions. Considering the
negative values in the dataset we transformed, we select the
Leaky ReLU as the activation function. In addition, the con-
textual external factors, i.e., timestamps and meteorological
data, are embedded into a fixed-length vector consecutively,
and then are fused with the outputs of GCN blocks. Finally,
for each interval, the output of the DT-GCN encoder is
mapped into a one-channel feature map. Given the sequen-
tial nature of the long-term and short-term inputs, the out-
puts of the DT-GCN encoder are consequently formulated
as a fine-grained risk-map sequence MF ¼ fMF

0;MF
1

; . . . ;MF
hþ1g.

3.4 CG-LSTM Based Spatiotemporal Decoder

Extensive experiments reveal that, due to the possible
severe error accumulation of RNN-based methods [10], [42],
the forecasting performance declines rapidly with the
increase of prediction steps. Based on the analysis of real-
world historical data, we discover that some time-sensitive
contextual factors such as meteorology can significantly
influence the occurrences of traffic accidents, especially in
some specific subregions or road segments where the traffic
volumes are relatively stable with different weathers. For
instance, in SIP, there are 2.26 accidents occurring averagely
on rainy days while there are only 1.89 accidents averagely
on one sunny days. Fig. 6 illustrats some cases of the corre-
lations among the contextual factors and accidents in NYC.
To this end, both the spatiotemporal correlations and the
contextual factors should be carefully involved in step-wise
future traffic accident predictions.

Based on real-world data analysis, we further discover
that urban accidents usually follow clustering distributions
in spatial perspective, and local accident risks can be

Fig. 5. Architecture of one individual DT-GCN.

Fig. 6. Accident statistics under different contexts. It summarizes the
accident occurrences of three subregions #46, #62, #317 in NYC during
three selected 10-day periods in 2017 which all contain 5 rainy days and
5 days without rain.

3. According to the settings in [10], we here set the values of t and h
as 3 and 6, respectively.
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influenced by surrounding traffic statuses. Thus, considering
above two factors, we design a novel CG-LSTM decoder,
which employs a hierarchical sequential learning structure
to jointly learn accident distributions in both coarse-grained
and fine-grained granularities with contextual factors
involved, to achieve high-quality accident predictions.

The core idea of the CG-LSTM decoder is to guide the
learning of step-wise accident maps with contextual factors,
and to enhance the spatial representations in the hierarchi-
cal LSTMs with multiple tasks. CG-LSTM decoder consists
of two parallel LSTM components: F-LSTM and C-LSTM.
First, the sequential outputs of the DT-GCN encoder and
the aggregated spatial coarse-grained risk maps are consid-
ered as two separate inputs for F-LSTM and C-LSTM. Given
the intensive nature of coarse-grained risk distributions, we
then take C-LSTM as an intermediate to enhance a series of
urban graph representations. Specifically, C-LSTM sequen-
tially receives the contextual factors of each future time step
and adds them into the hidden states learned in the previ-
ous step. The combined hidden vector with contextual fac-
tors then represents the potential importance of contextual
factors specific to each subregion. Given interval Dt, we
denote the coarse-grained risk map and hidden state in the
C-LSTM Cell asMC

Dt and IC
Dt respectively, and the hidden

state in Dtþ 1 can be updated by previous states and cur-
rent context factors:

IDtþ1
C ¼ LSTMCðMDtþ1

C ; ½Wext � EDtþ1 þ IDt
C �Þ; (10)

where EDt represents the context-guided factors, and Wext
refers to the context alignment weights which are used to
adapt the same dimension with IDt

C . So far, the C-LSTM
structure can easily capture the step-wise accident-context
interactions, and can adaptively control the risks and miti-
gate the error accumulation in sequential predictions. To
further guide the learning process, we design a risk-assign
layer to propagate the context influences to fine-grained dis-
tributions in F-LSTM by learning the latent hierarchical spa-
tial correlations. Then the learned risk assignments are
added into the previous-step hidden representations ele-
ment-wisely for subsequent temporal dependency learning.
Regarding the fine-grained risk learning in F-LSTM, the
risks can be learned from two aspects, the spatial backbones
of risk distributions obtained from DT-GCN and the risk
intensities controlled by the hidden representations in C-
LSTM, hence the risk representations can adaptively learn
both self and neighborhood dependencies with temporal
modeling. Given Dt, the learned hidden states IF

Dtþ1 in F-
LSTM can be modified by:

IDtþ1
F ¼ LSTMFðMDtþ1

F ; ½Wasgn � IDt
C þ IDt

F �Þ; (11)

where Wasgn 2 RIf�Ic indicates the learnable weights in the
risk-assign layer, Ic and If represent the hidden dimensions
in C-LSTM and F-LSTM respectively.

Similarly, the counterpart risk-gather layer performs graph-
coarsen operations to gather coarse-grained risks into a graph-
level summation of accident records ~RDt

S , namely, the city-level
risk indicator of intervalDt.

~RDt
S ¼ Wgath � IDt

C ; (12)

where Wgath 2 R1�Ic indicates the learnable weights of the
risk-gather layer. The hidden states in both F-LSTM and C-
LSTM will be further mapped into the same dimension
with their corresponding input sequence. We eventually
obtain the learned spatiotemporal multi-granularity risks
by:

ODt
F ¼ Leaky ReLuðWRF � IDt

F þbRF Þ (13)

ODt
C ¼ ReLuðWCF � IDt

C þbCF Þ: (14)

Since the fine-grained risk labels are partially negative, and
the coarse-grained risks are all positive, we adopt Leaky_R-
eLU and ReLU as their activation functions, respectively.
Here, WRF 2 Rm�If and bRF 2 Rm�1 are the weights and
biases for mapping layers of fine-grained risks while WCF 2
Rq�Ic , bCF 2 Rq�1 are the weights and biases for layers
aggregating coarse-grained risks, ODt

F and ODt
C are the

learned fine-grained and coarse-grained risk distributions
respectively. The three spatial scales of accident risk learn-
ing can not only be viewed as multi-granularity predictions,
but also can jointly optimize representation abilities as a
task-wise regularization.

3.5 Most-Likely Accident Region Selection

For selecting the most-likely accident subregions, we devise
an adaptive high-risk region selection mechanism with
considering both the spatial heterogeneity issue and time-
varying citywide risk levels. Specifically, the risk-assign con-
nections between the multi-scale spatial risk distributions
allow the fine-grained risks to take peripheral urban areas
into account and adequately absorb the hierarchical correla-
tions. For Dt, we take the learned summational risks ~RDt

S as
the citywide risk indicator and let the adaptive threshold of
the high-risk subregion number be KðDtÞ equalling to ~RDt

S .
Regarding each interval, we select KðDtÞ subregions with
the highest risks fromODt

F as a set ofmost-likely accident sub-
regions VM . Then, the learned KðDtÞ reduces the number of
over-predicted regions and keeps the outputs conform to the
time-sensitive changes of contextual factors.

3.6 Optimization

The r tuple outputs f< OTþ1
F ;OTþ1

C ; ~RTþ1
S > ; . . . ; < OTþr

F ;
OTþr

C ; ~RTþr
S > g constitute a predicted spatiotemporal multi-

granularity accident risk sequence, where each tuple
denotes the results of one time step. In the training process,
we have the total loss of this multi-task risk-oriented learn-
ing framework:

LossðuÞ ¼ MSEF þ �1 �MSEC þ �2 �MSER þ �3 � L2;
(15)

where u represents all learnable parameters in our frame-
work. MSEF , MSEC and MSER are the mean square errors
of the risks in fine-grained, coarse-grained, and citywide
scales. We here employ L2 regularization to avoid the over-
fitting issue, and use �1, �2, �3 as the hyperparameters of
the loss function.

For optimizing the algorithm, we introduce Adam opti-
mizer [43]. The learning rate, which has a decay of 0.98 in
every 10 epochs, is initialized as 0.001. Early stopping
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technique is also applied during the training process to
avoid overfitting.

4 EXPERIMENTAL STUDIES

In this section, we conduct extensive experiments to evalu-
ate our method for spatiotemporal multi-granularity traffic
accident prediction from multiple perspectives, including
performance comparisons, ablation studies and case
studies.

4.1 Data Description

The experiments are conducted on two real-world datasets:
NYC Opendata between 1st Jan, 2017 and 31st May, 2017,
and Suzhou Industrial Park (SIP) dataset between 1st Jan,
2017 and 31st March, 2017. For NYC dataset, we utilize the
taxi trip volumes in each subregion as the indicator of
human mobilities. For SIP dataset, it only contains traffic
flows and speeds and we integrate it with another traffic
accident dataset collected from Microblog, Sina, a social
media platform. The statistics are shown in Table 3.

4.2 Experimental Settings

4.2.1 Implementation Details

In our experiments, we select 60, 30 and 10 percent of data-
set for training, evaluation and validation, respectively. The
whole city of NYC is partitioned by small squares sized 1.5
km �1.5 km and obtain 354 square-shaped subregions and
18 rectangular regions. In SIP dataset, 108 surveillance spots
are gathered into 6 rectangular regions.4, 5 The accidents are
transferred into corresponding two-scale risk distributions.
All default settings of parameters involved in our frame-
work are summarized in Table 4. Then the missing values
and zero-value risks are complementing with ST-DFM and
PKDE strategies to enhance the performance. Due to the
incomplete accident records on Microblog, we omit the
input of accidents in our framework and maintain the main
components for traffic indications.

During training periods, dynamic traffic data and affinity
matrices are aggregated into three groups, which consist of
two expected historical observations and a sequence

indicating short-term instaneous dynamics. The RiskSeq is
trained with backpropagations and Adam method [43]. We
eventually attain both coarse-grained and fine-grained acci-
dent distributions in the following 6 time steps and select
the most-likely accident regions according to rankings.

4.2.2 Evaluation Metrics

We evaluate our proposed RiskSeq from two perspec-
tives [20]. (1) Regression perspective: Mean Square Error
(MSE) of predicted risks. (2) Spatial classification perspec-
tive: a) Accuracy of top M (Acc@M) [44], which is widely
applied in spatiotemporal ranking tasks, indicates the per-
centage of accurate predictions in subregions within M
highest risks. Considering the actual capacity of urban traf-
fic adminstration [45], we select approximate 5 percent sub-
regions as the most-likely accident regions for comparison
in our test. Thus, M equals 20 and 6 in NYC and SIP dataset
respectively, that means subregions with 20 and 6 highest
risks in NYC and SIP will be considered as high-risk subre-
gions to compare with real-world accident records. b)
Acc@K is an adaptive selection metric where K is the
learned city-level risks in our framework.

4.2.3 Baselines

Eight competitive baselines for spatiotemporal prediction
which have the potential to solve our task are as follows. For
fair comparison, we realize all these baselines to predict next
6 step accident risks with 12 previous time steps and three
influential factors as ours (i.e., traffic volumes, average
speeds and accidents) unless specified. All the hyperpara-
meter settings of baselines are initialized based on their liter-
atures and codes, and then we fine-tune them on our dataset
andmake themselves achieve their optimal performances.

(1) ARIMA is a classic machine learning algorithm, well-
known for predicting future values, especially for time
series. Here we utilize the accident time series and the parameter
tuple in ARIMA ðp; d; qÞ is set as (1,2,6).

(2) LSTM is a classic deep learning-based time series
modelingmethodwith long short-termmemorymodule [16].
We realize this LSTMwith 64 neurons in each hidden layer.

(3) Hetero-ConvLSTM is an advanced deep learning
framework for traffic accident prediction [13]. The sizes of
maps of NYC and SIP are 27�27 and 15�10, and the

TABLE 3
Datasets Statistics

TABLE 4
Parameter Settings During Training Period

Symbol Description Value

Dt Granularity of time intervals 10 min
r Connectedness of urban graph 10%
h Length of recent risk sequence 6
r Multi-step horizons 6
(If , Ic) Hidden state dimensions in fine- grained

and coarse-grained feature maps
(256, 48)

(g;b) Importances of elements in ao (1, 0.8)
(�1; �2; �3) Weights of loss function (1.2, 0.8,

1e-4)
- Number of GCN blocks 6
- Number of GCN learnable kernels 256

4. The settings of the spatiotemporal partition should leverage the
tradeoff between the accuracy and spatiotemporal granularity. Note
that such a setting may be related to the results of accident prediction
but is orthogonal to the generalities of our proposals.

5. It refers to different traffic-related records in the city.
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convolution kernels are set as 3�3 for both two tasks. We
involve previous 6 time steps to predict the next 6-step risks.

(4) STGCN is a multi-step traffic forecasting model, inte-
grating graph convolution and gated temporal convolution
by several spatiotemporal convolutional blocks [46]. We
realize it by stacking two ST-Conv blocks, and each block
consists of three layers with 64, 64, 64 filters.

(5) STG2Seq targets multi-step citywide passenger
demand prediction based on an urban graph, and it
employs a hierarchical graph convolutional structure to
capture both spatial and temporal correlations simulta-
neously [10]. We set 6 GCN blocks with 32 filters, and set
the sizes of both sliding window and patch as 3.

(6) STSGCN is designed for spatiotemporal data forecast-
ing, which captures localized spatiotemporal correlations and
heterogeneitieswith a synchronous network [11].We incorpo-
rate 4 synchronous graph convolutional layers and each layer
includes 3 convolution operationswith 64, 64, 64 filters.

(7) STDN proposes the flow gating and shifted attention
to jointly model volume and flow interactions, and to
address temporal shifting issues in spatiotemporal forecast-
ing [7]. We stack 3 CNN layers and each convolution kernel
is 3 � 3 with 64 filters. Each neighborhood accounts for 7� 7
grids and hidden dimensions of each LSTM is set as 128.

(8) DFN combines a hierarchical recurrent structure with
a context-aware embedding module to perform daily acci-
dent prediction [12]. The spatial embedding size, hidden
layer and attention dimensions are all set to 32.

(9) MTPSO is a turbulent PSO-based method targeting
time-series prediction, which introduces fuzzy relationships
for robust predictions [3]. We realize it with three groups of
influential factors and 12 previous time steps.

4.3 Evaluation Results

4.3.1 Comparison Performance

The comprehensive performances are illustrated in Table 5,
which are the averaged errors and accuracies on all time steps.
MSE-F and Acc@M measure the performance of fine-grained
forecasting while MSE-C evaluates the coarse-grained predic-
tion.We sumup the corresponding fine-grained risks to coarse-
grained ones for baselinemethods as they lack this output.

Encouragingly, RiskSeq achieves the highest accuracies
and low MSE among all compared methods. On NYC data-
set, our solution improves the best baseline by more than 4

percent on Acc@20. With limited 180 events in SIP, our Risk-
Seq achieves the highest accuracy of 71.27 percent, which
surpasses the best baseline by nearly 5 percent. It means
that more than 55 and 70 percent of real-world accidents are
hit by our model on top-20 in NYC and top-6 in SIP, respec-
tively. The reasons for relatively higher performance in SIP
may lie in that the events are few and also regularly occur
in the limited intersections. It is not astonishing that MSE-C
values are consistently larger than MSE-F, as the coarse
risks are risk summations of square subregions, but it still
reveals the superiority of our multi-task learning that this
scheme can enhance the multi-scale risk representations
and improve the performance. The acceptable coarse-
grained results (MSE-C) can reflect the effectiveness of Risk-
Seq in high-level coarsen risk modeling and the scalability
of our method in smaller or medium-sized cities.

ARIMA and MTPSO take temporal dependencies into
account while deep learning models can simultaneously
encode both spatial and temporal correlations, and reason-
ably most deep models perform better than ARIMA and
MTPSO. Thanks to the separated long-term and short-term
modeling as well as the graph convolutions and gated mech-
anisms, STGCN and STG2Seq are capable of capturing short-
term traffic variations and achieve better results than other
baselines. Even though Hetero-ConvLSTM and DFN which
focus on daily predictions try to consider the spatial heteroge-
neities with ConvLSTM blocks ensembled and multi-scale
temporal dependencies with hierarchically structured recur-
rent framework, respectively, they still cannot adapt the
multi-step short-term event forecasting due to irregular-
shaped urban areas and extremely sporadic event distribu-
tion. Noticed that the state-of-the-art method STSGCN per-
forms worst among all deep methods, and this may be
ascribed to the rescaled adjacentmatrices and redundant con-
nections between adjacent intervals. Moreover, STSGCN,
STDN and Hetero-ConvLSTM are with high computation
costs for their ensembles, pixel-wise operations and extended
adjacent matrix. Also, all baselines fail to consider the avail-
able time-sensitive influences and hierarchical spatial depen-
dencies into step-wise forecasting, hence they may lack the
capability of predictingmulti-step events.

4.3.2 Evaluations on Stability of Multi-Step

Performance

To evaluate the long-term stability of our solution, we illus-
trate the step-wise accuracy in the following 6 time steps
among all methods in Fig. 7.

Intuitively, STG2Seq, STGCN and our RiskSeq perform
much better than others due to their nice property in GCN-
based sequential modeling. Specifically, we observe that the
performance of our method keeps steady, retaining highest
accuracy of more than 50 and 65 percent even at the last
time step in NYC and SIP. An interesting finding comes that
RiskSeq achieves the best performance at the third step
which may be attributed to the nature of traffic variations
and the selection of time steps in spatiotemporal encoders.
By these results, the potential superiority of the combination
of LSTM and hierarchical context-guided mechanism for
capturing both contextual interactions and spatiotemporal
dependencies is practically confirmed.

TABLE 5
Comprehensive Performance Comparisons

NYC/SIP

Models Acc@20/Acc@6 MSE-F MSE-C

ARIMA 20.72/30.63 0.0192/ 0.0162 0.0492/0.2215
LSTM 28.98/35.70 0.0179/0.0255 0.0477/0.2694
Hetero-ConvLSTM 28.03/34.84 0.0161/0.0487 0.1015/0.4039
STGCN 50.42/51.27 0.0188 /0.0452 0.0492/0.2885
STG2Seq 52.08/54.30 0.0138/0.0364 0.0693/0.1667
STSGCN 26.46/33.59 0.0183/0.0236 0.1285/0.3473
STDN 37.48/42.18 0.0203 /0.0354 0.0853/0.2142
DFN 40.26/36.98 0.0194 /0.0376 0.0548/0.2278
MTPSO 30.81/33.69 0.0218 /0.0420 0.0393/0.2065
RiskSeq 56.42/71.27 0.0158/0.0401 0.0443/0.2702
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4.4 Ablation Study

To evaluate the importance of each proposed component in
addressing challenging issues, we perform the ablation
studies from two perspectives, i.e., dual-sparsity challenges,
and spatiotemporal dependency modeling.

4.4.1 Dual-Sparsity Challenges

As discussed above, spatiotemporal datamining usually suf-
fers two categories of sparsity, i.e., fake and intrinsic. To ver-
ify whether the proposed data preprocessing method makes
sense, we omit the PKDE data augmentation and co-sensing
network separately with remaining components named RS-
PKDE and RS-DFM. In Table 6, without data enhancement
and co-sensing strategy, the performances suffer a sharp
decrease of 37.86 and 13.37 percent in NYC and also show an
obvious downtrend to 35.48 and 58.94 percent in SIP, verify-
ing the effectiveness of our well-designed strategies.

4.4.2 Spatiotemporal Dependency Modeling

In spatiotemporal modeling views, we subsequently remove
or replace some components as the ablative variants.

(1) RS-OA: We replace the time-varying Overall Affinity
with the static adjacent matrix which calculated by the static
similarities based on Eq. (3).

(2) RS-DG: We remove Differential association Generator
directly in the ablative version.

(3) RS-RC:We cut off the Residual Connections in DT-GCN
in this variant.

(4) RS-CF: We omit the Contextual Factor inputs for guid-
ing the decoder learning and let it learn without step-wise
time-sensitive contexts.

(5) RS-CGLSTM: We remove the inputs of coarse-grained
maps and replace the CG-LSTM with only one LSTM as the
sequence decoder.

As can be seen, the integrated RiskSeq outperforms all its
ablative variants on both datasets. We observe that the time-
varying overall affinity contributes to the most remarkable
improvementwhich is up to 18 percent inNYC and 4 percent
in SIP on accuracy metric. With Residual Connections and
Differential feature Generator in DT-GCN, our framework is
able of aggregating mixed high-order correlations among
subregions and capturing the abnormal changeswithin short
terms, resulting in the improvements ranging from 1.82 to
13.63 percent. In addition, by removing the context-guided
mechanism, we obtain the average results of 43.04 percent.
The performance of RS-CGLSTM is most aprroximate to the

results of integrated RiskSeq with the gap of 8 percent. It
implicates the Occam’s Razora principle that a light-weight
model may perform better than the average. From the excit-
ing results, we conclude that all well-designed components
in RiskSeq exactly play important roles in our spatiotempo-
ral multi-granularity prediction.

4.5 Hyperparameter Tuning

To illustrate how different hyperparameters affect the per-
formance of the proposed framework, we show the tuning
process of hyperparameters on NYC dataset. First, we
adjust the number of GCN blocks and filters in each layer to
make itself reach their best performance. It arrives the best
performance at 6 GCN blocks and 256 kernels in each layer
because the deep GCN layers should maintain an equilib-
rium between the robustness and algorithm complexity.
And q equals 18 among {9, 18, 33} when the Acc@20 arrives
the highest at 53 percent approximately. Intuitively, the
larger q induces less subregions included in one rectangular
regions and vice versa. By equilibrating the tradeoff
between the serious zero-inflated issue in coarse-grained
risk learning and the redundant and complex inter correla-
tions, we finally obtain 18 rectangular subregions in NYC
based on extensive experimental results. We show the per-
formance varying with the number of DT-GCN layers, filter
kernels and different q in Fig. 8.

For multi-task learning, we fix the weight of main task as
1, and tune �1, �2 by grid searching. Similarly, the searching
is also performed on the importance of dynamic elements in
overall affinity, and it reaches the best when ðg;bÞ equals
ð1; 0:8Þ. We summarize the performance comparison in
terms of �; g;b, in Table 8.

We also investigate the influences of the ratio of the train-
ing samples versus the testing samples, and our RiskSeq
performs better when the train-test ratio ranges from 5:1 to
6:1 in Table 7. It is consistent with the fact that more training
samples can help capture deep spatiotemporal correlations
and reduce epistemic uncertainty, but excessive data may
also increase the aleatoric uncertainty and noises reversely.

4.6 Efficiency of RiskSeq

We implement the proposed framework RiskSeq on a single
Tesla V100 with 16GB. Python 3.6 and Tensorflow 1.9.0
libraries are involved to help build deep graph neural net-
works. The framework is trained offline and parameters
learned are utilized for the online prediction. Here we

Fig. 7. Evualtion on step-wise performance in NYC and SIP.

TABLE 6
Ablative Variants Performance on Two Datasets

NYC/SIP

Variant MSE Acc@20(Acc@6) Acc@K

RS-PKDE 0.0053/0.0512 18.56/35.48 16.28/29.45
RS-DFM 0.1260/0.0216 43.05/58.94 38.29/46.28
RS-OA 0.0116/0.0127 37.57/67.16 32.47/61.15
RS-DG 0.0118/0.0136 46.45/68.52 39.19/55.27
RS-RC 0.0208/0.0082 41.79/69.45 38.19/56.33
RS-CF 0.0123/0.0355 43.04/67.83 33.21/50.18
RS-CGLSTM 0.0128/0.0060 48.45/67.19 -
Integrated RS 0.0158/0.0040 56.42/71.27 47.18/65.26
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present the analysis of time complexity of our framework.
Let the number of neurons in each GCN block be O(n), the
number of parameters in our DT-GCN is O(n2). In our
implementation, n is set to 256 and GCN contains 6 blocks.
The total number of parameters is 256�256�6. In our test-
ing, it takes an average of 5.6 seconds to do one round of
accident forecasting, which sufficiently meets the require-
ment of real-time multi-granularity forecasting.

4.7 Case Study

To provide an intuitive understanding of our RiskSeq, we
visualize the results in the following two scenarios.

The period-oriented evaluations are presented in Fig. 9a,
and we also collect the corresponding precipitation.6 As
shown, risks are marked in a distinctive way and the
highlighted subregions show spatial similarities with the
ground truth. Manhattan District is always with higher risks
and more accidents probably due to its highly dynamic traf-
fic conditions and overloaded crowd flows. As observed,
mornings and evenings tend to suffer fewer accidents while
it becomes different in the afternoon. This is because fewer
people will go for work on weekend mornings and they
may go out for leisurely activities in the afternoon. The
increasing number of vehicles in the road network and the
identified rain subsequently lead to an accident-prone road
situation around 2 p.m. In the evening, the color of risk map
becomes deeper and risks are mostly focused in northern
NYC, as the inherently higher risks in the night, and both

nightclubs and bars are concentrated in Bronx District, the
north of NYC. The results verify the motivation and effec-
tiveness of time-varying region-wise modeling as well as
the context-guided learning in different typical intervals.

Fig. 9b shows the sequential results integrally derived by
RiskSeq. At 10 a.m., the accidents are sporadically distrib-
uted in the city and there is only one accident in Manhattan
subregion. However, with too many officers hurry to their
working places, the accident circle, especially Manhattan
subregion, is expanding and the sporadic accidents gradu-
ally evolve into three clusters. The reasons may boil down to
the fluctuations of traffic volumes and the abnormal traffic
changes around 10 a.m. Once the accidents occur in the
crowded subregions, the accumulated vehicles tend to prop-
agate the risks along the road segments from the accident
spot centers. The rainy days make it worse. Furthermore, the
aggregated accident clusters may follow a hierarchical distri-
bution. Therefore, the competitive results demonstrate the
potential superiority of propagation scheme and differential
association structure in GCN as well as the hierarchical
sequential learning in CG-LSTMdecoder.

We conclude our careful-designed RiskSeq can not only
perform well on sequential learning, but capture the time-
varying dependencies during different typical periods.

5 DISCUSSION

In this section, we discuss some related interesting issues.
General Applicability of RiskSeq. The core idea of RiskSeq is

to dynamically aggregate neighborhood graph signals for
better risk representations and to enhance interval-level pre-
dictions by employing step-wise context injections and
multi-scale learnings. Besides promising performances of
accident predictions, our work has the potential to benefit
other downstream tasks in spatiotemporal forecasting.
Crimes and epidemics share similar properties with traffic
accidents, which occur occasionally and also exhibit interac-
tions between spatial dependencies and human mobilities.
After mitigating data incompletions with ST-DFM and
urban covariates, and alleviating the issue of rare events
with PKDE, multiple urban data sources are formulated
into a graph. Human-related data as well as task-specific
historical records are fed into DT-GCN for capturing time-
varying and abnormal situations, and the multi-step predic-
tions are boosted with CG-LSTM decoder.

Novel Insights Provided by RiskSeq. Targeting two inevita-
ble sparse scenarios, we systematically address both intrin-
sic and fake sparsity by proposing novel strategies. We
transfer the sparse event prediction into a learnable regres-
sion and ranking task which can be solved with DNN. This
inspires researchers to mine the inherent and latent

TABLE 8
Performance on Different Hyperparameter Settings

TABLE 7
Performance on Different Train/Test Ratios

Ratio of Train/Test 2:1 3:1 4:1 5:1
Performance(Acc@20) 9.11 36.72 41.55 45.89

Ratio of Train/Test 6:1 7:1 8:1 9:1
Performance(Acc@20) 48.11 36.04 33.07 31.92

Fig. 8. Performance on different parameter settings.

6. https://www.wunderground.com/history/daily/us/ny/new-
york-city/KLGA/date/2017-4-22
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correlations in spatiotemporal sparse datasets from the per-
spective of sparsity origins. Novel sparsity divisions (e.g.,
node and edge sparsity in the network) and unified solu-
tions with both new operations and problem transforma-
tions are encouraged to support a variety of sparse
scenarios. These related studies may eventually settle more
sparse challenging tasks in fields including recommenda-
tion systems, fault detections and social community studies.

Limitations of RiskSeq. In our accident prediction task, the
classification error decreases when regression error increases
due to the non-accident subregions are dominated in the city.
Therefore, we should conduct further studies for amore con-
cise, cost-sensitive model by equilibrating the tradeoffs
between the pair of classification accuracy and regression
capacity, as well as the pair of model complexity and
interpretability. Another limitation is that RiskSeq still can-
not fully avoid the over-predicting, and may reach its accu-
racy bottleneck. The accuracy bottleneck mostly pins on
lacking the ability to sense the risks of individual vehicles.
One possible solution is to collect individual statuses and
improve local risk awareness with edge computing devices.

6 RELATED WORK

In this section, we review related studies in three aspects,
namely traffic accident prediction, classical time-series pre-
diction and spatiotemporal traffic prediction.

Traffic Accident Prediction. Accident forecasting can be
roughly folded into long-term forecasting [8], [12], [13], [24]
and short-term forecasting [14], [15], [16], [17], [18], [20], [25],
[26], [47]. Specifically, long-term forecasting methods model
traffic-related data to predict the daily risks [2], [12], [13],
[24]. For example, Chang et, al studied the highway accident
frequency by a tree-basedmodel on day levels [24]. Recently,
Yuan et, al proposed a daily risk forecasting framework by
employing a series of ConvLSTM sub-learners [13] and
Huang et, al investigated to combine abnormal events and
accidents to jointly predict future accidents in consecutive
days with dynamic fusion network [12]. There has also been
a citywide abnormal event forecasting framework proposed

in [8], which shares similarity as accident predictions. Even
so, all these daily forecasting models cannot support real-
time traffic services and fail to incorporate unique character-
istics between urban data and accident occurrences. There-
fore, many efforts on short-term accident forecasting have
been achieved [14], [15], [16], [17], [18], [20], [25], [26], [47].
Specifically, Lin et, al. formulated the task into a binary classi-
fication with frequent-pattern trees and random forest learn-
ing [25]. Some works quantified the spread of accident risks
by employing Network Kernel Density Estimation and clus-
tering methods [14], [15]. With the prosperity of deep learn-
ing, deep encoder-decoder mechanisms were introduced to
satisfy the citywide risk predictions through stacking fully-
connected layers and convolution blocks [17], [18], [26]. To
deal with risk sequences and capture short-term temporal
dependencies, some researchers tried to modify sequential
learning schemes for accident predictions [16], [20], [47].
Unfortunately, above-mentioned approaches either model
both spatial and temporal dependencies with traditional
learning methods, or apply existing deep learning frame-
works, hence all of them fail to identify distinctive observa-
tions in accident occurrences.

Classical Time-Series Prediction. Forecasting accident risks
can be viewed as time-series predictions. Off-the-shelf time-
series predictions, like PSO-based methods [3], [4], [5], and
ARIMA [6] can well capture temporal correlations and
high-efficiently, but they mostly fail to address highly
dynamic and complex road network traffic status due to
their inherent linear or one-dimension fusions.

Spatiotemporal Traffic Prediction. Since traffic forecasting is
well recognized to solve with spatiotemporal modelling,
emerging researches proposed deep learning-based methods
to jointly address spatial and temporal dependencies [7], [9],
[10], [46]. These studies devised a series of methods such as
diffusion convolution blocks andGCN-based sequence learn-
ing to foresee fundamental traffic elements and taxi demands
in upcoming steps [10], [42], [46]. More recently, [9] proposed
a meta-learning-based spatiotemporal forecasting method to
increase the stability of transfer by learning common knowl-
edge from multiple cities and [7] investigated a gate

Fig. 9. RiskSeq visualization.
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mechanism to model volume and flow interactions, which
advance spatiotemporal forecasting community. However,
the sporadic accident series with non-sufficient spatial sens-
ing data are different from intensive and continuous sequen-
ces that can be trainedwithout zero-inflated issue.

In summary, even though traditional optimization meth-
ods like PSO were efficient and many advanced spatiotem-
poral deep learning methods like ConvLSTM and STDN
have achieved promising results, none of above works
raised the issue of the multi-step short-term accident fore-
casting, which is more challenging due to the sporadic spa-
tial distribution and complex temporal tendency. Therefore,
these previous techniques were limited in addressing multi-
granularity spatiotemporal accident forecasting.

7 CONCLUSION

In this paper, we propose a novel unified framework, Risk-
Seq, where sparse traffic accidents are learned with multiple
spatiotemporal granularities, benefiting diversified require-
ments of travelers and traffic administrations. First, we sum-
marize two kinds of sparsity challenges and correspondingly
address these zero-inflated and sparse sensing issues.
Inspired by the fresh observations in traffic accidents, we
design a DT-GCN to enhance time-sensitive graph represen-
tations of risks by capturing short-term changes of urban traf-
fics. To perform a multi-scale and multi-step prediction,
coarse-grained andfine-grained risk distributions are learned
simultaneously. With CG-LSTM, we can dynamically learn
the region-context interactions and further alleviate the error
accumulations. Experimental results on two real-world data-
sets prove the superiority of the integrated structure of DT-
GCNandCG-LSTM in RiskSeq.

Future directions of the task-specific promotion is to
leverage both global and local traffic information to maxi-
mumly reduce the individual random factors. The task-
independent improvement comes down to further handle
spatiotemporal sparsity issues for more general predictions.
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