
Under review as a conference paper at ICLR 2021

ITERATIVE AMORTIZED POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy networks are a central feature of deep reinforcement learning (RL) algo-
rithms for continuous control, enabling the estimation and sampling of high-value
actions. From the variational inference perspective on RL, policy networks, when
employed with entropy or KL regularization, are a form of amortized optimiza-
tion, optimizing network parameters rather than the policy distributions directly.
However, this direct amortized mapping can empirically yield suboptimal policy
estimates and limited exploration. Given this perspective, we consider the more
flexible class of iterative amortized optimizers. We demonstrate that the resulting
technique, iterative amortized policy optimization, yields performance improve-
ments over direct amortization methods on benchmark continuous control tasks.

1 INTRODUCTION

Reinforcement learning (RL) algorithms involve policy evaluation and policy optimization (Sutton
& Barto, 2018). Given a policy, one can estimate the value for each state or state-action pair fol-
lowing that policy, and given a value estimate, one can improve the policy to maximize the value.
This latter procedure, policy optimization, can be challenging in continuous control due to instabil-
ity and poor asymptotic performance. In deep RL, where policies over continuous actions are often
parameterized by deep networks, such issues are typically tackled using regularization from previ-
ous policies (Schulman et al., 2015; 2017) or by maximizing policy entropy (Mnih et al., 2016; Fox
et al., 2016). These techniques can be interpreted as variational inference (Levine, 2018), using op-
timization to infer a policy that yields high expected return while satisfying prior policy constraints.
This smooths the optimization landscape, improving stability and performance (Ahmed et al., 2019).

However, one subtlety arises: when used with entropy or KL regularization, policy networks per-
form amortized optimization (Gershman & Goodman, 2014). That is, rather than optimizing the ac-
tion distribution, e.g. mean and variance, many deep RL algorithms, such as soft actor-critic (SAC)
(Haarnoja et al., 2018b;c), instead optimize a network to output these parameters, learning to opti-
mize the policy. Typically, this is implemented as a direct mapping from states to action distribution
parameters. While direct amortization schemes have improved the efficiency of variational inference
as encoder networks (Kingma & Welling, 2014; Rezende et al., 2014; Mnih & Gregor, 2014), they
are also suboptimal (Cremer et al., 2018; Kim et al., 2018; Marino et al., 2018b). This suboptimality
is referred to as the amortization gap (Cremer et al., 2018), translating into a gap in the RL objective.
Likewise, direct amortization is typically restricted to a single estimate of the distribution, limiting
the ability to sample diverse solutions. In RL, this translates into a deficiency in exploration.

Inspired by techniques and improvements from variational inference, we investigate iterative amor-
tized policy optimization. Iterative amortization (Marino et al., 2018b) uses gradients or errors to
iteratively update the parameters of a distribution. Unlike direct amortization, which receives gradi-
ents only after outputting the distribution, iterative amortization uses these gradients online, thereby
learning to perform iterative optimization. In generative modeling settings, iterative amortization
tends to empirically outperform direct amortization (Marino et al., 2018b;a), with the added benefit
of finding multiple modes of the optimization landscape (Greff et al., 2019).

Using MuJoCo environments (Todorov et al., 2012) from OpenAI gym (Brockman et al., 2016), we
demonstrate performance improvements of iterative amortized policy optimization over direct amor-
tization in model-free and model-based settings. We analyze various aspects of policy optimization,
including iterative policy refinement, adaptive computation, and zero-shot optimizer transfer. Iden-
tifying policy networks as a form of amortization clarifies suboptimal aspects of direct approaches

1

Under review as a conference paper at ICLR 2021

to policy optimization. Iterative amortization, by harnessing gradient-based feedback during policy
optimization, offers an effective and principled improvement.

2 BACKGROUND

2.1 PRELIMINARIES

We consider Markov decision processes (MDPs), where st 2 S and at 2 A are the state and
action at time t, resulting in reward rt = r(st;at). Environment state transitions are given by
st+1 � penv(st+1jst;at), and the agent is defined by a parametric distribution, p�(atjst), with
parameters �. The discounted sum of rewards is denoted as R(�) =

P
t

trt, where 2 (0; 1] is
the discount factor, and � = (s1;a1; : : :) is a trajectory. The distribution over trajectories is:

p(�) = �(s1)

TY

t=1

penv(st+1jst;at)p�(atjst); (1)

where the initial state is drawn from the distribution �(s1). The standard RL objective consists of
maximizing the expected discounted return, Ep(�) [R(�)]. For convenience of presentation, we use
the undiscounted setting (= 1), though the formulation can be applied with any valid .

2.2 KL-REGULARIZED REINFORCEMENT LEARNING

Various works have formulated RL, planning, and control problems in terms of probabilistic infer-
ence (Dayan & Hinton, 1997; Attias, 2003; Toussaint & Storkey, 2006; Todorov, 2008; Botvinick &
Toussaint, 2012; Levine, 2018). These approaches consider the agent-environment interaction as a
graphical model, then convert reward maximization into maximum marginal likelihood estimation,
learning and inferring a policy that results in maximal reward. This conversion is accomplished by
introducing one or more binary observed variables (Cooper, 1988), denoted as O, with

p(O = 1j�) / exp
�
R(�)=�

�
;

where � is a temperature hyper-parameter. These new variables are often referred to as “optimality”
variables (Levine, 2018). We would like to infer latent variables, � , and learn parameters, �, that
yield the maximum log-likelihood of optimality, i.e. log p(O = 1). Evaluating this likelihood re-
quires marginalizing the joint distribution, p(O = 1) =

R
p(�;O = 1)d� . This involves averaging

over all trajectories, which is intractable in high-dimensional spaces. Instead, we can use variational
inference to lower bound this objective, introducing a structured approximate posterior distribution:

�(� jO) =

TY

t=1

penv(st+1jst;at)�(atjst;O): (2)

This provides the following lower bound on the objective, log p(O = 1):

log

Z
p(O = 1j�)p(�)d� �

Z
�(� jO)

�
log p(O = 1j�) + log

p(�)

�(� jO)

�
d� (3)

= E�[R(�)=�]�DKL(�(� jO)kp(�)): (4)

Equivalently, we can multiply by �, defining the variational RL objective as:

J (�; �) � E�[R(�)]� �DKL(�(� jO)kp(�)) (5)

This objective consists of the expected return (i.e., the standard RL objective) and a KL divergence
between �(� jO) and p(�). In terms of states and actions, this objective is written as:

J (�; �) = Est;rt�penv
at��

"
TX

t=1

rt � � log
�(atjst;O)

p�(atjst)

#
: (6)

At a given timestep, t, one can optimize this objective by estimating the future terms in the summa-
tion using a “soft” action-value (Q�) network (Haarnoja et al., 2017) or model (Piché et al., 2019).
For instance, sampling st � penv, slightly abusing notation, we can write the objective at time t as:

J (�; �) = E� [Q�(st;at)]� �DKL(�(atjst;O)jjp�(atjst)): (7)

2

Under review as a conference paper at ICLR 2021

Figure 1: Amortization . Left : Optimization over two dimension of the policy mean,� 1 and� 3,
for a particular state. A direct amortized policy network outputs a suboptimal estimate, yielding an
amortization gapin performance. An iterative amortized policy network �nds an improved estimate.
Right: Diagrams of direct and iterative amortization. Larger circles denote distributions, and smaller
red circles denote terms in the objective,J (Eq. 7). Dashed arrows denote amortization. Iterative
amortization uses gradient feedback during optimization, while direct amortization does not.

Policy optimization in the KL-regularized setting corresponds to maximizingJ w.r.t. � . We often
consider parametric policies, in which� is de�ned by distribution parameters,� , e.g. Gaussian
mean,� , and variance,� 2. In this case, policy optimization corresponds to maximizing:

� argmax
�

J (�; �): (8)

Optionally, we can then also learn the policy prior parameters,� (Abdolmaleki et al., 2018).

2.3 KL-REGULARIZED POLICY NETWORKSPERFORMDIRECT AMORTIZATION

Policy-based approaches to RL typically do not directly optimize the action distribution parameters,
e.g. through gradient-based optimization. Instead, the action distribution parameters are output by a
function approximator (deep network),f � , which is trained using deterministic (Silver et al., 2014;
Lillicrap et al., 2016) or stochastic gradients (Williams, 1992; Heess et al., 2015). When combined
with entropy or KL regularization, this policy network is a form ofamortizedoptimization (Ger-
shman & Goodman, 2014), learning to estimate policies. Again, denoting the action distribution
parameters, e.g. mean and variance, as� , for a given state,s, we can express this direct mapping as

� f � (s); (direct amortization) (9)

and we denote the corresponding policy as� � (ajs; O; �). Thus,f � attempts tolearn to optimize
Eq. 8. This setup is shown in Figure 1 (Right). Without entropy or KL regularization, i.e.� � (ajs) =
p� (ajs), we can instead interpret the network as directly integrating the LHS of Eq. 3, which is less
ef�cient and more challenging. Adding regularization smooths the optimization landscape, resulting
in more stable improvement and higher asymptotic performance (Ahmed et al., 2019).

Viewing policy networks as a form of amortized variational optimizer (inference model) (Eq. 9) al-
lows us to see that they are similar to encoder networks in variational autoencoders (VAEs) (Kingma
& Welling, 2014; Rezende et al., 2014). This raises the following question:are policy networks
providing fully-optimized policy objectives?In VAEs, it is empirically observed that amortization
results in suboptimal approximate posterior estimates, with the resulting gap in the variational bound
referred to as theamortization gap(Cremer et al., 2018). In the RL setting, this means that an amor-
tized policy,� � , results in worse performance than the optimal policy within the parametric policy
class, which we denote asb� . Thus, the amortization gap is the gap in following inequality:

J (� � ; �) � J (b�; �):

BecauseJ is a variational bound on the RL objective, i.e. expected return, a looser bound, due to
amortization, prevents an agent from more completely optimizing this objective.

To visualize the RL amortization gap, in Figure 1 (Left), we display the optimization surface,J , for
two dimensions of the policy mean at a particular state in the MuJoCo environmentHopper-v2 .

3

Under review as a conference paper at ICLR 2021

Algorithm 1 Direct Amortization

Initialize �
for each environment stepdo

� f � (st)
at � � � (at jst ; O; �)
st +1 � penv(st +1 jst ; at)

end for
for each training stepdo

� � + � r � J
end for

Algorithm 2 Iterative Amortization

Initialize �
for each environment stepdo

Initialize �
for each policy optimization iterationdo

� f � (st ; � ; r � J)
end for
at � � � (at jst ; O; �)
st +1 � penv(st +1 jst ; at)

end for
for each training stepdo

� � + � r � J
end for

We see that the estimate of a direct amortized policy (diamond) is suboptimal, far from the optimal
estimate (star). Additional 2D plots are shown in Figure B.3. However, note that the absolute
difference in the objective due to direct amortization is relatively small compared with the objective
itself. That is, suboptimal estimates tend to have only aminor impact on evaluation performance,
as we show in Appendix B.4. Rather, policy suboptimality hinders data collection, sampling fewer
actions with high value estimates. Further, direct amortization is typically limited to asinglestatic
estimate of the policy, unable to directly adapt to the RL objective and therefore limiting exploration.
To improve upon this scheme, in Section 3, we turn to a technique developed in generative modeling,
iterative amortization(Marino et al., 2018b), which retains the ef�ciency bene�ts of amortization
while employing a more �exible iterative estimation procedure.

2.4 RELATED WORK

Previous works have investigated methods for improving policy optimization. QT-Opt (Kalash-
nikov et al., 2018) uses the cross-entropy method (CEM) (Rubinstein & Kroese, 2013), an iterative
derivative-free optimizer, to optimize aQ-value estimator for robotic grasping. CEM and related
methods are also used in model-based RL for performing model-predictive control (Nagabandi et al.,
2018; Chua et al., 2018; Piché et al., 2019; Hafner et al., 2019). Gradient-based policy optimization,
in contrast, is less common (Henaff et al., 2017; Srinivas et al., 2018; Bharadhwaj et al., 2020), how-
ever, gradient-based optimization can also be combined with CEM (Amos & Yarats, 2020). Most
policy-based methods use direct amortization, either using a feedforward (Haarnoja et al., 2018b)
or recurrent (Guez et al., 2019) network. Similar approaches have also been applied to model-based
value estimates (Byravan et al., 2020; Clavera et al., 2020; Amos et al., 2020), as well as combin-
ing direct amortization with model predictive control (Lee et al., 2019) and planning (Rivi�ere et al.,
2020). A separate line of work has explored improving the policy distribution, using normalizing
�ows (Haarnoja et al., 2018a; Tang & Agrawal, 2018) and latent variables (Tirumala et al., 2019).
In principle, iterative amortization can perform policy optimization in each of these settings.

3 ITERATIVE AMORTIZED POLICY OPTIMIZATION

3.1 FORMULATION

Iterative amortized optimizers (Marino et al., 2018b) utilize some form of error or gradient to up-
date the approximate posterior distribution parameters. While various forms exist, we consider
gradient-encoding models (Andrychowicz et al., 2016) due to their generality. Compared with di-
rect amortization in Eq. 9, we use iterative amortized optimizers of the general form

� f � (s; � ; r � J); (iterative amortization) (10)

also shown in Figure 1 (Right), wheref � is a deep network and� are the action distribution param-
eters. For example, if� = N (a; � ; diag(� 2)) , then� � [� ; �]. Technically,s is redundant, as the
state dependence is already captured inJ , but this can empirically improve performance (Marino

4

Under review as a conference paper at ICLR 2021

Figure 2:Estimating Multiple Policy Modes. Unlike direct amortization, which is restricted to a
single estimate, iterative amortization can effectively sample from multiple high-value action modes.
This is shown for a particular state inAnt-v2 , showing multiple optimization runs across two action
dimensions (Left). Each square denotes an initialization. The optimizer �nds both modes, with the
densities plotted on theRight. This capability provides increased �exibility in action exploration.

et al., 2018b). In practice, the update is carried out using a “highway” gating operation (Hochreiter
& Schmidhuber, 1997; Srivastava et al., 2015). Denoting! � 2 [0; 1] as the gate and� � as the
update, both of which are output byf � , the gating operation is expressed as

� ! � � � + (1 � ! �) � � � ; (11)

where� denotes element-wise multiplication. This update is typically run for a �xed number of
steps, and, as with a direct policy, the iterative optimizer is trained using stochastic gradient es-
timates ofr � J , obtained through the path-wise derivative estimator (Kingma & Welling, 2014;
Rezende et al., 2014; Heess et al., 2015). Because the gradientsr � J must be estimated online,
i.e. during policy optimization, this scheme requires some way of estimatingJ online, e.g. through
a parameterizedQ-value network (Mnih et al., 2013) or a differentiable model (Heess et al., 2015).

3.2 CONSIDERATIONS

3.2.1 ADDED FLEXIBILITY

Iterative amortized optimizers are more �exible than their direct counterparts, incorporating feed-
back from the objectiveduring policy optimization (Algorithm 2), rather than onlyafter optimiza-
tion (Algorithm 1). Increased �exibility improves the accuracy of optimization, thereby tightening
the variational bound (Marino et al., 2018b;a). We see this �exibility in Figure 1 (Left), where an
iterative amortized policy network, despite being trained with adifferentvalue estimator, is capable
of iteratively optimizing the policy estimate (blue dots), quickly arriving near the optimal estimate.

Direct amortization is typically restricted to a single estimate, inherently limiting exploration. In
contrast, iterative amortized optimizers, by using stochastic gradients and random initialization, can
traverse the optimization landscape. As with any iterative optimization scheme, this allows iterative
amortization to obtain multiple valid estimates (Greff et al., 2019). We illustrate this capability
across two action dimensions in Figure 2 for a state in theAnt-v2 MuJoCo environment. Over
multiple policy optimization runs, iterative amortization �nds multiple modes, sampling from two
high-value regions of the action space. This provides increased �exibility in action exploration.

3.2.2 MITIGATING VALUE OVERESTIMATION

Model-free approaches generally estimateQ� using function approximation and temporal differ-
ence learning. However, this comes with the pitfall of value overestimation, i.e. positive bias in
the estimate,bQ� (Thrun & Schwartz, 1993). This issue is tied to uncertainty in the value estimate,
though it is distinct from optimism under uncertainty. If the policy can exploit regions of high uncer-
tainty, the resulting target values will introduce positive bias into the estimate. More �exible policy
optimizers may exacerbate the problem, exploiting this uncertainty to a greater degree. Further, a
rapidly changing policy increases the dif�culty of value estimation (Rajeswaran et al., 2020).

5

Under review as a conference paper at ICLR 2021

(a) (b)

Figure 3: Mitigating Value Overestimation. Using the same value estimation setup (� = 1 in
Eq. 12), shown onAnt-v2 , iterative amortization results in (a) higher value overestimation bias
(closer to zero is better) and (b) a more rapidly changing policy as compared with direct amortiza-
tion. Increasing� helps to mitigate these issues by further penalizing variance in the value estimate.

Various techniques have been proposed for mitigating value overestimation in deep RL. The most
prominent technique, double deepQ-network (Van Hasselt et al., 2016) maintains twoQ-value
estimates (Van Hasselt, 2010), attempting to decouple policy optimization from value estimation.
Fujimoto et al. (2018) apply and improve upon this technique for actor-critic settings, estimating the
targetQ-value as the minimum of twoQ-networks,Q 1 andQ 2 :

bQ� (s; a) = min
i =1 ;2

Q 0
i
(s; a);

where 0
i denotes the “target” network parameters. As noted by Fujimoto et al. (2018), this not

only counteracts value overestimation, but also penalizes high-variance value estimates, because
the minimum decreases with the variance of the estimate. Ciosek et al. (2019) noted that, for a
bootstrapped ensemble of twoQ-networks, the minimum operation can be interpreted as estimating

bQ� (s; a) = � Q (s; a) � �� Q (s; a); (12)

with mean� Q (s; a) � 1
2

P
i =1 ;2 Q 0

i
(s; a), standard deviation� Q (s; a) � (1

2

P
i =1 ;2(Q 0

i
(s; a) �

� Q (s; a))2)1=2, and� = 1 . Thus, to further penalize high-variance value estimates, preventing value
overestimation, we can increase� . For large� , however, value estimates become overly pessimistic,
negatively impacting training. Thus,� reduces target value variance at the cost of increased bias.

Due to the �exibility of iterative amortization, the default� = 1 results in increased value bias (Fig-
ure 3a) and a more rapidly changing policy (Figure 3b) as compared with direct amortization. Fur-
ther penalizing high-variance target values with� = 2 :5 reduces value overestimation and improves
policy stability. For details, see Appendix A.2. Recent techniques for mitigating overestimation have
been proposed, such as adjusting the temperature,� (Fox, 2019). In of�ine RL, this issue has been
tackled through the action prior (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019) or by
alteringQ-network training (Agarwal et al., 2019; Kumar et al., 2020). While such techniques could
be used here, increasing� provides a simple solution with no additional computational overhead.

4 EXPERIMENTS

4.1 SETUP

To focus on policy optimization, we implement iterative amortized policy optimization using the soft
actor-critic (SAC) setup described by Haarnoja et al. (2018c). This uses twoQ-networks, uniform
action prior,p� (ajs) = U(� 1; 1), and a tuning scheme for the temperature,� . In our experiments,
“direct” refers to direct amortization employed in SAC, i.e. a direct policy network, and “iterative”
refers to iterative amortization. Both approaches use thesamenetwork architecture, adjusting only
the number of inputs and outputs to accommodate gradients, current policy estimates, and gated up-
dates (Sec. 3.1). Unless otherwise stated, we use5 iterations per time step for iterative amortization,
following Marino et al. (2018b). For details, refer to Appendix A and Haarnoja et al. (2018b;c).

6

	Introduction
	Background
	Preliminaries
	KL-Regularized Reinforcement Learning
	KL-Regularized Policy Networks Perform Direct Amortization
	Related Work

	Iterative Amortized Policy Optimization
	Formulation
	Considerations
	Added Flexibility
	Mitigating Value Overestimation

	Experiments
	Setup
	Analysis
	Visualizing Policy Optimization
	Performance Comparison
	Decreased Amortization Gap
	Varying Iterations
	Iterative Amortization with Model-Based Value Estimates

	Discussion
	Experiment Details
	2D Plots
	Value Bias Estimation
	Amortization Gap Estimation
	Hyperparameters
	Model-Based Value Estimation

	Additional Results
	Improvement per Step
	Comparison with Iterative Optimizers
	Additional 2D Optimization Plots
	Additional Optimization & the Amortization Gap
	Multiple Policy Estimates

