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ABSTRACT

Recent studies have shown that large language models (LLMs), especially smaller
ones, often lack robustness in grade school math (GSM) reasoning. In particular,
they tend to experience performance drops when faced with distribution shifts, such
as changes to numerical or nominal variables, or insertions of distracting clauses.
A possible strategy to address this involves generating synthetic data to further
“instantiate” reasoning problems on potential variations. In this work, we instead
focuses on the strategy of “abstracting” reasoning problems. This not only helps
counteract distribution shifts but also facilitates the connection to symbolic tools
for deriving solutions. Focusing on GSM, we find that this abstraction process
is better acquired through reinforcement learning (RL) than just supervised fine-
tuning, which often fails to produce faithful abstractions. Our method, AbstRaL—
which promotes abstract reasoning in LLMs using RL on granular abstraction
data—significantly mitigates performance degradation on recent GSM perturbation
benchmarks. Besides, improving GSM robustness via AbstRaL is shown to also
implicitly benefit LLMs’ capabilities on OOD mathematical and general reasoning
tasks, indicating that abstract thinking broadly enables better generalizability.

1 INTRODUCTION

The ability of reasoning, which involves the integration of knowledge to derive dynamic conclusions
rather than direct recourse to memorized information (e.g.,|Yu et al., [2024; |Abbe et al., [2024), is an
essential quality for artificial general intelligence (Zhong et al., 2024a). Toward this end, recently
developed large language models (LLMs) have been equipped with impressive reasoning capabilities,
either scoped for general purpose (Guo et al., 2025} |Yang et al., 2024a; |Grattafiori et al., [2024)) or in
specialized domains such as mathematics (Shao et al., 2024; |Yang et al.,|2024b).

However, most LLMs, especially smaller onesﬂ still face the challenge of robustness when rea-
soning, revealing considerable room for improvement in out-of-distribution (OOD) generalization.
In particular, recent works (Mirzadeh et al.,|2025} [Li et al., |2024) have shown that even in simple
GSM tasks, LLMs suffer performance degradation when facing perturbations and distribution shifts.
LLMs can be prone to reasoning errors on instantiation shifts

such as when numerical or nominal variables of a GSM ques- X

tion are altered, even though the LLMs can respond to the x
original question correctly. On more challenging interferential A Y
shifts, where a distracting (topic-related but useless) condition

is added, LLMs suffer even more drastic performance drops. X /

To improve the robustness of reasoning, a possible learning
strategy (Boix-Adsera et al.| [2024)) is to synthesize more in- ) -
stances of a reasoning problem that are varied in surface-form X and X, having same solution Y’,
contexts but follow the same high-level reasoning schema rep- €an be bOth handled by a common
resented by an abstraction of the problem. In this paper, instead ~abstraction A

of scaling up the training instances (can be computationally expensive), we teach LLMs to directly
learn an abstraction underlying reasoning problems and thereby learn to reason in a manner
that is invariant to contextual distribution shifts. Our work is rooted in the abstract reasoning

Figure 1: Two paraphrased queries

'as verified by our analysis in
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Figure 2: Our AbstRaction Learning (AbstRal) method effectively improves GSM reasoning
robustness of LLMs, especially facing the variations of relevant input conditions and the interference
of distracting conditions. We present average accuracy of all our tested LLMs on GSM-Plus (L1 et al.,
2024), including the original GSM8K testing set (Original Reasoning Problem), the testing sets with
numerical variations (Vary Relevant Conditions), averaged across three portions (digit expansion,
integer-decimal-fraction conversion and numerical substitution), the testing set with problem rephras-
ing (Vary Problem Contexts) and with distractor insertion (Add Distracting Conditions).

literature (Hong et al.| 2024; Dutta et al.l [2024; |Gao et al. 2025), with a new granular reinforced
abstraction learning scheme that promotes the robustness and generalizability aspects of reasoning.

We propose the reinforced AbstRaction Learning framework, AbstRaL, as shown in Figure[2] which
first teaches LLMs to generate mathematical abstraction of input GSM problem, and then connects
the abstraction with symbolic tools to stably derive the output solution, regardless of the specific
input contexts. The learning of abstraction relies on our Granularly-decomposed Abstract Reasoning
(GranulAR) data (§3.1)) distilled from an oracle LLM, which integrates symbolic reasoning within
socratic problem decomposition (Shridhar et al.,|2023)) and chain-of-thought (CoT) explanations (Wei
et al.,|2022). On top of supervised fine-tuning (SFT), AbstRaL uses reinforcement learning (RL) with
a new set of model-free rewards (§3.2) to further improve the faithfulness of generated abstraction.

We tested AbstRaL on two benchmarks that evaluate the robustness of GSM reasoning (§5.1)),
GSM-Symbolic (Mirzadeh et al., 2025) and GSM-Plus (Li et al.| 2024). Experimental results on
various seed LLMs consistently demonstrate that AbstRaL effectively improves the GSM reasoning
robustness of LLMs. As shown in Figure[2} AbstRaL almost reverts the performance drop of LLMs
caused by variations of relevant input conditions, and also significantly mitigates the interference
of distracting conditions added to the perturbed testing samples. Furthermore, we find that LLMs
trained with AbstRal. demonstrate improved zero-shot performances on a wide range of OOD tasks
within and beyond the math domain (§5.2)), such as AIME (MAA| [2024) and BBH (Suzgun et al.]
2023)). This indicates that, more interestingly, AbstRal’s learning of abstract thinking in the GSM
domain can implicitly benefit more general reasoning capabilities of LLMs.

2 LEARNING STRATEGIES TO IMPROVE REASONING ROBUSTNESS

We assume that every reasoning data sample, consisting of input question (or query) X and output
answer (or response) )/, is an instantiation of an underlying symbolic abstraction .4 that represents
high-level reasoning schema. For example, in Figure [3] the problem of calculating Jung’s age,
according to how much older he is than Li, is based on the abstract arithmetic rule of adding two
numbers. A robust reasoner is supposed to master the abstraction A, and therefore stably give a
faithful answer ) to any question X" implicitly derived from .A, rather than overfitting to only a subset
of instances of .4 and vulnerable to distribution shifts that go beyond the subset.

A common strategy to improve the reasoning robustness of LLMs is to augment the learning data
by synthesizing more instances {(X’,)’), (X", )"), ...} of abstraction A, with paraphrasing (Gan
& Ng, [2019; /Zhou et al., |2024)) or templates (Boix-Adsera et al.,|2024). For example, as shown in
Figure 3| (a), the names and numbers appearing in an instance can be replaced with other values to
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X': Zhou is 15 years old. Wu is 5 years
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Figure 3: Learning strategies to improve reasoning robustness with respect to distribution shifts. (a)
Augmenting the amount of learning data by synthesizing more reasoning instances. (b) Directly
learning to construct the underlying abstraction based on the input, including: (1) condition recogni-
tion, (2) abstract reasoning, (3) abstraction retrieval and (4) symbolic derivation.

create a new instance, which has a different problem context and input conditions, but follows the
same abstract arithmetic rule. As verified by previous study (Boix-Adsera et al., [ 2024), this learning
strategy requires a large amount of synthetic data augmentation, to effectively boost LLMs’ grasp of
the high-level abstraction, thus being able to resist the interference of surface-form variations.

In this work, instead, we focus on the strategy of abstract thinking (Hong et al., 2024} |Gao et al.,
2025), which teaches LLMs to directly learn the abstraction .A underlying each instance (X', )), and
connect .4 with symbolic tools such as an equation solver, to steadily derive the answer ) to the
question X, as illustrated in Figure [3|(b). Without scaling up the training data, our direct learning of
abstraction still effectively improves the robustness of GSM reasoning, due to the modeling of more
general reasoning patterns represented by the abstraction. We introduce our method in detail in §3]

3 ABSTRAL: REINFORCED ABSTRACTION LEARNING FRAMEWORK

Figure [3| (b) illustrates our AbstRal. framework that incentivizes LLMs’ abstract thinking in GSM
problem solving, which consists of four steps.

(1) Condition Recognition = We first parse the input GSM question X to identify conditions C that
can be used to answer the question, and formulate C with abstract symbols, which represent the input
variables in abstraction .A. For example, in the problem shown in Figure [3|(b), the numbers 12 and
2 given in the question are used to derive the answer, which are assigned to the symbols in0 and
inl, respectively. Then the abstract input question, denoted as X, is constructed, by replacing the
specific texts (or values) in X with their assigned abstract symbols in C, enclosed in square brackets.
This step can be performed by either a symbolic tool, e.g., a regex-matching script that searches
numerical values, or a neural parser designed by prompting an LLM

(2) Abstract Reasoning  We then use our constructed GranulAR data (§3.1)) to teach LLMs abstract
reasoning on GSM problems, based on SFT and RL (§3.2)). In particular, LLMs are tasked to generate
an abstract answer )** to the abstract question X**. In Y, LLMs quote input variables in X' by
their assigned abstract symbols, and also use abstract symbols to represent derived output variables,
such as the math derivation result outQ in Figure|3| (b), enclosed in double angle brackets.

(3) Abstraction Retrieval Based on the abstract answer ), we then retrieve the abstraction A
that is de-contextualized from the instance (X', ). Similar to the condition recognition, the retrieval
of A can also be done with a regex-matching tool or a LLM with specific prompts.

We introduce the specific experimental implementations of our proposed framework in
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X: Zhalng is twice as old as Li. Liis 12 years old. Y (Socratic CoT): How old is Zhang? ** Zhang is 2 * 12 years old = 24 years old.
Zhang's brother Jung is 2 years older than Zhang. How old is Jung? ** Jung is 2 years + 24 years = 26 years old. The answer is 26.
How old is Jung? (4)
Symbolic Derivation
(1) Condition Recognition (2) Abstract Reasoning Chain Rewriting by Oracle LLM
out1 ?= 26
X#: Zhang is [in0] times as old as Li. Li is [in1] Y (Granularly-d posed Abstract R ﬁO in1=out0 e:
years old. Zhang’s brother Jung is [in2] years List of sub-questions: How old is Zhang? How old is Jung? Inoin1>ou i .O=2
older than Zhang. How old is Jung? 9 < 9 outO+in2=out1 ;:1=12
How old is Zhang? Li is [in1] years old, Zhang is [in0] times as in2=2
c: old as Li, so Zhang is <<in0*in1=out0>> years old. fne=
::?ffz How old is Jung? Zhang is [out0] years old, Jung is [in2] years (3) o
in2=2 older than Zhang, so Jung is <<outO+in2=out1>> years old. Abstraction Answer Verification

Retrieval
The final answer is [out1]. etrieval

Figure 4: Overview of GranulAR training data construction, which consists of an instance rewriting
procedure to rewrite existing socratic CoT data (X', )) into fine-grained abstract reasoning data
(XA,C, YA, A), followed by a answer verification procedure to check the correctness of rewriting.

(4) Symbolic Derivation =~ We finally use the abstraction .4, along with the input conditions C, to
derive the real answer to the question. This derivation can be accomplished by either a rule-based
symbolic parser, e.g., a equation solver for arithmetic, or a neural (LLM) symbolic reasoner.

Our framework decomposes the task of inferring .A from X into a fine-grained pipeline X — X4 —
VA — A, which facilitates the learning of this task. Nevertheless, the core abstract reasoning step of
inferring Y from X4 is still non-trivial, which requires fine-grained abstract reasoning data and
proper reinforcement learning to achieve robust inferences, as described below.

3.1 GRANULARLY-DECOMPOSED ABSTRACT REASONING (GRANULAR) DATA

Motivations LLMs have learned various fine-grained reasoning strategies at either the pre-training
(Yang et al.,2024c; |Chen et al.l 2025b)) or the post-training (Kumar et al., [2025) phase, such as chain-
of-thought (CoT) (Wei et al., 2022} and socratic problem decomposition (Shridhar et al., [2023) as
representatives. In our GranulAR training data, we integrate abstract reasoning with these pre-learned
strategies, which enables LLMs to gradually construct the abstraction in a fine-grained reasoning
chain, as shown in Figure 4] V4. Such data format is close to the pre-training or the post-training data
distribution, and therefore eases the difficulty of equipping LLMs with abstract thinking.

GranulAR Format The answer V) of GranulAR first decomposes the question X' into a list
of sub-questions, which enables a holistic planning of step-by-step reasoning. Based on that,
answers each sub-question with CoT and abstract symbols, where it first quotes relevant input
conditions (or answers to previous sub-questions), and then derives the answer with quoted symbols.
Finally, ) draws a conclusion to clarify which output abstract symbol represents the final answer.

Data Construction Figure [ illustrates how we construct the GranulAR training data. We first
conduct the condition recognition described in §3|to formulate the conditions C from the question X’
and creates the abstract question X**. Based on that, we prompt an oracle LLM to rewrite the gold
socratic CoT answer ) into our desired abstract answer V. The abstract question X A is also fed
into the oracle LLM, to complement the problem contexts and clarify the abstract symbols of input
variables. Given the distilled abstract answer yA, we then conduct the abstraction retrieval to get the
de-contextualized abstraction .A. Finally, the symbolic derivation step is performed to verify whether
A along with C can derive the correct final answer stated in )). We only keep the rewritten instances
that pass the answer verification.

3.2 LEARNING OF ABSTRACT REASONING

Motivations Previous study (Gao et al., 2025) has shown that LLMs are poor at following in-
context demonstrations to reason in abstract manner, indicating that the learning of abstract reasoning
requires training with proper supervision, rather than relying on only in-context instructions and
examples. A straightforward way is to train LLMs with supervised fine-tuning (SFT). However,
although SFT on abstract data can teach LLMs decent abstract reasoning formats, its auto-regressive
training objective also forces LLMs to learn the specific contexts of each training sample. This
hinders LLMs from learning more general abstract thinking strategy, which leads to frequent test-time
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X : Zhang is [in0] times as old as Li. Li is [in1] years old. Zhang's brother Jung is [in2] years older than Zhang. How old is Jung?
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Figure 5: Illustration of the abstraction rewards in our reinforcement learning approach, including the
symbolic distance reward 7ympotic and the answer correctness reward 7y swer-

failure of generating an abstraction that is aligned with the problem, skewed by the new contexts in
the testing dat as shown by our results in Therefore, we propose to conduct reinforcement
learning (RL) on top of SFT, to augment LLMs’ capability of constructing faithful abstractions.

Supervised Fine-Tuning  We fine-tune LLMs to auto-regressively generate our constructed Granu-
1AR answer ) based on the input question XA, simply with the causal language modeling loss of
predicting each token in Y based on former tokens.

Reinforcement Learning with Abstraction Rewards On top of SFT, we develop a RL approach
to further improve the faithfulness of abstraction generated by LLMs. Our RL approach proposes a
new set of rewards to closely rate the generated abstraction on two aspects. First, given the model

created abstraction A retrieved from its generated answer )44, we perform the symbolic derivation to
check whether A can derive the correct final answer (denoted as Ans) with the conditions C given
in the gold reference. If yes, a positive reward 7.o,cct (hyperparameter) is granted to the model,
otherwise zero reward is given. We denote this answer correctness reward as ranswer(j, C, Ans).
Second, we more granularly measure how Alis aligned with the expected abstraction A retrieved
from the gold answer YA, Specifically, we split;zlv and A into lists of symbolic tokens, where each
token is either an abstract symbol (created in C, Y4 or yA) that represents an input or output variable

(such as in0), or a pre-defined operator that connects variables (such as =) or separates derivations
(such as (space)), as shown in Figure Based on that, we calculate a symbolic distance reward:

rsymbolic(ja A) = "mas - (1 — EditDistance(A, A) /maxae{iA} Len(a)) (1)

where r,,,,, denotes the maximum reward hyperparameter, EditDistance(.Z, A) denotes the list-wise

edit distance (Levenshtein et al.,|1966) between tokenized abstractions .4 and A, and Len(+) calculates
the length of a list, used for normalizing the edit distance into the range of O to 1. A higher symbolic
distance reward is granted to the model if A is closer (or more similar) to .4, which gives the model
more fine-grained learning signal of how far away it is from creating the correct abstraction. Figure[3]
shows an example case of our abstraction rewards. Note that our proposed rewards do not require a
pre-trained reward model, but just comparison to the gold reference. We plug our abstraction rewards
with GRPO (Shao et al.| [2024), an advanced RL algorithm for incentivizing reasoning capability in
LLMs (Guo et al.,[2025). The formulation of GRPO with our rewards is described in Appendix @

4 EXPERIMENTAL SETTINGS

Implementation of AbstRaL. Framework We prompt a Llama-3.3-70B-Instruct (Grattafiori et al.|
2024) model with few-shot examples to accomplish the first condition recognition step of AbstRalL.
Based on that, we tune various LLMs on our constructed GranulAR data (@, with our SFT and RL
scheme (§3.2)), to perform the core abstract reasoning step. Our tested LLMs include Llama3 model
series (Grattafiori et al.} 2024), Qwen2.5 model series (Yang et al., [2024a)) and Mathstral-7B. In the

30On the other hand, learning to directly generate de-contextualized abstraction is rather hard for LLMs that
are pre-trained on mostly contextualized natural language corpus, as verified by our analysis in §5.1] which
motivates our use of a fine-grained framework to still incorporate contexts in the learning of abstract reasoning.
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abstraction retrieval step, we simply use a regex-matching script to extract all math derivations
that are enclosed in double angle brackets in the abstract answer, which form the abstraction. We
use SymPy equation solver to perform the symbolic derivation, which derives the final answer.
For GranulAR training data construction, we use Llama-3.3-70B-Instruct as the oracle LLM, and
prompt it with few-shot examples to rewrite the training samples in the socratic version of GSM8K
(Cobbe et al., 2021} from OpenAl. More implementation details are included in Appendix

Baseline Methods We compare AbstRaL to several baseline reasoning methods, including 8-shot
CoT prompting (CoT-8S), 8-shot Program-of-Thought (Chen et al.| [2022)) prompting (PoT-8S), RL
with non-rewritten (socratic COTE]) GSMSK training data (CoT-RL), and other abstract reasoning
methods CoA (Gao et al., [2025), AoT (Hong et al., 2024} and SyReLM (Dutta et al., 2024). We
include more details of baseline methods in Appendix

Evaluation Datasets We evaluate our method on two datasets that are commonly used for testing
GSM reasoning robustness: GSM-Symbolic (Mirzadeh et al., 2025) and GSM-Plus (Li et al.} 2024).
GSM-Symbolic manually constructs problem templates from 100 GSMS8K testing samples, and uses
the templates to create new problems where the numbers or names or both in the original problem
are varied to different values, denoted as Vary Num., Vary Name and Vary Both, respectively. We
follow GSM-Symbolic to conduct 50 rounds of evaluation, each round creating 1 problem from each
template (so models are tested on 100 new problems per round), and measure the average performance
across these 50 rounds, i.e., the mean (with standard deviation) of accuracy, and check whether it
matches the performance on the original 100 (Origin 100) GSMS8K problems. GSM-Plus creates
different variations of the full GSMS8K testing set instead, where each varied testing set contains
all 1319 GSMSK testing problems. For each type of variation, 1 varied sample is created for each
original problem, which leads to a single round of evaluation per variation. Our tested GSM-Plus
variations include digit expansion (Digit Ex.) that adds more digits to a number (e.g., from 16 to
1600), integer-decimal-fraction conversion (Int-Dec-Fra) that changes the type of a number (e.g.,
from 2 to 2.5), numerical substitution (Num. Sub.) that replaces a number with another same-digit
one (e.g., from 16 to 20), rephrasing the question to check problem understanding (Rephrase), and
distractor insertion (Distract) that adds topic-related but useless conditions, compared with model
performance on the Original GSMSK testing set.

5 EXPERIMENTAL RESULTS

5.1 GSM REASONING ROBUSTNESS

Table[T|shows some of our representative evaluation results on GSM-Symbolic and GSM-Plus datasets.
We report the performances of the smallest and the strongest LLMs tested in our experiments, which
are Qwen2.5-0.5B-Instruct and Qwen2.5-Math-7B-Instruct, respectively. Results on other LLMs and
on some data portions of GSM-Symbolic (Vary Num. and Vary Name) and GSM-Plus (Digit Ex.,
Int-Dec-Fra and Num. Sub.) are included in Appendix [D] which draw the same conclusion.

On GSM-Symbolic, we find that AbstRaL effectively improves the reasoning robustness of all tested
LLMs ranging from 0.5B to 7B (or 8B) sizes, with respect to the variations of both numbers and
names (Vary Both), demonstrating better generalization to distribution shifts. Specifically, compared
to baseline methods, LLMs with AbstRaL achieve consistently better (mean) accuracy on Vary Both
samples, with overall lower standard deviation across different testing rounds. Besides, LLMs with
AbstRaL suffer less performance drop (A) when transferring from Origin 100 to Vary Both, especially
compared to CoT and PoT methods that do not use any abstract reasoning. Interestingly, on some
large-size (7B or 8B) LLMs, although AbstRaL scores lower than CoT-8S and CoT-RL on Origin
100, it outperforms these CoT methods on Vary Both perturbed samples. This implies that learning
with AbstRalL may mitigate LLMs’ overfitting to the existing input conditions, caused by potential
data contamination (Magar & Schwartz, [2022; Xu et al., [2024) at pre-training or post-training stage.

Similarly on GSM-Plus, AbstRaL almost reverts the performance degradation caused by variations
of input numbers (Num. Pert.), and also maintains robustness to contextual variations (Rephrase)
comparable to baseline methods. More interestingly, AbstRaL significantly mitigates the interference
of distracting conditions added to the problems (Distract), while by comparison, LLMs with baseline

*We also did a pilot study of training LLMs with non-socratic CoT data, which achieves similar results.
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Table 1: Evaluation results of GSM reasoning robustness, measured by the accuracy (%) of final
answer. A denotes the relative percentage of drop comparing performance on Vary Both to perfor-
mance on Origin 100. Num. Pert. denotes the average performance on the three GSM-Plus testing
sets that perturb input numbers (i.e., Digit Ex., Int-Dec-Fra and Num. Sub.). Best results on each
model are bold, where lower is better for A. Standard deviation (std) of multi-round evaluation
results on Vary Both are in brackets, where lowest std on each model are underlined.

Model Method GSM-Symbolic GSM-Plus
Vary Both Origin 100 A Num. Pert. Rephrase Distract Original

CoT-8S  34.0(0.033) 38.0 10.6 34.8 43.6 227 424
PoT-8S 27.0 (0.035) 31.0 12.8 28.7 36.3 19.4 355
CoT-RL  32.3(0.032) 35.0 7.77 30.9 40.8 15.2 38.0

Qwen2.5-0.5B-Instruct CoA 28.7 (0.026) 29.0 0.97 26.0 31.6 12.7 30.3
AoT 27.8 (0.029) 29.0 4.21 253 32.1 12.7 30.7
SyReLM  36.8 (0.030) 39.0 5.54 38.7 41.6 21.1 41.5
AbstRal.  44.6 (0.025) 44.0 -1.27 46.7 46.3 36.5 46.7
CoT-8S  87.7 (0.023) 95.0 7.73 84.1 90.5 76.3 91.8
PoT-8S 86.7 (0.023) 91.0 4.77 82.8 87.9 75.1 87.6
CoT-RL  88.1(0.021) 96.0 8.21 86.0 90.4 81.5 93.4

Qwen2.5-Math-7B-Instruct CoA 69.7 (0.033) 71.0 1.83 71.8 76.4 57.1 78.1
AoT 70.4 (0.032) 72.0 2.17 71.7 76.7 56.6 779
SyReLM  87.7 (0.026) 90.0 2.56 84.4 88.6 76.0 88.6
AbstRaL.  90.2 (0.016) 91.0 0.86 89.1 89.9 82.3 89.2

Table 2: Ablation study results of GSM reasoning robustness.

Model Method GSM-Symbolic GSM-Plus
Vary Both Origin 100 A Num. Pert. Rephrase Distract Original
AbstRaL. 44.6 440 -127 467 463 365 467
- wlo Tools 436 40 086 460 456 356 461
- wlo Contexts 231 300 231 270 288 165 287
Qwen2.5-0.5B-Instruct - wlo RL 296 360 179 380 23 283 357
- WO Taymbotic 376 300 359 417 400 313 388
-wlo GranulAR  42.6 20 148 424 023 236 424
AbstRal. 902 910 0.6 89.1 899 823 892
- wlo Tools 90.0 910 114 88.6 904 818 889
- wlo Contexts 69.3 7100 245 672 694 551 707
Qwen2.5-Math-7B-Instruct ) gy 785 820 422 82.1 80.0 745 823
- WO Taymbotic 832 870 434 8538 83 781 859
-wlo GranulAR  88.1 89.0 097 88.4 898 668 886

reasoning methods all score more drastically lower when transferring from Original to Distract.
AbstRal.’s improvement on Distract is largely due to learning on its granularly-decomposed abstract
reasoning (GranulAR) data (verified in our ablation study below), which enables overall planning of
the reasoning steps and then rethinking of useful input conditions at each reasoning step.

Ablation Study  One natural concern of our method is whether the improvements of AbstRaL are
due to the learning of abstract reasoning, or just because of integrating powerful symbolic tools, i.e.,
Llama-3.3-70B-Instruct prompted for condition recognition, regex-matching script for abstraction
retrieval and SymPy equation solver for symbolic derivation. To clarify this, we conduct an ablation
study (w/o Tools), which replaces all above symbolic tools in our framework with the LLM itself, to
accomplish each step of our pipeline with step-specific prompts. Results in Table [2| show that LLMs
without additional tools suffer only minor performance drop, indicating that the learning of abstract
reasoning in our framework is the major contributor to the improvements.

We also investigate the effect of using AbstRaL’s pipeline to construct the abstraction within contexts,
ie, X — XA 5 YA 5 A, by testing an ablated framework (w/o Contexts), where LLMs are
trained (with SFT and the same RL approach) to directly generate the abstraction .4 based on
the abstract input question X4, i.e., ¥ — X — A without explicitly generating }** and post-
processing it by abstraction retrieval. As shown in Table 2] LLMs that learn inferences without
intermediate contexts fall far behind the unablated ones. This indicates that narrowing down the gap
between symbolic abstraction and natural language is important to faithful abstract thinking.
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Table 3: Zero-shot evaluation results on OOD datasets. Best results on each model are bold.

Model GSM Train MATH Minerva SAT- AIME24 MMLU BBH
Method MATH Math STEM Social Humanities Other

Ori-SFT 30.0 55 469 00 375 515 41.6 49.7 21.0

Owen25-0.5B-Instruet COTRL 19.2 55 438 00 385  50.8 412 49.1 232

wenz.o-U.oB-Instrue CoA 316 55 438 0.0 385  50.8 41.9 493 218

AbstRaL 347 74 625 00 388 535 422 507 263

Ori-SFT 835 346 906 133 684 825 63.2 76.4 437

CoT-RL 829 357 898 100 685 8IS 63.0 744 46.0

Qwen2.5-Math-7B-Instruct o 837 346 900 127 685 817 633 755 429

AbstRaL 839 386 938 167  68.6 827 63.8 765 54.8

Our third ablation studies the contribution of RL in AbstRaL, by totally ablating the RL (w/o RL)
or removing only the symbolic distance reward (W/0 75ympo1ic). On both the original and perturbed
testing sets, we find that LLMs without RL score far lower than reinforcement-learned ones. Without
Tsymbolic that hints how close the generated abstraction is to the correct one, LLMs also suffer
significant performance drop, and thus under-perform the prompting baseline (CoT-8S). These
findings demonstrate that acquiring faithful abstract reasoning requires careful learning, e.g., via a
proper RL approach and a milestone-style reward that closely monitors the progress of learning.

Lastly, we ablate the granularly-decomposed abstract reasoning (w/o GranulAR) used as AbstRal.’s
training data format. We alter the gold abstract answer ) in our training data back to the standard
socratic CoT format (as shown in Figure ), where we remove listing sub-questions at the start of
reasoning chain and quoting of input conditions at each reasoning step, while just keep the abstract
derivations that forms the abstraction .A. LLMs trained on this ablated data suffer drastic performance
drop on the Distract testing set, indicating that they are vulnerable to useless distractors. This verifies
that our adopted fine-grained reasoning format plays an essential role in identifying interference
conditions, due to planning the reasoning steps and useful input conditions in each step.

5.2 GENERALIZATION TO OOD TASKS

AbstRal.’s learning of abstract thinking in GSM problems also improves general reasoning capabilities
of LLMs, rather than overfitting LLMs to GSM-specific tasks. We verify this by testing LLMs’
zero-shot generalizability on a wide range of OOD datasets beyond GSMB8K, including other math
datasets MATH (Hendrycks et al., [2021), Minerva MATH (Lewkowycz et al., 2022)), SAT-Math from
AGIEval (Zhong et al.,[2024b), AIME24 (MAA| 2024), SVAMP (Patel et al.| [2021)), ASDiv (Miao
et al., 2020), MAWPS (Koncel-Kedziorski et al.| [2016), Gaokao-2023 (Liao et al.| 2024)), TABMWP
(Lu et al., 2022)), College-Math (Tang et al., 2024) and AQUA (Ling et al., [2017), and general
reasoning datasets MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2023), ARC-Challenge
(Clark et al.| [2018)) and OpenBookQA (Mihaylov et al.l 2018)). We compare Qwen models trained with
AbstRaL to the original model checkpoints that are already fine-tuned on GSMS8K in post-training,
denoted as Ori-SFT. We also compare AbstRaL to the baseline method CoT-RL, which improves
the original GSM8K performance of Qwen2.5-Math-7B-Instruct, and to the baseline CoA, which
achieves second-best GSM reasoning robustness (based on the ranking of A).

Table [3| presents part of our zero-shot generalization results (full results are included in Appendix [D).
AbstRaL achieves overall better scores compared to baseline methods, even though the GSM reason-
ing scheme learned in AbstRaL training may not be directly applicable to solving the OOD tasks.
This indicates that learning the abstract thinking underlying GSM can already implicitly benefit other
mathematical reasoning and more general reasoning of LLMs. By contrast, Qwen models trained
with CoT-RL and CoA cannot stably improve upon the original checkpoints (Ori-SFT), showing that
acquiring such “implicit benefit” from GSM needs more careful learning via AbstRalL.

5.3 DISCUSSION

Theoretically, why AbstRaL leads to better reasoning robustness and generalizability? The
abstractions studied in AbstRaL are high-level inference structures that serve as scaffolds for reason-
ing, and robust generalization of LLM reasoning requires understanding of such abstractions (Chen
et al.}2025a; |Saitta et al.,|2013), which is improved by AbstRal’s learning. Abstract thinking is also



Under review as a conference paper at ICLR 2026

an essential component of general fluid intelligence (Chollet, [2019), and AbstRaL’s reinforcement
of abstract thinking also improves such intelligence of LLMs, which naturally contributes to better
generalizability of LLM reasoning. In line with the globality degree (Abbe et al., [2024])) theory,
AbstRaL sets an intermediate learning step (the problem abstraction) that is likely useful to reach the
final step (answering the question). This may narrow down the globality degree, i.e., distribution gap
between the input and the output of the reasoning task, and reduce the chance of modeling shallow
reasoning patterns or shortcuts. It would be an interesting future work to establish these formally.

6 RELATED WORK

Reasoning Robustness Recent advances in LLM reasoning have also spotted considerable robust-
ness challenges (Yu et al., 20235)), reflected by benchmarks in symbolic reasoning, such as logical
(Bao et al.} |2023) and mathematical (Sundaram et al., 2024} L1 et al., 2024; |Srivastava et al., 2024}
Mirzadeh et al., [2025) reasoning, and in factual or commonsense reasoning (Yang et al., 2023}
Qian et al. 2024} Qiang et al., [2024). All above benchmarks consistently reveal that LLMs are
easily perturbed by test-time data distribution shifts. Inspired by improving robustness via data
augmentation (Rebuffi et al.| 2021b), previous works (Gan & Ng, [2019; Rebuffi et al., 2021a}; [Zhou
et al., [2024} |Boix-Adsera et al., 2024) use various data synthesis techniques to expand the coverage
of training samples, and thus anticipate potential distribution shifts, which naturally increases the
computational cost of developing a LLM. In this work, we aim to improve reasoning robustness of
LLMs by incentivizing their abstract thinking, instead of replying on larger amount of instantiations.

Abstract Thinking and Planning  Abstract thinking is an essential component of general fluid
intelligence (Chollet, [2019)), and is also the key to human cognition and reasoning (Saitta et al., [ 2013).
It requires making inferences based on abstract fundamental rules or concepts (Chen et al.l 2025a)),
rather than just memorizing a probabilistic pattern matching (Gendron et al., [2024; |Xu et al., 2025).
Recently, various reasoning (or data) formats have been proposed for LLMs to learn abstract thinking,
such as AoT (Hong et al., [2024) and CoA (Gao et al., 2025) based on natural language, and PoT
(Chen et al., [2022), PAL (Gao et al.|[2023) and SyReLLM (Dutta et al.,[2024) based on programming
or formal language. On the other hand, planning is also a basic human reasoning skill (Wilenskyl
1983)), which benefits LLM reasoning. Typical planning methods, such as chain-of-thought (CoT)
(Wei et al.| |2022) and socratic problem decomposition (Shridhar et al.l 2023)), are widely adopted in
LLMs to improve reasoning. Our work develops a better learning scheme of abstract thinking based
on more commonly used natural language, and also integrates it within the power of planning.

Reinforcement Learning RL is a popular technique used in recent development of LLMs (Shao
et al.,|2024; Guo et al.| 2025)), to boost reasoning capabilities. A representative RL approach is PPO
(Schulman et al., 2017), typically used for learning from human feedback (RLHF) (Christiano et al.,
2017;|Ouyang et al., [2022)) via a reward model pre-trained on human preference annotations. As a
step forward, DPO (Rafailov et al.,2023)) simplifies the PPO implementation by optimizing the direct
preference of policy model, which gets rid of pre-training an additional reward model. Our method
adopts GRPO (Shao et al.| 2024) with model-free rewards, which further cuts off the training of value
model (used for advantage estimation) by using a group relative advantage.

7 CONCLUSION

This paper proposes a method, AbstRal,, to promote abstract thinking in large language models
(LLMs). AbstRaL is designed to improve GSM reasoning robustness of LLMs, based on the natural
principle that abstract thinking leads to reasoning steps that are more invariant to surface-form
variations. Our abstraction mechanism is implemented through a proper reinforcement learning
(RL) framework, where model-free rewards are derived from newly designed rationales Granu-
IAR that blend socratic chain-of-thought with augmented granularity. This enables both the de-
contextualization of problems and the integration of symbolic tools. We evaluate AbstRaL on recent
GSM perturbation benchmarks and show that it effectively mitigates the performance degradation
caused by instantiation and interferential shifts. Our zero-shot evaluation on OOD tasks further
demonstrates AbstRaL’s effectiveness on improving LLMs’ general reasoning capabilities, which
implies potential to extend our learning method to a broader range of domains in future work.



Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can trans-
formers reason? the globality barrier and inductive scratchpad. Advances in Neural Information
Processing Systems, 37:27850-27895, 2024.

Qiming Bao, Gael Gendron, Alex Yuxuan Peng, Wanjun Zhong, Neset Tan, Yang Chen, Michael
Witbrock, and Jiamou Liu. Assessing and enhancing the robustness of large language models with
task structure variations for logical reasoning. arXiv preprint arXiv:2310.09430, 2023.

Enric Boix-Adsera, Omid Saremi, Emmanuel Abbe, Samy Bengio, Etai Littwin, and Joshua M.
Susskind. When can transformers reason with abstract symbols? In The Twelfth International
Conference on Learning Representations, 2024.

Guanyu Chen, Peiyang Wang, Tianren Zhang, and Feng Chen. Exploring the hidden reasoning
process of large language models by misleading them. arXiv preprint arXiv:2503.16401, 2025a.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025b.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Francois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Subhabrata Dutta, Ishan Pandey, Joykirat Singh, Sunny Manchanda, Soumen Chakrabarti, and
Tanmoy Chakraborty. Frugal Ims trained to invoke symbolic solvers achieve parameter-efficient

arithmetic reasoning. In Proceedings of the AAAI conference on artificial intelligence, volume 38,
pp- 17951-17959, 2024.

Wee Chung Gan and Hwee Tou Ng. Improving the robustness of question answering systems
to question paraphrasing. In Proceedings of the 57th annual meeting of the association for
computational linguistics, pp. 6065-6075, 2019.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: program-aided language models. In Proceedings of the 40th International
Conference on Machine Learning, pp. 10764—10799, 2023.

Silin Gao, Jane Dwivedi-Yu, Ping Yu, Xiaoqing Ellen Tan, Ramakanth Pasunuru, Olga Golovneva,
Koustuv Sinha, Asli Celikyilmaz, Antoine Bosselut, and Tianlu Wang. Efficient tool use with chain-
of-abstraction reasoning. In Proceedings of the 31st International Conference on Computational
Linguistics, pp. 2727-2743, 2025.

Gaél Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are not
strong abstract reasoners. In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, pp. 6270-6278, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

10



Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Ruixin Hong, Hongming Zhang, Xiaoman Pan, Dong Yu, and Changshui Zhang. Abstraction-of-
thought makes language models better reasoners. arXiv preprint arXiv:2406.12442, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. Mawps:
A math word problem repository. In Proceedings of the 2016 conference of the north american
chapter of the association for computational linguistics: human language technologies, pp. 1152—

1157, 2016.

Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan. Llm
post-training: A deep dive into reasoning large language models. arXiv preprint arXiv:2502.21321,
2025.

Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pp. 707-710. Soviet Union, 1966.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative

reasoning problems with language models. Advances in neural information processing systems,
35:3843-3857, 2022.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
benchmark for evaluating the robustness of 1lms as mathematical problem solvers. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2961-2984, 2024.

Minpeng Liao, Chengxi Li, Wei Luo, Wu Jing, and Kai Fan. Mario: Math reasoning with code
interpreter output-a reproducible pipeline. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 905-924, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158-167,
2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. arXiv preprint arXiv:2209.14610, 2022.

MAA. American invitational mathematics examination-aime 2024, 2024.

Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 157-165, 2022.

11



Under review as a conference paper at ICLR 2026

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 975-984, 2020.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381-2391, 2018.

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
large language models. In The Thirteenth International Conference on Learning Representations,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2080-2094, 2021.

Kun Qian, Shunji Wan, Claudia Tang, Youzhi Wang, Xuanming Zhang, Maximillian Chen, and Zhou
Yu. Varbench: Robust language model benchmarking through dynamic variable perturbation. In
Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 16131-16161, 2024.

Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg Ver Steeg, Anoop Kumar, Anna Rumshisky,
and Aram Galstyan. Prompt perturbation consistency learning for robust language models. In
Findings of the Association for Computational Linguistics: EACL 2024, pp. 1357-1370, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia Wiles, and Tim-
othy Mann. Fixing data augmentation to improve adversarial robustness. arXiv preprint
arXiv:2103.01946, 2021a.

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles, and
Timothy A Mann. Data augmentation can improve robustness. Advances in neural information
processing systems, 34:29935-29948, 2021b.

Lorenza Saitta, Jean-Daniel Zucker, Lorenza Saitta, and Jean-Daniel Zucker. Abstraction in Artificial
Intelligence. Springer, 2013.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
smaller language models. In Findings of the Association for Computational Linguistics: ACL 2023,
pp. 7059-7073, 2023.

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince, Sooraj
Thomas, et al. Functional benchmarks for robust evaluation of reasoning performance, and the
reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

Sowmya S Sundaram, Sairam Gurajada, Deepak Padmanabhan, Savitha Sam Abraham, and Marco
Fisichella. Does a language model “understand” high school math? a survey of deep learning based
word problem solvers. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
14(4):e1534, 2024.

12



Under review as a conference paper at ICLR 2026

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 13003-13051, 2023.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. In International Conference on Machine Learning, pp. 47885—
47900. PMLR, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Robert Wilensky. Planning and understanding: A computational approach to human reasoning. 1983.

Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
language models: A survey. arXiv preprint arXiv:2406.04244, 2024.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, and Erik Cambria. Are large language
models really good logical reasoners? a comprehensive evaluation and beyond. IEEFE Transactions
on Knowledge and Data Engineering, 2025.

Kuan-Man Xu. Using the bootstrap method for a statistical significance test of differences between
summary histograms. Monthly weather review, 134(5):1442-1453, 2006.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E Gonzalez, and Ion Stoica. Rethinking
benchmark and contamination for language models with rephrased samples. arXiv preprint
arXiv:2311.04850, 2023.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 10210-10229, 2024c.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1-39, 2024.

Tong Yu, Yongcheng Jing, Xikun Zhang, Wentao Jiang, Wenjie Wu, Yingjie Wang, Wenbin Hu,
Bo Du, and Dacheng Tao. Benchmarking reasoning robustness in large language models. arXiv
preprint arXiv:2503.04550, 2025.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu,
Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of openai ol: Opportunities and challenges
of agi. arXiv preprint arXiv:2409.18486, 2024a.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models. In
Findings of the Association for Computational Linguistics: NAACL 2024, pp. 2299-2314, 2024b.

Yue Zhou, Yada Zhu, Diego Antognini, Yoon Kim, and Yang Zhang. Paraphrase and solve: Exploring
and exploiting the impact of surface form on mathematical reasoning in large language models.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 2793—
2804, 2024.

13



Under review as a conference paper at ICLR 2026

A  GRPO WITH ABSTRACTION REWARDS

Our proposed AbstRal framework adopts GRPO (Shao et al., [2024) as the RL algorithm to train
LLM:s (on top of supervised fine-tuning) on the task of abstract reasoning, i.e., generating the abstract
answer ) based on the input abstract question X'

For each input question X, GRPO samples a group of output answers {37;4, )75/“, e )7534} from the
current (old policy) model 7y, and optimizes the (policy) model 7y by maximizing the objective:

1 G . We(i?WXA) . ﬂe(ingA)
621:1 (mln (WRZ'7CIIP m,l _571 +e€ RZ _/B]D)KL ('ﬂ‘g“'frr@f') (2)
where € and 8 are hyperparameters. We set the reference policy 7.y as the model trained with only
supervised fine-tuning (SFT), which is used for calculating the KL divergence regularization:

Tref (5’?\?(“‘) Tref (FIXA)

Dx 1 (7| |Tres) = We(jf?|XA) —log m,(j;?\;m) -1 3)

R; is the group relative advantage granted to the abstraction .Z, retrieved from each sampled output
answer yiA, which applies a group normalization on our proposed abstraction rewards 74, ser and
Tsymbolic defined in §3.2] with reference to the input conditions C and gold answer Ans, and to the
gold abstraction A retrieved from the gold response Y, respectively:

R, = r;—mean({r1,r2, ,rc}) . Ti = Tanswer (.A“ C, Ans) + Tsymbolic(Ai7 .A) “4)

std({r1,r2,-,rc})

B IMPLEMENTATION DETAILS OF ABSTRAL

Condition Recognition We create few-shot examples to prompt a Llama-3.3-70B-Instruct
(Grattafiori et al., 2024) model to accomplish the first condition recognition step of AbstRalL. Table
presents the instruction and few-shot examples used as the task demonstration in our prompting. The
LLM is tasked to label the numerical values in the input question X with square brackets “[]”, and
then sequentially replace each labeled value with an abstract symbol indexing as “in0”, “in1”, etc., to
create the abstract question XA, Note that for implicit numerical values such as “one hundred” and
“twice”, we also prompt the LLM to convert them into explicit format “100” and “2 times”, so that the
numbers can be labeled and replaced. Meanwhile, the LLM is asked to use equations to record the
replacements, e.g., “in0 = 27, in order to create the conditions C. 4 NVIDIA A100-SXM4 (80GB)
GPUs were used for running the condition recognition step based on Llama-3.3-70B-Instruct, which
took about 36 hours to process all training and testing data samples.

Abstract Reasoning We tune various LLMs on our constructed GranulAR data (§3.1), with
our SFT and RL scheme (§3.2), to perform the core abstract reasoning step. Our tested LLMs
include Llama3 model series (Grattafiori et al.,[2024) (Llama-3.2-1B-Instruct, LLlama-3.2-3B-Instruct
and Llama-3.1-8B-Instruct), Qwen2.5 model series (Yang et al.| [2024a) (Qwen2.5-0.5B-Instruct,
Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct and its math specialized version
Qwen?2.5-Math-7B-Instruct) and Mathstral-7BP| All LLMs are supposed to follow our GranulAR
training data to index the derived output variables in their generations as “out0”, “outl”, etc., and
highlight each abstract math derivation in double angle brackets such as “(({in0 * inl = out0))”.
LLMs are also supposed to generate a fixed statement “The final answer is [outN].”, to clarify the
output variable that represents the final answer. At inference phase, LLMs use greedy decoding to
generate their abstract answers.

For SFT, we set the batch size as 8, using 4 NVIDIA A100-SXM4 (80GB) GPUs (i.e., batch size
is 2 on each GPU), and set the learning rate as 5¢~6, using AdamW [Loshchilov & Hutter| (2018)
optimizer with 3; = 0.9, B2 = 0.999 and ¢ = 1e~%. All LLMs were trained with SFT for 2 epochs
on our GranulAR data, which took less than 1 hour.

For RL, we set the positive (correct) reward 7.orrect = 2.5 in our answer correctness reward
Tanswer (Ai, C, Ans), and the maximum reward r,,,, = 1.5 in our symbolic distance reward

Shttps://huggingface.co/mistralai/Mathstral-7B-v0.1
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rsymbo”c(ﬂi, A). The hyperparameters of GRPO algorithm are set to 8 = 0.04 (KL coefficient) and

€ = 0.2 (for clipping), with number of generations (i.e., {V{*, V5, ..., yg}}) sampled per group (i.e.,
per given X*) set as G = 16, and with the temperature, top,, and top,, of the sampling set as 0.9, 1.0

and 50, respectively. The learning rate of our RL optimization is set to 5¢ 7, using also AdamW
optimizer with 8; = 0.9, 82 = 0.99 and € = 1le~8. A cosine learning rate scheduler is employed
with warm-up ratio set to 0.1, and the training weight decay and gradient norm clip value are also
both set to 0.1. We use 8 NVIDIA A100-SXM4 (80GB) GPUs to train each LLM with RL. For 7B
and 8B LLMs, the batch size of generation is set to 2 per GPU, with gradient accumulation steps
set as 4, i.e., the policy gradient update is performed when every 4 groups of G = 16 generations (2
batch size multiply 8 GPUs) are sampled. For other smaller LLMs, the batch size of generation is
set to 8 per GPU instead, with gradient accumulation step set as 1, where still 4 groups of G = 16
generations (8 batch size multiply 8 GPUs) are sampled per policy gradient update. All LLMs were
trained with RL for 8 epochs on our GranulAR data, which took about 3 to 5 days.

Abstraction Retrieval and Symbolic Derivation We simply use a regex-matching script to extract

all math derivations that are enclosed in double angle brackets in the model generated answer )4 (or
V4 in our GranulAR data construction). All extracted math derivations form the problem abstraction

A (or A). During the tokenization of the abstraction (used for calculating the symbolic distance
reward in our RL approach), the tokenized lists of derivations are concatenated with a special token

“(space)”, as shown in Figure [5S| We treat the output math derivations in A (or A) and the input
conditions in C jointly as a system of equations, which is fed into a SymPyE] equation solver to derive
the final answer.

GranulAR Training Data Construction Based on the abstract question X' and the gold socratic
CoT response ) to the question, we prompt Llama-3.3-70B-Instruct to rewrite ) into our granularly-
decomposed abstract reasoning (GranulAR) format )4, which is used as the training data for LLMs
to learn the abstract reasoning step in AbstRaL. To facilitate the rewriting, we employ a two-step
pipeline. First, the Llama model is prompted to replace the numerical values in ) with abstract
symbols, by either quoting the abstract symbols in X for input values or creating new abstract
symbols for derived output values. All derivations in the response are supposed to be enclosed in
double angle brackets “(())”. Second, based on the rewritten response in the first step, the Llama
model is prompted to further rewrite the response (in socratic CoT format) into our GranulAR format,
while keep all the abstract symbols in the response unchanged. Table[IT|and[I2]present the instruction
and few-shot examples used for prompting our two-step GranulAR training data construction. For
each step of rewriting, 4 NVIDIA A100-SXM4 (80GB) GPUs were used to run the Llama model.
About 36 and 48 hours are spent to conduct the first and the second rewriting steps, respectively, on
all training data samples.

After each step of response rewriting, we filter the output of Llama model by verifying the correctness
of its derivations, i.e., we use regex-matching to extract all derivations enclosed in “(())”, and
pass them (along with the input conditions C generated in the condition recognition step) into the
SymPy solver, to derive the final answer (number), checking whether it matches the gold answer.
We apply our two-step rewriting to the socratic version of GSM8K |Cobbe et al.|(2021)) training set
from OpenA]ﬂ After the first step of rewriting and filtering, 6503 out of 7473 training samples are
correctly rewritten and kept, while after the second step of rewriting and filtering, 6386 out of 6503
training samples are correctly rewritten and reserved as our final training data.

C DETAILS OF BASELINE METHODS

CoT-8S prompts LLMs with the demonstration template suggested by GSM-Symbolic (Mirzadeh
et al., 2025) and the common 8-shot examplesﬂ used for GSM8K evaluation, to generate CoT answer
to the input question. The last number (after “The final answer is”) is extracted as the final answer.

®https://github.com/sympy/sympy

7https ://huggingface.co/datasets/openai/gsm8k/tree/main/socratic

8https ://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/
tasks/gsm8k/gsm8k-cot.yaml
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PoT-8S (Chen et al.; 2022) conducts GSM reasoning via Python programming. It prompts LLMs with
8-shot examples to generate program-based solution to the input problem, which is then executed by
a Python interpreter to derive the final answer.

CoT-RL tunes LLMs on the non-rewritten GSM8K training data (X, ))) (socratic CoT versiorﬂ
with 7473 samples), using the same SFT and RL algorithm (GRPO) as our approach. Since CoT-RL
does not generate abstractions in the reasoning chains, only our answer correctness reward 7, swer
(§3.2) is used as the learning signal in RL, which checks whether the final answer (last number)
extracted from the generated CoT matches the gold answer. In particular, 74y, swer = Tcorrect (POSIitive
hyperparameter) if answers match, otherwise 4, swer = 0.

CoA (Gao et al.,[2025)) is another abstract reasoning method that fine-tunes LLMs to generate abstract
reasoning chains. However, different from AbstRaL, only the output numbers in CoA reasoning
chains are represented by abstract symbols, without abstracting the input conditions (X' and C) and
using our granularly decomposed reasoning schema (GranulAR). The learning of CoA is based on
only SFT, without integrating proper RL.

AoT (Hong et al.l|2024) augments CoT data by adding abstract step descriptions before each step of
the reasoning chains, and fine-tunes LLMs on the augmented data. Similar to the baseline method
CoA, AoT trains LLMs via plain SFT, without RL that augments the faithfulness of abstract reasoning.

SyReLM (Dutta et al.| 2024) similarly uses RL and symbolic rewards to augment the learning of
abstract reasoning. However, different from AbstRaL, it formulates abstractions in programming or
formal languages, which may hinder LLMs from integrating abstract reasoning with their pre-learned
reasoning strategies (mostly in natural language) during pre-training or post-training.

D FULL EXPERIMENTAL RESULTS

Table ] and [5] present the evaluation results of all our tested LLMs on GSM-Symbolic and GSM-
Plus datasets, respectively. Results on all LLMs consistently demonstrate that AbstRaL effectively
improves GSM reasoning robustness when generalizing to both instantiation and interferential shifts.
On each tested LLM, we also conduct the bootstrap statistical significant test Xu| (2006) between the
best and second-best results, and highlight the best results (with *) if they are significantly better than
their corresponding second-best results with significant test p-value < 0.05.

Table[6]and [7] present the full OOD evaluation results on other mathematical reasoning and general
reasoning datasets. AbstRaL consistently outperforms baseline methods across all the tested OOD
datasets, showing superior improvements on the general reasoning capabilities of LLMs.

E QUALITATIVE ANALYSIS

Table 8 and 0] present two mathematical reasoning examples (respectively on GSM-Symbolic and
GSM-Plus datasets) of our tested strongest LLM Qwen2.5-Math-7B-Instruct, using either baseline
CoT-8S method or our AbstRal.. The LLM with AbstRaL performs more stable math derivations
when facing the variations of relevant conditions (Table(8]), and achieves more robust reasoning chains
when dealing with the inserted distracting condition (Table D). We include more detailed analysis in
the corresponding table captions.

F THEORETICAL OPEN PROBLEMS

It would be interesting to find a theoretical setting to study the impact of abstraction on the sample/time
complexity of learning, the OOD robustness and the model size requirements for learning. For
instance, formalizing data distributions of triplets (A, X,Y’), where X — Y represents a target of
a reasoning problem X with solution Y, and A an abstraction of X that removes context (with the
same solution Y'). One has to define properly the notion of abstraction, distinguishing potentially
de-contextualization from reasoning resolution (e.g., A should not be Y). Is there an appropriate
framework (including a learning model class) under which statements of the following kind could be

“We also did a pilot study of training LLMs with non-socratic CoT data, which achieves similar results.
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Table 4: More evaluation results on GSM-Symbolic. A denotes the relative percentage of drop
comparing performance on Vary Both to performance on Origin 100. Best results on each model are
bold, where lower is better for A. Standard deviation (std) of multi-round evaluation results are in
brackets, where lowest std values on each model are underlined. The best (bold) results with * are
significantly better than their corresponding second-best results, with significant test p-value < 0.05.

Model Method Vary Num. Vary Name Vary Both Origin 100 A (%)
CoT-8S 03864 (0.030) 04250 (0.026)  0.3890 (0.038) 04800 1896
Llamass 2.1 Bolnstruct CoT-RL 04788 (0.031) 05342 (0.024) 04488 (0.038) 05700  21.26
' CoA 04534 (0.020) 04372 (0.026) 04242 (0.030) 04600  7.78
AbstRal.  0.5912* (0.016) 0.5838* (0.023) 0.5804* (0.027)  0.6000°  3.27
CoT-8S 07218 (0.027) 07638 (0.027) 07114 (0.031) _ 0.8400" 1531
a3 2-3BInstruct CoT-RL 07056 (0.027) 07516 (0.023)  0.6898 (0.026)  0.8000  13.78
23 CoA 0.6450 (0.019)  0.6802 (0.021)  0.6760 (0.026)  0.6800  0.59
AbstRal.  0.7960° (0.014) 0.7982° (0.020) 0.7946* (0.023)  0.8000  0.68
CoT-8S  0.8440 (0.026)  0.8746 (0.021)  0.8236 (0.032) _ 0.8700 533
Lo, L8B-Instruct CoT-RL  07784(0.029) 08710 (0.014) 07540 (0.026) 08300  9.16
' CoA 07240 (0.019)  0.7086 (0.019)  0.6944 (0.025) 07200  3.56
AbstRal.  0.8686° (0.013) 0.8672 (0.018) 0.8620° (0.023)  0.8700  0.92
CoT-8S  03394(0.039) 03724 (0.024) 03398 (0.033) 03800  10.58
Owen?.5-0.5B-Instruct CoT-RL  03192(0.025) 03948 (0.032) 03228(0.032) 03500 7.7
50, CoA 02866 (0.025)  0.3060 (0.026) 02872 (0.026)  0.2900 097
AbstRal.  0.4396* (0.015) 0.4416* (0.026) 0.4456* (0.025)  0.4400°  -1.27
CoT-8S 05728 (0.032)  0.6416 (0.030)  0.5752(0.033) _ 0.6600  12.85
Owen2.5.1.5B-Instruct CoT-RL 05296 (0.037) 0.5830 (0.034) 05126 (0.034) 05600  8.46
Sl CoA 0.4680 (0.027)  0.4942 (0.029) 04656 (0.027)  0.5100 871
AbstRal.  0.6444* (0.018) 0.6414 (0.028) 0.6416* (0.025)  0.6500  1.29
CoT-8S 07222 (0.037) 07820 (0.025)  0.7256 (0.027) _ 0.8200  11.51
Owen2.5.3B-Instruct CoT-RL 07150 (0.036)  0.7706 (0.025)  0.6888 (0.038)  0.7900  12.81
: CoA 0.6424 (0.030)  0.6134 (0.030) 06234 (0.034)  0.6500  4.09
AbstRal. 07842 (0.014)  0.7852 (0.024) 0.7834* (0.024) 07900  0.84
CoT-8S  0.8726 (0.026) 09230 (0.016)  0.8740 (0.023) _ 0.9200  5.00
Owen2.5.7B-Instruct CoT-RL 07770 (0.033) 08170 (0.024) 07928 (0.034) 08500 673
: ‘ CoA 07310 (0.023)  0.7408 (0.027) 07414 (0.029) 07600  2.45
AbstRal.  0.9022° (0.014) 0.9248 (0.017) 0.8834* (0.019) 08900  0.74
CoT-8S  0.8956 (0.021)  0.9108 (0.018)  0.8766 (0.023) 09500  7.73
CoT-RL 08942 (0.022) 09154 (0.012) 08812(0.021)  0.9600 821
Qwen2.5-Math-7B-Instruct ¢ 07122 (0.028)  0.6976 (0.031)  0.6970 (0.033) 07100  1.83
AbstRal.  0.9066° (0.015) 09014 (0.013) 0.9022* (0.016) 09100  0.86
CoT-8S 07876 (0.024)  0.8084 (0.018)  0.7604 (0.031) _ 0.8000 495
Mathstral TBO.1 CoT-RL 08082 (0.018) 07986 (0.021)  0.7688 (0.025) 07800 144
: : CoA 07506 (0.031)  0.7740 (0.028) 07402 (0.027) 07500 131
AbstRal.  0.8100° (0.012) 0.8214* (0.017) 0.8228* (0.019)  0.8100  -1.58

made rigorous: (i) the sample complexity of learning A — Y is lower than X — Y (a consequence
of defining abstraction and instantiation processes formally and appropriately)? (ii) learning X — Y
by relying on a proper abstraction A leads to improved robustness to properly modeled instantiation
shifts? (iii) learning via abstraction can be achieved with models of smaller sizes?

G LIMITATIONS

We acknowledge a few limitations in our work. First, the datasets used for testing our method’s
improvement on reasoning robustness cannot have exhaustive coverage of all real-world scenarios.
We instead consider the most representative domain, i.e., grade school mathematics, which is a
common and typical domain for studying reasoning robustness|L1 et al.| (2024); |Qian et al.| (2024);
Mirzadeh et al.|(2025), and use English as a primary language in our testing. For future work, the
robustness testbed of our method can be extended to more domains such as high-school competition
mathematics|Hendrycks et al.| (202 1)); [Srivastava et al.| (2024) and commonsense (or factual) reasoning
Yang et al.|(2023); |Qian et al.|(2024); Qiang et al.| (2024), and to more languages. Second, our test of
reasoning robustness is scoped to instantiation and interferential shifts, based on the assumption that
the tested perturbations do not modify the underlying abstraction, i.e., the abstract math derivations.
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Table 5: More evaluation results on GSM-Plus. Best results on each model are bold. The best (bold)
results with * are significantly better than their corresponding second-best results, with significant
test p-value < 0.05.

Model Method Digit Ex. Int-Dec-Fra Num. Sub. Rephrase Distract Original
CoT-8S  0.3889 0.2934 0.4321 05042 02790  0.4519

Llama.3.2-1B Instruct CoT-RL  0.4064 0.3063 0.4572 05299 02646 05125
ama-23.2- 1 B-Instrue CoA 0.3798 0.3237 0.3889 0.4139 02032 04261
AbstRaL  0.5641* 0.5626* 0.5641* 0.5633*  0.4359*  0.5641*

CoT-8S 07142 0.6277 0.7172 0.7877  0.6073  0.7953

Llama.3.2.3B Instruct CoT-RL  0.6808 0.5406 0.7043 0.7718  0.5398  0.7763
: CoA 0.6224 0.5444 0.6126 0.6793 04177  0.6626
AbstRaL  0.7968" 0.7945* 0.7968" 0.7923  0.6755*  0.7968

CoT-8S  0.7938 0.7445 0.7854 0.8461 07400  0.8567

Llama.3.1-8B-Instruct CoT-RL  0.7240 0.5914 0.7187 0.8309  0.5466  0.8234
: CoA 0.7202 0.6398 0.7035 0.7657  0.5344  0.7497
AbstRaL  0.8506* 0.8476* 0.8506* 0.8514  0.7854*  0.8506

CoT-8S  0.3601 0.2866 0.3958 0.4359 02267  0.4238

Owen2.5-0.5B-Instruct CoT-RL  0.3336 0.2373 0.3571 0.4079  0.1524  0.3798
ens.o-0.ob-Instrue CoA 0.2745 0.2267 0.2782 03161 01266  0.3033
AbstRaL  0.4670* 0.4663* 0.4670* 0.4625° 03654  0.4670*

CoT-8S  0.6096 0.5421 0.6194 0.6793 04488  0.6702

Qwen2.5-1.5B-nstruct CoT-RL  0.5527 0.4632 0.5754 0.6520 03950  0.6202
= CoA 0.4602 0.3700 0.4511 05186 02631  0.5019
AbstRaL  0.6778 0.6763* 0.6778* 0.6755  0.5777*  0.6778

CoT8S  0.7726 0.7074 0.7430 0.8218  0.6346  0.8120

Qwen2.5-3B-Instruct CoT-RL  0.7149 0.6353 0.7331 0.7817 05277  0.7726
wenz. u CoA 0.6232 0.5497 0.5989 0.6679 04200  0.6702
AbstRaL  0.8158* 0.8128* 0.8158* 0.8249  0.7036*  0.8158

CoT-8S  0.8400 0.8067 0.8324 0.8779 07938  0.8901

Qwen2.5-7B-Instruct CoT-RL  0.7582 0.6854 0.7369 0.8097  0.6331  0.8036
: : CoA 0.7195 0.6528 0.6755 0.7657  0.5588  0.7597
AbstRaL  0.8825* 0.8795* 0.8825* 0.8870°  0.7953  0.8825

CoT-8S  0.8552 0.8218 0.8453 09052 07627 09181

CoT-RL  0.8757 0.8522 0.8506 0.9037 08150  0.9340*

Qwen2.5-Math-7B-Instruct ¢ 0.7460 0.6907 07180 07642 05709  0.7809
AbstRaL  0.8916* 0.8886* 0.8916* 0.8992  0.8226  0.8916

CoT-8S  0.7544 0.6892 0.7604 0.8029  0.6808  0.8074

Mathstral- 7Bv0.1 CoT-RL  0.7665 0.7111 0.7331 0.8089  0.5542  0.7953
: CoA 0.7149 0.6422 0.6831 0.7483  0.5246  0.7619

AbstRaL  0.8241* 0.8211* 0.8241* 0.8247*  0.7657°  0.8241*

Table 6: Zero-shot evaluation results on OOD math datasets. Best results on each model are bold.

Minerva SAT- AIME- . Gaokao- College-
Model Method MATH MATH Math 24 SVAMP ASDiv MAWPS 2023 TABMWP Math AQUA
Ori-SFT 30.0 5.5 46.9 0.0 56.0 74.3 88.1 27.0 48.8 26.2 31.5
Qwen2.5-0.5B CoT-RL 19.2 5.5 43.8 0.0 45.2 64.2 84.4 16.6 33.1 16.2 26.4
-Instruct CoA 31.6 5.5 43.8 0.0 39.8 54.0 60.1 23.9 46.2 27.8 30.7
AbstRal.  34.7 7.4 62.5 0.0 62.7 77.4 89.8 29.1 50.1 28.5 32.7
Ori-SFT 83.5 34.6 90.6 133 93.5 95.3 98.5 67.5 93.9 471 74.4
Qwen2.5-Math CoT-RL 82.9 35.7 89.8 10.0 92.5 94.9 98.1 67.5 89.2 46.8 65.4
-7B-Instruct ~ CoA 83.7 34.6 90.0 127 93.1 95.1 98.3 67.0 92.9 47.2 72.8
AbstRalL 83.9 38.6 93.8 16.7 94.3 95.3 98.5 68.3 93.9 47.2 74.8

Future work can extend our study to perturbations on the abstraction, such as altering “A is M
years old, B is N years older than A, how old is B?” (M+N) to “A is M years old, B is N years
younger than A, how old is B?” (M-N), to test the robustness of generalization to similar reasoning
strategies. Furthermore, our method is tested on the setting of tuning the full LLMs, which requires
considerable computing resources. More efficient model training schemes, such as LoRA Hu et al.
(2021])), can be applied in future work. Lastly, all LLMs in our experiments use greedy decoding
to generate inferences, which leaves room for future work to test our method on more advanced
decoding strategies, such as self-consistency (Wang et al., 2022 decoding.
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Table 7: Zero-shot evaluation results on other OOD datasets. Best results on each model are bold.

Model Method MMLU BBH ARC- OpenBook-
STEM Social Humanities Other Challenge QA
Ori-SFT 375 515 416 497 210 333 36
CoTRL 385 508 412 491 232 322 332
Qwen2.5-0.5B-Instruct s 385 508 419 493 218 326 336
AbstRal 388 535 422 507 263 338 34.6
Ori-SFT 684 825 632 764 437 519 48.8
CoTRL 685 815 630 744 460 520 47.0
Qwen2.5-Math-7B-Tnstruct 685 817 633 755 429 510 48.4
AbstRal  68.6 827 638 765 548 523 49.4
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Table 8: Mathematical reasoning examples on GSM-Symbolic dataset. Responses are generated
by Qwen2.5-Math-7B-Instruct with either CoT-8S or AbstRalL methods. Input queries include an
original question (from Origin 100) and its corresponding variation (from Vary Both) with names (or
entities) and numbers changed to other values, as illustrated by the words. For the Origin 100
question, both CoT-8S and AbstRaL achieve correct math derivations and answers, which are colored
in blue and brown, respectively. However, when transferring to the Vary Both question, CoT-8S turns
to conduct a wrong calculation on the altered numbers (7 x 39), and thus derives a wrong answer,
as shown by the red numbers. By contrast, AbstRal. keeps correct math derivations, due to using
abstract symbols (with a symbolic solver) that are invariant to changes of input numbers.

GSM-Symbolic (Origin 100): places on some trays. Each tray can hold . If he has
and 2 trays, how many won’t he be able to place on the tray?

Gold Response: Jaime will be able to place a total of 24 x 2 = 48 eggs. Therefore,
there are 64 - 48 = 16 eggs that he won’t be able to place on the tray. The answer is 16.

Response with CoT-8S: Let’s think step by step. Each tray can hold 24 eggs, and Jaime has 2 trays,
so the total capacity of the trays is 24x2=48 eggs. Jaime has 64 eggs, but only 48 can fit on the trays.
Therefore, the number of eggs that won’t be able to be placed on the tray is 64-48=16. The final answer is 16.

Response with AbstRalL.:

(Abstract Question) Jaime places eggs on the tray. Each tray can hold [in0] eggs. If he has [in]] eggs

and [in2] trays, how many eggs won’t he be able to place on the tray?

(Conditions) in0=24 inl=64 in2=2

(Abstract Answer) Let’s think about the sub-questions we need to answer.

Q1: How many eggs can Jaime place on the trays?

Q2: How many eggs won’t Jaime be able to place on the tray?

Let’s answer each sub-question one by one.

Q1: How many eggs can Jaime place on the trays? Each tray can hold [in0] eggs. Jaime has [in2] trays.

So, the total number of eggs that can be placed on the trays is j j in0*in2=out0 ¢ ¢ eggs.

Q2: How many eggs won’t Jaime be able to place on the tray? Jaime has [in1] eggs. The total number of eggs
that can be placed on the trays is [out0] eggs. So, the number of eggs that won’t be able to be placed on the tray
is | j inl-outO=outl ¢ ; eggs. The final answer is outl.

(Abstraction) in0*in2=out) inl-outO=outl

(Derived Final Answer) out0=48 outl=16

GSM-Symbolic (Vary Both): places on some trays. Each tray can hold . If he has
and 7 trays, how many won’t he be able to place on the tray?

Gold Response: Arash will be able to place a total of 39 x 7 = 273 crackers. Therefore,
there are 302 - 273 = 29 crackers that he won’t be able to place on the tray. The answer is 29.

Response with CoT-8S: First, we need to determine how many crackers Arash can place on the 7 trays.
Since each tray can hold 39 crackers, the total number of crackers that can be placed on 7 trays is (7 x 39).
Calculating (7 x 39): [7x39=7x(40-1)=7x40-7x1=280-7=280].

So, Arash can place 280 crackers on the 7 trays. He has 302 crackers in total. To find out how many crackers
he won’t be able to place, we subtract the number of crackers he can place from the total number of
crackers: [302 - 280 = 22]. The final answer is 22. Arash won’t be able to place 22 crackers on the trays.

Response with AbstRalL.:

(Abstract Question) Arash places crackers on some trays. Each tray can hold [in0] crackers.

If he has [in1] crackers and [in2] trays, how many crackers won’t he be able to place on the tray?

(Conditions) in0=39 inl=302 in2=7

(Abstract Answer) Let’s think about the sub-questions we need to answer.

Q1: How many crackers can Arash place on the trays?

Q2: How many crackers won’t Arash be able to place on the tray?

Let’s answer each sub-question one by one.

Q1: How many crackers can Arash place on the trays? Each tray can hold [inO] crackers. Arash has [in2] trays.
So, the total number of crackers that can be placed on the trays is | j in0*in2=out0 ¢ ¢ crackers.

Q2: How many crackers won’t Arash be able to place on the tray? Arash has [inl] crackers. The total number of
crackers that can be placed on the trays is [out0]. So, the number of crackers that won’t be able to be placed

on the tray is | j inl-outO=outl ; ¢ crackers. The final answer is out].

(Abstraction) in0*in2=out) inl-outO=outl

(Derived Final Answer) out0=273 outl=29
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Table 9: Mathematical reasoning examples on GSM-Plus dataset. Responses are generated by
Qwen2.5-Math-7B-Instruct with either CoT-8S or AbstRalL methods. Input queries include an
original question (from Original) and its corresponding variation (from Distract) where a distracting
condition is inserted into the question, as illustrated by the violet sentence. For the Original question,
both CoT-8S and AbstRaL achieve correct math derivations and answers, which are colored in blue
and brown, respectively. However, when transferring to the Distract question, CoT-8S turns to adopt
an incorrect reasoning chain, where the distracting condition is wrongly incorporated into the answer
derivation, as shown by the red sentences. By contrast, AbstRal. handles the distracting condition
in an additional sub-question (Q2), whose math derivation (colored in gray) does not interfere the
derivations of the correct answer (colored in brown). This illustrates that the holistic planning of
problem solving, which is used in our GranulAR training data format, can effectively mitigate the
interference of distractors, and thus increase reasoning robustness to adversarial distribution shifts.

GSM-Plus (Original): In a race with 240 Asians, 80 were Japanese, and the rest were Chinese. If the number of boys on the Chinese
team was 60, how many girls were on the Chinese team?

Gold Response: If there were 80 Japanese, the number of Chinese was 240-80=160. Since there were 60 boys in the Chinese team,
there were 160-60=100 girls in the Chinese team. The answer is 100.

Response with CoT-8S: Let’s think step by step. First, we need to determine the number of Chinese participants in the race. We know
there are 240 Asians in total and 80 of them are Japanese. Therefore, the number of Chinese participants is: [240-80=160]. Next, we
know that out of these 160 Chinese participants, 60 are boys. To find the number of girls, we subtract the number of boys from the total
number of Chinese participants: [160-60=100]. So, the number of girls on the Chinese team is 100. The final answer is 100.

Response with AbstRaL:

(Abstract Question) In a race with [in0] Asians, [in1] were Japanese, and the rest were Chinese. If the number of boys on the Chinese
team was [in2], how many girls were on the Chinese team?

(Conditions) in0=240 inl=80 in2=60

(Abstract Answer) Let’s think about the sub-questions we need to answer. Q1: How many Chinese were there?

Q2: How many girls were on the Chinese team? Let’s answer each sub-question one by one.

Q1: How many Chinese were there? The total number of Asians in the race is [in0]. There were [in1] Japanese among them. So, the
number of Chinese was  j in0O-inl=out0 ¢ ¢.

Q2: How many girls were on the Chinese team? The total number of Chinese in the race is [out0]. The number of boys on the Chinese
team was [in2]. So, the number of girls on the Chinese team was | j outO-in2=outl ¢ ¢. The final answer is out1.

(Abstraction) in0O-inl=out) out0-in2=outl

(Derived Final Answer) outO=160 outl=100

GSM-Plus (Distract): In a race with 240 Asians, 80 were Japanese, and the rest were Chinese. Among the Japanese, there are 30 girls
and 50 boys. If the number of boys on the Chinese team was 60, how many girls were on the Chinese team?

Gold Response: If there were 80 Japanese, the number of Chinese was 240-80=160. Since there were 60 boys in the Chinese team,
there were 160-60=100 girls in the Chinese team. The answer is 100.

Response with CoT-8S: Let’s break this down step by step. 1.**Total number of Asians in the race**: 240. 2.**Number of Japanese
in the race®*: 80. 3.**Number of Chinese in the race**: [240-80=160]. 4.**Number of boys among the Japanese**: 50. 5.**Number
of girls among the Japanese**: 30. 6.**Number of boys on the Chinese team**: 60. 7.**Number of girls on the Chinese team**:
Since the total number of Chinese participants is 160, and we know the number of boys (60) and girls (30) among the Japanese,

we can find the number of girls on the Chinese team by subtracting the number of boys and girls among the Japanese from the total
number of Chinese. First, calculate the total number of girls among the Japanese: [30 (girls among Japanese) + 0 (girls among Chinese,
since we don’t have this information yet) = 30]. Now, calculate the total number of boys among the Japanese and Chinese [50 (boys
among Japanese) + 60 (boys among Chinese) = 110]. Subtract the number of boys and girls among the Japanese from the total number
of Chinese: [160-110=50]. Therefore, the number of girls on the Chinese team is 50. The final answer is 50.

Response with AbstRaL:

(Abstract Question) In a race with [in0] Asians, [in1] were Japanese, and the rest were Chinese. Among the Japanese, there are [in2]
girls and [in3] boys. If the number of boys on the Chinese team was [in4], how many girls were on the Chinese team?

(Conditions) in0=240 inl=80 in2=30 in3=50 in4=060

(Abstract Answer) Let’s think about the sub-questions we need to answer. Q1: How many Chinese were there? Q2: How many boys
were there among the Chinese? Q3: How many girls were there among the Chinese? Let’s answer each sub-question one by one.

Q1: How many Chinese were there? There were [in0] Asians in total. [in1] of them were Japanese.

So, the number of Chinese is j j in0-inl=out0 ¢ ¢.

Q2: How many boys were there among the Chinese? The total number of boys among the Japanese is [in2] + [in3] =

i i in2+in3=outl ¢ ¢. The total number of boys among the Chinese is [in4]. So, the total number of boys among the Chinese is [in4].
Q3: How many girls were there among the Chinese? The total number of Chinese is [outO]. The total number of boys among the
Chinese is [in4]. So, the total number of girls among the Chinese is j j outO-in4=out2 ; ;. The final answer is out2.

(Abstraction) in0-inl=out) in2+in3=outl  outO-ind=out2

(Derived Final Answer) outO=160 outl=80 out2=100
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Table 10: Instructions and few-shot examples used for prompting condition recognition in AbstRaL.

You are given a math word problem. Please replace the numerical values in the problem with abstract symbols,
and enclose the abstract symbols in square brackets. Do not change any other words or add any other contents
to the problem. Please also write equations to clarify which numerical value each abstract symbol is assigned to.

Example 1:

Input problem: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?

Output problem: Natalia sold clips to [in0] of her friends in April, and then she sold [in1] as many clips in May.
How many clips did Natalia sell altogether in April and May?

Equations: in0=48 inl=1/2

Example 2:

Input problem: The flowers cost $9, the clay pot costs $20 more than the flower, and the bag of soil costs

$2 less than the flower. How much does it cost to plant the flowers?

Output problem: The flowers cost $[in0], the clay pot costs $[in1] more than the flower, and the bag of soil costs
$[in2] less than the flower. How much does it cost to plant the flowers?

Equations: in0=9 in1=20 in2=2

Example 3:

Input problem: From March to August, Sam made $460 doing 23 hours of yard work. However, from September

to February, Sam was only able to work for 8 hours. If Sam is saving up to buy a video game console that

costs $600 and has already spent $340 to fix his car, how many more hours does he need to work before

he can buy the video game console?

Output problem: From March to August, Sam made $[in0] doing [in1] hours of yard work. However, from September
to February, Sam was only able to work for [in2] hours. If Sam is saving up to buy a video game console that

costs $[in3] and has already spent $[in4] to fix his car, how many more hours does he need to work before

he can buy the video game console?

Equations: in0=460 inl1=23 in2=8 in3=600 in4=340

Example 4:

Input problem: Zhang is twice as old as Li. Li is 12 years old. Zhang’s brother Jung is 2 years

older than Zhang. How old is Jung?

Output problem: Zhang is [in0] times as old as Li. Li is [in1] years old. Zhang’s brother Jung is [in2] years
older than Zhang. How old is Jung?

Equations: in0=2 inl=12 in2=2

Example 5:

Input problem: Of the 90 people on William’s bus, 3/5 were Dutch. Of the 1/2 of the Dutch who were also
American, 1/3 got window seats. What’s the number of Dutch Americans who sat at the windows?

Output problem: Of the [in0] people on William’s bus, [in1] were Dutch. Of the [in2] of the Dutch who were also
American, [in3] got window seats. What’s the number of Dutch Americans who sat at the windows?

Equations: in0=90 inl=3/5 in2=1/2 in3=1/3
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Table 11: Instructions and few-shot examples for the first response rewriting step of our GranulAR
training data construction, used for learning abstract reasoning in AbstRaL.

You are given a math word problem with input conditions and solution. Please rewrite the solution by replacing the numerical values
in angle brackets with abstract symbols. If the numerical values are given in the conditions, replace them with the abstract symbols
assigned to them in the square brackets, otherwise replace them with new abstract symbols. Please also remove the redundant
calculations around the angle brackets. Do not add any other contents to the solution.

Example 1:

Problem: Natalia sold clips to [in0] of her friends in April, and then she sold [in1] as many clips in May.

How many clips did Natalia sell altogether in April and May?

Conditions: in0=48 inl=1/2

Solution: How many clips did Natalia sell in May? ** Natalia sold 48/2 = | | 48/2=24 ; ;24 clips in May.

How many clips did Natalia sell altogether in April and May? ** Natalia sold 48+24 = j | 484+24=72 ; ;72 clips
altogether in April and May. The answer is 72.

Rewrite solution: How many clips did Natalia sell in May? ** Natalia sold j ; in0*in1=out0 ¢, ¢, clips in May.
How many clips did Natalia sell altogether in April and May? ** Natalia sold j j in0+outO=outl ; ; clips
altogether in April and May. The answer is outl.

Example 2:

Problem: The flowers cost $[in0], the clay pot costs $[in1] more than the flower, and the bag of soil costs
$[in2] less than the flower. How much does it cost to plant the flowers?

Conditions: in0=9 in1=20 in2=2

Solution: How much does the clay pot cost? ** The clay pot costs $20 + $9 = $; | 20+9=29 ; ;29.

How much does the bag of soil cost? ** The bag of soil costs $9 - $2 = $; | 9-2=7 ; (7.

How much does it cost to plant the flowers? ** The cost to plant the flowers is $9 + $29 + $7 = $; | 9+29+7=45 ; (45.
The answer is 45.

Rewrite solution: How much does the clay pot cost? ** The clay pot costs $; | inl+in0=out0 ; ¢.

How much does the bag of soil cost? ** The bag of soil costs $; | in0-in2=outl ¢ ;.

How much does it cost to plant the flowers? ** The cost to plant the flowers is $; j in0O+outO+outl=out2 ; .
The answer is out2.

Example 3:

Problem: From March to August, Sam made $[in0] doing [in1] hours of yard work. However, from September

to February, Sam was only able to work for [in2] hours. If Sam is saving up to buy a video game console that

costs $[in3] and has already spent $[in4] to fix his car, how many more hours does he need to work before

he can buy the video game console?

Conditions: in0=460 inl1=23 in2=8 in3=600 in4=340

Solution: How much does Sam make per hour? ** Sam makes $460 /23 hrs = § | | 460/23=20 ; ;20/hr. How much did

Sam make from September to February? ** From September to February, Sam made 8hrs x $20/hr = $; ; 8*20=160 ¢, (160.

How much did Sam make from March to February? ** From March to February, Sam made a total of $460 + $160 = $620.

How much money did Sam have after fixing his car? ** After fixing his car, he was left with $620 - $340 = $; ; 620-340=280 , (280.
How much money does Sam need to buy the video game console? ** Sam needs another $600 - $280 = $; ; 600-280=320 ¢, ;,320.
How many more hours does Sam need to work? ** Sam needs to work another $320 / $20/hr = | | 320/20=16 ¢, ;16 hours.

The answer is 16.

Rewrite solution: How much does Sam make per hour? ** Sam makes $; j in0/inl=out0 ;, ;/hr. How much did

Sam make from September to February? ** From September to February, Sam made $; j in2*outO=outl ;.

How much did Sam make from March to February? ** From March to February, Sam made a total of $;j j in0+outl=out2 ; ;.
How much money did Sam have after fixing his car? ** After fixing his car, he was left with $; | out2-ind=out3 ; ;.

How much money does Sam need to buy the video game console? ** Sam needs another $; ; in3-out3=out4 ; ;.

How many more hours does Sam need to work? ** Sam needs to work another j j outd/outO=out5 ; ; hours.

The answer is out5.

Example 4:

Problem: Zhang is [in0] times as old as Li. Li is [in1] years old. Zhang’s brother Jung is [in2] years
older than Zhang. How old is Jung?

Conditions: in0=2 inl=12 in2=2

Solution: How old is Zhang? ** Zhang is 2 * 12 years old = | | 2*12=24 ; ;24 years old.

How old is Jung? ** Jung is 2 years + 24 years = | | 2+24=26 {, (26 years old.

The answer is 26.

Rewrite solution: How old is Zhang? ** Zhang is j j in0*inl=out0 ; ¢ years old.

How old is Jung? ** Jung is j j in2+outO=outl ; ; years old.

The answer is outl.

Example 5:

Problem: Of the [in0] people on William’s bus, [in1] were Dutch. Of the [in2] of the Dutch who were also

American, [in3] got window seats. What’s the number of Dutch Americans who sat at the windows?

Conditions: in0=90 inl=3/5 in2=1/2 in3=1/3

Solution: How many Dutch people were on the bus? ** On the bus, the number of Dutch people was 3/5 of the total number,
a total of 3/5%90 = | j 3/5%90=54 ; /54 people.

How many Dutch Americans were on the bus? ** Out of the 54 people who were Dutch, 1/2 were Dutch Americans,

atotal of 1/2*54 = | 1/2*54=27 ; ;27 people.

How many Dutch Americans sat at the windows? ** If 1/3 of the passengers on the bus identifying as Dutch Americans

sat at the windows, their number is 1/3%27 = ; 1/3*27=9 ; ;9

The answer is 9.

Rewrite solution: How many Dutch people were on the bus? ** On the bus, the number of Dutch people was [in1] of the total number,
atotal of | | in1*inO=out0 ¢, ; people.

How many Dutch Americans were on the bus? ** Out of the [outO] people who were Dutch, [in2] were Dutch Americans,
atotal of | | in2*outO=outl ; ; people.

How many Dutch Americans sat at the windows? ** If [in3] of the passengers on the bus identifying as Dutch Americans

sat at the windows, their number is | j in3*outl=out2 ¢ ¢

The answer is out2.
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Table 12: Instructions and few-shot examples for the second response rewriting step of our GranulAR
training data construction, used for learning abstract reasoning in AbstRalL.

You are given a math word problem with solution. The numerical values in the problem are replaced with abstract symbols and enclosed
in square brackets. The calculations in the solution are also composed of abstract symbols and enclosed in double angle brackets.

Please rewrite the solution by first listing all sub-questions, and then answering each sub-question one by one. Please list the

relevant conditions before answering each sub-question. Please clarify the final answer at the end of the solution.

Example 1:

Problem: Natalia sold clips to [in0] of her friends in April, and then she sold [in1] as many clips in May.

How many clips did Natalia sell altogether in April and May?

Solution: How many clips did Natalia sell in May? ** Natalia sold j j in0*inl=out0 ; ; clips in May.

How many clips did Natalia sell altogether in April and May? ** Natalia sold j j inO+outO=outl ; ; clips
altogether in April and May. The answer is outl.

Rewrite solution: Let’s think about the sub-questions we need to answer.

QI: How many clips did Natalia sell in May?

Q2: How many clips did Natalia sell altogether in April and May?

Let’s answer each sub-question one by one.

Q1: How many clips did Natalia sell in May? Natalia sold [in0] clips in April. She sold [in1] as many clips in May
as she did in April. So she sold | in0*inl=out0 ¢, ¢, clips in May.

Q2: How many clips did Natalia sell altogether in April and May? Natalia sold [in0] clips in April. She sold [outO]
clips in May. So she sold ; j in0+outO=out1 ¢ ¢ clips altogether in April and May.

The final answer is outl.

Example 2:

Problem: The flowers cost $[in0], the clay pot costs $[in1] more than the flower, and the bag of soil costs
$[in2] less than the flower. How much does it cost to plant the flowers?

Solution: How much does the clay pot cost? ** The clay pot costs $; j in1+inO=out0 ;, ;.

How much does the bag of soil cost? ** The bag of soil costs $; j in0-in2=outl ¢ ¢.

How much does it cost to plant the flowers? ** The cost to plant the flowers is $; j inO+outO+outl=out2 ; ;.
The answer is out2.

Rewrite solution: Let’s think about the sub-questions we need to answer.

Q1: How much does the clay pot cost?

Q2: How much does the bag of soil cost?

Q3: How much does it cost to plant the flowers?

Let’s answer each sub-question one by one.

Q1: How much does the clay pot cost? The flowers cost $[in0]. The clay pot costs $[in1] more than the flower.
So the clay pot costs $; j inO+inl=out0 ;, ;.

Q2: How much does the bag of soil cost? The flowers cost $[in0]. The bag of soil costs $[in2] less than the flower.
So the bag of soil costs $; | in0-in2=outl ¢ ;.

Q3: How much does it cost to plant the flowers? The flowers cost $[in0]. The clay pot costs $[out0].

The bag of soil costs $[out1]. So the cost to plant the flowers is $; | inO+outO+outl=out2 ; ;.

The final answer is out2.

Example 3:

Problem: From March to August, Sam made $[in0] doing [in1] hours of yard work. However, from September

to February, Sam was only able to work for [in2] hours. If Sam is saving up to buy a video game console that

costs $[in3] and has already spent $[in4] to fix his car, how many more hours does he need to work before

he can buy the video game console?

Solution: How much does Sam make per hour? ** Sam makes $; ; in0/in1=out0 ; ;/hr. How much did

Sam make from September to February? ** From September to February, Sam made $; | in2*outO=outl ¢, .

How much did Sam make from March to February? ** From March to February, Sam made a total of $; ; inO+outl=out2 ; ;.
How much money did Sam have after fixing his car? ** After fixing his car, he was left with $; ; out2-in4=out3 ; ;.
How much money does Sam need to buy the video game console? ** Sam needs another $; | in3-out3=out4 ; ;.

How many more hours does Sam need to work? ** Sam needs to work another | j out4/outO=out5 ; ; hours.

The answer is out5.

Rewrite solution: Let’s think about the sub-questions we need to answer.

Q1: How much does Sam make per hour?

Q2: How much did Sam make from September to February?

Q3: How much did Sam make from March to February?

Q4: How much money did Sam have after fixing his car?

Q5: How much money does Sam need to buy the video game console?

Q6: How many more hours does Sam need to work?

Let’s answer each sub-question one by one.

Q1: How much does Sam make per hour? Sam made $[in0] doing [in1] hours of yard work.

So he makes $; | in0/in1=out0 ; ¢, per hour.

Q2: How much did Sam make from September to February? From September to February, Sam worked for [in2] hours.
He makes $[out0] per hour. So from September to February, he made $; j in2*outO=outl1 ¢, ;.

Q3: How much did Sam make from March to February? From March to August, Sam made $[in0]. From September to February,
he made $[out1]. So from March to February, he made a total of $; ; inO+outl=out2 ¢ ;.

Q4: How much money did Sam have after fixing his car? Sam made a total of $[out2]. He spent $[in4] to fix his car.

So after fixing his car, he was left with $; ; out2-in4=out3 ; ;.

Q5: How much money does Sam need to buy the video game console? Sam was left with $[out3]. The video game console costs $[in3].
So he needs another $; j in3-out3=out4 ; ;.

Q6: How many more hours does Sam need to work? Sam makes $[out0] per hour. He needs another $[out4].

So he needs to work another | j out4/outO=out5 ;, ¢, hours.

The final answer is out5.
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