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Abstract

In the context of graphical causal discovery,
we adapt the versatile framework of linear non-
Gaussian acyclic models (LiNGAMs) to propose
new algorithms to efficiently learn graphs that are
polytrees. Our approach combines the Chow–Liu
algorithm, which first learns the undirected tree
structure, with novel schemes to orient the edges.
The orientation schemes assess algebraic relations
among moments of the data-generating distribution
and are computationally inexpensive. We establish
high-dimensional consistency results for our ap-
proach and compare different algorithmic versions
in numerical experiments.

1 INTRODUCTION

Directed acyclic graphs (DAGs) have been extensively used
in causal modeling; the nodes of a graph represent the ran-
dom variables of the model while the edges represent di-
rected causal effects from source to sink. These causal ef-
fects of the parent nodes on the children are quantified by
structural equations. In this paper, we take up this framework
and study the problem of inferring the graphical structure
underlying the causal model, given only observational data
[Drton and Maathuis, 2017]. Referred to as structure learn-
ing or causal discovery, it is a problem that is difficult due
to the statistical curse of dimensionality and computational
issues. Effective methods, thus, need to exploit restrictions
on the random variables, graphical structure, or structural
equations to simplify the problem [Pearl et al., 2016, Peters
et al., 2017]. Here, we consider a class of tree-structured
graphs, together with linear structural equations where the
error terms are mutually independent and non-Gaussian.

Specifically, we work in the versatile causal discovery frame-
work of linear non-Gaussian acyclic models (LiNGAMs)
[Shimizu et al., 2006, Shimizu and Kano, 2008]. LiNGAMs

postulate linear structural equations with non-Gaussian
noise terms to describe the relationships among observed
variables. The non-Gaussianity assumption allows for con-
sistent estimation of the graph encoding the model from
observational data alone and for efficient structure learning
algorithms [e.g., Shimizu et al., 2011, Hyvärinen and Smith,
2013, Wang and Drton, 2020, Hoyer et al., 2008b]. Since
the complexity of the structure learning problem depends di-
rectly on the underlying graph, consistency results for causal
discovery algorithms often require some restrictions on the
graph, particularly, when high-dimensional consistency re-
sults are desired. In this context, the subset of DAGs whose
underlying skeleton is a tree—a polytree—is the most scal-
able setting, offering low computational complexity whilst
retaining model expressiveness [Pearl, 1988]. In this pa-
per, we propose algorithms to learn a polytree underlying a
LiNGAM model.

Learning a polytree may be decomposed into two tasks:
extracting the skeleton and determining the orientation of
the edges [Rebane and Pearl, 1987, Jakobsen et al., 2021].
Recovering the underlying skeleton may be achieved via
the Chow–Liu algorithm [Chow and Liu, 1968]. Existing
methods for edge orientation entail checking conditional
independence, which is usually carried out by serial hy-
pothesis testing and impacts computational efficiency. We
instead proceed by exploiting recent insights concerning
algebraic relations among moments to determine edge ori-
entation [Robeva and Seby, 2021, Améndola et al., 2021,
Wiedermann, 2015, Dodge and Rousson, 2001]. The result
is an efficient approach that adapts a classical algorithm
to recover the core causal tree structure and augments it
with a novel algebraic strategy to determine edge orien-
tation. The proposed algorithms learn the polytree from
observational data alone, in a far more scalable manner than
existing LiNGAM algorithms that learn more general graph
structures.

The remainder of the paper is organized as follows. Sec-
tion 2 sets the background and theory. Section 3 presents
our contributions where a general population version and
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three algorithmic scenarios are studied in detail. Correspond-
ing theoretical guarantees for our proposed algorithms are
given in Section 4. Results of numerical experiments are
presented in Section 5. We close with a discussion and sug-
gestions for future research in Section 6. The proofs of all
the results are provided in the Appendix A, which is part of
the supplementary material. Appendix B in the supplemen-
tary material gives the detailed description of the sample
versions of the algorithms considered in the paper.

2 LINEAR NON-GAUSSIAN
STRUCTURAL CAUSAL MODELS

A directed graph (digraph) is a pair G = (V,E), where V is
the set of vertices and E ⊂ V ×V is the set of directed edges.
We let V = [p] := {1, . . . , p}. An element (i, j) ∈ E may
also be denoted by i −→ j. A digraph G is acyclic (i.e., a
DAG) if it does not contain any directed cycle: there is no
sequence of vertices i0, . . . , ik with ij −→ ij+1 ∈ E for
j = 0, . . . , k − 1 and i0 = ik. A path in G is a sequence of
vertices i0, . . . , ik such that ij −→ ij+1 ∈ E or ij+1 −→ ij ∈
E for all j. It is directed if all the arrows point in the same
direction. A polytree is a DAG in which there is a unique
path between any two vertices.

If i −→ j ∈ E, then i is a parent of j, and j is a child of
i. If G contains a directed path from i to j, then i is an
ancestor of j and j is a descendant of i. The sets of parents,
children, ancestors, and descendants of i ∈ V are denoted
by pa(i), ch(i), an(i),de(i), respectively.

Let X = (Xi)i∈[p] be a random vector indexed by the ver-
tices of a DAG G. For A ⊂ [p], let XA = (Xi)i∈A. When
XA is conditionally independent of XB given XC for dis-
joint subsets A,B,C ⊂ [p], we write A ⊥⊥ B|C. The joint
distribution of X satisfies the local Markov property with
respect to G if {i} ⊥⊥ [p]\(pa(i)∪de(i)) | pa(i) ∀ i ∈ [p].
The Markov equivalence class of G is the set of all DAGs
that encode the same conditional independence relations,
i.e., for which the set of distributions satisfying the local
Markov property is the same. See Maathuis et al. [2019,
Chap. 1] for further details.

The skeleton of a DAG is the undirected graph obtained by
replacing each directed edge by an undirected edge. Here,
edges are denoted by {i, j} ⊆ E.

2.1 STRUCTURAL EQUATIONS

A structural equation model hypothesizes that every random
variable in X is functionally related to its parent variables:
Xi = fi(Xpa(i), εi), i ∈ V, where the εi are independent
noise terms and the fi are measurable functions. If the fi
are linear, then we obtain a linear structural equation model

(LSEM). An LSEM can be written in matrix form as

X = (I − Λ)−⊤ε, (2.1)

where Λ = (λij) with λij ̸= 0 only if i → j ∈ E. An
LSEM constrains the dependence structure on the coordi-
nates of X , but not the mean. Hence, when working with
the LSEM, we may assume without loss of generality that
E[εi] = 0, which implies E[Xi] = 0 for all i ∈ V .

Let ε(2) = (E[εiεj ])ij be the covariance matrix of ε, which
is a diagonal matrix by independence, and write ε

(2)
i :=

E[ε2i ] > 0 for its ith diagonal entry. The covariance matrix
of X is then the positive definite matrix

Σ = (I − Λ)−⊤ε(2)(I − Λ)−1. (2.2)

2.2 CUMULANTS IN GAUSSIAN AND
NON-GAUSSIAN MODELS

Cumulants are alternative representations of moments of
a distribution. Here, we formalize the definition in higher
order settings and discuss their implications under Gaussian
and non-Gaussian errors.

Definition 2.1. The kth cumulant tensor of a random vector
(X1, . . . , Xp) is the k-way tensor in Rp×···×p ≡ (Rp)k

whose entry in position (i1, . . . , ik) is the joint cumulant

cum(Xi1 , . . . , Xik) :=∑
(A1,...,AL)

(−1)L−1(L− 1)!E
[ ∏
j∈A1

Xj

]
· · ·E

[ ∏
j∈AL

Xj

]
,

where the sum is taken over all partitions (A1, . . . , AL) of
the multiset {i1, . . . , ik}.

In our context, the variables have mean 0, so

cum(Xi) = E[Xi] = 0,

cum(Xi1 , Xi2) = Cov[Xi1 , Xi2 ] = E[Xi1Xi2 ].

More generally, the sum can be restricted to the partitions in
which all blocks Ai have at least two elements. In particular,

cum(Xi1 , Xi2 , Xi3) = E[Xi1Xi2Xi3 ],

cum(Xi1 , Xi2 , Xi3 , Xi4) = E[Xi1Xi2Xi3Xi4 ]

− E[Xi1Xi2 ]E[Xi3Xi4 ]− E[Xi1Xi3 ]E[Xi2Xi4 ]

− E[Xi1Xi4 ]E[Xi2Xi3 ].

The following powerful result dictates a simple condition
for Gaussianity of X .

Theorem 2.2. [Marcinkiewicz, 1939, Theorem 2] If there
exists k such that cum(Xi1 , .., Xij ) = 0 for all j ≥ k, then
k = 3 and X has a multivariate Gaussian distribution.



Furthermore, the following results dictate when the assump-
tions of Theorem 2.2 are satisfied, thus giving rise to Gaus-
sianity, especially under LSEMs.

Lemma 2.3. If the variables ε1, . . . , εn are independent,
then cum(εi1 , . . . , εik) = 0 unless i1 = · · · = ik.

Lemma 2.4. Let the random vector X follow the LSEM
from (2.1) with noise vector ε. Let C(k) and ε(k) be the kth
order cumulant tensors of X and ε, respectively. Then

C(k) = ε(k) •
[
(I − Λ)−1

]k
j=1

= ε(k) • (I − Λ)−1 • · · · • (I − Λ)−1

is the Tucker product of ε(k) and k copies of (I − Λ)−1.

Notice here that C(k) reduces to (2.2) when k = 2.

See Comon and Jutten [2010] and references therein for
proofs of Theorem 2.2 and Lemmas 2.3 and 2.4.

The next definition introduces the cumulant model obtained
from the LSEM (2.1).

Definition 2.5. Let G = (V,E) be a DAG, and let K ≥ 2
be an integer. The Kth cumulant model of G is the set of
K-way tensors

M(K)(G) = {ε(K) •
[
(I − Λ)−1

]K
j=1

:

Λ ∈ RE , ε(K) ∈ (Rp)K diagonal}.

Here, RE is the set of p×p matrices with support E. Further,
the cumulants up to order K defined by G are modeled by

M(≤K)(G) =M(2)(G)× · · · ×M(K)(G). (2.3)

By Theorem 2.2, all multivariate Gaussian vectors X corre-
spond to the zero element ofM(K)(G) for k ≥ 3.

When the errors in an LSEM are Gaussian, all distributional
information is captured by the covariance matrix and equiva-
lence issues arise that hinder identifiability of the full graph.
It then becomes necessary to consider non-Gaussian settings.
Relaxing the constraint of Gaussianity gives rise to the class
of LiNGAMs where the underlying graph now becomes
identifiable [Shimizu et al., 2006, 2011]. We will exploit
this property algorithmically and use the signal provided by
higher cumulants; we do this by way of treks.

Definition 2.6 (Multi-Trek). A k-trek between vertices
i1, . . . , ik ∈ V of a DAG G = (V,E) is a collection of
directed paths T = (P1, . . . , Pk) in G that share the same
source and have ij as the sink of Pj for all j. The common
source node is the top of the trek top(T ). A trek is simple if
the top node is the unique node on all the paths.

We denote the set of k-treks between i1, . . . , ik by
T (i1, . . . , ik) and the set of simple treks by S(i1, . . . , ik).
See Figure 1 for an example.

t
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Figure 1: Example of a 4-trek.

If P is a directed path in the DAG G = (V,E) and Λ =
(λij) ∈ RE , then λP =

∏
(i,j)∈P λij is a path monomial.

For a k-trek T = (P1, . . . , Pk), set λT := λP1 · · ·λPk .

Proposition 2.7 (Multi-Trek Rule). The kth order cumulant
tensor C(k)(G) of X can be expressed as

C(k)i1,...,ik
(G) =

∑
ε
(k)
top(T )λ

T , (2.4)

where the sum is over all the treks T in T (i1, . . . , ik) and
ε
(k)
top(T ) denotes the top(T ) diagonal entry of ε(k).

Proposition 2.7 follows from Lemma 2.4 and expanding the
entries of (I − Λ)−1 into sums of path monomials as in the
usual trek rule for covariances [Robeva and Seby, 2021].

Corollary 2.8 (Simple Multi-Trek Rule). The kth order
cumulant tensor C(k)(G) of X can be expressed as

C(k)i1,...,ik
(G) =

∑
C(k)top(S)(G)λS , (2.5)

where the sum is extended to all the simple treks S in
S(i1, . . . , ik).

Corollary 2.9. The ith diagonal entry of C(k) is

C(k)i (G) =
∑

p1,...,pk∈pa(i)

λp1,i · · ·λpk,iC(k)p1,...,pk
(G) + ε

(k)
i .

2.3 POLYTREE MODELS

For general graphs, the algebraic relations among the cumu-
lants may be far more complicated than the bivariate case
(which is discussed in Example A.1) and have not yet been
fully characterized. However, there exists a generalization
of rank-one constraints for polytrees, which we now discuss.

By consequence of there being at most one directed path
between any two nodes of a polytree G, there is at most one
simple trek between any set of nodes i1, . . . , ik. The simple
multi-trek rule then reduces to C

(k)
i1,...,ik

(G) = λSC(k)top(S)
for a trek between nodes with S being the unique simple
trek; denote the top of the simple trek between i1, . . . , ik, if
it exists by top(i1, . . . , ik). Also, C(k)

i1,...,ik
(G) = 0 if there

is no k-trek between the nodes.

For any two vertices i ̸= j, let c(i,j),km denote the kth order
cumulant C(k)i...i,j...j(G), where the first m indices are equal
to i and the remaining m− k equal j.



Proposition 2.10. Let e : i→ j be an edge of a polytree G.
Then the following matrix is of rank one

Ae,K =

[
ce,km

ce,km−1

| 2 ≤ m ≤ k ≤ K

]
. (2.6)

The first column of Ae,K contains E[X2
i ] > 0. Moreover,

for every distribution induced by non-Gaussian errors, there
exists k such that C(k)i ̸= 0. Hence, at least one minor of
Ae,K gives us an equation that is satisfied if i→ j is in G,
and is not satisfied in general for the graph with the edge
reversed. This observation will provide the foundation for
our learning algorithm, which we now present.

3 LEARNING NON-GAUSSIAN
POLYTREES FROM MOMENTS

We now present our population algorithm for learning poly-
trees with three versions for learning the edge orientations.
The first common phase is skeleton recovery.

3.1 LEARNING THE SKELETON

In its original formulation, the Chow–Liu algorithm gives
the maximum likelihood tree approximation of a given dis-
crete distribution [Chow and Liu, 1968]. The tree obtained
is the maximum weight spanning tree of the complete undi-
rected graph with edge weights w(i, j), given by the mutual
information between Xi and Xj . Under a non-degeneracy
assumption, the same Chow–Liu algorithm can be used to
recover skeletons in the polytree setting [Rebane and Pearl,
1987, Theorem 1]; the proof is based on the following prop-
erty of the mutual information.

Proposition 3.1. If the polytree that defines the model con-
tains the subgraph i→ j → l or i←− j → l, then

min{I(Xi, Xj), I(Xj , Xl)} > I(Xi, Xl),

where I(·, ·) is the mutual information.

When working with an LSEM, a stronger result justifies
the use of the absolute value of the correlation coefficient
instead of the mutual information.

Lemma 3.2 (Wright’s Formula, [Wright, 1960]). In the
LSEM defined by a polytree, the correlation ρi,j =
Corr[Xi, Xj ] satisfies

|ρi,j | =

{∏
|ρe|, T (i, j) ̸= ∅,

0, otherwise,
(3.1)

where the product is taken over the edges of the unique
trek from i to j, and ρe denotes the correlation between the
random variables indexed by the endpoints of the edge e.

Definition 3.3. Let R = (ρi,j) be the correlation matrix
of a random vector X . The Chow–Liu tree M(R) is the
(undirected) maximum weight spanning tree over [p], with
weights given by |ρi,j |.

Kruskal’s algorithm may be applied to compute the Chow–
Liu tree [Kruskal, 1956].

Proposition 3.4. Let R = (ρi,j) be the correlation matrix
of a random vector X = (X1, . . . , Xp) that follows the
LSEM given by a polytree G. If 0 < |ρi,j | < 1 for every
e : i→ j ∈ E, thenM(R) equals the skeleton of G.

The assumption |ρi,j | < 1 holds for all random vectors with
positive definite covariance matrix. Moreover, in a polytree
model, |ρi,j | > 0 for an edge (i, j) if λij ̸= 0.

3.2 LEARNING ORIENTATIONS

We now present three ways to orient the edges in the esti-
mated skeleton. The three resulting orientation algorithms
are based on Proposition 2.10 and the following result.

Theorem 3.5. Consider the LSEM given the polytree G,
and let e : i→ j be an edge of G. Then

(i) rank(Ai→j,K) = 1,

(ii) rank(Aj→i,K) = 2, for generic edge coefficients and
error cumulants up to order K.

Proposition 3.6. Suppose the skeleton of the polytree G
contains the subgraph i− j − l with ρi,j , ρj,l ̸= 0. Then the
corresponding subgraph of G is i→ j ←− l iff ρi,l = 0.

We now present PairwiseOrientation_Pop; Algorithm 1.
This algorithm takes as input the list of unoriented edges
and the parameter K ≥ 3, which defines the highest order
cumulant used in Ai→j,K . It orients each edge separately
by checking whether the rank of Ai→j,K is 1 or not.

Algorithm 1 PairwiseOrientation_Pop(E,K)

1: O ← ∅
2: for {i, j} ∈ E do
3: if rank(Ai→j,K) = 1 then
4: O ← O ∪ {i→ j}
5: else
6: O ← O ∪ {j → i}

return O

Our second algorithm TPO_Pop, Algorithm 2, proceeds re-
cursively. At each step, it takes the order K, a list of already
oriented edges O, a list of still unoriented edges E, and,
possibly, an oriented edge o, as inputs. Here t(o) is the tar-
get/sink of the edge and E ∩ t(o) is the (possibly empty) set
of unoriented edges containing t(o). The procedure checks
if there are unoriented edges, and if so, it searches for triplets



of the form i→ j − k, where the oriented edge o = i→ j
can come either from the previous call of the procedure or
from checking the rank of Ai→j,K . For such a triplet, the
method determines whether ρi,k = 0, orienting the other
edge according to the result. The algorithm is initialized
with O = o = ∅ and the full list of undirected edges, E.

Algorithm 2 TPO_Pop(E,K,O, o)

1: if E ̸= ∅ then
2: if o = ∅ then
3: {i, j} ← E[1]
4: if rank(Ai→j,K) = 1 then
5: o← (i→ j)
6: O ← O ∪ {o}
7: else
8: o← (j → i)
9: O ← O ∪ {o}

10: Eo ← E ∩ t(o)
11: if Eo ̸= ∅ then
12: E ← E \ Eo

13: for t(o)− k ∈ Eo do
14: if ρs(o),k = 0 then
15: O ← O ∪ {k → t(o)}
16: else
17: O ← O ∪ {t(o)→ w}
18: o← (t(o)→ w)
19: O,E ← TPO_Pop(E,K,O, o)

20: O,E ← TPO_Pop(E,K,O, ∅)
return O,E

Our third proposed algorithm PTO_Pop, Algorithm 3, can
be seen as a direct extension of learning completed partially
directed graphs (CPDAG)—a mixed graph that encodes the
causal information common to all the members of a Markov
equivalence class. Here, we first compute the CPDAG fol-
lowing Rebane and Pearl [1987], then we orient all remain-
ing undirected edges by considering the rank of Ai→j,K .
This ensures that no other unshielded colliders appear.

The following example compares our three algorithms.

Example 3.7. Consider the graph G with 1 −→ 2 −→ 3←− 4.
With the skeleton 1 − 2 − 3 − 4 inferred, the algorithm
PairwiseOrientation_Pop sequentially computes the rank of
Ai→j,K in the order of all edges and orients them accord-
ing to the results. TPO_Pop orients 1 − 2 using the rank
condition and then checks if ρ1,3 = 0. Since this is not the
case, it orients 2−3 using the rank condition and then 3−4
checking that ρ2,4 = 0. Finally, PTO_Pop first computes
ρ1,3 and ρ2,4. Since ρ2,4 = 0, it orients 2− 3− 4, and then
orients 1− 2 with the rank condition.

Theorem 3.8. The three versions of the algorithm are cor-
rect for generic edge coefficients and cumulants up to order
K.

Algorithm 3 PTO_Pop(E,K)

1: O ← ∅
2: for i− j − k ∈ E do
3: if ρi,k = 0 then
4: E ← E \ {{i, j}, {j, k}}
5: O ← O ∪ {i→ j, k → j}
6: for i→ j ∈ O do
7: for j − l ∈ E do
8: E ← E \ {(j, l)}
9: O ← O \ {j → l}

10: for {i, j} ∈ E do
11: if rank(Ai→j,K) = 1 then
12: O ← O ∪ {i→ j}
13: for j − l ∈ E do
14: E ← E \ {(j, l)}
15: O ← O \ {j → l}
16: else
17: O ← O ∪ {j → i}
18: for i− l ∈ E do
19: E ← E \ {(i, l)}
20: O ← O \ {i→ l}

return O

4 LEARNING NON-GAUSSIAN
POLYTREES FROM DATA

We now consider the empirical versions of our algorithms,
which now learn a polytree from a dataset consisting of
n i.i.d. random vectors. The algorithms then process the
sample correlations ρ̂i,j and sample cumulants ĉ(i,j),km . Let
Σ̂i,j be the unbiased sample covariances. Then ρ̂i,j =

Σ̂i,j/
√

Σ̂i,iΣ̂j,j . Generalizing sample covariances, we take

the sample cumulants ĉ(i,j),km to be the k-statistics that es-
timate c

(i,j),k
m in an unbiased manner [McCullagh, 1987,

§4.2].

We provide consistency results in a high dimensional set-
ting where the size of the polytree grows at a faster rate
than the sample size, subject to log-concavity of the vari-
ables. Specifically, we assume the errors εi and thus also
the observation vector X are log-concave distributed. This
setting allows for the following corollary that builds on the
concentration inequality given in Lemma B.3 of Lin et al.
[2016].

Corollary 4.1. Let K ∈ N and suppose that all moments
up to order 2K of the random vector X are bounded in
magnitude by a constant MK > 0. There exists a constant
L > 0 such that for any k ≤ K, if ĉ(i,j),km = c

(i,j),k
m +ϵ

(i,j),k
m

is the k-statistic for a sample of size n, for every δ > 0 where



2

LK2
√
MK

(
δ
√
n

e

) 1
K

> 2, we have

P[|ϵ(i,j),km | > δ] ≤ exp

{
− 2

LK2
√
MK

(
δ
√
n
) 1

K

}
.

4.1 LEARNING THE SKELETON CONSISTENTLY

Let ρmin and ρmax be the respective minimum and maxi-
mum of the absolute edge correlations in the set {|ρi,j | :
i → j ∈ E} with 0 < ρmin, ρmax < 1. We will use
the following lemma on the correctness of the Chow–Liu
treeM(Rn) computed from the sample correlation matrix
Rn = (ρ̂i,j), together with Lemma 7 from Harris and Drton
[2013], both restated below.

Lemma 4.2. Let γ = ρmin(1 − ρmax)/2. Then the event
F :=

⋂
{|ρ̂i,j − ρi,j | ≤ γ} satisfies F ⊂ {M(R̂n) =

S(G)}.

Lemma 4.3. If A,B are 2× 2 symmetric matrices, with A
positive definite, a1,1, a2,2 ≥ 1, and ||A−B||∞ < δ, then∣∣∣∣∣ a1,2√

a1,1a2,2
− b1,2√

b1,1b2,2

∣∣∣∣∣ < 2δ

1− δ
. (4.1)

We now have the following consistency result for the Chow–
Liu treeM(Rn).

Theorem 4.4. Let λ := min{mini Σi,i, 1} and let γ and
M2 be defined as in Lemma 4.2 and Corollary 4.1 respec-
tively. Then

P(M(Rn) = S(G))

≥ 1− 3p(p− 1)

2
exp

{
− 1

2L
√
M2

(
λγ
√
n

2 + λ

) 1
2

}
,

for all n > e2(2+λ)2(4L2√M2)
4

λ2γ2 .

4.2 LEARNING ORIENTATIONS CONSISTENTLY

For every edge e = {i, j} in the skeleton S(G), let
vr(e), vw(e) ∈ RB(K) be the vectors containing the mi-
nors of A(r(e)),K and A(w(e)),K involving the first column.
Here, r(e) and w(e) are the correct and incorrect orienta-
tions of e in G, respectively. Let B(K) = K(K − 1)/2− 1
be the size of the vectors.

We assume that there exists δ > 0 such that ||vw(e)|| > δ
for all e ∈ S(G), where || · || is the 2-norm. Let MK , L,
and ϵ

(i,j),k
m be defined as in Corollary 4.1. Moreover, let c

be the vector containing all the cumulants c(i,j),km such that
edge {i, j} ∈ S(G) and 0 ≤ m ≤ k ≤ K. Write ĉn for the
vector containing the sample versions of these cumulants.
Finally, let ϵn be the corresponding error vector tracking the
differences between the true and sample cumulants.

Lemma 4.5. If f is the difference of two monomials of
degree 2 in the variables c, then

|f(c+ ϵn)− f(c)| ≤ 4MK ||ϵn||∞ + 2||ϵn||2∞. (4.2)

For use with data, the proposed algorithms in Section 3 must
be modified to allow for sampling variability. In particular,
instead of assessing whether or not rank(Ai→j,K) = 1, we
check ||v̂i→j({i, j})|| < ||v̂j→i({i, j})|| instead. Here, v̂
is the sample analogue of v, computed using sample mo-
ments. Similarly, for the independence test (vanishing of
correlation), we check whether or not the absolute sample
correlation is below a threshold ρθ; Lemma 4.8 clarifies
the possible choices of the threshold. The resulting sample
versions of the algorithms are given in Appendix B.

Let APO
n (E,K) be the output of Algorithm 4 applied to

a sample of size n and let ES(G) be the edge set of the
true skeleton of G. Then we have the following consistency
result.

Lemma 4.6. Let δ′ := min{ δ

4MK

√
B(K)

,
√
δ

4
√

4B(K)
}. Then

P(APO
n (ES(G),K) = G)

≥ 1− 4B(K)(p− 1) exp

{
− 2

LK2
√
MK

(
δ′
√
n
) 1

K

}
,

for all n > e2(LK2√MK)2K

δ′2
.

Theorem 4.7. Suppose the data are an n-sample drawn
from a distribution in the LSEM given by a polytree G. Let
Ĝ be the polytree obtained by applying Algorithm 4 to the
(undirected) edge set of the Chow–Liu treeM(Rn). Then
Ĝ = G with probability greater than

1− 4B(K)(p− 1) exp

{
− 2

LK2
√
MK

(
δ′
√
n
) 1

K

}
− 3p(p− 1)

2
exp

{
− 1

2L
√
M2

(
λγ
√
n

2 + λ

) 1
2

}
,

for all n > max
{

e2(2+λ)2(4L2√M2)
4

λ2γ2 , e2(LK2√MK)2K

δ′2

}
,

with constants defined in Lemma 4.6 and Theorem 4.4.

Lemma 4.8. Let γ̃ = min{ρmin/3, (1 − ρmax)/2}ρmin,
and let λ and M2 be as in Theorem 4.4. If γ̃ < ρθ < ρ2min−
γ̃, then the probability that all independence tests carried
out by Algorithm 6 yield correct decisions is bounded from
below by

1− 3p(p− 1)

2
exp

{
− 1

2L
√
M2

(
λγ̃
√
n

2 + λ

) 1
2

}
,

for all n > e2(2+λ)2(4L2√M2)
4

λ2γ̃2 . The same statement holds
for Algorithm 5.



Theorem 4.9. Suppose the data are an n-sample drawn
from a distribution in the LSEM given by a polytree G. Let
Ĝ be the polytree obtained by applying Algorithm 6 or 5 to
the (undirected) edge set of the Chow–Liu treeM(Rn). If
the threshold satisfies γ̃ < ρθ < ρ2min − γ̃, then there exists
α∗ < p− 1 such that Ĝ = G with probability greater than

1− 4B(K)α∗ exp

{
− 2

LK2
√
MK

(
δ′
√
n
) 1

K

}
− 3p(p− 1)

2
exp

{
− 1

2L
√
M2

(
λγ̃
√
n

2 + λ

) 1
2

}
,

for all n > max
{

e2(2+λ)2(4L2√M2)
4

λ2γ̃2 , e2(LK2√MK)2K

δ′2

}
.

Computational Complexity. The complexity of the three
algorithms is dominated by the O(p2log(p)) cost of the
Kruskal algorithm which computes the Chow–Liu tree,
see [Cormen et al., 2001, Chapter VI]. In terms of the edge
orientation, Algorithms 4 have linear computational com-
plexity both in p and n which is independent of the structure
of the graph, while Algorithms 6 and 5 may entail a cost
that is quadratic in p in the worst case scenario, e.g., a star
tree with all the edges outgoing from the center.

5 NUMERICAL EXPERIMENTS

We assess and compare the accuracy of our three proposed
algorithms on synthetic data, simulated as follows: For any
fixed choice of n, p, and error distribution, we first gener-
ate a random undirected tree with p nodes using randomly
generated Prüfer sequences [Prüfer, 1918] and then inde-
pendently orient each edge. Next, we draw n samples for
every node from the error distribution and uniformly draw
the coefficients λij from the interval (−1,−0.3) ∪ (0.3, 1).
Finally, we multiply the matrix of sampled errors by the
matrix (I − Λ)−1 to obtain samples corresponding to the
LSEM defined by the generated polytree.

The performance is measured by the structural Hamming
distance, which is the number of incorrectly included edges
plus the number of incorrectly omitted edges, plus the
number of incorrectly oriented edges, divided by 2(p− 1).
Small distance indicates improved performance. We show
the results in three settings: (i) low dimensional, with
p ≤ 200 and 1 ≤ n/p ≤ 100; (ii) high dimensional, with
1500 ≤ p ≤ 3000 and 0.5 ≤ n/p ≤ 1; and (iii) a large
scale setting with 10000 ≤ p ≤ 20000 and n/p = 0.1. We
set up experiments with errors drawn from the gamma and
uniform distributions; the results are displayed in Figure 2.

For the choice of threshold required in Algorithms 6 and 5,
we evaluate the algorithms on a grid of thresholds and report
the value corresponding to the best result.

Gamma Distribution. Errors were drawn from Γ(α, β);
the shape α and the scale β parameters are uniformly drawn

from (0.5, 5). Since Γ(α, β) is asymmetric, we tested the
algorithms with K = 3.

The experimental results are coherent with our developed
theory: for all three algorithms, the distance between the true
and learned trees converges to 0 as the sample size and/or the
dimension of the tree increases. We observe that Algorithm 4
performs better both in mean accuracy and variance, despite
heavily relying on higher moments which is statistically
disadvantageous. The improved performance is potentially
due to the fact that Algorithm 4 avoids any potential error
propagation since the edges are oriented independently.

Uniform Distribution. Errors were drawn from U(a, b),
with the parameter a uniformly drawn from (−10,−1) and
b uniformly drawn from (1, 10). Here, the uniform distri-
bution is symmetric so the third order cumulants are 0; we
thus tested the algorithms with K = 4.

The experimental results here are also consistent with our de-
veloped theory. We also notice that overall, the experiments
with uniform errors outperform those with gamma errors,
which may be due to the greater higher order moments asso-
ciated with the gamma distribution, which tend to increase
the variance of the sample cumulants in Corollary 4.1.

The code to reproduce the experiments is available
at https://github.com/danieletramontano/LiNGAM-Polytree-
Learning.

6 CONCLUSION

In this paper, we proposed three algorithms that learn linear
non-Gaussian polytree models first using the Chow–Liu al-
gorithm to infer the graph skeleton, and then subsequently
applying different approaches to orient edges leveraging
non-Gaussianity and marginal uncorrelatedness. The algo-
rithms differ from one another in how much information is
taken from correlations versus from higher moments. The
numerical experiments show that the algorithms also per-
form well in very high-dimensional problems. These results
indicate that our approach may be applicable in preliminary
data analyses towards the aim of understanding dependence
structures in data, particularly since the polytree setting al-
lows for richer dependence and causal structures than other
tree-based models [e.g., Edwards et al., 2010].

Our work motivates the following questions for future re-
search:

How to avoid Chow–Liu? As pointed out above the main
computational burden comes from the computation of the
Chow–Liu tree. Another shortcoming of the Chow–Liu al-
gorithm is that it requires the whole covariance matrix to be
computed and stored beforehand, making it impractical for
very large graphs. A solution to this problem that leverages
on algebraic relations has been proposed by Lugosi et al.
[2021] for undirected trees. A possible extension of this

https://github.com/danieletramontano/LiNGAM-Polytree-Learning
https://github.com/danieletramontano/LiNGAM-Polytree-Learning


(a) Gamma Distribution (b) Uniform Distribution

(c) Gamma Distribution (d) Uniform Distribution

(e) Gamma Distribution (f) Uniform Distribution

Figure 2: Performance for low dimensional (2a, 2b), high dimensional (2c, 2d) and large scale experiment (2e, 2f) over 200,
100 and 10 runs, respectively.



Figure 3: Performance of Algorithm 4 for high dimensional
experiments with varying % of Gaussian random variables
over 25 runs.

approach to polytrees would be of interest.

How to best handle Gaussian random variables when learn-
ing a polytree? In some settings we may encounter the
situation that some but not all errors are non-Gaussian; see
Hoyer et al. [2008a] for a characterization of equivalence of
graphs in this case. An interesting problem is then to deter-
mine how the respective performance of our algorithms is
affected by partial Gaussianity and provide modifications
that effectively learn a polytree equivalence class. As an
illustration, Figure 3 shows that Algorithm 4 achieves 70%
accuracy when a random choice of half of the random vari-
ables are allowed to be Gaussian.

Which tree structures are the most difficult to learn? Tan
et al. [2009] show that for undirected Gaussian tree models,
the star and the chain represent the most difficult and the
easiest trees to learn, respectively. The difficulty is due to
the correlation decay. An interesting question to pursue is
what the polytree analogues for the most difficult and easiest
trees to learn would be.

What happens when the graph is not a tree? Boix-Adserà
et al. [2021] prove a weakness result of the Chow–Liu algo-
rithm under model misspecification for the Ising model and
adapt it to achieve a form of optimality. It would be of inter-
est to describe a similar optimality criterion in the LiNGAM
setting and investigate how our algorithm performs under
these terms.
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A LEMMAS AND PROOFS

A.1 SECTION 2

Example A.1. Assume we have two random variables X1

and X2, coming from an unknown xSEM, and we wish to find
the DAG G that generates the model. Assume further that
X1 and X2 are correlated, leaving us with the two options
G1 = ([2], {1→ 2}) and G2 = ([2], {2→ 1}). Under the
model given by G1, we have X1 = ε1 and X2 = λ12X1+ε2,
and the covariance matrix from (2.2) becomes

Σ =

[
ε
(2)
1 λ12ε

(2)
1

λ12ω1 λ2
12ε

(2)
1 + ε

(2)
2

]
. (A.1)

Observe that any positive definite 2×2 matrix Σ can be writ-
ten in this way; set ε(2)1 = Σ11 > 0, λ12 = Σ21/Σ11 and
ε
(2)
2 = Σ22 − Σ2

12/Σ11 > 0. By symmetry, the model given
by G2 also allows its covariance matrices to be any positive
definite 2×2 matrix. Hence, the sets of covariance matrices
resulting from G1 versus G2 are the same, and nothing can
be said about the graph on the basis of covariances alone.

Now we see how to solve this identifiability issue using
higher order cumulants. The multi-trek rule yields that

C(3)111 = ε
(3)
1 , C(3)112 = ε

(3)
1 λ12,

C(3)122 = ε
(3)
1 λ2

12, C
(3)
222 = ε

(3)
1 λ3

12 + ε
(3)
2 .

We observe a set of simple relations that imply that the
matrix

A1→2,3 =

[
Σ11 C(3)111 C(3)112

Σ12 C(3)112 C(3)122

]
has rank 1; see also Wang and Drton [2020] where the
first two columns of the matrix are considered. Indeed, the
second row of the matrix equals λ12 times the first row.
However, this rank constraint generally does not hold in
cumulants (Σ̃, C̃(3)) ∈ M(≤3)(G2), where G2 is the DAG
with edge 1 ←− 2. A straightforward calculation confirms
that the rank of A1→2,3(Σ̃, C̃(3)) drops to one iff λ21 = 0

or ε(3)1 = ε
(3)
2 = 0. In other words, for correlated variables

X1 and X2 generated with at least one of the errors non-
Gaussian with nonzero third moment, the rank constraint
on A1→2,3 discriminates G1 and G2. these relations do not
hold, in general, when the model is generated from the other
graph, so checking if these relations holds or not give us
a way to identify the right graph, up to a measure 0 set of
parameters given by the intersection of M(≤3)(G1) and
M(≤3)(G2).



Proof of Corollary 2.8. We say that a k-trek T =
(P1, . . . , Pk) factorizes through k-trek S = (Q1, . . . , Qk)
if Qj ⊂ Pj for all j. Indeed, it is easy to see that λT =
λSλT−S , where T−S = (P1−Q1, . . . , Pk−Qk) ∈ T S =
T (top(S), . . . , top(S)) with Pj − Qj being the directed
path from top(T ) to top(S) that remains after removing the
edges in Qj from Pj .

For the sake of readability, when the considered set of ver-
tices is clear from the context, we denote the set of treks
(and simple treks) by only T (and S). Now note that every
trek factorizes along one and only one simple trek. Hence,
we can partition T =

⋃̇
S∈ST S , according to the simple

trek through which the factorization occurs. The expression
in (2.4) may thus be rewritten as

C(k)i1,...,ik
(G) =

∑
S∈S

λS

( ∑
T∈T S

ε
(k)
top(T )λ

T−S

)
.

By the multi-trek rule, the term in parentheses is C(k)top(S)(G).

Proof of Corollary 2.9. Since the graph is acyclic, the only
trek in T (i, .., i) that has i as top is the trivial trek, from
which come the ε

(k)
i term. All the other treks in T (i, .., i)

factorize through a set of distinct parents of i, so we can
write the sum in 2.4 as∑
p1,...,pk∈pa(i)

λp1,i · · ·λpk,i(
∑

T∈T (p1,..,pk)

λT ε
(k)
top(T )) + ε

(k)
i

and the term inside the internal parenthesis is C(k)p1,...,pk(G).

Proof of Proposition 2.10. By the simple multi-trek rule for
polytrees ce,km = λk−m

ij C(k)i . Therefore, ce,km = λijc
e,k
m+1

so that the second row of Ae,K equals λij times the first
row.

A.2 SECTION 3

Proof of Proposition 3.4. As noted, M(R) may be com-
puted using Kruskal’s algorithm, which considers all edges
in decreasing order of their weights and adds them to the
spanning tree if their presence does not create a (undirected)
cycle.

Let S(G) be the skeleton of G. For a contradiction, as-
sume that M(R) ̸= S(G). Since both graphs are trees,
we have L := M(R) \ S(G) ̸= ∅. Take ẽ = {i, j} =
argmaxe∈L |ρe|. Then |ρẽ| ≠ 0 and, thus, T (i, j) ̸= ∅. The
unique trek in G that connects i and j must contain an edge
e that is not inM(R); otherwise we would have two paths
between i and j inM(R) which cannot occur asM(R) is
a tree. Moreover, Wright’s formula from Lemma 3.2 and the

assumption made on the correlation coefficients imply that
|ρẽ| < |ρe|. But then e would appear before ẽ in Kruskal’s
algorithm and e would be added to M(R) since all the
edges inM(R) with a weight higher than the weight of ẽ
are correctly classified and so the presence of e could not
create a loop. We have arrived at a contradiction.

Proof of Theorem 3.5. The first claim is a restatement of
Proposition 2.10. To prove the second claim, we need to
show that for generic error cumulants, at least one of the
2 × 2 subdeterminants of Aj→i,K is nonzero. Since these
minors are polynomials in the cumulants, it is enough to
prove that they are not identically zero; see, e.g., the lemma
in Okamoto [1973].

By the simple multi-trek rule (Corollary 2.8),

cj→i,2
i = Σi,j = λi,jΣi,i,

cj→i,k
m = λm

i,jC
(k)
i ∀m < k ≤ K.

By Corollary 2.9,

cj→i,2
2 = Σj,j =

∑
p,q∈pa(i)

λp,jλq,jΣp,q + ε
(2)
j

=
∑

p∈pa(j)

λ2
p,jΣp,p + ε

(2)
j ,

because in a polytree any two distinct parents p and q have
T (p, q) = ∅ and, thus, Σp,q = 0 by Lemma 3.2.

Consider now a minor involving the first column together
with any other column with m < k. This minor is

Σj,jc
j→i,k
m−1 − Σi,jc

j→i,k
m

=
[ ∑
p∈pa(j)

λ2
p,jΣp,p + ε

(2)
j

]
λm−1
i,j C

(k)
i − λi,jΣi,iλ

m
i,jC

(k)
i

= λm−1
i,j C

(k)
i

[ ∑
p∈pa(j)

λ2
p,jΣp,p + ε

(2)
j − λ2

i,jΣi,i

]
= λm−1

i,j C
(k)
i

[ ∑
p∈pa(j)\i

λ2
p,jΣp,p + ε

(2)
j

]
.

The term in parentheses is always positive, while the front
factor is nonzero provided λi,j ̸= 0 and the error cumulants
are chosen such that C(k)i ̸= 0 (e.g., take any distribution
with ε

(k)
k = 0, for every k ̸= j, and ε

(k)
j ̸= 0).

Proof of Proposition 3.6. The claim follows from
Lemma 3.2 as i → j ←− l is the only case in which there
are no treks between i, l.

Proof. From Theorem 3.5 we derive the correctness of the
rank condition and thus of the entire algorithm Pairwise-
Orientation_Pop as well as the relevant parts of the other
two algorithms. Proposition 3.6 yields the correctness of the
remaining parts of the other two algorithms.



A.3 SECTION 4

Lemma A.2. Consider a degree k polynomial f(X) =
f(X1, . . . , Xm), where X1, . . . , Xm are possibly depen-
dent random variables with log-concave joint distribution
on Rm. Then exists a constant L > 0 such that for all δ with

2

L

(
δ

e
√
var[f(X)]

) 1
K

> 2,

we have

P[|f(X)− E[f(X)]| > δ]

≤ exp

− 2

L

(
δ√

var[f(X)]

) 1
K

 .

Proof of Corollary 4.1. The results follows by bounding
the variance of ĉ

(i,j),k
m . To this end, we may express the

variance as a linear combination of products of moments
based on the definition of cumulants. We may then bound
each product of moments by a power of MK and note that
no weight may exceed (K−1)!. Applying Stirling’s approx-
imation for the factorial and bounding the Bell numbers that
count the number of summands gives the result.

Proof of Theorem 4.4. Let F be the event defined in
Lemma 4.2. Then

P(Mn(G) = S(G)) ≥ P(F )

≥ 1−
∑
i≤j

P(|ρ̂i,j − ρi,j | > γ),

where the last inequality comes from the union bound.

Correlations are scale-invariant, thus the value of ρi,j and
the distribution of ρ̂i,j do not change under rescaling of
the observed variables to X̃i = Xi/λ. Now, we apply
Lemma 4.3 with A = Σ̃ and B = Σ̃∗ as the new pop-
ulation and sample covariance matrices, respectively. Let
||ϵ̃||∞ = ||Σ̃− Σ̃∗||∞. Then ||ϵ̃||∞ ≤ ||ϵ(i,j),2||∞

λ , where we
indicate with ϵ(i,j),2 the vector containing the errors ϵ(i,j),2m ,
for m = 0, 1, 2. This allows us to write

P(|ρ∗i,j − ρi,j | > γ) ≤ P(||ϵ̃||∞ >
γ

2 + γ
)

≤ P(||ϵ(i,j),2||∞ >
λγ

2 + γ
)

≤ 3 exp

{
− 1

2L
√
M2

(
λγ
√
n

2 + λ

) 1
2

}
,

where the last inequality comes from a union bound and
Corollary 4.1 with K = 2.

Proof of Lemma 4.5. By Taylor expansion, we have

f(c+ ϵ)− f(c) = ∇(f)|c · ϵ+
ϵt ·H(f)|c · ϵ

2
, (A.2)

where H(f)|c is the Hessian matrix of f computed in c. For
the special quadratic polynomial f , the Hessian is constant
with entries ±1, and the gradient contains entries of c, pos-
sibly negated. The result follows by triangle inequality.

Proof of Theorem 4.4. The event of correctly reconstruct-
ing the polytree G is the intersection of the two events of
correctly recovering of the skeleton and correctly orient-
ing all the edges. The probability of this intersection is
bounded from below by the sum of the probabilities of the
two events minus one. Theorem 4.4 and Lemma 4.6 imply
the result.

Proof of Lemma 4.6. Given that we start with the correct
skeleton, a mistake in the orientation appears if and only
if there is an edge, e in the skeleton for which ||v̂r(e)|| ≥
||v̂w(e)|, so the union bound leads to the following lower
bound

P(APO
n (ES(G),K) = G)

= P(||v̂r(e)|| < ||v̂w(e)||,∀e ∈ S(G))

≥ 1− (p− 1)P(||v̂r(e)|| ≥ ||v̂w(e)||).

Now we need an upper bound on P(||v̂r(e)|| ≥ ||v̂w(e)||),
adding and subtracting ||vw(e)|| on the right hand side of
the inequality, and using ||vw(e)|| > δ, led to

P(||v̂r(e)|| ≥ ||v̂w(e)||)
≤ P(||v̂r(e)||+ (||vw(e)|| − ||v̂w(e)||) ≥ δ)

≤ P(||v̂r(e)||+ (||vw(e)− v̂w(e)||) ≥ δ)

≤ P(||v̂r(e)|| ≥ δ
2 ) + P(||vw(e)− v̂w(e)|| ≥ δ

2 )

= P(||v̂r(e)||2 ≥ δ2

4 ) + P(||vw(e)− v̂w(e)||2 ≥ δ2

4 ).

Now, using that vr(e) = 0 and applying Lemma 4.5, we
obtain that

P(||v̂r(e)||2 ≥ δ2

4 ) + P(||vw(e)− v̂w(e)||2 ≥ δ2

4 )

≤ P(||v̂ir(e)||2 ≥ δ2

4B(K) )+

+ P(||viw(e)− v̂iw(e)||2 ≥ δ2

4B(K) )

≤ 2P(4MK ||ϵ||∞ + 2||ϵ||2∞ ≥ δ

2
√

B(K)
),

where vi is one of the components of the vector. Finally, we
obtain that

P(4MK ||ϵ||∞ + 2||ϵ||2∞ ≥ δ

2
√

B(K)
)

≤ P(||ϵ||∞ ≥ δ

4MK

√
B(K)

) + P(||ϵ||∞ ≥
√
δ

4
√

4B(K)
).



With δ′ := min{ δ

4MK

√
B(K)

,
√
δ

4
√

4B(K)
} we can bound the

right hand side of the last inequality by

2P(||ϵ||∞ ≥ δ′) ≤ 2B(K) exp
{
− 2

LK2
√
MK

(
δ′
√
n
) 1

K

}

whenever 2
LK2

√
MK

(
δ′
√
n

e

) 1
K

> 2 holds, and this con-
cludes the proof.

Proof of Lemma 4.8. It suffices to show that under the event
F̃ =

⋂
{|ρ̂i,j − ρi,j | < γ̃} all independence tests give the

correct decision. This claim was proven in Theorem 3.5 of
[Lou et al., 2021]. The rest of the proof is the same as for
Theorem 4.4.

Proof of Theorem 4.9. Having γ̃ ≤ γ from Lemma 4.2 and
Lemma 4.8, the probability that the skeleton is recovered
correctly and that all the independence tests give the right an-
swer is bounded from below by the probability of the event
considered in Lemma 4.2. Hence, it only remains to bound
the probability that all cumulant tests correctly orient their
respective edge. This can be done as in Lemma 4.6. Finally,
carrying over the arguments from the proof of Theorem 4.7
gives the result. Notice that in the case of Algorithm 6, the
constant α∗ < p − 1 − CP, where CP is the number of
directed edges in the CPAG associated to G.

B SAMPLE VERSION OF THE
ALGORITHMS

Algorithm 4 PairwiseOrientation(E,K)

1: O ← ∅
2: for e = {i, j} ∈ E do
3: if ||v̂i→j({i, j})|| < ||v̂j→i({i, j})|| then
4: O ← O ∪ {i→ j}
5: else
6: O ← O ∪ {j → i}

return O

Algorithm 5 PTO(E,K, ρθ)

1: O ← ∅
2: for i− j − k ∈ E do
3: if |ρ̂i,k| < ρθ then
4: E ← E \ {{i, j}, {j, k}}
5: O ← O ∪ {i→ j, k → j}
6: for i→ j ∈ O do
7: for j − l ∈ E do
8: E ← E \ {j − l}
9: O ← O \ {j → l}

10: for {i, j} ∈ E do
11: if ||v̂i→j({i, j})|| < ||v̂j→i({i, j})|| then
12: O ← O ∪ {i→ j}
13: for j − l ∈ E do
14: E ← E \ {j − l}
15: O ← O \ {j → l}
16: else
17: O ← O ∪ {j → i}
18: for i− l ∈ E do
19: E ← E \ {i− l}
20: O ← O \ {i→ l}

return O

Algorithm 6 TPO(E,K,O, o, ρθ)

1: if E ̸= ∅ then
2: if o = ∅ then
3: {i, j} ← E[1]
4: if ||v̂i→j({i, j})|| < ||v̂j→i({i, j})|| then
5: o← (i→ j)
6: O ← O ∪ {o}
7: else
8: o← (j → i)
9: O ← O ∪ {o}

10: Eo ← E ∩ t(o)
11: if Eo ̸= ∅ then
12: E ← E \ Eo

13: for t(o)− k ∈ Eo do
14: if |ρ̂s(o),k| < ρθ then
15: O ← O ∪ {k → t(o)}
16: else
17: O ← O ∪ {t(o)→ w}
18: o← (t(o)→ w)
19: O,E ← TPO_Pop(E,K,O, o, ρθ)

20: O,E ← TPO_Pop(E,K,O, ∅, ρθ)
return O,E
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