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ABSTRACT

Despite their power, Transformers (Vaswani, 2017) face challenges with long se-
quences due to the quadratic complexity of self-attention. To address this lim-
itation, methods like k-Nearest-Neighbor (kNN) attention have been introduced
(Roy et al., 2021), enabling each token to attend to only its k closest tokens.
While kNN attention has shown empirical success in making Transformers more
efficient, its exact approximation guarantees have not been theoretically analyzed.
In this work, we establish a theoretical framework for kNN attention, reformulat-
ing self-attention as expectations over softmax distributions and leveraging lazy
Gumbel sampling (Mussmann et al., 2017) with kNN indices for efficient approx-
imation. Building on this framework, we also propose novel sub-quadratic algo-
rithms that approximate self-attention gradients by leveraging efficient sampling
techniques, such as Markov Chain-based estimation. Finally, we demonstrate the
practical effectiveness of these algorithms through empirical experiments, show-
casing their benefits in both training and inference.

1 INTRODUCTION

Transformer models have become the dominant neural architecture across language, vision, and
other domains (Vaswani, 2017; Dosovitskiy et al., 2020). However, scaling them to handle larger
input sequences remains a significant challenge (Tay et al., 2020), primarily due to the quadratic
complexity of computing self-attention. Overcoming this limitation is crucial for advancing neural
networks. Extending context length would enable Transformers to tackle complex tasks like book
summarization (Kryściński et al., 2021) and time-series forecasting (Wen et al., 2022; Zeng et al.,
2023; Zhou et al., 2021). Furthermore, improving attention efficiency would reduce the computa-
tional burden of training, making these models more accessible. Bridging this “compute divide” is
vital for democratizing AI (Ahmed & Wahed, 2020).

Efficient computation of self-attention has been a focal point of research in recent years (Fournier
et al., 2023). Flash Attention (Dao et al., 2022) and related work (Saha & Ye, 2024) optimize
the exact calculation of attention by minimizing wasted computation during GPU I/O operations.
However, most approaches focus on approximating the attention function. Sparse Transformers
improve efficiency by allowing each token to attend to only a small subset of tokens (Meister et al.,
2021). These subsets are identified through deterministic methods (Child et al., 2019; Guo et al.,
2019; Soldaini & Moschitti, 2020; Li et al., 2019; Qiu et al., 2019; Beltagy et al., 2020; Chen
et al., 2021), randomized algorithms (Kitaev et al., 2020; Han et al., 2023; Zandieh et al., 2023;
Pagliardini et al., 2024), or adaptive techniques (Correia et al., 2019). Additionally, self-attention
is often approximated using low-rank matrices and kernel methods (Wang et al., 2020; Tay et al.,
2021; Xiong et al., 2021; Katharopoulos et al., 2020; Choromanski et al., 2020). On the negative
side, recent fine-grained complexity reductions indicate that achieving a good approximation with
sub-quadratic time is not feasible across all scenarios (Keles et al., 2023; Alman & Song, 2024a).

In this work, we focus on sparse attention methods where each token vector qi ∈ Rd attends to the
k tokens kj ∈ Rd with the largest inner products qTi kj (Gupta et al., 2021; Wang et al., 2022), a
paradigm we refer to as kNN Attention. The Routing Transformer (Roy et al., 2021) was an early
example, using k-means clustering to ensure each query only attends to keys within the same cluster.
Memorizing Transformers (Wu et al., 2022) later extended this approach by leveraging kNN search
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within a stored memory, enabling models to memorize new data during inference. More recently,
Unlimiformer models (Bertsch et al., 2024) have improved efficiency by using a single kNN data
structure (or index) across all attention heads and layers.

Previous works have empirically shown that kNN Attention not only improves computational ef-
ficiency, but also enhances model architectures and capabilities. However, a rigorous theoretical
analysis of kNN Attention is still lacking. Key questions remain unresolved, including the precise
approximation guarantees it offers, the optimal value of k, and whether these methods can also help
to yield efficient algorithms for approximating the backward pass.

For a comprehensive outline of preliminary results and theory, please refer to Appendix A.

Notation Let Q,K, V ∈ Rn×d be our query, key and value matrices. Let qi = Qi,: ∈ Rd be i-th
row of Q written as a column vector. We will also denote the j-th column of Q by Q:,j . We define
A := QKT ∈ Rn×n to be the attention matrix, and O = softmax(A) · V ∈ Rn×d to be the output
of the attention function. The softmax function is applied row-wise to A and is defined as a vector
valued function σ : Rn → Rn:

σ(y1, ..., yn)i =
exp(yi)∑n
s=1 exp(ys)

(1)

We also let [n] := {1, 2, ..., n} and use the notation polylog(n) as a substitute of logk(n) for some
arbitrary constant k ∈ Z+ that is independent of n. Finally, we use the Õ notation to hide polyloga-
rithmic factors. We design randomized, Monte Carlo algorithms that can fail with probability δ > 0.
We will often make use of the following boosting lemma:

Lemma 1.1 (Median-Of-Means Boosting, Chakrabarti (2020)). If Q̂ is an unbiased estimator of
some statistic, then one can obtain an (ε, δ)-multiplicative estimate of that statistic by suitably com-

bining K := C
ε2

Var[Q̂]

E[Q̂]2
ln 2

δ independent samples of Q̂, where C is a universal constant.

1.1 OUR CONTRIBUTIONS AND RESULTS

A Theoretical Framework for kNN Attention Our work provides a theoretical framework to
explain both the efficiency and effectiveness of kNN Attention. Our framework reformulates self-
attention as expectations over softmax distributions. These expectations are approximated by sam-
pling from each distribution in sublinear time using Lazy Gumbel Noise Sampling. By connecting
kNN, k-Maximum Inner Product Search (MIPS), and Gumbel noise sampling, we develop a new
sub-quadratic self-attention approximation algorithm aligning with the kNN Attention paradigm
with precise theoretical guarantees, given in full as Theorem 2.4.

Approximating the Backward Pass Our framework can be extended to solve the problem of
approximating attention gradients. Even though backpropagation is the main memory bottleneck
for large models, few methods approximate attention gradients directly. The work of Alman & Song
(2024a) is most relevant, deriving inapproximability results for certain parameter regimes.

We present new approximation algorithms for self-attention gradients using kNN search. Our results
are encapsulated in full by Theorem 3.1. A key challenge is the need to multiply by the transpose of
a stochastic matrix, which disrupts our expectation-based reformulation. To address this, we use a
Markov-Chain sampling technique, treating the attention matrix as a transition matrix and applying
a single-step iteration. We also employ other sampling techniques, such as CDF-based sampling, in
novel ways to achieve sub-quadratic time complexity.

2 kNN ATTENTION AS AN APPROXIMATION ALGORITHM

We begin by viewing the self-attention output as a matrix of expectations under various softmax
distributions. This reformulation has been used in prior works (Kratsios, 2021; Singh & Buckley,
2023) but, to our knowledge, has not been used for analyzing sparse attention mechanisms. Let Di

be the softmax distribution defined by Di(j) ∝ exp(qTi · kj) over [n]. Then, notice that we can
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write:

Oij =

n∑
r=1

exp(qTi kr)∑n
s=1 exp(q

T
i ks)

· Vrj =

n∑
r=1

Di(r) · Vrj = E
r∼Di

[Vrj ] (2)

Thus, to approximate Oij , we have to estimate the expected value in Equation 2. Let r be sampled
according to Di. Then, the estimator Ôij = Vrj is unbiased, as Er∼Di

[Ôij ] = Oij . Assuming
an upper bound on ||V ||∞, and that the values Oij do not get arbitrarily small1, we can bound the
variance of Ôij and use boosting to obtain explicit multiplicative error guarantees:
Theorem 2.1. Suppose ||V ||∞ ≤ B = O(log(n)) and assume that for any i ∈ [n] we can sample
from Di in expected time O(T ). Further, we assume that for some constant C, it holds that Oij ≥ C

for all i, j. Then, there exists an algorithm to output a matrix Ô ∈ Rn×d such that:

|Ôij −Oij | ≤ εOij (3)

for all (i, j) ∈ [n]× [d] with probability at least 1− δ, where ε, δ > 0 are constants. The algorithm
runs in O(nd · T · ε−2 log(nd/δ) log n) time in expectation.

Proof. Given that Ôij is an unbiased estimator of Oij , we can utilize Lemma 1.1 to get an (ε, δ)-
multiplicative estimator for Oij . To determine a sufficient number of samples of Ôij , we first bound
the variance of our estimator:

Var
[
Ôij

]
≤ E

r∼Di

[
V 2
rj

]
=

n∑
r=1

Di(r)V
2
rj ≤ B ·Oij (4)

Then, the number of samples required is:

O

(
ε−2 · log(1/δ) · Var

[
Ôij

]
· E

[
Ôij

]−2
)

= O
(
ε−2 · log(1/δ) log n

)
(5)

due to our assumption on ||V ||∞ and the lower bound on Oij . To ensure that all nd elements of
O are approximated within the desired guarantees, we have to set δ′ := δ/(nd) and union-bound
over all nd elements of O. Since each sample requires O(T ) time, we arrive at the desired time
complexity.

2.1 EFFICIENT SAMPLING FROM Di VIA LAZY GUMBEL SAMPLING

Theorem 2.1 previously assumed we could directly sample from the distribution Di in time O(T ).
The Lazy Gumbel Sampling method proposed by Mussmann et al. (2017) provides a way to sample
from each Di in sublinear time, even with limited knowledge of Di. However, there is an initial
pre-processing step that takes a bit more than linear time across all the distributions. In this section
we present this method and clarify a value for T to be used in Theorem 2.1.

Fix some i ∈ [n] and let Zij = qTi kj . In the Gumbel Max Trick (Lemma A.3), we form the random
variables Nij = Zij+Gij where Gij ∼ Gumbel(0, 1) for all j ∈ [n] and sample argmaxNij . This
is equivalent to sampling j ∈ [n] from the softmax distribution over the Zij scores. Mussmann et al.
(2017) observed that if we have the top k Zij values in a set Si and add Gumbel noise to just them,
then for any j /∈ Si to be ultimately picked, its Gumbel noise Gij must be quite large. We can use
the concentration properties of the Gumbel distribution to argue that in expectation we only need to
sample n

k elements not in Si. Setting k =
√
n allows us to balance the two, resulting in a sublinear

time algorithm for sampling from Di. An illustration of the idea can be seen in Figure 1, as it was
presented in Mussmann et al. (2017). We can see that this method samples exactly from Di.
Theorem 2.2 (Correctness of Algorithm 1, (Mussmann et al., 2017)). After running Algorithm 1, it
holds that:

ĵ = argmax
j∈[n]
{qTi kj +Gij} (6)

where Gij ∼ Gumbel(0, 1). In other words, ĵ is sampled according to Di.
1If Oij is arbitrarily close to 0, then we can achieve low additive error by just outputting Ôij = 0.
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Algorithm 1 Lazy Gumbel Sampling from Di, for some i ∈ [n], (Mussmann et al., 2017)

1: Inputs: k ∈ N, qi ∈ Rd,K ∈ Rn×d, Si := {the k keys j with the largest Zij := qTi kj}.
2: Sample Gij ∼ Gumbel(0, 1) for j ∈ Si.
3: Let M ← max

j∈Si

{Zij +Gij} and Smin ← min
j∈Si

{Zij}.
4: Let B ←M − Smin be the Gumbel cutoff.
5: Let m ∼ Bin(n− k, 1− exp(− exp(−B))) be the number of [n] \ Si Gumbels greater than B.

Sample m points from [n] \ Si and denote the set of sampled points as Ti.
6: Sample Gij ∼ Gumbel(0, 1) conditionally greater than B for each j ∈ Ti.

7: return ĵ ← arg max
j∈Si∪Ti

{Zij +Gij}

Proof. The only way that we do not find the maximum is if one of the points in [n] \ (Si ∪ Ti) are
the true maximum. However those points (by construction) have Gumbel noise at most B, so they
cannot be the overall maximum.

Figure 1: Lazy Gumbel sampling

In Appendix B, we show that the expected num-
ber m of large Gumbels is at most n/k. Our
simplified proof uses the Gumbel distribution’s
Moment Generating Function, rather than the
original exponential-based analysis.
Lemma 2.1 ((Mussmann et al., 2017)). The fol-
lowing holds:

E [m] ≤ n

k
(7)

Due to Lemma 2.1, we see that we need to set
k =

√
n to optimize our overall time com-

plexity. As a result, by combining the pseu-
docode of Algorithm 1 and Lemma 2.1, Muss-
mann et al. (2017) arrive at the following:
Theorem 2.3. Let k =

√
n. Suppose that we

are able to retrieve the set Si in f(n, k) time.
Then, we can use Algorithm 1 to sample from Di in O(

√
n+ f(n,

√
n)) time in expectation.

2.1.1 OBTAINING THE TOP k INNER PRODUCTS

Algorithm 1 relies on obtaining the set Si of the top
√
n inner products qTi kj for each i ∈ [n] in

sub-quadratic f(n,
√
n) time. Since the kj vectors are fixed, while the qi vectors act as queries, this

setup is known as the k-Maximum Inner Product Search Problem (MIPS)

The k-MIPS problem can be reduced to the kNN problem using a transformation proposed by
Neyshabur & Srebro (2015). We add an extra dimension to normalize all key vectors. Specifically,
the inner product qTi kj can be expressed as:

qTi kj =
1

2

(
||qi||22 + ||kj ||22 − ||qi − kj ||22

)
(8)

If the norms ||kj ||2 are the same across all j, the problem reduces to finding the k nearest neighbors
to qi. To enforce this, we define: (

k′j
)T

=

[
kTj ,

√
M − ||kj ||22

]
(9)

so that ||(k′)j ||2 = M for all j ∈ [n], where M is a previously known upper bound. When querying
with qi, we use:

(q′i)
T =

[
qTi , 0

]
(10)
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This transformation preserves the inner products, allowing us to solve the kNN problem for q′i. We
can then use a kNN index H to preprocess K and query it with each q′i to construct Si for all i ∈ [n].
We remain agnostic to the specific kNN index one could use for this algorithm2, but if we assume
that the construction runtime is slightly larger than linear and the query time slightly larger than k,
then Theorem 2.1 with T ≈ O(

√
n) give us a total runtime of ≈ Õ(dn3/2 · ε−2 log(1/δ)).

Algorithm 2 kNN Attention

1: Inputs: Q,K, V ∈ Rn×d, error parameter ε > 0, confidence parameter δ > 0, k ∈ N.

2: for j ∈ [n] do ▷ Pre-Processing: Lines 2-4
3: (k′j)

T =
[
kTj ,

√
M − ||kj ||22

]
∈ R(d+1)×1

4: H ← Build a kNN index from {k′j | j ∈ [n]}
5: for i ∈ [n] do
6: (q′i)

T ← [qTi , 0] ∈ Rd+1

7: Query H with q′i to get Si with |Si| = k.
8: for j ∈ [d] do
9: Ôij ←Median-Of-Means with Algorithm 1 as sampler← (k, qi,K, Si).

10: return Ô

Overall, our framework for kNN Attention can be summarized by the following theorem:
Theorem 2.4. Let Q,K, V ∈ Rn×d and ε, δ ∈ (0, 1) be positive constants. Assume ||V ||∞ =

O(log n). Then, Algorithm 2 with k =
√
n outputs a matrix Ô ∈ Rn×d such that:

|Ôij −Oij | ≤ εOij (11)

for all (i, j) ∈ [n]× [d] with probability at least 1−δ and in expected sub-quadratic time and space.

Proof. Algorithm 2 approximates each entry of the attention matrix by using Median-of-Means
sampling. Since k =

√
n, the sampling from each softmax distribution is done using Algorithm 1

according to the guarantees of Theorem 2.3. Theorem 2.1 thus gives us the desired runtime.

2.2 kNN ATTENTION WITHOUT MEDIAN-OF-MEANS

This section describes a simpler algorithm for computing the expected value needed for self-
attention. The algorithm still uses kNN indices to find the top k inner products per query, but usually
outperforms Algorithm 2 in practice, due to its amenity for hardware-accelerated vectorization, and
is thus our preferred implementation for experiments3.

Building on Mussmann et al. (2017), we estimate Ek∼Di
[Vkj ] using set Si by sampling ℓ additional

vectors outside Si (set Ti) and upweighting them in the expectation sum, as follows:

Ôij =

∑
s∈Si

eq
T
i ks · Vsj +

n−k
ℓ

∑
s∈Ti

eq
T
i ks · Vsj∑

s∈Si
eq

T
i ks + n−k

ℓ

∑
s∈Ti

eq
T
i ks

(12)

The quality of this estimator and the optimal choices for k and ℓ are derived as follows:

Theorem 2.5. Assumming ||V ||∞ ≤ C, the estimator Ôij satisfies the following error guarantee
with probability at least 1− δ: ∣∣∣Ôij −Oij

∣∣∣ ≤ εC (13)

if the following two conditions hold: k2ℓ ≥ 8n2ε−2 log (4/δ) and kℓ ≥ 2nε−2 log (2/δ). Setting

k = ℓ = O
(
n2/3ε−1

√
log(1/δ)

)
gives us an Õ

(
dn5/3ε−1

√
log(1/δ)

)
algorithm for estimating

self-attention within additive error O(ε), assuming an efficient kNN implementation.
2For a specific construction with precise theoretical guarantees that uses Locality Sensitive Hashing (LSH),

please refer to Appendix C.
3See Appendix G for a PyTorch implementation of this algorithm.

5



Published as a conference paper at ICLR 2025

Proof. The proof of the additive error guarantee can be found in Mussmann et al. (2017).

3 ATTENTION GRADIENT ESTIMATION VIA MARKOV CHAIN SIMULATIONS

Next, we present randomized algorithms which can efficiently approximate the gradients of the self-
attention function. First, we give exact formulas for the gradients in question. These can be obtained
by applying the chain rule repeatedly, as shown in the proof of Lemma 3.1, in Appendix D.
Lemma 3.1 (Attention Gradients). Let Q,K, V ∈ Rn×d. Let P := softmax (QKT ) ∈ Rn×n be
the normalized attention matrix. Let ϕ be a differentiable scalar function of O and DO = ∂ϕ/∂O ∈
Rn×d. Similarly define DQ, DK and DV . The following relationships hold:

DV = PT ·DO (14)

DQ
ij =

n∑
k=1

Pik

(
DP

ik − ⟨DP
i,:, Pi,:⟩

)
Kkj (15)

DK
ij =

n∑
k=1

Pki

(
DP

ki − ⟨DP
k,:, Pk,:⟩

)
Qkj (16)

where DP
ij := ∂ϕ/∂Pij = ⟨DO

i,:, Vj,:⟩.

Clearly, calculating DQ, DK and DV can be done in O(dn2) time. We propose algorithms for
estimating these gradients that run in sub-quadratic time. We first present Algorithms 3 and 4 for the
estimation of DV , whereas our algorithms for estimating DK and DQ can be found in Appendices
F and E. Ultimately, we prove the following theorem:
Theorem 3.1. Let ϕ be a differentiable scalar loss function and ∂ϕ/∂O ∈ Rn×d. Then, under
certain assumptions on the || · ||∞ norms of Q,K, V,DO, there exist sub-quadratic time algorithms
that output estimates D̂Q, D̂K , D̂V ∈ Rn×d for which with probability at least 1− δ it holds that:

||D̂Q − ∂ϕ/∂Q||∞ ≤ eQ, ||D̂K − ∂ϕ/∂K||∞ ≤ eK and ||D̂V − ∂ϕ/∂V ||∞ ≤ eV (17)

where eQ, eK , eV are explicit error parameters that can roughly be bounded by O(εn · polylog(n)).

Proof. We combine the guarantees of Theorems 3.2, F.1 and E.1, where the assumptions on the
|| · ||∞ norms of Q,K, V and DO can also be found.

3.1 ESTIMATING DV

Theorem 3.2. Given Q,K, V and DO, Algorithm 4 calculates ∂ϕ/∂Vij = DV
ij for all (i, j) ∈

[n]× [d] within an additive approximation error of

eV = ε · ⟨DO
:,j , 1

n⟩+ 2nεMj , where Mj := − min
i∈[n],DO

ij≤0
DO

ij (18)

with probability at least 1− 1
n . The time complexity is O(nd2ε−2 log n).

Proof. Suppose we want to calculate the j-th column of DV :

DV
:,j = PT ·DO

:,j (19)

for j ∈ [d]. Fix #–xj := DO
:,j ∈ Rn×1 and suppose that #–xj ≥ 0. We will soon explicitly relax this

assumption. Then, #–yj := #–xj/|| #–xj ||1 is a distribution over the universe [n]. Imagine a random walk
over [n] with transition matrix P and initial distribution #–yj . Then:

#–πj := PT · #–yj (20)

is the distribution after one step in the process. Thus, we can estimate #–πj with Markov Chain
simulations, by first picking an item i ∈ [n] from the distribution #–yj , and then picking another item
k ∈ [n] with probability Pik. We make N independent length-1 random walks like this and let:

X(j,s)
v =

{
1, if the s-th walk ends up in state v

0, otherwise
(21)
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We know that E[X(j,s)
v ] = πj(v) for all s ∈ [N ]. Thus, we can form a boosted estimator

p̂j(v) = 1
N

∑N
s=1 X

(j,s)
v . This estimator is unbiased due to linearity of expectation, so we can

use the Hoeffding bound to ensure that our empirical distribution is close to the true distribution as
long as we take enough samples:

Pr [|p̂j(v)− πj(v)| ≥ ε] ≤ 2 exp(−2Nε2)

We set the probability of failure to 1/(dn2) so that we can union bound over all v ∈ [n] and all
j ∈ [d]. It follows that we require:

N = Θ(ε−2 ln(nd)) (22)

Of course, we need to scale #–πj back to recover DV
:,j . We define:

D̂V
:,j = || #–xj ||1 · p̂j (23)

Then we get that with probability at least 1− 1/n it holds for all j ∈ [d] that:∣∣∣∣∣∣D̂V
:,j −DV

:,j

∣∣∣∣∣∣
∞

= || #–xj ||1 · ||p̂j − #–πj ||∞ ≤ ε|| #–xj ||1 (24)

Relaxing the non-negativity assumption We now relax the non-negativity constraint on #–xj , ac-
cepting some approximation error. Since normalizing #–xj with its L1 norm fails if #–xj has negative
entries, we adopt a numerical stability technique to ensure we get a valid probability distribution
even when #–xj contains negative entries. Let

Mj := − min
v∈[n]

( #–xj)v≤0

( #–xj)v (25)

be the absolute value of the most negative entry of #–xj . If #–xj ≥ 0, then set Mj = 0. Now, if
#   –

Mj := Mj · 1n ∈ Rn×1, then
#–

x′
j =

#–xj +
#   –

Mj ≥ 0. Therefore, we can estimate

p̂′j ≈
#–

π′
j := PT ·

#–

x′
j (26)

using our Markov Chain method. Going back to our original goal of estimating #–π j , we have:

#–πj := PT · #–xj = PT · (
#–

x′
j −

#   –

Mj) (27)

=
#–

π′
j − PT · #   –

Mj =
#–

π′
j −Mj · PT · 1n (28)

where 1n is the all 1-s vector. So then we only need to additionally estimate PT · 1n. This can be
done in the same fashion only once, as a pre-processing step. Specifically, suppose that we estimate
PT · 1n as ŝ. We know from our prior analysis that using Θ(ε−2 log n) random walks we get an
estimate ŝ such that: ∣∣∣∣ŝ− PT · 1n

∣∣∣∣
∞ ≤ εn (29)

Putting it all together, our final estimator is then:

p̂j := p̂′j −Mj · ŝ (30)

Eventually, the total error for estimating #–πj becomes:∣∣∣∣∣∣D̂V
:,j −DV

:,j

∣∣∣∣∣∣
∞

= ||p̂j − #–πj ||∞ =
∣∣∣∣∣∣p̂′j −Mj · ŝ−

#–

π′
j +Mj · PT · 1n

∣∣∣∣∣∣
∞

(31)

≤
∣∣∣∣∣∣p̂′j − #–

π′
j

∣∣∣∣∣∣
∞

+Mj ·
∣∣∣∣PT 1n − ŝ

∣∣∣∣
∞ (32)

≤ ε
∣∣∣∣∣∣ #–

x′
j

∣∣∣∣∣∣
1
+ εMj · n (33)

= ε⟨xj , 1
n⟩+ 2εnMj (34)

where the first inequality follows from the triangle inequality and the last equality follows from∣∣∣∣∣∣ #–

x′
j

∣∣∣∣∣∣
1
=

n∑
k=1

|(xj)k +Mj | =
n∑

k=1

[(xj)k +Mj ] = ⟨xj , 1
n⟩+ nMj (35)
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Algorithm 3 Estimating PTx, with query access to P ∈ Rn×n a stochastic matrix

1: procedure APPROXPOSPROD(P ∈ Rn×n, x ≥ 0, ε > 0)
2: Let N ← 2 log n · ε−2 and Σ← ⟨x, 1n⟩ ▷ O(n) time
3: Let x̂ ∈ Rn×1 be our output.
4: for s ∈ [N ] do
5: Sample i ∈ [n] with probability ∝ xi using Σ as a normalization factor.
6: Sample k ∈ [n] with probability Pik.
7: x̂k ← x̂k + 1

8: return 1
N · x̂ · Σ

9: procedure ESTIMATEPRODUCT(P ∈ Rn×n, x ∈ Rn, ε > 0, ŝ ∈ Rn)
10: Let M ← −minv∈[n],xv≤0 xv ▷ O(n) time
11: Let x′ ← x+M · 1n ▷ O(n) time
12: Call APPROXPOSPROD(P, x′, ε) to get x̂′ ▷ Õ(nε−2) time
13: return x̂′ −M · ŝ

Algorithm 4 Estimating DV

1: Input: Q,K,DO ∈ Rn×d, error parameter ε > 0

2: Let D̂V ∈ Rn×d be our output.
3: ŝ←APPROXPOSPROD(P, 1n, ε) ▷ Pre-Processing
4: for j ∈ [d] do
5: D̂V

:,j ←ESTIMATEPRODUCT(P,DO
:,j , ε, ŝ)

6: return D̂V

Runtime analysis For each j ∈ [d] we take N = O(ε−2 log n) samples. We can take one sample
in O(nd) time. In addition, we must pre-calculate the sums ⟨xj , 1

n⟩ + nMj = nMj +
∑n

k=1 D
O
kj

for all j ∈ [d], which takes O(nd) time.

Remark 3.1. Note that Algorithm 4 does not materialize the P matrix. Instead it accesses its
elements by using Q and K in O(d) time per element.

4 EXPERIMENTAL RESULTS

In this section we present our experimental results. Through them we can interpret our theoretical
framework better and solidify our understanding of it.

4.1 FORWARD PASS APPROXIMATION QUALITY ON RANDOM INPUTS

We begin by evaluating the effectiveness of kNN Attention in approximating the attention function.
We randomly sample matrices Q,K, V ∈ Rn×d from a uniform distribution over [−B,B]n×d and
assess the approximation quality on these inputs. Our focus is on the kNN Attention estimator we
develop in Theorem 2.5 with λ = 1, as used in implementations like Bertsch et al. (2024) and Wu
et al. (2022). We vary k to study how the absolute error decreases as k increases and compare the
efficiency to the naive O(n2) attention, expecting notable performance gains. This experiment is
implemented in PyTorch, running on a MacBook Air with an M3 CPU and 8GB of RAM.

Efficiency of kNN Attention Our experiments confirm kNN Attention’s superior speed, demon-
strating sub-quadratic scaling. With a batch size of 1 and H = 10 attention heads, it handles self-
attention for n = 106, while the naive method runs out of memory beyond n ≥ 20000. Increasing
k further leads to memory errors for n ≥ 50000, highlighting kNN Attention’s memory efficiency.
Detailed results are in Figure 2(a).

Role of k in the Approximation Error We investigate the impact of k on the approximation
error, predicting that error increases as k decreases. The experiment confirms this, showing that for

8
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(a) kNN Attention vs Brute Force. We are able to
increase the context length by a factor of 5 without
running out of memory.

(b) Mean error of kNN Attention as a function of k for
different values of B. As k grows, the error becomes
negligible. In some cases,

√
n is too big a threshold.

Figure 2: Experimental evaluation of the approximation quality and efficiency of kNN Attention on
randomly generated input matrices Q,K, V .

k ≥ n1/8, the error is minimal. Our theory suggests a threshold closer to
√
n which indicates that

the optimal k may vary by dataset. The results appear in Figure 2(b). Interestingly, the error is more
pronounced for small values of both B and k, potentially due to the limited approximation power
when k is small. For larger k, this difference becomes negligible.

4.2 BACKWARD PASS APPROXIMATION QUALITY

Next, we evaluate the quality of our algorithms for attention gradient estimation. We sample Q,K, V
from a normal distribution, as this strategy aligns with typical neural network weight initialization
strategies, and approximate DQ and DV using randomized techniques. Our goal is to assess the
error introduced by the approximation and whether this error causes gradient descent to converge
far from the minimum.

We set the sequence length N = 100 and the embedding dimension d = 3. The learning rate α
is varied between 0.05 and 0.5, while the error parameter is fixed at ε = 0.05 and the confidence
parameter at δ = 0.1. We experiment with both convex (Mean Square Error) and non-convex (Cross
Entropy) loss functions to examine how approximate gradient descent behaves, using PyTorch’s
autograd to compute the exact attention gradients. As shown in Figure 3, our approximation closely
matches the expected results in the convex case but deviates from the optimal convergence in the
non-convex case. A more detailed investigation of the impact of gradient approximations in large
language model (LLM) training is left for future work.

4.3 EXPERIMENTS ON LLMS

Finally, we experiment with incorporating kNN attention into LLMs to study its impact on training
and inference. While previous work has explored kNN indices for efficient fine-tuning and training
(Bertsch et al., 2024; Wu et al., 2022), our goal is to understand how Transformer LLMs respond
to attention function approximation, linking it to our theory and providing practical guidelines. The
architecture and training methods are adapted from nanoGPT (Karpathy, 2022), and our experiments
are conducted on an NVIDIA L40 GPU with 48GB of memory.

Our first experiment trains a mini character-level Transformer on a small Shakespeare dataset, re-
placing attention with kNN attention. The sequence length is set to N = 1024, the embedding
dimension to d = 768, learning rate to 0.005 and we perform T = 5000 iterations. We compare
training and validation perplexity to the exact method. Results in Figure 4 show that kNN Attention
maintains a small perplexity gap. However, as overfitting occurs, the perplexity difference widens,
possibly due to increasing maximum approximation error. Future work could explore the impact of
larger k values on perplexity.

9
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Figure 3: Gradient Descent with Approximate Gradients against different loss functions ϕ. Even
with approximate gradients, gradient descent still makes adequate progress towards convergence.

We also experiment with fine-tuning a large pre-trained LLM using kNN attention, in the hopes that
the approximation will not severly degrade the model’s quality. We manage to fine-tune GPT-2 XL4

on a Shakespeare dataset - a task typically infeasible on a single L40 GPU due to memory constraints
with quadratic attention. Examples from prompting this model can be found in Appendix H.

Figure 4: The perplexity and approximation error of kNN Attention throughout training

5 CONCLUSION

In this work, we developed a theoretical framework for leveraging kNN techniques to design effi-
cient and effective Transformer architectures. We extended this framework by introducing Markov
Chain-based methods to propose novel algorithms for efficient self-attention gradient computation.
Empirical validation on both synthetic inputs and real-world datasets demonstrated that kNN ap-
proximations closely match the original performance in LLM training, while significantly reducing
computational costs during both training and inference.

Moreover, our research opens several avenues for future exploration. Key questions include the
effectiveness of training with approximate gradients compared to exact ones, particularly when error
distributions are tightly concentrated but unknown. Another open question is about explaining the
practical observation that the optimal k value is often significantly smaller than the predicted

√
n.

Overall, an improved understanding of the theoretical guarantees of kNN Attention can help solidify
its place among other sparse attention techniques that provably attain close to linear time, while
maintaining approximation quality.

In conclusion, by applying sublinear algorithm techniques, our work provides a solid foundation for
making Transformers more scalable and efficient while identifying critical areas for further research
in LLM approximation.

41.61B parameters, see Radford et al. (2019)
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APPENDIX

In the following sections we deposit theoretical results, proofs and algorithms that are missing from
the main paper, either due to space constraints or for the sake of clarity.

A PRELIMINARIES

A.1 SELF-ATTENTION AND APPROXIMATION

We start by defining self-attention and some of its variants.

Definition A.1 (Self-Attention). Let Q,K, V ∈ Rn×d. We can think of these matrices as a col-
lection of n d-dimensional query, key and value vectors respectively. We define the self-attention
function as follows:

O(Q,K, V ) = D−1AV (36)

where A = exp(QKT ) ∈ Rn×n is the attention matrix and D = diag(A1n). D effectively
implements taking a row-wise softmax of the entries of QKT . Many modern implementations of
attention consider causal attention, in which we mask away the upper-triangular entries of A.

Remark A.1 (Normalization by
√
d). In most implementations we divide QKT by

√
d (Vaswani,

2017) because it reduces the variance of each element of A had Q,K, T been selected from a
uniform distribution. We will omit this technicality because it does not affect our algorithmic tech-
niques. For the rest of this paper we will assume that d−1/2 has been pre-normalized into K.

Remark A.2 (Dropout). Many attention implementations also use dropout. Every entry of A will
be masked to 0 with probability p, where p is set to a small constant, like 0.1.

Definition A.2 ((ε, δ)-estimators). Let X be a statistic and X̂ be an estimator we have for it. X̂ is
an (ε, δ)−additive estimator if with probability at least 1− δ it holds that∣∣∣X − X̂

∣∣∣ ≤ ε

Respectively, we call the estimator multiplicative if∣∣∣X − X̂
∣∣∣ ≤ εX

We will often make use of the following boosting lemma from the theory of randomized algorithms:

Lemma A.1 (Median-Of-Means Amplification Technique, (Chakrabarti, 2020)). If Q̂ is an unbiased
estimator of some statistic, then one can obtain an (ε, δ)-multiplicative estimate of that statistic by
suitably combining

K :=
C

ε2
ln

2

δ

Var[Q̂]

E[Q̂]2

independent samples of Q̂, where C is a universal constant.

A.2 GUMBEL NOISE

The Gumbel Distribution will be useful for sampling from softmax distributions. We define it
below:

Definition A.3 (Gumbel Distribution). The Gumbel distribution with mean µ and parameter β has
the following probability density function:

Gumbel(µ, β)(x) =
1

β
e−e−(x−µ)/β

(37)

We will make use of the following properties of the Gumbel Distribution:
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Lemma A.2 (Gumbel Distribution Properties, (Chattamvelli & Shanmugam, 2021)). The following
are true:

• The mean of a Gumbel distribution is µ+ βγ5

• The moment generating function (MGF) of the Gumbel(µ, β) distribution is:

M(t) = Γ(1− βt)eµt (38)

where Γ is the Gamma function.

• We can easily sample a Gumbel random variable of mean µ and parameter β by using the
uniform distribution:

X = µ− β ln(− ln(U)), where U ∼ unif([0, 1]) (39)

• Let M1, ...,Mn be (µ, β) independent Gumbel random variables. Then,

M := max
i∈[n]

Mi

is a (µ+ β lnn, β) Gumbel random variable.

Next, we present the well-known Gumbel Max Trick, an alternative way to sample from a softmax
distribution:
Lemma A.3 (Gumbel-Max-Trick, (Huijben et al., 2022)). Let x1, ...xn be real numbers and con-
sider the softmax categorical distribution p where

pi =
exp(xi)
n∑

k=1

exp(xi)

Consider sampling n Gumbel random variables G1, ..., Gn ∼ Gumbel(0, 1) and let

î ∈ argmax
i∈[n]
{xi +Gi}

Then î is distributed according to p.

Binomial Distribution As part of our notational conventions, we also let X ∼ Bin(n, p) be a
random variable distributed according to the Binomial Distribution with parameters n and p.

A.3 LOCALITY SENSITIVE HASHING

In our theoretical exposition we will make extensive use of schemes for approximate nearest neigh-
bor search. A very successful such suite of algorithms with a long history (Andoni et al., 2014;
2015) of provable theoretical guarantees is Locality Sensitive Hashing (LSH):
Theorem A.1 (Existence of LSH, (Gionis et al., 1999; Mussmann et al., 2017)). Let V ⊆ U be a
set of size n with a similarity measure Sim(·, ·). Consider a hash family H such that for scalars
S1 > S2 and p1 > p2:

• For any x, y ∈ V where Sim(x, y) ≥ S1, Prh∈H [h(x) = h(y)] ≥ p1

• For any x, y ∈ V where Sim(x, y) ≤ S2, Prh∈H [h(x) = h(y)] ≤ p2

This is called an (S1, S2, p1, p2)-Locality Sensitive Hash Family. Given such a family, one can
construct a data structure which, given any query q ∈ U , does the following with high probability:
if there exists some point v ∈ V with Sim(v, q) ≥ S1, it returns a point v′ ∈ V with Sim(v′, q) ≥ S2.
If no point v ∈ V exists with Sim(v, q) ≥ S2, it returns a negative answer ⊥. Further, this can be
done with Õ(nρ) query time and Õ(n1+ρ) space where ρ = log p1/ log p2 < 1.

LSH also finds numerous applications in solving the Maximum Inner Product Search Problem
(MIPS) as shown in Neyshabur & Srebro (2015), Shrivastava & Li (2014), and others.

5γ ≈ 0.577 is the Euler-Mascheroni constant.
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A.4 RANDOM WALKS AND SOME CONCENTRATION BOUNDS

For our back-propagation algorithms we will make use of some elementary tools from the theory of
Random Walks.

Definition A.4 (Random Walks). Consider a state space V = [n] and a weighted complete graph
on V with weights w in [0, 1] such that for all u ∈ V∑

v∈V

wuv = 1

This graph represents a random walk with transition matrix P ∈ [0, 1]n×n, where Pij = wij . P
is a stochastic matrix because its rows sum to 1. In a random walk, we start at some vertex and
choose a neighbor to jump to according to the probability distribution in P . The choice at each
vertex conditioned on the previous transitions only depends on the vertex itself. This is known as the
Markov Property.

A first elementary observation is that if we start with a distribution p over V and we do a single step
in the random walk, we can obtain the resulting distribution by multiplying the original distribution
with PT :

Lemma A.4 (Single Step Random Walk Transition). Consider a distribution p ∈ ∆(n)6 over V .
Then, the quantity PT · p gives the distribution over V after one step of the random walk.

Proof. Let q be the distribution after one step. Let v ∈ V . We have by law of total probability that:

q(v) =
∑
u∈V

p(u) · wuv = (PT p)v

Finally, we state a well-known concentration result about independent random variables:

Lemma A.5 (Hoeffding Bound). Let X1, ..., Xn be independent random variables where ai ≤
Xi ≤ bi almost surely. Let Sn := X1 + · · ·+Xn. We have that:

Pr [|Sn − E[Sn]| ≥ t] ≤ 2 exp

− 2t2

n∑
i=1

(bi − ai)2


B PROOF OF LEMMA 2.1

We prove Lemma 2.1. Our proof deviates from the proof of Mussmann et al. (2017) in that it uses a
MGF-based argument, which we believe is cleaner.

Lemma B.1 (Reminder). In the context of Algorithm 1, we have that:

E [m] ≤ n

k
(40)

Proof. By Lemma A.2, we can generate Gumbel(0, 1) random variables as follows: Let Uj be
uniform in [0, 1]. Then:

Gij = − ln(− ln(Uj)) (41)

is distributed according to Gumbel(0, 1). We want Gij > B, which implies that:

− ln(− ln(Uj)) > B ⇐⇒ Uj > exp(− exp(−B)) (42)

6∆(n) := {x ∈ Rn | x ≥ 0, ||x||1 = 1} is the probability simplex over [n].
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So the number of points for which the Gumbel noise exceeds B is distributed according to the
Binomial distribution with parameters n − k and 1 − exp(− exp(−B)). If we condition on M :=
max
j∈Si

{qTi kj +Gij}, we have that:

E [m |M ] = (n− k)(1− exp(− exp(−B))) (43)
≤ n exp(−B) (44)

where the last inequality follows by e−x ≥ 1− x:

1− exp(− exp(−B)) ≤ 1− (1− exp(−B)) = exp(−B)

Now we can bound E[n exp(−B)] by using the MGF of the Gumbel distribution (see Lemma A.2).
Let M ′ := maxj∈Si

Gij . Recall by Lemma A.2 that M ′ is a Gumbel random variable with µM ′ =

log k and βM ′ = 1. Let fM ′(t) = E[etM ′
] be its moment generating function. We know that:

fM ′(t) = Γ(1− t) · e(log k)t = Γ(1− t) · kt (45)

This allows us to write:

E[n exp(−B)] = n · E[exp(−B)] (46)
= n · E[exp(Smin −M)] (47)
= n · E[exp(Smin −max

j∈Si

{Zij +Gij})] (48)

≤ n · E[exp(Smin −min
j∈Si

Zij −M ′] (49)

= n · E[exp(−M ′)] (50)
= n · fM ′(−1) (51)

=
n

k
(52)

where inequality 49 follows because

max
j∈Si

{Zij +Gij} ≥ min
j∈Si

{Zij}+max
j∈Si

Gij = Smin +M ′

For a quick proof of this statement, let ĵ := argminj∈Si Zij and j̃ := argmaxj∈Si Gij . Also let
j∗ := argmaxj∈Si{Zij +Gij}. Then we have:

max
j∈Si

{Zij +Gij} = Zij∗ +Gij∗ (53)

≥ Zij̃ +Gij̃ (54)

≥ Ziĵ +Gij̃ (55)

= Smin +M ′ (56)

Finally 52 follows because Γ(2) = 2! = 1. Now, via law of total expectation we finally get:

E[m] = EM [E [m |M ]] ≤ EM

[n
k

]
=

n

k
(57)

C kNN ATTENTION VIA CONCENTRIC LSH

In the main paper, we abstracted away the specific kNN method used to obtain the top-k key vectors
kj for every query vector qi. In this section we cover a method for solving the k-MIPS problem in
sub-linear time per query that has sound theoretical guarantees. In the context of Algorithm 2, this
method could substitute the kNN index H .

This approach in question was proposed by Mussmann et al. (2017) and it uses a concentric LSH
construction to get an approximation to this problem. First, let us define the approximate version of
the k-MIPS problem, as is proposed in Mussmann et al. (2017):
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Definition C.1 (Approximate k-MIPS). We say that a set Si is an approximate top-k inner product
solution if |Si| = k and there exists a constant c such that:

max
j /∈Si

qTi kj −min
j∈Si

qTi kj < c (58)

If we are able to generate an approximate solution Si instead of an exact one, we have to lower our
threshold B to M − Smin − c in Algorithm 1, which in turns implies that E[m] ≤

√
n · ec. This

remains sublinear in n because c is a constant.

The solution to the approximate version of the problem is constructed using LSH. Specifically, we
build a sequence of O(polylog(n, d)) LSH data structures, each with concentric approximation radii,
and hash all the key vectors kj ∈ Rd into them. For each query vector qi, we hash it across all these
data structures and identify the first pair of consecutive LSH structures, Di and Di+1, where Di+1

contains more than
√
n points in the buckets corresponding to qi, while Di contains fewer than

√
n

points. For further details, see Mussmann et al. (2017). The following theorem ultimately holds:
Theorem C.1 (Mussmann et al. (2017)). Let 0 < ρ < 1 be a constant. There exists an algorithm for
solving the approximate version of k-MIPS on any single query q with probability at least 1− 1/n2

by using an explicit concentric LSH construction. The algorithm takes O(dn1+ρ · polylog(n, d))
pre-processing time/space, and O(

√
n+ nρ · polylog(n, d)) time/space per query.

Figure 5: An illustration of the concentric LSH construction of Mussmann et al. (2017) In the Di+1

band we find at least
√
n points and in the Di band we find fewer than

√
n points.

Remark C.1 (The role of ρ). The choice of ρ < 1 allows us to compute Si in sublinear time for
each i ∈ [n]. The value of ρ is determined by the radii gaps in the concentric construction. Our
algorithm for computing Si is sublinear in n because ρ < 1. Depending on the particular input
dataset, we could have ρ ≤ 1/2, which which case f(n,

√
n) = Õ(

√
n) in the context of Theorem

6.

C.1 A COMPLETE ALGORITHM BASED ON SOLVING k-MIPS

We now have a complete algorithm to estimate self-attention with provable guarantees that is based
on the solving k-MIPS problem for every query vector qi. If we combine the boosted estimator
approach of Theorem 2.1 with the Lazy Gumbel Sampling Technique of Algorithm 1 and the k-
MIPS LSH technique of Theorem C.1, we arrive at the following theorem. We give pseudocode for
the resulting algorithm, as Algorithm 5:
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Theorem C.2. Let ε > 0 and δ > 0 be small positive constants. There exists an algorithm that can
estimate Self-Attention in the same way as Theorem 2.1 and fail with probability at most δ + 1/n.
The algorithm’s time complexity is shown in the table below, where ρ ∈ (0, 1) is a fixed constant.

Pre-Processing Main Computation
Complexity Õ(dn1+ρ) Õ

(
n1+max{1/2,ρ} · d · ε−2 log(1/δ)

)
Algorithm 5 Approximating Self-Attention using concentric LSH k-MIPS solver

1: Inputs: Q,K, V ∈ Rn×d, error parameter ε > 0, confidence parameter δ > 0

2: H ← Create Concentric LSH data structures for solving k-MIPS, as in Mussmann et al. (2017)

3: Let Ô ∈ Rn×d be our output.
4: for i ∈ [n] do
5: Si ← Query H for the

√
n indices j ∈ [n] with the approximate largest values of qTi kj

6: for j ∈ [d] do
7: Ôij ←Median-Of-Means with Algorithm 1 as sampler← (

√
n, qi,K, Si).

8: return Ô

Proof. Let k =
√
n. Suppose we construct the concentric LSH data structure according to Theorem

C.1. This takes Õ(dn1+ρ) time. Let us condition on the event that for all queries qi the data structure
provides a correct approximate answer Si to the k-MIPS problem. This happens with probability at
least 1− 1/n by union bound over all n queries. Now we use our sets Si in Algorithm 1 to sample
from Di. Since retrieving Si takes f(n, k) = O(

√
n + nρ · polylog(n)) time and space, Theorem

2.3 dictates that sampling from Di also takes Õ(nmax{1/2,ρ}) time and space. Thus, in the context
of Theorem 2.1 we have that T = Õ(nmax{1/2,ρ}). Substituting back gives us the desired runtime
and failure probability guarantees.

D PROOF OF LEMMA 3.1: DERIVATION OF THE SELF-ATTENTION
GRADIENTS

In this section, we will show the proof of Lemma 3.1. Suppose we have a differentiable scalar
function ϕ that represents the loss when training our neural network after computing the output O:
ℓ = ϕ(O). Suppose that we have calculated ∂ϕ

∂Oij
for all i ∈ [n], j ∈ [d] and stored it in an matrix

DO ∈ Rn×d. Now we will calculate the remaining derivatives by using the chain rule. A similar
calculation is also done in the Appendix of Dao et al. (2022).

Calculating ∂ϕ
∂Vij

All these calculations just use the chain rule. One can simply draw a tree of
dependencies and use it to perform the derivation. ϕ depends on Oij and Oij depends on all Vrj , so:

∂ϕ

∂Vij
=

n∑
r=1

∂ϕ

∂Orj
· ∂Orj

∂Vij
=

n∑
r=1

DO
rj

∂Orj

∂Vij

Now, we calculate that:
∂Orj

∂Vij
=

∂

∂Vij

n∑
k=1

PrkVkj = Pri

so that gives:

∂ϕ

∂Vij
=

n∑
r=1

DO
rjPri =

n∑
r=1

PT
irD

O
rj (59)

Thus, we can write the result succinctly:

DV = PT ·DO (60)
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Calculating ∂ϕ
∂Qij

To do this, we will first calculate ∂ϕ
∂Pij

and ∂ϕ
∂Sij

, where S = QKT .

• First, each Oij depends on all Pik, so the chain rule gives:

∂ϕ

∂Pij
=

d∑
k=1

∂ϕ

∂Oik
· ∂Oik

∂Pij
=

d∑
k=1

DO
ik

∂Oik

∂Pij

We can calculate that:
∂Oik

∂Pij
= Vjk

and so:

DP
ij =

∂ϕ

∂Pij
=

d∑
k=1

DO
ikVjk = ⟨DO

i,:, Vj,:⟩ (61)

for all i ∈ [n], j ∈ [n].

• Now recall that Pij =
exp(Sij)

Li
, so Pij depends on all Sik for k = 1, ..., n. Thus:

∂ϕ

∂Sij
=

n∑
k=1

∂ϕ

∂Pik
· ∂Pik

∂Sij
=

n∑
k=1

DP
ik ·

∂Pik

∂Sij

= DP
ij ·

∂Pij

∂Sij
+

n∑
k=1,k ̸=j

DP
ik ·

∂Pik

∂Sij

We now calculate seperately the two cases by using the quotient rule:
– k ̸= j:

∂Pik

∂Sij
=

∂

∂Sij

exp(Sik)
n∑

r=1
exp(Sir)

= − exp(Sik) ·
exp(Sij)(

n∑
r=1

exp(Sir)

)2

= −PikPij

– k = j:

∂Pij

∂Sij
=

∂

∂Sij

exp(Sij)
n∑

r=1
exp(Sir)

=

exp(Sij)
n∑

r=1
exp(Sir)− exp(Sij) exp(Sij)(

n∑
r=1

exp(Sir)

)2

= Pij − P 2
ij

Now we can put it all together:

∂ϕ

∂Sij
= DP

ij ·
∂Pij

∂Sij
+

n∑
k=1,k ̸=j

DP
ik ·

∂Pik

∂Sij

= DP
ij · (Pij − P 2

ij)−
n∑

k=1,k ̸=j

DP
ik · PikPij

= DP
ij · Pij −

n∑
k=1

DP
ik · PikPij

= Pij

(
DP

ij − ⟨DP
i,:, Pi,:⟩

)
Now finally, for i ∈ [n], j ∈ [d], Qij influences Sik for all k ∈ [n], so:

∂ϕ

∂Qij
=

n∑
k=1

∂ϕ

∂Sik

∂Sik

∂Qij
(62)

=

n∑
k=1

Pik

(
DP

ik − ⟨DP
i,:, Pi,:⟩

)
Kkj (63)
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Calculating ∂ϕ
∂Kij

We know that Kij influences Ski for k ∈ [n], so:

∂ϕ

∂Kij
=

n∑
k=1

∂ϕ

∂Ski

∂Ski

∂Kij
(64)

=

n∑
k=1

Pki

(
DP

ki − ⟨DP
k,:, Pk,:⟩

)
Qkj (65)

E ESTIMATING DQ

In this section we give an efficient algorithm for estimating DQ. This algorithm is based on our
kNN-Attention framework. Recall that we found that:

DQ
ij =

n∑
k=1

Pik

(
DP

ik − ⟨DP
i,:, Pi,:⟩

)
Kkj

We can write this expression as an expectation with respect to the distribution Di:

∂ϕ

∂Qij
= Ek∼Di

[
DP

ikKkj

]
− Ek∼Di

[
Kkj · Es∼Di [D

P
is]
]

(66)

= Ek∼Di

[
DP

ikKkj

]︸ ︷︷ ︸
E1

−Ek∼Di
[Kkj ]︸ ︷︷ ︸

E2

·Es∼Di
[DP

is]︸ ︷︷ ︸
E3

(67)

This allows us to use any of our softmax expectation estimators. We choose the Median-Of-Means
estimator for the purposes of a clean analysis. We just have to do it three times and ensure that the
terms we take expectations over are efficiently computable. Indeed, because

DP
ik = ⟨DO

i,:, Vk,:⟩, (68)

we can compute all three of those expectations in sublinear time! Let Ê1, Ê2, Ê3 be the estimates
we produce. Then, almost identically to the error analysis we did for the forward pass, we get an
(ε, δ)-additive estimate for Ei, where i ∈ {1, 2, 3}7

Pr
[
|Ê1 − E1| ≥ ε

]
≤ δ

3
(69)

Pr
[
|Ê2 − E2| ≥ ε

]
≤ δ

3
(70)

Pr
[
|Ê3 − E3| ≥ ε

]
≤ δ

3
(71)

And so, putting these three together and using the union bound we get that with probability at least
1− δ it holds that:∣∣∣Ê1 − Ê2 · Ê3 − E1 + E2 · E3

∣∣∣ ≤ ∣∣∣Ê1 − E1

∣∣∣+ ∣∣∣Ê2 · Ê3 − E2 · E3

∣∣∣ (72)

=
∣∣∣Ê1 − E1

∣∣∣+ ∣∣∣Ê2 · Ê3 − Ê2 · E3 + Ê2 · E3 − E2 · E3

∣∣∣ (73)

≤
∣∣∣Ê1 − E1

∣∣∣+ Ê2

∣∣∣Ê3 − E3

∣∣∣+ E3

∣∣∣Ê2 − E2

∣∣∣ (74)

≤ ε+ ε · Ê2 + εE3 (75)
≤ ε+ ε(E2 + ε) + εE3 (76)

= ε+ ε2 + ε(E2 + E3) (77)

In order to bound the variance of our estimators, we need to assume some bounds on the inputs,
analogously to ||V ||∞ ≤ B = O(log n) from Theorem 2.1. First, we assume that ||K||∞ ≤ BK =

7In Theorem 2.1 we used a multiplicative approximation. To get the additive approximation guarantee we
need O(ε−2 log(1/δ) · Var[Ôij ]) samples, where Var[Ôij ] ≤ B2 = O(polylog(n)).
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O(polylog(n)). Second, we have that ||DP ||∞ ≤ dB · ||DO||∞ = O(polylog(n)) if d = O(log n).
This also gives that ||DP ◦K||∞ ≤ BK · ||DP ||∞ = O(polylog(n)).

These assumptions are reasonable within the context of the hardness results proved for the atten-
tion mechanism and the computation of its gradients8 (Alman & Song, 2024a;b). Given these
assumptions, we can also bound the error more compactly. Starting from Equation 77, we get:
eQ ≤ O(ε) + ε(BK + dB · ||DO||∞) = O(ε · polylog(n)). As a result, we arrive at the following
theorem:

Theorem E.1. Assume that ||K||∞ = O(polylog(n)), d = O(log n) and ||DO||∞ =
O(polylog(n)). There exists a sub-quadratic algorithm that takes as input Q,K, V,DO ∈ Rn×d

and outputs a matrix D̂Q ∈ Rn×d such that:∣∣∣∣∣∣D̂Q −DQ
∣∣∣∣∣∣
∞
≤ O(ε · polylog(n)) (78)

This algorithm is shown as Algorithm 6.

Proof. The proof and analysis of Algorithm 6 is detailed in the preceding paragraph.

Algorithm 6 Estimating DQ

procedure ESTIMATE-E1(Q,K, V,DO, Si, i, j, ε, δ)
F ← {⟨DO

i,:, Vk,:⟩ ·Kkj}nk=1 ∈ Rn×1 ▷ F will not be materialized.

Ê1 ←Median-Of-Means with Lazy Gumbel Sampling← Q,K,F, Si, ε, δ

return Ê1

procedure ESTIMATE-E2(Q,K, Si, i, ε, δ)
Ê2 ←Median-Of-Means with Lazy Gumbel Sampling← Q,K,K:,j , Si, ε, δ.
return Ê2.

procedure ESTIMATE-E3(Q,K, V,DO, Si, i, ε, δ)
F ← {⟨DO

i,:, Vk,:⟩}nk=1 ∈ Rn×1 ▷ F will not be materialized.

Ê3 ←Median-Of-Means with Lazy Gumbel Sampling← Q,K,F, Si, ε, δ

return Ê3

Input: DO ∈ Rn×d, Q,K, V ∈ Rn×d, parameters ε, δ > 0

Let D̂Q ∈ Rn×d be our output.
for i ∈ [n] do

Si ←
√
n values t ∈ [n] of the largest qTi kt via LSH or kNN.

for j ∈ [d] do
Ê1 ← ESTIMATE-E1(Q,K, V,DO,Si, i, j, ε, δ)
Ê2 ← ESTIMATE-E2(Q,K,Si, i, ε, δ)
Ê3 ← ESTIMATE-E3(Q,K, V,DO, Si, i, ε, δ)
D̂Q

ij ← Ê1 − Ê2 · Ê3

return D̂Q

F ESTIMATING DK

Finally, we turn to estimating DK . Our earlier calculations show that

∂ϕ

∂Kij
=

n∑
k=1

Pki

(
DP

ki − ⟨DP
k,:, Pk,:⟩

)
Qkj

8Another motivation for assumming an upper bound on the norm of DO is to avoid the phenomenon of
exploding gradients in training neural networks.
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We can break up this sum into two terms:

∂ϕ

∂Kij
=

n∑
k=1

PkiD
P
kiQkj︸ ︷︷ ︸

Aij

−
n∑

k=1

Pki⟨DP
k,:, Pk,:⟩ ·Qkj︸ ︷︷ ︸
Bij

(79)

We will estimate both terms separately:

F.1 ESTIMATING Aij

For i ∈ [n] and j ∈ [d], we have:

Aij =

n∑
k=1

PkiD
P
kiQkj =

n∑
k=1

PkiQkj · ⟨DO
k,:, Vi,:⟩ (80)

=

n∑
k=1

PT
ik · Y

(i)
kj (81)

where Y
(i)
kj := Qkj · ⟨DO

k,:, Vi,:⟩. So we can write:

Aij = (PT )i,:︸ ︷︷ ︸
1×n

· Y (i)
:,j︸︷︷︸

n×1

(82)

We will use our familiar Markov Chain estimation method from Algorithm 3 to calculate this quan-
tity. However, in this case we only care about estimating the i-th entry in the vector (PT ) · Y (i)

:,j ,
which we can do by performing O(log n · ε−2) simulations. Ultimately, by following the same
analysis as in Algorithm 3, we are able to estimate Aij with probability at least 1− 1

n and error:∣∣∣Âij −Aij

∣∣∣ ≤ ε⟨Y (i)
:,j , 1n⟩+ 2εnM

(i)
j (83)

= ε

n∑
k=1

Qkj · ⟨DO
k,:, Vi,:⟩+ 2εnM

(i)
j (84)

where
M

(i)
j = − min

k∈[n]

Y
(i)
kj ≤0

Y
(i)
kj

Remark F.1. Because we would need to calculate all n2 values of M (i)
j , we will instead use a single

upper bound M ≥M
(i)
j for all (i, j) ∈ [n]× [d] for this algorithm. We assume that we know a large

enough M in advance and that M = O(polylog(n)).

In the next paragraphs, we will tackle some implementation issues that arise in this approach. We
did not see these issues when estimating DV , and because they make the algorithm a lot more
complicated, we left them for last.

Pre-calculating the normalizing factors We need to pre-calculate the normalizing sums N (i)
j =

⟨Y (i)
:,j , 1n⟩+ nM for all (i, j) ∈ [n]× [d]. Naively, it takes O(n2d) time to calculate all those sums.

However, with some preprocessing we can take the time down to O(nd2). First, observe that we
have:

N
(i)
j = nM + ⟨Y (i)

:,j , 1n⟩ = nM +

n∑
k=1

Qkj · ⟨DO
k,:, Vi,:⟩ = nM + ⟨Vi,:,

n∑
k=1

Qkj ·DO
k,:⟩ (85)

We can thus first pre-compute the d vectors
−→
Ej =

∑n
k=1 Qkj ·DO

k,: ∈ Rd for each j ∈ [d] in O(nd2)

time. Then, for each i ∈ [n] and j ∈ [d], we can produce N
(i)
j in O(d) time by using Equation 85,

bringing the total time complexity to O(nd2).
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Sampling according to Y
(i)
:,j +M · 1n efficiently Unfortunately, because we are now estimating

Aij individually for all (i, j) ∈ [n]× [d], we cannot spend O(n) time to generate each sample. We
need to generate samples in sublinear time with some pre-processing. This seems intuitively difficult
at first because we have O(nd) distributions over [n] and each distribution requires Ω(n) time to
sample one sample. However, we can take advantage of the structure between the distributions in
order to reduce the pre-processing time. First, consider the following method of sampling from a
distribution [p1, ..., pn]:

1. Compute the cumulative sums si =
∑i

k=1 pi. We know that s1 = p1 and sn = 1.

2. Pick some x ∼ Unif(0, 1) uniformly at random from (0, 1).

3. Find the interval [pi, pi+1] for i ∈ [1, n− 1] in which x falls in. That is, find the smallest i
for which x ≤ si. We can do this in O(log n) time using binary search.

4. Output i.

Figure 6: An illustration of the CDF sampling method: We form the CDF and then sample an index
by choosing x ∈ (0, 1) and using binary search to find the corresponding bucket.

It is easy to see that this method outputs a value i with probability pi. If we applied this method
naively we would still take O(n2d) time because we’d have to calculate all the cumulative sums.
However, the inner product structure again comes to our rescue:

Y
(i)
kj = ⟨Vi,:, Qkj ·DO

k,:⟩ (86)

So, we can create d cumulative sum tables Σj for j ∈ [d], each of which stores n cumulative-sum
Rd vectors as follows:

(Σj)ℓ =

ℓ∑
s=1

Qsj ·DO
s,: ∈ Rd, ∀ℓ ∈ [n] (87)

This requires O(nd2) time and space to construct. Now, in order to sample with probability propor-
tional to Y

(i)
kj +M given that we know N

(i)
j , we sample xij ∼ Unif(0, 1) and perform binary search

to find the interval xij belongs to. At that point, we can calculate the O(log n) necessary cumulative
sums in O(d) time each by using our pre-processing:

ℓ∑
s=1

(
Y

(i)
kj +M

)
= kM + ⟨Vi,:, (Σj)ℓ⟩ (88)

This allows us to sample in O(d log n) time after a O(nd2) pre-processing. Our algorithm in total is
included as part of Algorithm 7.
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Sampling with respect to Di Again, we cannot afford to sample from the softmax naively with
O(n) time. Thankfully, we know of a sublinear method that can allow us to sample from the softmax,
with slightly super-linear pre-processing time: the Lazy-Gumbel Sampling method. We will omit
the pre-processing details in the algorithm pseudocode.

Algorithm 7 Estimating DK – Part 1: Computing A

1: Input: Q,K, V,DO ∈ Rn×d, error parameter ε > 0

2: for j ∈ [d] do ▷ Pre-Processing
3: Compute

−→
Ej =

∑n
k=1 Qkj ·DO

k,: ∈ Rd

4: Compute the cumulative sums (Σj)ℓ =
∑ℓ

s=1 Qsj ·DO
s,: ∈ Rd for all ℓ ∈ [n].

5: Compute ŝ ≈ PT 1n using Markov Chain simulations.
6: Initialize a kNN index H .
7: procedure COMPUTE–A(Q,K,DO, E,Σ, ε,H, ŝ,M )
8: Let N ← 2 log n · ε−2

9: Â← [0]n×d is the output.
10: for i ∈ [n] do
11: Query H to get set Si

12: for j ∈ [d] do
13: N

(i)
j ← ⟨Vi,:,

−→
Ej⟩+ nM ▷ O(d) time.

14: for s ∈ [N ] do
15: Sample k ∈ [n] with probability ∝ Y

(i)
kj +M via binary search, Σj and N

(i)
j

16: Sample ℓ ∈ [n] with probability Pik via Lazy Gumbel Sampling, given Si

17: if ℓ = i then
18: Âij ← Âij + 1

19: Âij ← 1
N (Âij ·N (i)

j )−M · ŝi
20: return Â

F.2 ESTIMATING Bij

For (i, j) ∈ [n]× [d], we first have:

Bij =

n∑
k=1

Pki · ⟨DP
k,:, Pk,:⟩ ·Qkj (89)

=

n∑
k=1

PkiXkj (90)

where Xkj = ⟨DP
k,:, Pk,:⟩ ·Qkj . Notice that Xkj takes O(nd) time to naively compute, so we will

first approximate it with X̂kj . Observe that:

Xkj = Qkj · ⟨DP
k,:, Pk,:⟩ (91)

= Qkj ·
n∑

s=1

DP
ks · Pks (92)

= Qkj · Es∼Dk
[DP

ks] (93)

= Es∼Dk
[Qkj ·DP

ks] (94)

≈ X̂kj (95)

Let us approximate Es∼Dk
[Qkj · (Dp)ks] ≈ X̂kj using the Lazy Gumbel Sampling and Median-

Of-Means method. This allows us to get for all (k, j) ∈ [n] × [d] with probability at least 1 − δ
that: ∣∣∣X̂kj −Xkj

∣∣∣ ≤ ε (96)
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Remark F.2. To have an o(n) bound for the variance, we have to assume (again) that ||X||∞ =
O(polylog(n)). This follows from the assumption that ||Q||∞ = O(polylog(n)) and ||DP ||∞ =
O(polylog(n)). The latter follows from ||DO||∞ = O(polylog(n)). So the assumptions here are the
same as in Theorem E.1.

Now we can define:

B̂ij =

n∑
k=1

PkiX̂kj (97)

We can bound the error of this approximation using the triangle inequality:∣∣∣Bij − B̂ij

∣∣∣ = ∣∣∣∣∣
n∑

k=1

Pki(X̂kj −Xkj)

∣∣∣∣∣ (98)

≤
n∑

k=1

Pki

∣∣∣X̂kj −Xkj

∣∣∣ (99)

≤ ε

n∑
k=1

Pki (100)

= ε⟨P:,i, 1
n⟩ (101)

Now the problem is calculating B̂. Note that we can write:

B̂ = PT · X̂ (102)

Finally, this takes us back to the calculation of DV . We can use the exact same Markov Chain
method and get a final approximation B̃ so that with probability at least 1− 1

n it holds that:∣∣∣B̃ij − B̂ij

∣∣∣ ≤ ε⟨X̂:,j , 1
n⟩+ 2εnM

(X)
j (103)

where
M

(X)
j := − min

k∈[n]

X̂kj≤0

X̂kj

Then the overall error can be bounded as follows:∣∣∣B̃ij −Bij

∣∣∣ ≤ ∣∣∣B̃ij − B̂ij

∣∣∣+ ∣∣∣B̂ij −Bij

∣∣∣ (104)

≤ ε⟨P:,i, 1
n⟩+ ε⟨X̂:,j , 1

n⟩+ 2εnM
(X)
j (105)

≤ ε⟨P:,i, 1
n⟩+ ε⟨X:,j , 1

n⟩+ ε2n+ 2εnM
(X)
j (106)

= ε⟨P:,i +X:,j , 1
n⟩+ ε2n+ 2εnM

(X)
j (107)

To wrap up our implementation details, we can calculate the required normalization sums as follows:

⟨X̂:,j , 1
n⟩ =

n∑
k=1

X̂kj =

n∑
k=1

QkjD̂k (108)

We can do this in ≈ Õ(dn3/2) time if we precompute in advance

D̂k := ⟨DP
k,:, Pk,:⟩ (109)

using Lazy Gumbel Sampling for all k ∈ [n]. Further, each element X̂ij can be computed in
≈ Õ(

√
n) time as well in a similar fashion. Finally, M (X)

j can also be calculated in such time.
Our algorithm is given below as Algorithm 8. By combining algorithms 7 and 8 we arrive at the
following theorem for Algorithm 9:
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Algorithm 8 Estimating DK – Part 2: Computing B

1: Si ← Use an LSH or kNN index to calculate Si for all i ∈ [n].
2: ŝ← ESTIMATEPRODUCTPOSITIVE(P, 1n, ε)

3: procedure COMPUTE–X̂kj(Q,K,DO, V, Si, ε, δ, k, j)
4: F ← {Qkj · ⟨DO

k,:, Vs,:⟩}ns=1 ∈ Rn×1 ▷ F will not be materialized.

5: X̂kj ←Median-Of-Means with Lazy Gumbel Sampling← Q,K,F, Si, ε, δ

6: return X̂kj .

7: procedure COMPUTE–B(Q,K, V,DO, ε)
8: Output B̃ ← [0]n×d

9: for j ∈ [d] do ▷ O(d) times
10: B̃:,j ←ESTIMATEPRODUCT(P, X̂:,j , ε, ŝ)
11: return B̃

Theorem F.1. There exists an algorithm that approximates DK on inputs Q,K, V,DO under our
standard assumptions such that the estimate D̂K satisfies:∣∣∣∣∣∣D̂K

:,j −DK
:,j

∣∣∣∣∣∣
∞
≤ ε⟨P:,i +X:,j , 1

n⟩+ ε2n+ 2εnM
(X)
j

+ ε

n∑
k=1

Qkj · ⟨(Do)k,:, Vi,:⟩+ 2εnM

where:

M ≥M
(i)
j := − min

k∈[n]

Y
(i)
kj ≤0

Y
(i)
kj and M

(X)
j := − min

k∈[n]

X̂kj≤0

X̂kj (110)

under our previous definitions for all j ∈ [d]. The algorithm runs in sub-quadratic time and space
and succeeds with probability ≥ 1− δ.

Proof. We have that DK
ij = Aij − Bij . We define D̂K

ij = Âij − B̃ij and we established in the
preceding discussion that:

|Âij −Aij | ≤ ε

n∑
k=1

Qkj · ⟨(Do)k,:, Vi,:⟩+ 2εnM (111)

|B̃ij −Bij | ≤ ε⟨P:,i +X:,j , 1
n⟩+ ε2n+ 2εnM

(X)
j (112)

Thus by the triangle inequality we get the desired error guarantee.

Algorithm 9 Estimating DK : Putting it all together

B̃ ← COMPUTE–B(Q,K, V,Do, ε)
Â← COMPUTE–A(Q,K, V,Do, E,Σ, ε)
return Â− B̃.

G VECTORIZED IMPLEMENTATION OF THE FORWARD PASS

We present the vectorized implementation of kNN Attention that we used in our experiments. This
is based on Theorem 2.5.

1 import torch
2

3 # This function calculates the attention mechanism in the forward pass.
4 # Inputs:
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5 # - Q: A tensor of shape (b,h,n,d) containing the query vectors.
6 # - K: A tensor of shape (b,h,n,d) containing the key vectors.
7 # - V: A tensor of shape (b,h,n,d) containing the value vectors.
8 # - k: The number of vectors to attend to via kNN methods.
9 #

10 # Note that b is the batch size, h is the number of heads,
11 # n is the sequence length, and d is the dimension of the vectors.
12 #
13 # Outputs:
14 # - A tensor of shape (b,h,n,d) containing the output vectors.
15 def attn_forward_batched(Q, K, V, k):
16 B,H,N,D = Q.shape
17

18 output = torch.zeros(B,H,N,D, dtype=torch.float32)
19 for b in range(B):
20 for h in range(H):
21 # Get the top k indices of Q[b,h] @ K[b,h]ˆT and the scores.
22 scores, S = topk(Q[b,h,:,:], K[b,h,:,:], k, masking=True)
23 scores = scores * (1 / math.sqrt(D))
24

25 # Calculate the denominator.
26 M = torch.max(scores, dim=1)[0]
27 exp_scores = torch.exp(scores - M.unsqueeze(1))
28 denom = torch.sum(exp_scores), dim=1).unsqueeze(1)
29

30 # Calculate the numerator.
31 # Vbh[S].shape = (N,k,D)
32 numerator = torch.bmm(exp_scores.unsqueeze(1), V[b,h,S])
33 numerator.squeeze()
34

35 output[b,h] = numerator / denom
36

37 return output

Listing 1: kNN Attention - Vectorized

H SAMPLES FROM FINE-TUNED GPT2-XL

Below we give some samples from our fine-tuned GPT2-XL using fast approximate kNN attention:

• Prompt: My favorite thing in the world is: Just Cause 3. And I couldn’t stop playing it.
It’s a mess. I’m not sure how to describe it. But it’s just so fun. When you play it, you know
instantly that this is a very different kind of game, one that takes place in an open world of
sorts, and you have a bunch of different characters. It’s epic, and it’s open world, and you
can play as a bounty hunter, or you can play as a doctor, or a cowboy, or you can play as
a soldier. You have a buddy system, and you can go to another character’s story mission if
you want. This is a great game, and I’m excited to see what the developers do with it.

• Prompt: I like being in nature because it’s so natural, and because it’s always changing.
Nature is a friend and a companion, and I’m so thankful every time I’m able to go out into
the outdoors. The second thing that I love about being in nature is the comfort and energy
that you can feel! I feel so happy and healthy on the trail when I’m interacting with nature.
I don’t have to think about what I’m wearing, or what I’m doing, and I can just be in nature
in my element. I also feel great being out in nature because I’m not spending all day at
my desk, working in a office. I get to meet new people along the trail and can spend time
talking to them.
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