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ABSTRACT

Preference alignment has become a crucial component in enhancing the perfor-
mance of Large Language Models (LLMs), yet its impact in Multimodal Large
Language Models (MLLMs) remains comparatively underexplored. Similar to
language models, MLLMs for image understanding tasks encounter challenges like
hallucination. In MLLMs, hallucination can occur not only by stating incorrect
facts but also by producing responses that are inconsistent with the image content.
A primary objective of alignment for MLLMs is to encourage these models to
align responses more closely with image information. Recently, multiple works
have introduced preference datasets for MLLMs and examined different alignment
methods, including Direct Preference Optimization (DPO) and Proximal Policy
Optimization (PPO). However, due to variations in datasets, base model types,
and alignment methods, it remains unclear which specific elements contribute
most significantly to the reported improvements in these works. In this paper, we
independently analyze each aspect of preference alignment in MLLMs. We start by
categorizing the alignment algorithms into two groups, offline (such as DPO), and
online (such as online-DPO), and show that combining offline and online methods
can improve the performance of the model in certain scenarios. We review a variety
of published multimodal preference datasets and discuss how the details of their
construction impact model performance. Based on these insights, we introduce a
novel way of creating multimodal preference data called Bias-Driven Hallucination
Sampling (BDHS) that needs neither additional annotation nor external models,
and show that it can achieve competitive performance to previously published
alignment work for multimodal models across a range of benchmarks.

1 INTRODUCTION

Recent advancements in Multimodal Large Language Models (MLLMs) have significantly improved
our understanding of vision-language tasks. By integrating visual signals with Large Language
Models (LLMs), these models have demonstrated enhanced capabilities in multimodal understanding,
reasoning, and interaction (Liu et al., 2023c; 2024; Bai et al., 2023; McKinzie et al., 2024).

Typically, MLLMs are pre-trained on large image-text datasets to develop foundational multimodal
knowledge and skills, then undergo post-training for conversational capabilities, instruction following,
helpfulness, and safety. Despite rapid advancements in recent years, significant challenges persist.

A notable problem is the tendency of MLLMs to produce responses that are not factually grounded in
the visual input, commonly referred to as hallucinations, leading to inaccuracies such as incorrect
descriptions of non-existent visual elements (Liu et al., 2023a; Cui et al., 2023). This undermines the
trustworthiness of MLLMs in many practical applications.

Preference alignment methods have proven effective in reducing hallucinations and generating
responses more closely aligned with human preferences for LLMs (Zhao et al., 2023b; Rafailov
et al., 2023; Azar et al., 2024; Guo et al., 2024; Yuan et al., 2024; Ahmadian et al., 2024; Tang et al.,
2024a). These methods utilize pairwise preference data to fine-tune the model, which can be based
on Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Stiennon et al.,
2020), Direct Alignment from Preferences (DAP) (Rafailov et al., 2023; Azar et al., 2024; Zhao et al.,
2023b), or Online Direct Alignment from Preferences (Online-DAP) (Yuan et al., 2024; Guo et al.,
2024).
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While alignment in LLMs has been extensively studied, alignment for MLLMs has not yet been
investigated to the same extent. Sun et al. (2023) and Zhou et al. (2024) aligned LLaVA 1.5 (Liu
et al., 2023b) using Proximal Policy Optimization (PPO) and Direct Preference Optimization (DPO),
respectively, while Li et al. (2023a) and Yu et al. (2023b) employed DPO and its variations to
align Qwen-VL (Bai et al., 2023) and Muffin (Yu et al., 2023a) models. Notably, besides different
alignment strategies and often different base models, all these works also introduce novel preference
datasets for alignment with various sizes, collection, and generation schemes. As a result, while each
of these studies offers valuable insights into alignment for MLLMs, it can sometimes be difficult to
strongly attribute reported improvements to the individual proposed choices.

In this paper, we examine each component of multimodal alignment independently. First, we
categorize alignment methods into two types: offline methods, which utilize preference pairs collected
prior to training (e.g., DPO), and online methods, which involve sampling from the model during
policy optimization (e.g., RLHF and Online-DAP). We conduct a comprehensive study over popular
online and offline alignment methods, all aligning the popular LLaVA 1.6 model (Liu et al., 2024)
using a fixed data regiment and study their benefits and shortcomings. To our knowledge, this is the
first time that such study is conducted with MLLMs.

Further, we study the different methods for building pairwise preferences using public datasets. We
break down the main components of preference data into three parts: prompts, chosen responses
and rejected responses (Table 1). For each of those components, we investigate how their source,
diversity, and quality can affect the resulting alignment. Additionally, we examine how the size of the
alignment dataset impacts downstream performance.

Based on our comprehensive ablations, we identify a few key desiderata in alignment strategies
for MLLMs and introduce a simple, novel preference data sampling scheme we call Bias-Driven
Hallucination Sampling (BDHS). Despite not utilizing any human annotation nor the input of any
external teacher model such as GPT4-V, we show that BDHS can achieve competitive performance
against even much larger preference datasets constructed under different regimes.

2 ALIGNMENT

Preference alignment uses pairwise preference data. Each pair is linked to a text prompt, denoted
as xtext, and an associated image, ximg, together forming the input x = (ximg, xtext). The responses
include a preferred one, y+, and a non-preferred or rejected one, y−. See Section 3 for a more
thorough discussion of these components. In this section, we focus on the various ways that a
preference dataset, D = {(x, y+, y−)}Ni=1, is used by alignment approaches.

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

RLHF was the initial method used for alignment (Christiano et al., 2017; Stiennon et al., 2020),
involving the training of a reward model (RM) from pairwise preferences and then optimizing a
policy using the RM via reinforcement learning (RL). In RLHF, a reward model is initially trained on
the preference pairs as described in Stiennon et al. (2020). The training of this reward model uses a
straightforward cross-entropy loss, treating the binary choice – preferred or rejected – as a categorical
label. The objective function for training the reward model, rϕ, is as follows:

LRM = − log
(
σ
(
rϕ(x, y

+)− rϕ(x, y
−)

))
, (1)

where σ is the logistic function.

Next, the model (i.e., policy), πθ, is fine-tuned through RL using the trained reward model to optimize
the following objective:

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x, y)− βDKL(πθ(y|x)|πref(y|x))] . (2)

An additional KL penalty term DKL(·) is incorporated to discourage significant deviations of πθ from
the initial model, πref (Stiennon et al., 2020), and β is a hyperparameter which adjusts the effect of
this term in the overall objective.

Since the RM is learned in all RL-based approaches, it remains an imperfect approximation even when
trained on human preferences. Previous work has shown that if not handled carefully, over-optimizing
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for the RM can hurt the performance of the aligned model (Gao et al., 2023a). This adds a layer of
challenge to these methods.

Different RL algorithms apply unique strategies to optimize the RL objective (Equation 2). In
Appendix C we investigate the complexities of RL-based alignment for MLLMs, examining how
different algorithms affect model performance. Specifically, we evaluate the impact of using PPO
(Schulman et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022) and REINFORCE Leave-One-Out
(RLOO) (Williams, 1992; Ahmadian et al., 2024) in comparison to other alignment methods.

2.2 DIRECT ALIGNMENT FROM PREFERENCE

This family of approaches directly utilizes preference data, D, to optimize the policy, πθ. By eliminat-
ing the need to train a reward model, these methods significantly simplify the preference optimization
pipeline. Furthermore, the gradient of all objectives can be precisely computed, distinguishing these
methods from traditional RLHF approaches. The most widely used objective in MLLM alignment
is DPO (Rafailov et al., 2023) (Equation 3). We have conducted the majority of our experiments
using DPO to ensure comparability with other studies in MLLM alignment. In Appendix E, we
also examine DPO alongside two other common offline methods, IPO (Azar et al., 2024) and SLiC
(Zhao et al., 2023b). For a unified derivation of common direct alignment methods refer to Tang et al.
(2024b). For brevity, we only recap the DPO loss function:

LDPO(πθ;πref) = E(x,y+,y−)∼D

[
− log σ

(
β log

πθ(y
+|x)πref(y

−|x)
πref(y+|x)πθ(y−|x)

)]
. (3)

We will omit the dependency on πref from subsequent equations for simplicity.

It is important to note that most preference datasets are not derived from the model being aligned
and are collected offline. Even when the data is constructed based on the model that is undergoing
alignment, the samples encountered during training do not account for changes in the model over
training. This leads to a distribution shift between the model that generated the data and the model
being aligned, which can be considered a disadvantage of these methods.

2.3 ONLINE DIRECT ALIGNMENT FROM PREFERENCE

Recently, a new family of algorithms has been proposed for aligning LLMs. These methods do not
train a separate reward model. Instead, they employ either the model that is being aligned (Yuan
et al., 2024) or a different LLM (Guo et al., 2024) to obtain online feedback to create preference pairs.
These pairs are then used to optimize the objective function via for example DPO. This approach
eliminates the complexity of training a separate reward model while still taking advantage of online
samples from the model, thereby avoiding distribution shifts.

We explore the use of LLaVA 1.6-34B (Liu et al., 2024) as annotator to generate online preference
pairs, motivated by its strong performance on a multitude of multimodal benchmarks. Additionally,
we investigate a hybrid approach that combines online and offline approaches. This method involves
sampling from the offline preference data with a probability p, (y+, y−), and sampling from the
model with a probability 1− p, (ỹ+, ỹ−). Equation 4 details this approach.

LMixed-DPO(πθ) = E(x,y+,y−)∼D

(ỹ+,ỹ−)∼πθ

[
αLDPO(y

+, y−, x;πθ) + (1− α)LDPO(ỹ
+, ỹ−, x;πθ)

]
, (4)

where α ∼ Bernoulli(p). In our experiments we use p = 0.5. This algorithm is similar to techniques
used in off-policy RL methods like Q-learning (Hester et al., 2018), where a replay buffer includes
samples from both the model and expert demonstrations. We found this approach particularly effective
when the online and offline methods have complementary effects on the model’s final performance.

3 MULTIMODAL PREFERENCE DATA

Preference datasets have three main components: the prompts, the chosen and the rejected responses.
Responses are usually constructed by prompting one or more MLLMs, typically excluding the
model being aligned. Those responses are associated with a preference signal. There are two
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Type Name Size Prompt Response Judge Preference
SignalText Image Chosen Rejected

H
um

an LLaVA-RLHF 10k LLaVA-Instruct-150k COCO LLaVA 1.5 LLaVA 1.5 human ranking
RLHF-V 5.7k† UniMM-Chat Various† Muffin/Various†(corrected) Muffin/Various † human construction

Sy
nt

he
tic VLFeedback 80k 9 datasets (LLaVA, SVIT, etc.) 12 MLLMs (LLaVA 1.5, GPT-4V, etc.) GPT-4V ranking

NLF 63k LLaVA-Instruct-150k COCO DRESSft (refined) DRESSft GPT-4V construction
POVID 17k LLaVA-Instruct-150k COCO SFT Ground truth SFT Ground truth (corrupted) GPT-4V construction

Table 1: Recently published multimodal preference datasets. † denotes the updated dataset version.

Describe this image in detail.

Prompt xtext

Image ximg

Sampled image attention mask m

Input x̃

Guided Generation

Split each sentence at a random position.
Complete sentences via model inference.

πθ(·|x̃, "", "The image features a
wooden dining table on which") → a
pile of oranges has been neatly arranged.

πθ(·|x̃, "The image features a wooden
dining table on which a bowl filled with
oranges is placed.", "The bowl appears
to be in the center of the table") → and
the oranges are arranged in a circular
pattern around it.

πθ(·|x̃, "The image features a wooden
dining table on which a bowl filled with
oranges is placed. The bowl appears
to be in the center of the table.", "In
addition,") → there is a single banana
on the table.

The image features a wooden dining
table on which a pile of oranges has
been neatly arranged. The bowl ap-
pears to be in the center of the table
and the oranges are arranged in a circu-
lar pattern around it. In addition, there
is a single banana on the table.

BDHS response ỹ−

The image features a wooden dining ta-
ble on which a bowl filled with oranges is
placed. The bowl appears to be in the cen-
ter of the table. In addition, more oranges
are scattered around the table.

SFT response y+

Similarity Scoring via
Sequence Embeddings

If similarity > ϵs
Sample new mask

Figure 1: Overview of the BDHS method including the optional iterative variant in gray. For each
re-generation, both the image attention mask and the sentence split positions are resampled. The
image is taken from the LLaVA Instruct dataset.

sources: (a) datasets that rely on human annotators to compose the preference, such as LLaVA-
RLHF (Sun et al., 2023) or RLHF-V Yu et al. (2023b), and (b) datasets with synthetic annotations,
commonly originating from GPT-4V acting as a ranker or corrupter, such as DRESS (Chen et al.,
2023), VLFeedback (Li et al., 2023a) and POVID Zhou et al. (2024). Table 1 presents those datasets.

Another way to organize those datasets is to consider the nature of the preference signal. LLaVA-
RLHF and VLFeedback use ranking: responses are sampled, then ranked by humans or GPT-4V.
Other works use a construction approach: signal is obtained by correcting responses, such as
RLHF-V and DRESS, or by corrupting them such as POVID. In Appendix F.1, we provide more
details.

One constant, however, among those methods is the cost to build the preference – whether using a
strong MLLM or humans. In the next section, we propose a method to mitigate this requirement.

3.1 BIAS-DRIVEN HALLUCINATION SAMPLING (BDHS)

Hallucinations in MLLMs often express the underlying language models’ inherent biases, for example
towards frequently cooccuring objects or object attributes (Li et al., 2023b; Qian et al., 2024; Zhou
et al., 2024). In other words, the MLLM may choose to draw from its parametric knowledge or textual
context xtext when instead it should have more strongly considered information from the image ximg
in question. Zhou et al. (2024) suggest to trigger inherent biases directly by presenting noisy images
x̃img to the model when generating the non-preferred response ỹ− via teacher-forcing (POVID-style
image distortion). While this method has desirable characteristics, such as not requiring external
teacher models or human annotation to construct preference pairs, as well as generating samples that
are at least partially informed by the policy under alignment, it carries some notable drawbacks. Zhou
et al. (2024) show that selecting too few diffusion steps can yield insufficient corruption, whereas
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too many diffusion steps negatively impacts the generated responses, as the model mainly identifies
noise respective to pixels. In our experiments, we further found that the proposed teacher-forcing can
introduce non-sensical responses. Further details about POVID-style image distortion are provided in
Appendix G.1 and an example with non-sensical responses in Appendix G.7.

Inspired by the POVID work, we aim to address its main identified shortcomings: 1. We propose
to rethink the method of corrupting the signal from the input image from a pixel-based approach
to one that limits access in the latent space via attention masking, which we argue more directly
achieves the underlying motivation of triggering the inherent bias of the underlying language model.
2. We introduce a new reference-guided generation strategy that allows corrupted responses to remain
largely true to the chosen response while still introducing meaningful divergence, without introducing
non-sensical continuations introduced by token-based teacher forcing. 3. We use an off-the-shelf
sentence embedding to verify that the generated rejected response is meaningfully distinct from
the original reference to focus the resulting feedback signal on hallucinations over mere stylistic
difference. We refer to our novel technique as Bias-Driven Hallucination Sampling (BDHS). BDHS
is annotation free and computationally efficient to the point that rejected responses can be generated
online, which we explore in Section 4.4. An overview of the method can be found in Figure 1, with
further details provided in the following subsections.

Let x̃ = (xtext, x̃img,m) denote the modified input with (optional noisy) image x̃img and attention mask
m. Suppose the MLLM encodes image x̃img to k embedding vectors, each vector with dimension d.
Then, m is defined as a boolean mask of dimension k. We suggest to randomly sample the mask
m = (m1,m2, . . . ,mk) according to a uniform distribution U(0, 1) and threshold ρth ∈ [0, 1] where
each element mi = 1 if ρi ≥ ρth for ρi ∼ U(0, 1) or mi = 0 otherwise. By masking the image
embeddings using m, the model only pays attention to a subset of the k embedding vectors to generate
the response ỹ−. Where the remaining signal is not sufficient, the MLLM can only draw on its
parametric knowledge to answer, thus inducing hallucination. By allowing access to some part of the
image, we encourage more realistic hallucinations.

Keeping the generated corrupted response ỹ− close to the preferred one, y+, supports the optimizer
in paying more attention to the image as only the non-overlapping portion is affected by the modified
input x̃. Otherwise, responses ỹ− and y+ could diverge early on or ỹ− could even represent a generic
response hinting on missing image information. Instead, in order to maintain consistency in style and
structure we propose a reference-guided sampling strategy, where we “diverge” and “rejoin” from y+

at random points in every sentence to form ỹ−. A formal description of the algorithm is provided in
Appendix G.3.

Similar to our observation in Online-DAP, BDHS responses ỹ− can still be very similar to the ground
truth y+, especially when the pivot position is late in the sentence. To maximize learning utility of
BDHS preference pairs, this is undesirable.

While further increasing ρth or biasing towards early pivot positions in the reference-guided generation
could minimize such trivial generations, this introduces additional hyperparameters and can lead to
less realistic dispreferred responses. Instead, we realize BDHS in an iterative fashion.

Once ỹ− is generated, a semantic similarity score w.r.t. y+ is computed using an off-the-shelf sentence
embedding model1. A new response ỹ− is sampled if the cosine similarity is above a pre-defined
threshold ϵs. After reaching the maximum number of iterations NBDHS, ỹ− is generated according
to input x̃ without any reference guidance. Appendix G provides the actual algorithm for BDHS
including similarity scoring and several examples.

This additional comparison avoids ỹ− responses that are trivial rephrasings. Moreover, measuring the
number of examples that need re-generation allows intuitive tuning of the ρth hyper parameter.

4 EXPERIMENTS

In this section, we empirically evaluate different aspects of aligning MLLMs. We start by summariz-
ing our key findings in Section 4.1. We conduct our ablations on the LLaVA 1.6-7B Vicuna model,
as it is both well studied and exhibits relatively strong performance across a range of multimodal
tasks (Liu et al., 2024). Notably, this model provides stronger baseline performance over the more

1We use the all-mpnet-base-v2 sentence embedding model (Reimers & Gurevych, 2019) with ϵs = 0.97.
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Model Alignment Dataset POPE ↑ MMHAL ↑ MMHALv ↑ LLaVAW ↑ VQAT ↑ GQA ↑ MMVet ↑ Recallcoco ↑
LLaVA 1.6-7B – – 86.40 2.95 2.75 80.85 64.85 64.23 43.94 68.13
LLaVA 1.6-13B – – 86.23 3.23 3.18 86.10 65.7 64.8 48.26 68.13
LLaVA 1.6-34B – – 87.73 3.50 3.46 88.35 69.5 67.1 53.90 71.17
OmniLMM-12B† – – – 3.14 – 74.3 – – – –

LLaVA 1.6-7B† DPO STIC – – – 79.2 65.2 – 45.0 –
LLaVA 1.5-7B† RLAIF-V RLAIF-V – 3.06 – 64.9 – – – –
OmniLMM-12B† RLAIF-V RLAIF-V – 3.36 – 74.3 – – – –

LLaVA 1.6-7B DPO POVID (Full) 88.09 3.16 3.07 78.63 64.56 64.12 40.60 73.48
LLaVA 1.6-7B Online-DPO POVID (Full) 86.49 2.88 2.94 82.61 64.88 64.31 43.26 68.45
LLaVA 1.6-7B Mixed-DPO POVID (Full) 88.03 2.83 3.10 82.75 64.93 64.47 42.80 74.53

LLaVA 1.6-7B DPO POVID (Full) 88.09 3.16 3.07 78.63 64.56 64.12 40.60 73.48
LLaVA 1.6-7B DPO BDHS (POVID, 5k) 88.75 2.61 2.71 86.33 65.07 63.97 43.4 75.58
LLaVA 1.6-7B DPO Online-BDHS (POVID, 5k) 88.83 2.80 2.99 85.03 65.09 63.65 43.12 74.09
LLaVA 1.6-7B DPO * ∪ POVID (5k) 88.38 2.82 2.81 84.01 65.42 64.30 45.46 74.00

LLaVA 1.6-7B DPO VLFeedback (Full) 81.84 2.96 2.99 90.75 62.93 62.53 43.85 66.67
LLaVA 1.6-7B DPO VLFeedbackCorrupted (5k) 87.52 3.03 3.01 88.64 65.30 64.19 42.16 70.13
LLaVA 1.6-7B DPO BDHS (VLFeedback, 5k) 88.10 2.77 2.87 86.68 65.27 64.33 43.39 72.43

Table 2: Main results. The best and second best results are shown in bold and underlined, respectively.
If a larger model outperforms all aligned 7B models, it is indicated by bold and underline. † denotes
results reported from referenced papers, and a dash (–) marks benchmarks that are not reported. Rows
in blue are contributions of this paper.

common choice of LLaVA 1.5-7B in the multimodal alignment literature and we generally observe
correspondingly smaller relative improvements from alignment. We carefully select a set of bench-
marks to measure overall helpfulness and hallucination propensity. Our study reveals shortcomings
in existing benchmarks, particularly around measuring hallucinations. Please refer to Appendix B.1
for details. We also include an in-depth ablation study on the components we have discussed in the
paper, offering a clearer view of effect. We begin with equalizing the experimental conditions on
public preference datasets (Section 4.2). We then highlight desiderata for a high-quality preference
dataset (Section 4.3) and show that BDHS can be a simple and effective mechanism following such
best practices (Section 4.4). Additionally, we compare RL-based methods (Appendix C), Online and
Mixed-DPO strategies (Appendix D.3), as well as various offline approaches (Appendix E).

4.1 KEY COMPONENTS IN MLLM ALIGNMENT PIPELINE

We summarize our main findings and compare results with other SOTA models in Table 2. First,
we fixed the base model (LLaVA 1.6-7B) and studied the effects of online vs. offline methods
using the POVID alignment data (Zhou et al., 2024). While offline DPO shows more significant
improvement on benchmarks that consider hallucination, such as POPE and MMHALBench-V,
Online-DPO enhances benchmarks evaluating the quality of answers in an open question answering
setup, like LLaVABench-in-the-Wild. This is intuitive, as the preference pairs in POVID
are specifically designed to reduce hallucinations whereas the online samples from the model may
provide other signals. Mixed-DPO allows to incorporate the benefits of both approaches and the
results show consistent improvement over both online and offline methods.

When using Online-DPO or Mixed-DPO strategies, we typically depend on advanced models like
LLaVA 1.6-34B to rank the online samples generated by the model. However, access to such models
is not always guaranteed. We discuss this limitation in more detail in Appendix D.2. Additionally,
the construction of the POVID dataset also involves using a superior model such as GPT-4V to
inject noise into SFT data. Our proposed BDHS method does not require additional annotators or
preference data, and relies exclusively on SFT data already available from the instruction tuning of
the base model. Despite this simplicity, it consistently outperforms the models that utilize the larger
POVID dataset (i.e. both offline and Mixed-DPO) in most benchmarks. Implementing BDHS in
an online format further closes this performance gap in MMHALBench-V, establishing BDHS as a
compelling and cost-effective alternative to other more resource-intensive approaches. Combining
the POVID dataset with the online-BDHS approach (referred to as Online-BDHS ∪ POVID), with
the exception of MMHALBench-V, consistently outperforms the model that uses only the POVID
dataset across all benchmarks. It also surpasses STIC (Deng et al., 2024) and RLAIF-V (Yu et al.,
2024) on the reported benchmarks. We further discuss the enhanced efficacy of our approach over
Zhou et al. (2024) in Section 4.4.

While Section 4.3 provides a detailed analysis of various preference datasets, we highlight key
findings from the VLFeedback dataset here, as they contribute significantly to building an effective
alignment strategy. Unlike POVID, both VLFeedback and its variant, VLFeedbackCorrupted(5k),

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Dataset POPE ↑ MMHAL ↑ MMHALV ↑ LLaVAW ↑ VQAT ↑ GQA ↑ MMVet ↑ Recallcoco ↑
LLaVA 1.6-7B – 86.40 2.95 2.75 80.85 64.85 64.23 43.94 68.13

Public datasets
LLaVA 1.6-7B VLFeedback (80k) 81.84 2.96 2.99 90.55 62.93 62.54 43.85 66.67
LLaVA 1.6-7B POVID (17k) 88.09 3.16 3.07 78.05 64.56 64.12 40.60 73.48
LLaVA 1.6-7B RLHF-V (5.7k) 83.86 3.15 3.26 70.58 64.75 62.89 37.16 64.26

Public datasets, randomly subsampled to 5,000 samples
LLaVA 1.6-7B VLFeedback (5k) 86.31 2.92 3.00 83.10 65.06 64.09 43.21 68.03
LLaVA 1.6-7B POVID (5k) 88.18 2.93 2.93 81.89 64.90 64.34 43.39 71.80
LLaVA 1.6-7B RLHF-V (5k) 84.39 3.25 3.35 72.09 64.85 63.35 39.72 64.68

Previously published
Qwen-VL-Chat VLFeedback (Li et al., 2023a) – 3.02 – – – – 49.9 –
Muffin RLHF-V (Yu et al., 2023b) – (52.1↓)† – – – – – –
LLaVA 1.5 POVID (Zhou et al., 2024) 86.90 2.69 – 68.7 – – 31.8 –

Table 3: Results for LLaVA 1.6-7B Vicuna (Liu et al., 2024) aligned with DPO on VLFeedback,
POVID, RLHF-V. Results highlighted in gray are the results reported by the original authors. † denotes
MMHALBench for which Yu et al. (2023b) strictly reported the human-corrected hallucination rate.

select the “chosen response” in the preference pairs from the top responses ranked by GPT-4V,
selected from a pool of model-generated responses. Compared to re-using SFT data, this approach
potentially offers an additional supervisory signal to the model, leading to enhanced performance on
benchmarks like LLaVABench-in-the-Wild, where such aligned models even outperform the
unaligned 13B and 34B models from the same family.

Notably, we introduce VLFeedbackCorrupted (5k), a small dataset leveraging corruption injection to
generate the “rejected response”, which performs competitively to the much larger ranking-based
VLFeedback (full) dataset. These experiments demonstrate the effectiveness of two strategies in
constructing preference data: First, learning from strong (highly-ranked) responses seems to yield a
distillation-like benefit. Second, using subtle differences between “chosen” and “rejected” responses,
as opposed to just rank-based pairs (like in VLFeedback (full)), can significantly reduce hallucinations,
even in a limited data regiment.

Finally, we replace the noise injection strategy using GPT-4 with our proposed BDHS. We observe a
slight reduction of the MMHALBench-V and LLaVABench-in-the-Wild scores compared to
the GPT-4V based approach, but note that the achieved result still represents meaningful improvements
over the baseline. On all other metrics, BDHS shows comparable or even superior results, establishing
BDHS as a strong alternative to GPT-4V in this pipeline.

In the rest of this section, we conduct a comprehensive ablation study on each of the components dis-
cussed earlier, aiming to offer insights into the typical trade-offs encountered in alignment strategies.

4.2 REMOVING CONFOUNDING FACTORS FOR PREVIOUSLY PUBLISHED DATASETS

We analyze RLHF-V (Yu et al., 2023b), VLFeedback (Li et al., 2023a) and POVID (Zhou et al.,
2024) as they offer a fair blend between human and synthetic sources, and between constructed
and ranked preference signal composition. As it is challenging to determine what are the properties
that characterize a high-quality preference dataset, we first replicate alignment using the published
datasets against LLaVA 1.6-7B with DPO. Additionally, we sub-sample all datasets to a consistent
size of 5,000 examples to remove effect sizes. Results are reported in Table 3.

Zhou et al. (2024) have conducted a similar experiment using LLaVA 1.5, however they do not control
for dataset size. We were successful in replicating certain observations published by these authors.
POVID reaches the highest score on POPE. Zhou et al. (2024) also reports the highest MMHALBench
scores with POVID, which we were able to reproduce using LLaVA 1.6, although this is only true
when size correction is not applied. Upon normalizing for size, POVID’s performance equaled that
of VLFeedback and was lower than RLHF-V.

In other domains, our experiment have shown divergent trends. While Zhou et al. (2024) demonstrated
that all preference datasets improved LLaVA 1.5 on MMVet, our findings with LLaVA 1.6 exhibited a
reverse trend: all our runs did not match up to the baseline. Interestingly, as the datasets grew larger,
we witnessed a further deviation from the baseline. We hypothesize that these preference datasets
lack the necessary information to improve MMVet over the notably stronger baseline LLaVA 1.6
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introduced, which necessitates specialized knowledge (see Appendix B.1). VLFeedback, to a certain
extent, may possess some of this knowledge thanks to its diverse prompts. By restricting dataset
sizes, we further limit the potential alterations on the non-aligned model, as the results stay closer to
the baseline.

Notable, VLFeedback moderately improves LLaVABench-in-the-Wild when the size restric-
tion limit is applied. When aligning on the complete VLFeedback, the largest dataset in these
experiments, we see further improvement and can achieve the highest score on that benchmark.

4.3 DESIDERATA FOR PREFERENCE DATASETS

We examine the components of a multimodal preference dataset and investigate the following options.
The explored choices are further summarized in Table 4.

• Prompts We compared (i) a diverse prompt strategy mixing multiple datasets to (ii) prompts
only from LLaVA-Instruct-150k, which was already seen during the SFT stage of the base model.

• Chosen responses We introduced 3 settings: (i) diverse responses from multiple MLLMs; (ii)
LLaVA responses only, (iii) GPT-4V responses only.

• Rejected responses We introduced 2 settings: (i) diverse responses from multiple MLLMs, and
(ii) corruption of the chosen responses.

In order to construct these preference dataset ablations cheaply and reproducibly, we leverage the size
and diversity of the VLFeedback dataset (Li et al., 2023a). VLFeedback possesses several properties
that makes it a good sandbox: (a) the prompts, derived from 9 datasets (LLaVA-Instruct-150k, SVIT,
LLaVAR, etc.), are diverse, (b) the chosen and rejected responses are sampled from 12 MLLMs
making them very diverse too – ∼ 37% responses are from GPT-4V, and ∼35% from the LLaVA 1.5
series, (c) finally, the large size of VLFeedback, 80,000 quadruplets of responses that can be paired
together, makes it simpler to isolate specific aspects.

Datasets Prompts Chosen Responses Rejected Responses
diverse LLaVA-SFT diverse LLaVA GPT-4V diverse chosen corrupted by GPT-4

VLFeedback ✓ ✓ ✓
+ corrupting strategy ✓ ✓ ✓

prompts
LLaVA prompts ✓ ✓ ✓

model responses
GPT-4V responses only ✓ ✓ ✓
LLaVA responses only ✓ ✓ ✓

Table 4: Controlled settings for multimodal preference dataset exploration. We decompose the
preference datasets into prompts, chosen and rejected responses and we then aim at identifying factors
contributing to the dataset quality.

Corruption strategy Reranking is originally used to determine chosen and rejected responses
in VLFeedback (see Section 3). In order to remove variation introduced by the original rejected
responses (e.g., style change between MLLMs) and permit a tighter control on ablations, we replace
rejected responses from the original VLFeedback samples with corrupted versions of the preferred
responses. Similar to the method in (Zhou et al., 2024), we leverage GPT-4 to specifically introduce
realistic hallucinations, assisted by a few shots for illustration (see Appendix F.2).

Results Following Section 4.2, we apply DPO alignment on the LLaVA 1.6-7B model, and we limit
all the datasets to 5,000 samples. In Table 5, we report the results of this experiment. First, we show
that our corruption strategy achieves improvements over the baseline comparable in magnitude to
the ranking-based preference signal in the original VLFeedback data. In some benchmarks, like
MMHAL-Bench-V, we even observe improvements, while notably MMVet shows some regressions.
Nevertheless, we argue that this represents a reasonable baseline to adopt for easier iteration on the
following ablations. In Appendix F.3, we provide more analysis on this strategy.

Next, we explore the impact of novelty of the prompts used for alignment, by sampling another 5k
preference data generated with the same corruption mechanism solely from prompts that are a part of
the LLaVA SFT mixture. These are examples that the baseline model would have already been trained
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Dataset POPE ↑ MMHAL ↑ MMHALv ↑ LLaVAW ↑ VQAT ↑ GQA ↑ MMVet ↑ Recallcoco ↑
Baseline 86.40 2.95 2.75 80.85 64.85 64.23 43.94 68.13
VLFeedback (5k) 86.31 2.92 3.00 83.10 65.06 64.09 43.21 68.03
+ corrupting strategy 85.59 3.39 3.33 86.65 65.20 63.87 37.98 68.66

prompts
LLaVA prompts 87.63 2.85 2.96 86.55 65.13 64.25 41.47 70.44

model responses
GPT-4V responses only 86.78 3.30 3.02 86.77 65.06 64.02 40.14 69.08
LLaVA responses only 87.52 3.03 3.01 88.64 65.30 64.19 42.16 70.13

Table 5: We started from VLFeedback with its diverse prompts and responses, and we then applied
targeted sampling and corruption to isolate factors contributing to the dataset quality.

on during the SFT stage, so one may argue the baseline has already been taught a desirable response
for. Interestingly, we observe that this shows similar improvement. We still observe comparable lift on
LLaVABench-in-the-Wild, and while MMHAL-Bench-V shows less dramatic improvement
over the baseline compared to the more diverse corruption-based sample, this may be due to more
verbose responses, as indicated by higher recall. POPE even improves somewhat significantly and
the regression in MMVet is also less pronounced.

Finally, we explore the impact of the construction of the accepted response in the alignment data. One
could argue that for responses derived from stronger model such as GPT-4V, improvements may also
be the result of learning from this stronger teacher model. Therefore, we conduct two experiments:
one, where we sample data where the preferred response comes from GPT-4V only, and one where
the preferred response comes from LLaVA 1.5-7B, a model generally weaker than the base model
under alignment in this experiment. Interestingly, we do not observe any benefit from learning from
GPT-4V generated responses, in fact, our results suggest that positive samples derived from LLaVA
1.5-7B led to a slightly stronger model post alignment.

These findings suggests that useful preference data can be derived cheaply, even from responses
from relatively weaker models, as long as one can effectively sample and identify relatively desirable
answers from the model as their preferred response, and introduce targeted corruption to create
dispeferred responses.

4.4 ABLATIONS ON BDHS

Section 3.1 introduces BDHS as a technique to generate corrupted responses directly using the model
subject to alignment. While our proposed approach is purely based on image attention masking,
we also evaluate a variant that consumes noisy images instead, motivated by the teacher-forced
POVID-style image distortion introduced in Zhou et al. (2024) (see Section G.1). In the following,
BDHS with attention masking (ρth = 0.99 and NBDHS = 5) is denoted as BDHSattn and BDHS with
noisy images in the input as BDHSnoise. The number of additive noise steps for BDHSnoise is set to
N = 500 similar to the image distortion in Zhou et al. (2024).

All ablations in Table 6 are based on our 5k subset of POVID as introduced in Section 4.2. POVID
contains LLaVA Instruct responses y+ as well as GPT-4V corrupted non-preferred responses y−.
While y+ is shared between all ablations, we start with substituting y− from external supervision
by the BDHS model response ỹ− and invoke standard DPO as shown in the first 3 rows after the
LLaVA 1.6-7B baseline results. The proposed variants consistently improve over the baseline for
POPE and LLaVABench-in-the-Wild. They regress on MMHALBench, however, as discussed
in Section B.1, this benchmark has limitations so we mainly focus on MMHALBench-V instead
for which all BDHSattn variants perform comparable to the baseline while the online rollout of ỹ−
even improves over it. Notably, we also observe significantly higher Recallcoco, suggesting richer
responses. BDHSnoise results in lower scores for LLaVABench-in-the-Wild while the attention
masking approach BDHSattn almost maintains the baseline scores.

The lower partition of Table 6 starts with plain DPO on the POVID (5k) dataset as reference and then
each subsequent approach incorporates both the existing response y− from external supervision as
well as ỹ− derived from the policy. Hereby, the two non-preferred responses are incorporated into the
DAP framework by averaging the losses of (y+, y−) and (y+, ỹ−) according to Equation equation 5.
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y− from external supervision ỹ− derived from policy POPE↑ MMHAL↑ MMHALV ↑ LLaVAW↑ VQAT ↑ GQA↑ MMVet↑ Recallcoco ↑
– – 86.40 2.95 2.75 80.85 64.85 64.23 43.94 68.13

– BDHSnoise (Offline, ours) 88.60 2.37 2.48 84.53 65.05 64.14 41.38 75.16
– BDHSattn (Offline, ours) 88.75 2.61 2.71 86.33 65.07 63.97 43.4 75.58
– BDHSattn (Online, ours) 88.83 2.80 2.99 85.03 65.09 63.65 43.12 74.09

GPT-4V (POVID) – 88.18 2.93 2.93 81.89 64.90 64.34 43.39 71.80
GPT-4V (POVID) POVID-style image distortion 88.33 2.84 2.64 80.15 64.21 63.79 41.28 69.39
GPT-4V (POVID) BDHSnoise (Offline, ours) 88.58 2.76 2.45 84.36 65.31 64.26 43.95 75.05
GPT-4V (POVID) BDHSattn (Offline, ours) 88.56 2.85 2.72 85.35 65.39 64.11 43.26 75.05
GPT-4V (POVID) BDHSattn (Online, ours) 88.38 2.82 2.81 84.01 65.42 64.30 45.46 74.00

Table 6: Ablation results for BDHS including baseline and reference approaches. All results based
on LLaVA 1.6-7B, using DPO and the POVID (5k) sample for the source of images and prompt.
Whenever both y− from external supervision and ỹ− derived from policy (either online or offline)
are incorporated, the average loss is computed using equation 5.

Therefore, the Online-BDHS method uses Online-DPO in a considerable simplified setting compared
to the full Online-DPO realization equation 4, as the formulation presented here does not depend on a
dedicated external annotator (see Section 2.3).

All the BDHS ablations improve significantly on LLaVABench-in-the-Wild compared to the
DPO baseline and POVID-style image distortion. The BDHSattn with attention masking performs
significantly better on MMVet compared to BDHSnoise. Notably, BDHSattn consistently outperforms
the POVID-style image distortion across all benchmarks. We follow the published implementation of
Zhou et al. (2024), however, surprisingly the POVID-style image distortion performs worse compared
to plain DPO via POVID (5k), which differs from the LLaVA 1.5-7B alignment results in their paper.
Presumably, the non-sensical responses from teacher-forcing could lower the performance while
trading off with the existing GPT4-V preference pairs.

While online approaches with BDHS improve on certain benchmarks, we emphasize that even the
offline dataset created with BDHSattn and without additional response from external supervision
already constitutes a cost-effective baseline that consistently performs well across all benchmarks.

5 CONCLUSION AND FUTURE WORK

In this study, we investigate preference alignment’s role in improving MLLM performance, particu-
larly in reducing hallucinations. We evaluate various alignment strategies, including offline, online,
and hybrid approaches, across different datasets. Our analysis of existing multimodal preference
datasets allows for directly comparing their impact on model performance, controlled for data size
and the base model under alignment. We further isolate individual differences between these datasets
via additional ablations and show that corruption-based preference data can achieve hallucination
reduction comparable to sampling and ranking-based approaches, and that learning from novel
and diverse inputs, or from responses from superior models surprisingly does not lead to further
improvements. Based on these insights, we present a simple preference dataset generation strategy
we call BDHS, which uses only existing SFT data, eliminating the need for a superior model, human
labelers, or other complex means of constructing preference data. Applied to LLaVA 1.6, this simple
methods yield significant improvements across benchmarks, demonstrating its potential.

This study not only enhances our understanding of preference alignment but also establishes a
foundation for further research into MLLM preference alignment. We identify several gaps in the
community’s approach to aligning MLLMs. Firstly, while considerable research has been conducted
on various alignment methods for LLMs, including both online and offline approaches, these studies
are less common in the context of MLLMs. For instance, RLH(AI)F is extensively discussed in
LLM literature, highlighting its potential over simpler methods like DPO. Although we provide some
insights into RL-based alignment for MLLMs and the evaluation of reward models, a significant gap
remains between LLM and MLLM research in this domain. Secondly, we emphasize the need for
better hallucination benchmarks to help understand model improvements. Moreover, our thorough
analysis of published multimodal preference data reveals insufficient coverage in existing datasets,
which may contribute to the absence of significant improvements in some benchmarks. Lastly, while
BDHS effectively generates preference data to reduce hallucination, further research is needed to
address other factors causing hallucination in MLLMs, such as insufficient real-world knowledge.

We hope these insights inspires further research and helps the community tackle ongoing challenges
in this field.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided comprehensive implementation details
in both the main text and appendix of this paper. We study the effect of preference alignment on the
widely-used LLaVA 1.6 Liu et al. (2024) model, and we exclusively examined publicly available
preference datasets for alignment purposes. For the alignment methods we encourage the readers to
follow the TRL library (https://github.com/huggingface/trl/), making modifications
only when necessary to accommodate multi-modal inputs or online versions. All prompts used for
different models are included in the appendix. By adhering to these practices, we aim to facilitate
easy reproduction and validation of our results by the research community.
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A IMPLEMENTATION DETAIL

For all offline experiments, as well as for Online-DPO and Mixed-DPO, we conducted a hyper-
parameter search. The parameters included learning rates of 10−7, 5 ·10−7, 10−6, 5 ·10−6; projection
layer learning rates of 2 · 10−5, 2 · 10−6, 2 · 10−7; epochs of 3, 5, and 7; and batch sizes of 16, 32,
and 48. We reported the best results for each method. Additionally, we set the LoRA rank and scaling
factor to 128 and 256, respectively. The β values for DPO, IPO, and SLiC were explored at 0.05, 0.1,
0.2, 0.5 for DPO; 0.8, 0.9, 1.0 for IPO; and 0.02, 0.1, 0.2 for SLiC.

For RL methods (PPO and RLOO), we maintained constant base model parameters while training
LoRA adapters for alignment. Specifically, for RLOO, we utilized k = 4, generating four distinct
responses for each prompt at a temperature of 1.0. Training was conducted over two epochs with a
batch size of 256 and a learning rate of 3 · 10−4. Prior to RLOO training, we calculated the mean
and standard deviation of rewards using the alignment dataset and normalized the rewards during
training to achieve zero mean and unit variance. We determined that a β value of 0.4 provided the
best balance between rewards and the KL penalty for RLOO. Gradient clipping was also implemented
to cap the maximum gradient norm at 1.0.

For PPO specifically, we trained for 3 epochs with a learning rate of 1.41e-5 using a constant learning
rate schedule. We used 1 GPU with a batch of 32. For the reward model, we used a a learning rate of
2e-5 and trained for 4000 steps. The learning rate schedule was also adjusted to be constant but with
a warmup phase. The fraction value for the warmup phase is set at 0.03. Training was conducted on
8 GPUs with a batch size of 32.

For BDHS, we found that ρth values close to 1 empirically gave the strongest results in our experiments
with LLaVA 1.6. Therefore final results are reported at ρth = 0.99 if not otherwise stated. We argue
that this is likely a result of the “AnyRes” technique used in LLaVA 1.6, which leads to significant
redundancy across image tokens.

B EVALUATION

B.1 EVALUATION BENCHMARKS

Benchmarks We adopt multiple benchmarks to assess the capabilities of MLLMs, centered around
both measuring the models visual faithfulness, i.e. its tendency to hallucinate, as well as overall
helpfulness, i.e. the overall quality of its responses. Results have been obtained using an internal fork
of lm-eval-harness (Gao et al., 2023b; McKinzie et al., 2024; Li et al., 2024).

LLaVABench-in-the-Wild (Liu et al., 2023b), TextVQA (Singh et al., 2019), and GQA (Hud-
son & Manning, 2019) help measure the model helpfulness, i.e. the effectiveness at following
instructions and the completeness of the responses. LLaVABench-in-the-Wild expects free-
form answers while both TextVQA and GQA require concise responses. We additionally report
MMVet (Yu et al., 2023c), which evaluates the knowledge and visual reasoning capabilities of the
MLLM. Such capabilities are not a direct target for most MLLM alignment strategies to improve.
Nevertheless, MMVet offers a useful indicator for ensuring that such capabilities are not lost due to a
possibly too simple or not sufficiently diverse alignment regiment.

POPE (Li et al., 2023b) and MMHALBench (Sun et al., 2023) evaluate the visual faithfulness of a
model by identifying hallucinations in model responses. For POPE, we noticed that most of our
experiments would reach a seeming plateau between 86% and 88% despite improvements in the
other benchmarks. We conducted an initial manual review of 100 reported losses and observed
incorrect or disputable ground truth on as many as 20 % of those samples (see Appendix B.2). While
re-annotating those examples is beyond the scope of this work, we invite the community to consider
it as many recent SOTA models exhibit such plateau2.

Additionally, we noticed unexpected results on MMHALBench, and subsequent analysis showed
limitations in its scoring. Specifically, MMHALBench uses text-only GPT-4 to detect hallucinations
by comparing model responses to a reference response and a short list of objects known to be in
the image. Sometimes this leads to entirely correct model responses to be marked as hallucinations

2See Table 4 in McKinzie et al. (2024) where all the models reported are demonstrating a plateau on POPE.
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when they included more detail than the provided references. To mitigate this issue, we introduce a
straightforward derivative we call MMHALBench-V(ision), which relies on GPT-4o, i.e. provides
the input image as additional context to the judge, to more reliably evaluate model capabilities. Data
and evaluation prompts are unchanged. We empirically found this to be more reflective of true
hallucinations in a human comparison. See Appendix B.4 for our review. Throughout experiments,
we mainly focus on MMHALBench-V numbers and report MMHALBench primarily for reference.

While responses that have fewer hallucinations are often also inherently more helpful, we observe that
these dimensions are nevertheless distinct and optimizing for reduction in hallucination crucially does
not necessarily imply a more helpful model. In fact, in some instances, we even observed an inverse
relationship. For example, as discussed in (Zhu et al., 2023), a given model would be more likely
to hallucinate when asked to produce longer captions than shorter ones. This implies that models
could learn to hallucinate less simply by providing more concise, arguably less useful, responses,
and that models that aim to provide more detailed responses may find it more difficult to remain
faithful to visual context in all respects3. For this reason, we report the recall metric from Object
HalBench Yu et al. (2023b), styled Recallcoco in our tables. This measures how many objects known
to be in an image based on CoCo annotations are mentioned in a comprehensive caption given by the
model. We considered as well reporting the CHAIR (Rohrbach et al., 2018) metrics from Object
HalBench (Yu et al., 2023b). However, during our experiments, we found that those measurements
were not always correlated with the quality of the models evaluated (see Appendix B.3).

B.2 POPE

We noticed the existence of an upper bound on the POPE benchmark, as most of our experiments
would reach a plateau between 86% and 88% despite improvements on other benchmarks. We
manually looked at the losses among 100 responses and present the results in this section.

In 20% cases, we observed that the ground truth was either incorrect or disputable. In some of
those cases, it appeared that the ontology used to build POPE could potentially result in differing
interpretations. For example, in certain countries, a clear distinction exists between a car and a truck,
although this distinction is not as pronounced in other regions of the world4. We provided an example
along the response of our aligned model5 in Figure 2.

Prompt: Is there a tv in the image?
POPE Ground Truth: yes
Aligned LLaVA 1.6-7B response: no

Figure 2: Upon analysis of the losses on POPE, we noticed close to 20% of cases where the ground
truth was either incorrect or disputable. This example is from POPE, which sources images from
COCO (Lin et al., 2014).

Provided these examples are eliminated, we think it is plausible that performant models could
potentially exceed a 90% accuracy rate on the POPE benchmark. Re-annotating those examples is
beyond the scope of this work, however we would like to invite the community to consider it as

3To some extent, one could argue this mirrors the tension between helpfulness and safety as reported in
Touvron et al. (2023), where a highly safe model may be less helpful.

4An example of such distinction between car/truck can be seen on COCO_val2014_000000210789.jpg where
the POPE ground truth expects "no" to the prompt "Is there a car in the image?".

5We used a LLaVA 1.6-7B DPO-aligned on LLaVA prompts and responses sampled from VLFeedback. See
Section 4.3.
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many recent SOTA models exhibit such plateau. See Table 4 in (McKinzie et al., 2024) where all the
models reported are demonstrating such plateau on POPE.

B.3 CHAIR AND OBJECT HALBENCH

We evaluated two widely used benchmarks in the community for measuring hallucination, focusing
on the computation of CHAIR metrics. We investigated approaches described by Rohrbach et al.
(2018), which uses COCO annotations to compute CHAIR scores, and the more recent method by Yu
et al. (2023b), named Object HalBench, which combines COCO annotations with a GPT model
to enhance the detection of hallucinated objects.

Our analysis reveals that both benchmarks are significantly noisy (Figure 3). We also found that any
improvements in CHAIR scores strongly depend on the ability of these benchmarks to detect specific
types of hallucinations and cannot be attributed solely to the improvement of the model.

Furthermore, it is common to report CHAIR metrics without including recall metrics. Considering
the trade-off between CHAIR and recall, omitting recall does not provide a full picture of how much
a model has improved in reducing hallucinations. For instance, a model that generates short and
conscise responses might not produce many hallucinations, but this may be at the cost of potentially
providing an unhelpful answer.

Hence, the recall metric from Rohrbach et al. (2018) proves particularly informative for comparing
different models and helping with our understanding of other benchmarks. We report this metric in
our evaluations, styled Recallcoco in our tables.

B.4 MMHALBENCH-VISION

The original MMHALBench benchmark (Sun et al., 2023) uses GPT-4 to judge whether model
responses introduce hallucinations. In that text-only regime, MMHALBench relies on ground truth
information about the pictures, such as the categories of the objects present or a human reference
response to the prompt.

We evaluated manually the common wins and losses obtained on MMHALBench during our exper-
iments and noticed that in ∼20% cases we disagree with the resulting MMHALBench score6. We
found cases where responses with hallucinations were considered as correct. Oppositely, we found
cases where valid answers were wrongly tagged as containing hallucinations. In many cases, we saw
the helpfulness to be under-estimated. See Figure 4.

This can be explained due the ground truth information being only expressed through text causing the
judge model, GPT-4, to wrongly tag or miss hallucinations. To mitigate such cases, we introduced
MMHALBench-Vision: we rely on the recently introduced GPT4-o to consume the image along
the text ground truth information. We kept the evaluation prompt and scoring identical.

C RL-BASED ALIGNMENT

To evaluate RL-based alignment methods we followed the established recipe of training a reward
model on a preference dataset and then using an RL algorithm to optimize the MLLM to maximize
the reward of responses sampled from the policy. We chose PPO and RLOO due to their popularity
in the LLM literature.

Reward Model Training and Evaluation We analyze the utility of datasets available in the
community for reward model training by training on POVID, RLHF-V and VLFeedback preference
datasets. To evaluate such created reward models in isolation, we hold out a small validation set split
from the original dataset and report classification accuracy of the trained reward model, i.e. its ability
to differentiate the chosen from the rejected response in POVID, RLHF-V, and VLFeedback sets.
These held out validation sets are not used for reward model training.

Table 7 shows the performance of the reward models trained on different datasets across all validation
sets. The model trained on VLFeedback shows the best generalization across the different datasets,

621 cases out of 96 while comparing wins and losses of two models.
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Model Response: The image features a brown and white cat lying
on its side in an orange suitcase. The cat appears to be relaxed and
comfortable in the suitcase. The suitcase is placed on a bed. The
suitcase is open, revealing its contents, which include a book and
a handbag. The cat is the main focus of the image, occupying a
significant portion of the frame. The orange suitcase and the handbag
are the other main objects in the scene, with the handbag being located
on the left side of the image and the suitcase occupying the right side.
The overall mood of the image is calm and cozy.

Model Response: The image features a large, colorful truck parked
on the side of a street. The truck is parked next to a brick building,
and there is a car parked behind it.
There are several people in the scene, with one person standing near
the truck and two others further away. One of the individuals is carry-
ing a handbag, which is visible in the scene. The overall atmosphere
of the image is lively and engaging, with the eye-catching truck.

Figure 3: Examples illustrating instances where the CHAIR and Objet HalBench benchmarks
fail to detect hallucinations. Text highlighted in green identifies hallucinations successfully detected
by the benchmarks. In contrast, text highlighted in red indicates examples where the benchmark
failed to identify hallucinations. Orange indicates hallucinations that, though not targeted by these
benchmarks, degrade response quality. The top example shows the benchmark proposed by Yu et al.
(2023b) while the bottom example follows from (Rohrbach et al., 2018). Images are from COCO (Lin
et al., 2014).

Base Model Train Dataset Held-Out Eval Dataset
POVID RLHF-V VLFeedback

LLaVA 1.5-7B POVID 0.99 0.24 0.56
LLaVA 1.5-7B RLHF-V 0.12 0.86 0.52
LLaVA 1.5-7B POVID + RLHF-V 0.98 0.76 0.53
LLaVA 1.5-7B VLFeedback 0.61 0.54 0.81

LLaVA 1.6-7B POVID 0.99 0.34 0.59
LLaVA 1.6-7B POVID + RLHF-V 0.97 0.68 0.63
LLaVA 1.6-7B VLFeedback 0.76 0.53 0.82

Table 7: Reward model accuracy on the held-out validation set.

as may be expected given its significantly larger size and higher diversity. In contrast, reward models
trained on POVID and RLHF-V show notably poor generalization to their respective counterpart,
while achieving high scores on their own held out portions. We hypothesize that the reward model
may learn to recognize and prefer the respective (original) policy response before corruption (POVID)
or enhancement (RLHF-V), which could explain the performance being significantly below a random
choice baseline. To strengthen our hypothesis, we also combine the POVID and RLHF-V sets for
reward model training and observe that both LLaVA 1.5-7B and LLaVA 1.6-7B are able to learn a
more balanced objective, although even for such a combined training set we still observe limited
generalization to VLFeedback.
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image ID: 16189396430_4dce91a9d7_o Prompt: How many people are there in the image?
MMHAL reference response: There are four people in the image.
MMHAL categories: Girl, Human head, Human hair, Mammal,
Dog, Person, Human face
LLaVA 1.6-7B aligned: There are four people in the image: a man,
a woman, and two children.

GPT-4 response: total score=1, hallucination=1, helpfulness=1

image ID: 12392564684_ffd19b5b55_o Prompt : Compare the two different views of the backpack.
MMHAL reference response: The image shows two different views
of the same black backpack. On the left side, it shows the inside of
the bag, containing a camera, two lenses an other accessories. On the
right side, it shows the outside of the bag, and there is a "Lowepro"
logo on it.
MMHAL categories: Hiking equipment, Clothing, Backpack
Aligned LLaVA 1.6-7B response: The image shows a backpack
with two different views: the top view and the side view. In the top
view, we can see (...)

GPT-4 response: total score=4, hallucination=0, helpfulness=1

Figure 4: Example of incorrect assessments with MMHALBench. The top example shows a response
incorrectly assessed as having a hallucination. The second presents a response where the model
hallucinates a side view of the backpack, but that is missed by MMHALBench. In both cases, the text
ground truth does not give enough information to the text-only evaluator to evaluate the response.
Reproduction of MMHALBench images cannot take place here due to usage restrictions. Please refer
to https://huggingface.co/datasets/Shengcao1006/MMHal-Bench.

RL Training and Evaluation We used the POVID and VLFeedback based reward models for PPO
and RLOO training. Table 8 shows the scores of the best models trained via PPO and RLOO.

Alignment DatasetRM DatasetP POPE↑ MMHAL↑ MMHALV ↑ LLaVAW↑ VQAT ↑ GQA↑ MMVet↑ Recallcoco ↑
Baseline – – 86.40 2.95 2.75 80.85 64.85 64.23 43.94 68.13
DPO – POVID 88.09 3.16 3.07 78.05 64.56 64.12 40.60 73.48

PPO POVID POVID
RLOO POVID POVID Policy training not stable

PPO VLFeedback POVID 87.54 3.02 3.09 80.17 63.90 64.04 40.51 67.19
RLOO VLFeedback POVID 87.17 2.94 2.72 78.72 63.59 63.72 42.25 64.57

Table 8: RL-based alignment of LLaVA 1.6-7B, DPO baseline included for reference. RL-based
alignment methods use a reward model based on LLaVA 1.6-7B, DatasetRM refers to the dataset
used to train the reward model, DatasetP to the set of images and prompts used for RL alignment.

Mirroring the observed lack in generalization in our reward model experiments, we found that using
POVID-based reward model resulted in collapse of responses during the RL training. Only the
use of the reward model trained on the much larger VLFeedback dataset allowed for stable RL
training without model collapse. We hypothesize that besides the larger size, VLFeedback may
be more aligned with the downstream objective of the reward model due to its construction by
ranking sampled model responses, compared to POVID, which aims to produce minimally different
preference pairs. Nevertheless, even the stronger VLFeedback-based reward model did not allow us
to reliably outperform a much simpler DPO baseline7.

These observations indicate that reward model training with subsequent RL alignment could perhaps
require more carefully curated data, e.g., with more focus on diversity, than direct alignment methods
where both POVID and VLFeedback individually achieve strong improvements. In addition to
inherently stronger reward models, perhaps basing them on more powerful base models, it also
suggests that the approach introduced in the concurrent work of Yu et al. (2024), which introduces a

7We also found that models achieving higher reward during RL training, did not perform better than models
with lower reward and less KL divergence, i.e., models with higher β parameter performed better on the
benchmarks. None of the RL algorithms clearly outperformed the others.
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symbolic reward formulation based on scores from a VQA model verifying statements made by the
policy may be a promising avenue for future research.

Another interesting observation is that the RL aligned models show similar evaluation trends as the
DAP aligned models, where both use POVID prompts and images for the training of the policy. For
example, compared to the base model they show some improvement in POPE, and MMHalBench
(both variants), with some regressions in LLaVABench-in-the-Wild, TextVQA, GQA, and
MMVet. These trends are distinct to what is seen when using direct preference alignment on
VLFeedback data as shown in Table 3. This is remarkable as the RL aligned models do of course not
use the chosen and rejected responses present in the POVID dataset, instead getting their feedback
signal entirely from the reward model which is trained on VLFeedback data. We observe a similar
trend in Section D.3, where in a purely online setting, the choice of input prompts and images
significantly impacts alignment results.

D ONLINE DPO

D.1 ANNOTATOR IN ONLINE-DPO

Table 9 shows the prompt we used to obtain online feedback from the annotator. We conducted
multiple experiments with different prompts. In one setup, similar to the approach taken by
Guo et al. (2024) with the rewards model, we included the ground truth response as an additional
signal for the annotator to evaluate both responses. We did not observe any significant change in
either the evaluation metrics or the final performance of the aligned model. This may be due to
the fact that most of the open-source MLLMs we used in this study still lack the ability to follow
instructions effectively, especially when the instructions contain multiple components or detailed
steps.

We also examined the potential bias of the annotator model in choosing "Response 1" or "Response 2"
and found no noticeable bias. Figure 5 shows an example of an annotation made by LLaVA 1.6-34B
model.

The most important part of this task is to choose a response that contains less hallucination.
Everything in the answer should be based on the contents of the image. You are given an
image, a question, and two responses. If the context is about something practical, a helpful
response is a concise response, and not one with irrelevant questions and comments. You
are an expert annotator, and you rate the answer with less hallucination and more helpful
information about the image as the better answer. Less hallucination means every object or
attribute of the object, like color and relationship, is described accurately and as it appears
in the image. If something is ambiguous in the image, the answer should avoid including
any details that are not clearly visible in the image. In your response, you should generate
an answer where you indicate whether Response 1 or Response 2 is better and explain the
reason.

Table 9: The Prompt Used for the Annotator.

D.2 HOW DOES A STRONGER ANNOTATOR AFFECT THE PERFORMANCE OF ALIGNED MODEL?

Dataset LLaVA 1.6-7B LLaVA 1.6-34B

VLFeedback (eval) 79.10 90.91
RLHF-V (eval) 81.88 93.90
POVID (eval) 92.96 98.55

Table 10: Performance of the annotators on different
preference datasets.

Annotator Evaluation We used LLaVA 1.6-
34B as the annotator. To verify its capabil-
ity to accurately judge different responses, we
evaluated it on the sample held-out part of
three datasets we used for evaluating the reward
model in Section C. Results are summarized in
Table 10. For further details on the prompts
used and qualitative examples of the annotator’s
outputs, please refer to Appendix D.1.
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Prompt How many people are in the pool?
Response 1: There is a person in the pool, a young man
enjoying his time surfing the small waves.

Response 2: This is not a swimming pool but the ocean, and
on the ocean, there is a person. A young man is enjoying his
time surfing.

Annotator: Based on the image content, Response 2 is better
and more helpful. The image shows a person surfing in the
ocean, not a swimming pool. The surfer is riding a wave, and
there are no other people visible in the image. The description
accurately reflects the content of the image and does not in-
clude any hallucinations or irrelevant details.

Figure 5: Example of Annotation. Image is from COCO (Lin et al., 2014).

Table 11 presents a comparison of the effects of Online-DPO with two different annotators.

While using Online-DPO with LLaVA 1.6-7B as the judge can enhance the overall performance of
the model, the stronger annotator seems to provide more consistent improvements across various
benchmarks.

Concurrent to us, Yu et al. (2024) proposed an annotation approach that segments the annotation
process into easier sub-tasks, with each task being individually scored. These scores are then
aggregated to form an overall score that rates the responses. This method can potentially enable
weaker models to still provide strong supervision signals during the alignment process. Moreover,
exploring the use of stronger base models and diverse datasets, both in terms of size and variety,
could further enhance the effectiveness of the online approach. We leave the detailed investigation of
these aspects for future work.

Model Dataset Annotator POPE ↑ MMHAL↑ MMHALV ↑ LLaVAW ↑ VQAT ↑ GQA ↑ MMVet ↑ Recallcoco ↑
LLaVA 1.6-7B – – 86.40 2.95 2.75 80.85 64.85 64.23 43.94 68.13

LLaVA 1.6-7B POVID LLaVA 1.6-7B 86.54 2.52 2.72 81.55 64.93 64.18 40.73 67.40
LLaVA 1.6-7B POVID LLaVA 1.6-34B 86.49 2.88 2.94 82.61 64.88 64.31 43.26 68.45

Table 11: Comparison of Online-DPO with a strong annotator (i.e., LLaVA 1.6-34B) and a weak
annotator (i.e., LLaVA 1.6-7B).

D.3 ONLINE-DPO & MIXED-DPO

We apply Online-DPO and Mixed-DPO to both the POVID and the RLHF-V dataset. The results
are summarized in Table 12. Consistent with our observations on the POVID dataset, applying
Mixed-DPO – which combines elements of DPO and Online-DPO – typically results in a moderating
effect on performance outcomes. The results often span a range slightly broader than the highest
and lowest performances achieved by DPO and Online-DPO. This variability is attributed to the
probabilistic nature of the online sampling in Online-DPO.

On the RLHF-V dataset, where Online-DPO consistently outperforms DPO across all benchmarks,
the moderating effect of Mixed-DPO proves not beneficial, as the offline DPO component contributes
minimally to the overall model performance. Nevertheless, Mixed-DPO remains a valuable strategy in
scenarios where, as observed in the experiments on the POVID dataset, offline and Online-DPO show
complementary improvements, leveraging the strengths of both to optimize overall performance.
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Alignment Dataset POPE ↑ MMHAL↑ MMHALV ↑ LLaVAW ↑ VQAT ↑ GQA ↑ MMVet ↑ Recallcoco ↑
– – 86.41 3.06 2.71 78.96 64.22 64.22 43.94 68.13

DPO POVID 88.09 3.16 3.07 78.63 64.56 64.12 40.60 73.48
Online-DPO POVID 86.49 2.88 2.94 82.61 64.88 64.31 43.26 68.45
Mixed-DPO POVID 88.03 2.83 3.10 82.75 64.93 64.47 42.80 74.53

DPO RLHF-V 83.86 3.15 3.26 70.58 64.75 62.89 37.16 64.26
Online-DPO RLHF-V 85.40 3.10 3.27 79.66 64.94 64.05 41.01 68.13
Mixed-DPO RLHF-V 85.57 2.94 3.16 78.46 65.06 64.10 41.10 67.82

Table 12: The effect of Mixed-DPO, using LLaVA 1.6-7B as the base model.

E COMPARISON OF DIFFERENT OFFLINE ALIGNMENT METHODS

While we conducted most of our experiments using DPO for comparability with other works in the
community, we also ran a few experiments to investigate whether other popular offline methods could
improve the results. Results are summarized in Table 13.

Our results indicate that both IPO and SLiC, similar to DPO, boost the model’s performance across
most hallucination benchmarks. Additionally, these methods demonstrate improvements in more
open question-answering benchmarks. We anticipate that Online-IPO and Online-SLiC will yield
enhancements over their offline counterparts — similar to the improvements observed with Online-
DPO over DPO — as examined in Guo et al. (2024). However, this study is beyond the scope of
this paper and is left for future work. Primarily, we aim to highlight the importance of considering
different alignment objectives, emphasizing that the choice between offline objectives in different
setups can impact the effect of the alignment pipeline.

Alignment Dataset POPE ↑ MMHAL↑ MMHALV ↑ LLaVAW↑ VQAT ↑ GQA ↑ MMVet ↑ Recallcoco ↑
– – 86.40 2.95 2.75 80.85 64.85 64.23 43.94 68.13

DPO POVID 88.09 3.16 3.07 78.63 64.56 64.12 40.60 73.48
IPO POVID 87.62 3.11 3.11 82.34 65.09 64.47 43.99 69.81
SliC POVID 88.28 3.17 3.15 81.99 64.59 64.11 41.51 74.32

Table 13: Comparison of different offline alignment methods based on LLaVA 1.6-7B.

F PREFERENCE DATA

F.1 STATE OF THE ART PREFERENCE DATASETS

This section presents recently published multimodal preference datasets. We categorize those
contributions into two categories according to their annotation source:

Human annotations In LLaVA-RLHF (Sun et al., 2023), authors collect human preferences by
asking crowdworkers to prioritize responses that minimize hallucinations. Using this process, the
authors built a 10k preferences dataset. The prompts are from LLaVA-Instruct-150k (Liu et al.,
2023c), while responses are sampled from LLaVA base model. As is common for many other
preferences datasets, the source of the images is COCO (Lin et al., 2014).

In RLHF-V, Yu et al. (2023b) collect human preferences at the segment level by asking annotators
to correct mistakes in model responses. Used in conjunction with a token-weighted DPO training,
authors reported a reduced hallucinations level. Prompts and images are originally from the UniMM-
Chat SFT dataset introduced by Yu et al. (2023a), and responses sent for annotation are sampled from
Muffin (Yu et al., 2023a).

Synthetic annotations In DRESS (Chen et al., 2023), authors introduce NLF, a 63k pairwise
preference dataset built from LLaVA-Instruct-150k images and prompts. Authors leverage GPT-4 to
provide critique and refinement on the responses of their in-house DRESS model. In VLFeedback (Li
et al., 2023a), authors sample responses from a pool of 12 multimodal MLLMs — including GPT-4V,
the LLaVA 1.5 series models and Qwen-VL-Chat— on a pool of prompts datasets (LLaVA-Instruct-
150k, SVIT (Zhao et al., 2023a) (Visual Genome images), LLaVAR (Zhang et al., 2023) (LAION-5B
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images)). This synthetic approach scales up both the number of examples generated and the diversity
of the responses. GPT-4V is used to select the best responses.

In POVID, Zhou et al. (2024) generate dispreferences from a ground truth dataset directly, removing
the need for ranking responses. Specifically, 17k examples are selected randomly from the LLaVA-
Instruct-150k dataset, with the original answers assumed to be a preferred response, while the
dispreferred response is derived by prompting GPT-4V to introduce mistakes in the preferred response.

Preference signal Transversally to the source of annotations, we consider how the preference signal
is composed. LLaVA-RLHF (Sun et al., 2023) and VLFeedback Li et al. (2023a) use ranking:
responses are sampled, then ranked by humans or GPT-4V. Other works use a construction approach
where the signal is obtained by correcting responses, such as RLHF-V (Yu et al., 2023b) and DRESS
(Chen et al., 2023), or by corrupting the responses such as POVID (Zhou et al., 2024).

F.2 DATASET PROMPT CORRUPTION

We leverage GPT-4 to corrupt chosen responses with realistic and plausible hallucinations. We call
realistic hallucinations those instances where a human, just by looking at the corrupted response,
is unable to recognize it without having to refer back to the image. We have remarked this was
an important distinction: the more obvious the corruptions are, the poorer the performance of the
resulting policy is. We launched side experiments where we employed a less skilled LLM corrupter
and incorporated obvious tags8 into the responses. In both scenarios, we noticed a drop in performance
as the corruption gets less realistic and readily ‘hackable’ by the policy under alignment. The prompt
used to corrupt the chosen responses is reproduced in Table 14.

F.3 DATASET SIZE ABLATION WITH THE CORRUPTING STRATEGY

We conducted a dataset size ablation on the application of our corrupting strategy on VLFeedback
(Figure 6) . We evaluated 7 checkpoints between 100 and 5,000 training samples, our maximum in
this data regime (Section 4.3). We provide the baseline results with a dashed line. While POVID
shows the best result on Recallcoco, our simple corruption strategy applied outperforms other datasets
on both LLavaBench-in-the-Wild and MMHALBench hallucination rate, while being on par
on the MMHALBench helpfulness rate with VLFeedback vanilla.

G BIAS-DRIVEN HALLUCINATION SAMPLING

This section provides additional details and supplemental results for the proposed bias-driven halluci-
nation sampling (BDHS) approach.

G.1 RELATED WORK

As part of the POVID work, Zhou et al. (2024) suggests to trigger inherent hallucination patterns
directly by presenting noisy images x̃img to the model when generating the non-preferred response
ỹ−. Hereby, each generated token t in ỹ− is conditioned on the prior tokens from the preferred
response y+<t, i.e., πθ(ỹ

−
t |x̃, y+<t) with modified input x̃ = (xtext, x̃img) (teacher-forcing). The tilde

notation emphasizes that the response is driven by the model with restricted access to the image. x̃img
is created through a diffusion process that incrementally adds Gaussian noise to the image ximg for a
predefined number of steps N , which is set to 500 by default (see Section G.2 for implementation
details).

The online response ỹ− is combined with existing preference pairs (y+, y−) by averaging pairwise
losses9, i.e.,

LAvg-DPO(πθ) = E (x,y+)∼D

ỹ−∼πθ(x̃img,y
+)

[
γLDPO(y

+, y−, x;πθ) + (1− γ)LDPO(y
+, ỹ−, x;πθ)

]
, (5)

8An example of obvious rejected response marked with a tag: There are only two examples of plates that are
visible in the image. This response is factually incorrect.

9The loss presented here refers to the version in the public source code of POVID (Zhou et al., 2024) which
averages the individual DPO losses, opposed to the paper (Zhou et al., 2024) that combines the non-preferred
responses by a weighted sum of their log-probabilities.
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You are provided with a prompt and a response to that prompt. You task is to corrupt the response with
realistic hallucinations.

Hallucinations can be including objects/persons/animals not present in the original response,
changing the positions of the objects/persons/animals, changing the count, changing the attributes (e.g.
color, shapes, etc.) or their spatial relationships. Those hallucinations have to be realistic.

In other words, your task is to change the provided response in a way that could be correct
given the prompt, but is not. A person only seeing the corrupted response shall not be able to identify it
as being incorrect, so your change must be a plausible (although again incorrect). Output only the
updated, corrupted response, nothing else.

Here are a few examples:
### Example 1
prompt: What is the title of the book mentioned in the image?
response: The title of the book in the image is "Picture This: A Gallery of Fusible Appliqué Projects for
Quilting and Framing" by Jean Wells & Marina Anderson.
corrupted response: The title of the book in the image is "Sewing Masters: A Collection of Innovative
Embroidery Designs for Quilting and Framing" by Marvin Wells & Vincent Anderson.

### Example 2
prompt: You are a driving assistant. Based on current image, what is the best action to take when you
are driving on the road? A. Slow down B. Turn around C. Stop the car D. Turn Left E. Keep driving.
Please give reasons and the answer
response: The best action to take when driving on the road, based on the current image, would be: E.
Keep driving.
Reasons for this action:
1. The traffic light visible in the image is green, indicating that it is legal and safe to proceed.
2. The speed limit sign shows "60" which means the car, currently at 20 km/h, is well below the
maximum speed limit and can safely continue and even increase speed if necessary.
3. The road ahead is clear of any immediate hazards or obstructions that would require stopping or
turning.
corrupted response: The best action to take when driving on the road, based on the current image,
would be: C. Stop the car.
Reasons for this action:
1. Although the traffic light on the left in the image is green, the one on your side is red, indicating it is
necessary to stop
2. The speed limit sign shows "60" which means the car, currently at 20 km/h, is well below the
maximum speed limit and can safely stop before the intersection.
3. The intersection up ahead indicates the presence of crossing cars, requiring a stop.

### Example 3
prompt: {original_prompt}
response: {original_response}
corrupted response:

Table 14: Prompt used to corrupt datasets with GPT-4.

with γ = 0.5.

Zhou et al. (2024) suggests that the proposed teacher-forcing strategy can help to yield samples
that exhibit corruption only in few, key tokens most informed by the visual content, thus focusing
the feedback signal for alignment. However, since the method operates token by token, we found
that this can introduce non-sensical responses, e.g., only corrupting some parts of multi-token noun
phrases. Such constructions would presumably already achieve a low generation probability, limiting
the learning signal for the DPO-based alignment.

Concurrent to our BDHS work, (Yu et al., 2024) also emphasizes the significance of generating model
samples with minimal differences. While their insights on annotation strategy are interesting, their
proposed "Deconfounded Candidate Response Generation" approach appears similar to common
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Figure 6: Impact of the preference dataset size. Our corrupting strategy outperforms other datasets on
LLaVA-in-the-Wild and MMHALBench hallucination rate. It is on par on the MMHALBench
helpfulness rate against vanilla VLFeedback. Finally, POVID reports the highest Recallcoco. The
dashed lines are the scores for the LLaVA 1.6-7B baseline.

sampling techniques using higher temperatures in online pipelines, which do not necessarily create
pairs of minimal differences. In another concurrent work, Deng et al. (2024) proposes generating
"rejected responses" through image corruption. Despite the conceptual resemblance, we find that
both using an attention mask and SFT-guided corruption are crucial in our final BDHS design (see
Section 4.4).

G.2 ADDING NOISE TO IMAGES

This section describes how to gradually add noise to images through a diffusion process. The
derivation follows the public implementation of POVID-style image distortion (Zhou et al., 2024) to
enable the proper reproduction of their results.
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Let ximg(k) denote the image after applying noise k-times with ximg(0) referring to the original image
and N (0, 1) represent the normal distribution. Then the forward noise process is defined as:

ximg(k) =
√
1− βkximg(k − 1) +

√
βkϵ with ϵ ∼ N (0, 1). (6)

Hereby, βk denotes a time-variant parameter which is set to βk = σ(−6 + 12k
1000 ) · (0.5 · 10−2 −

10−5) + 10−5 to gradually increase noise between k = 0 and k = 1000 (refer to Figure 7).

0 100 200 300 400 500 600 700 800 900 1,000
0

0.002

0.004

0.006

Step k

β
k

Figure 7: Schedule of diffusion parameter βk.

The recursive equation equation 6 can be reformulated to apply k steps of noise at once. Setting
αk = 1− βk and ᾱN =

∏N
k=1 αk, the following equation applies N steps of noise to image ximg(0):

x̃img(N) =
√
ᾱNximg(0) +

√
1− ᾱN ϵ with ϵ ∼ N (0, 1). (7)

The default for N in Zhou et al. (2024) is N = 500.

G.3 BDHS: REFERENCE-GUIDED GENERATION

This section provides more details about the reference-guided generation as summarized in Section 3.1.
We assume that the preferred response y+ can be split into k = 1, 2, . . . , S sentences with y+k denoting
the k-th sentence of y+. Each sentence is decomposed into two parts y+k,1 and y+k,2, respectively, at
a randomly sampled position, i.e., y+k = (y+k,1, y

+
k,2). The model πθ is then invoked to generate a

corresponding corrupted sentence ỹ−k = (y+k,1, ỹ
−
k,2) whereas

ỹ−k,2 ∼ πθ(·|x̃, y+<k, y
+
k,1) . (8)

Note that this is an abuse of notation for better readability, as ỹ−k,2 denotes the full response sampled
from multiple model invocations until the first full stop or end of sequence token. Every sentence
is based on the full ground truth from the previous sentence y+<k and not the previously generated
output ỹ−<k to improve consistency. Finally, the full BDHS response is given by concatenation of the
individual sentences, i.e. ỹ− = (ỹ−1 , ỹ

−
2 , . . . , ỹ

−
S ). Note, the partitioning into sentences is a design

decision to keep the non-overlapping portion between y+ and ỹ− reasonably small and to improve
consistency when switching forth and back between responses. In the implementation, the generation
of responses for several sentences and preference pairs can be highly parallelized as equation 8 does
not depend on any previously generated output for all k.

For question answering tasks, several ground truth responses y+ consist of only one or few words
and often start with yes or no. In these cases ỹ−k,2 can often easily inferred from y+k,1 even without
image access at all and therefore we extend the previous strategy by a simple heuristic: whenever
y+k,1 starts with a yes or no it is substituted by its counterpart with a probability of 50%.

G.4 BDHS: ENSURING SEMANTICALLY MEANINGFUL DIFFERENCES

Section 3.1 describes an iterative technique for BDHS that evaluates similarity scores between the
generated response ỹ− and the ground truth y+. If both responses are identified as similar according
to the sentence embeddings model, a new BDHS response is sampled until a maximum number of
iterations NBDHS is reached. The last iteration waives the ground truth reference and generates a full
response which is then taken as ỹ− regardless of the similarity score. Figure 8 shows the number
of non-similar responses, i.e. ensuring ϵs < 0.97, over the number of BDHS iterations for the full
POVID (5k) dataset. As expected all BDHS variants result in a larger number of non-similar responses
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Figure 8: Number of resolved similar responses for BDHS generation based on POVID (5k). Parame-
ters are ϵs = 0.97 and NBDHS = 5.

compared to the model response without image attention blocking or noisy images. Running BDHS
with a single iteration already results in more than 74% semantically different responses. After four
iterations, BDHS variants with restricted image access differ in over 90% while the last iteration is
guidance free and only depends on the sampled attention mask resp. noise. Interestingly, in iteration 5,
BDHSattn, ρth=1 corresponds to guidance-free response generation with fully blocked image tokens
which still results in 7% similar responses w.r.t. the SFT ground truth. Probable reasons for this
saturation are either that the correct answer is easy to guess even without access to the image, or that
the answer is memorized from the training data. Note that prompts and images in POVID (5k) are
extracted from LLaVA Instruct which served as training data for fine-tuning LLaVA-1.6.

BDHS with noisy images in the input and N = 500 diffusion steps results in more than 99%
semantically different responses after five iterations, surpassing the score for the fully blocked
response. This is misleading, as although the responses are indeed semantically different, they mostly
mention that the prompt cannot be evaluated due to blurry and noisy images. Essentially, the noise
adds an additional bias towards noise/pixel-referring responses instead of inducing only the desired
inherent bias which would saturate at approx. 93% (response with fully masked image tokens).

After three iterations, the score of BDHSattn, ρth=0.99 reaches the one from the fully blocked response
which is hypothetically implied due to increased diversity by subsampling a distinct attention mask.

Section G.7 presents several examples with actual responses.

G.5 BDHS ALGORITHM

The general overview of BDHS is provided in Figure 1. This section introduces the corresponding
algorithm which is listed in Algorithm 1. This version includes both, noisy images for BDHSnoise and
attention masking for BDHSattn (refer to the comments in Algorithm 1). We add a straightforward
heuristic to swap yes and no words whenever they occur in the beginning of a sentence. For this
purpose line 12 introduce a regular expression which matches any yes or no at the beginning of each
sentence and optionally skips any preceding newline or whitespace characters. This expression can
be extended to further use-cases if desired. We choose to generate the full response without any SFT
ground truth guidance in the very last iteration whenever NBDHS > 1 to minimize similarity (refer to
line 5).

G.6 ADDITIONAL ABLATIONS

Additional BDHS ablations, especially regarding different hyperparameter choices are shown in
Table 15. We also evaluate SFT guidance-free generation only with attention masking active. The
corresponding benchmark results are listed in the first two rows. All subsequent rows evaluate
the full BDHS approach including SFT guidance. We include ablations that rely on noisy images
rather than attention masking, following the diffusion process described in G.2. Table 16 presents
results for larger BDHS datasets, in particular for full POVID (≈17k samples) and VLFeedback with
GPT-4V responses (≈34k samples, refer to Section 4.3 for details about the dataset modification).
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Algorithm 1 BDHS

Require: Prompt xtext, image ximg, SFT ground truth y+, attention masking parameter ρth, image noise level N ,
BDHS iterations NBDHS, similarity threshold ϵs

1: for i = 1, 2, . . . , NBDHS do
2: m← Sample image attention mask with ρth according to equation ?? ▷ ρth > 0 only for BDHSattn
3: x̃img ← AddNoise(N, ximg) via equation 7 ▷ N > 0 only for BDHSnoise
4: x̃← (xtext, x̃img,m)
5: if NBDHS > 1 and i = NBDHS then
6: y− ← Generate full model response via πθ(·|x̃)
7: return y−

8: S ← Split y+ into S sentences
9: y−

k ← ∅ ▷ Initialize empty string
10: for each y+

k in S do ▷ Parallelizable
11: ξ ← ξ ∼ U(0, 1) ▷ U(0, 1) denotes the uniform distribution in [0, 1]
12: if y+

k matches r"ˆ[\s]*(Yes|yes|No|no)" and ξ ≥ 0.5 then ▷ r"·" denotes a regular expression
13: y+

k ← Swap corresponding Yes/yes by No/no and vice versa
14: y+

k,1 ← Sample random position in y+
k and return first substring

15: y−
k,2 ← Complete sentence via equation 8 until full stop or <eos>

16: y−
k ← (y+

k,1, y
−
k,2) ▷ Concatenate strings to full sentence

17: y− ← (y−, y−
k ) ▷ Append to overall response

18: ϕ← Compute similarity score between y− and y+ in [0, 1] ▷ Use sentence embeddings
19: if ϕ < ϵs then
20: break ▷ Semantically different according to threshold
21: return y−

ỹ− derived from policy POPE↑ MMHAL↑ MMHALV ↑ LLaVAW↑ VQAT ↑ GQA↑ MMVet↑ Recallcoco ↑
– (Baseline) 86.40 2.95 2.75 80.85 64.85 64.23 43.94 68.13

– (Plain DPO) 88.18 2.93 2.93 81.89 64.90 64.34 43.39 71.80

Attention Masking, ρth = 0.98 88.61 2.25 2.25 82.25 64.92 64.04 42.75 77.46
Attention Masking, ρth = 0.99 88.70 2.52 2.51 86.08 65.07 64.06 42.02 77.04

BDHSattn, ρth = 0.98 88.80 2.56 2.68 86.54 65.02 64.03 43.03 76.10
BDHSattn, ρth = 0.99 88.75 2.61 2.71 86.33 65.07 63.97 43.39 75.58
BDHSattn, ρth = 1.00 88.70 2.63 2.80 84.15 65.18 63.93 43.12 75.37

BDHSnoise, N = 100 88.50 2.58 2.48 82.46 64.96 64.34 40.14 75.47
BDHSnoise, N = 200 88.55 2.49 2.38 83.43 65.10 64.24 38.76 74.53
BDHSnoise, N = 300 88.59 2.43 2.45 85.16 65.11 64.18 40.69 76.10
BDHSnoise, N = 400 88.66 2.39 2.42 83.72 65.09 64.29 40.41 75.16
BDHSnoise, N = 500 88.59 2.36 2.49 84.53 65.05 64.14 41.38 75.16

Table 15: Additional ablation results for Offline-BDHS. All results are based on LLaVA 1.6-7B,
using DPO and the POVID (5k) sample for the source of images and prompts. and prompt.

For the majority of benchmarks, the variants with BDHS non-preferred responses improve over the
non-BDHS datasets, especially for LLaVAW and MMVet.

G.7 ADDITIONAL EXAMPLES

This section presents further examples of responses generated from LLaVA instruct prompts and
images. The different variants of BDHS are introduced in Section 3.1.

Figure 9 presents generated responses for a selected example defined by image, prompt and SFT
ground truth from the LLaVA Instruct dataset. This example should particularly demonstrate the
difference between attention masking and noisy images. BDHS with attention masking (NBDHS = 5)
is referred to as as BDHSattn and BDHS with noisy images in the input as BDHSnoise. For ρth = 0
attention masking is disabled but still guided along the ground truth response. The model is able to
properly identify the parking meter in the image. With increased attention masking the model starts to
hallucinate as desired. Even with fully masked image embeddings the model still hallucinates, while
for BDHSnoise the generated responses tend to refer to the blurriness of the images. The example
includes responses for the teacher-forced POVID-style image distortion as described in Section G.1.
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Dataset POPE ↑ MMHAL ↑ MMHALV ↑ LLaVAW ↑ VQAT ↑ GQA ↑ MMVet ↑ Recallcoco ↑
POVID (17k) 88.09 3.16 3.07 78.63 64.56 64.12 40.60 73.48
BDHS (POVID, 17k) 89.09 2.90 2.91 80.49 65.26 64.34 43.35 71.07

VLFeedback (GPT-4V resp., 34k) 86.59 3.05 2.93 82.91 65.02 63.86 37.62 69.60
BDHS (VLFeedback, GPT-4V resp., 34k) 86.72 3.10 2.73 88.82 65.23 63.87 42.16 72.11

Table 16: Additional results for BDHS with ρth = 0.99 (DPO) for larger datasets, i.e. full POVID (17k)
and a 34k VLFeedback variant with GPT-4V responses as described in Section 4.3.

Prompt: What is the main
subject of the image?

SFT ground truth: The main subject of the image is a parking meter located on the side of a
street.

BDHSattn,ρth=0 (ours): The main subject
of the image is a parking meter, which is a
device used to collect payment for parking in
designated spaces.

BDHSattn,ρth=0.98 (ours): The main sub-
ject of the image is a mailbox.

BDHSattn,ρth=0.99 (ours): The main sub-
ject of the image is a fire hydrant.

BDHSattn,ρth=1 (ours): The main subject
of the image is a person’s face.

BDHSnoise,N=300 (ours): The main sub-
ject of the image is a blurry photograph of
what appears to be a room with a doorway.

BDHSnoise,N=500 (ours): The main sub-
ject of the image is a close-up of a pattern
that appears to be a digital or pixelated tex-
ture.

POVID-style image distortion, N=300:
The image subject of the image appears a
blalla meter. on the side of a street. The

POVID-style image distortion, N=500:
The image subject of the image appears a
closealla lot. on the side of a road. The

Figure 9: Example of generated responses for different hyperparameters and approaches. The image,
prompt and SFT ground truth are taken from LLaVA Instruct. For guided generation, actual model
completions are shown in bold face.

Due to the token-based, teacher-forced predictions, the generated responses often are non-sensical
and inconsistent which worsens for higher noise levels.

Further examples are shown in Figure 10.
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Prompt: What color is the
jetliner in the image?

SFT ground truth: The jetliner in the image is blue and red.

BDHSattn,ρth=0 (ours): The jetliner in the
image is red and blue.

BDHSattn,ρth=0.98 (ours): The jetliner in
the image is white.

BDHSattn,ρth=0.99 (ours): The jetliner in
the image is white.

BDHSattn,ρth=1 (ours): The jetliner in the
image is white.

BDHSnoise,N=300 (ours): The jetliner in
the image is blue.

BDHSnoise,N=500 (ours): The jetliner
in the image is not visible due to the high-
resolution pixelation.

POVID-style image distortion, N=300:
The jetliner in the image is blue. red.

POVID-style image distortion, N=500:
The imageliner in the image is not. white.

Prompt: What is the sub-
ject of the image?

SFT ground truth: The subject of the image is the Big Ben clock tower, which is a famous
attraction in Europe, particularly in London, England.

BDHSattn,ρth=0 (ours): The subject of the
image is the Elizabeth Tower, more commonly
known as Big Ben, a famous clock tower lo-
cated in London, England.

BDHSattn,ρth=0.98 (ours): The subject of
the image is a clock tower with a blue sky
background.

BDHSattn,ρth=0.99 (ours): The subject
of the image is a tall, narrow tower with a
pointed roof, which appears to be a church
steeple.

BDHSattn,ρth=1 (ours): The subject of the
image is a person’s hand holding a smart-
phone.

BDHSnoise,N=300 (ours): The subject of
the image is the Elizabeth Tower, which is the
clock tower at the north end of the Palace of
Westminster in London, England.

BDHSnoise,N=500 (ours): The subject of
the image is a close-up of a pattern that ap-
pears to be a digital or pixelated texture.

POVID-style image distortion, N=300:
The subject of the image is the Elizabeth Ben
clock tower in which is a famous landraction
in London, specifically in London, England.
The

POVID-style image distortion, N=500:
The image of the image appears a pattern
Bang clock tower in which is a famous lan-
draction in London, specifically in London,
England. The

Prompt: What street names
are visible on the street sign
in the image?

SFT ground truth: The street names visible on the street sign in the image are "Telegraph Hill"
and "Greenwich Road."

BDHSattn,ρth=0 (ours): The street sign in
the image shows "Greenwich" and "Telephone
Hill.

BDHSattn,ρth=0.98 (ours): The street sign
in the image shows the intersection of "Tele-
phone Pole" and "Newspaper Box" streets.

BDHSattn,ρth=0.99 (ours): The street sign
in the image shows the intersection of "Broad-
way" and "Spring Street.

BDHSattn,ρth=1 (ours): The street sign in
the image shows the intersection of "Main
Street" and "Elm Street.

BDHSnoise,N=300 (ours): The image is
quite blurry, but I can make out the street
sign.

BDHSnoise,N=500 (ours): The image
you’ve provided is very blurry and lacks clear
details, making it difficult to read any street
names.

POVID-style image distortion, N=300:
The image sign visible on the street sign in
the image are "Hchn"" and "H Street Street."

POVID-style image distortion, N=500:
The image sign are on the street sign in the
image are "1chn Avenue" and "Bwich Street."

Figure 10: Examples of generated responses from BHDS ablations and POVID-style image distortion.
The image, prompt and SFT ground truth are taken from LLaVA-Instruct-150k, which sources them
from CoCo (Lin et al., 2014).
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