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TEMPORAL SCORE RESCALING FOR TEMPERATURE
SAMPLING IN DIFFUSION AND FLOW MODELS
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Figure 1: Temporal Score Rescaling (TSR) provides a mechanism to steer the sampling diversity
of diffusion and flow models at inference. Top-left: Probability density evolution when sampling a
1D Gaussian mixture with DDPM, and the effects of TSR , which can control the sampling process
to yield sharper or flatter distributions. Top-right, bottom: TSR can be applied to any pre-trained
diffusion or flow model, improving performance across diverse domains such as pose prediction,
depth estimation, and image generation.

ABSTRACT

We present a mechanism to steer the sampling diversity of denoising diffusion
and flow matching models, allowing users to sample from a sharper or broader
distribution than the training distribution. We build on the observation that these
models leverage (learned) score functions of noisy data distributions for sam-
pling and show that rescaling these allows one to effectively control a ‘local’
sampling temperature. Notably, this approach does not require any finetun-
ing or alterations to training strategy, and can be applied to any off-the-shelf
model and is compatible with both deterministic and stochastic samplers. We
first validate our framework on toy 2D data, and then demonstrate its applica-
tion for diffusion models trained across five disparate tasks – image generation,
pose estimation, depth prediction, robot manipulation, and protein design. We
find that across these tasks, our approach allows sampling from sharper (or flat-
ter) distributions, yielding performance gains e.g., depth prediction models bene-
fit from sampling more likely depth estimates, whereas image generation mod-
els perform better when sampling a slightly flatter distribution. Project page:
https://temporalscorerescaling-anonymous.github.io/

1 INTRODUCTION

Score-based generative models, such as denoising diffusion (Ho et al., 2020) and flow matching
(Lipman et al., 2023; Liu et al., 2023b), have become ubiquitous across AI applications. Given
training data {xn}, they can model the underlying data distribution p(x) (or p(x|c) for conditional
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settings) and at inference, they allow drawing samples x ∼ p(x) e.g., to generate novel images.
However, in certain applications, we may not want to truly sample the original data distribution.
For example, when predicting depth from RGB input, we may want the more likely estimate(s) as
output. In contrast, an artist exploring design choices may want the trained image generative model
to yield more diverse samples, even if they may be somewhat less likely in the data. In this work,
we ask whether we can steer the sampling process of diffusion or flow matching models to output
more likely (or conversely, more diverse) samples than the original training data.

This process of trading off sample likelihood and diversity at inference is commonly referred to as
temperature sampling (Hinton et al., 2015) – a higher temperature leads to diverse samples, and a
lower temperature leads to more likely ones. While prior methods have investigated temperature
sampling for score-based generative models like denoising diffusion, developing an efficient tem-
perature sampling method for pre-trained diffusion/flow models remains an open challenge. For
example, commonly leveraged techniques like classifier-free guidance (Ho & Salimans, 2022) or
variance-reduced sampling (Yim et al., 2023; Geffner et al., 2025) can trade off sampling diversity
and likelihood, but as we show later, these are not probabilistically interpretable as temperature scal-
ing the data distribution. Conversely, methods such as likelihood-weighted finetuning (Shih et al.,
2023) or Langevin correction (Song et al., 2021b; Du et al., 2023) can indeed allow temperature
sampling, but at the cost of additional training or significantly increased inference-time computa-
tion. In this work, we instead seek to develop a (local) temperature sampling method that is: a)
training free i.e., does not require fine-tuning or distilling a pre-trained model, b) compatible with
deterministic samplers e.g., DDIM (Song et al., 2021a), c) efficient i.e., does not increase the number
of score evaluations at inference, and d) provably correct for some simple distributions.

Towards developing such an approach, we note that denoising diffusion and flow matching mod-
els define a forward process to induce noisy data distributions p(xt) and train neural networks to
approximate the corresponding score functions ∇ log p(xt). We ask whether one can analytically
relate these to the score of the (hypothetical) distributions p̄(xt) that would be induced by the for-
ward process if the original data distribution were temperature scaled. We study the case of mixture
of isotropic Gaussians, and derive a simple (time-dependent) rescaling function. As the reverse
sampling process for sampling flow/diffusion models relies only on the learned score functions, our
derived rescaling thus allows a training-free approach by simply scaling the inferred score at each
inference step. While the analytical derivation is restricted to a simple setting, we show that our
approach can be generally interpreted as a ‘local’ temperature sampling method, where it does not
alter the overall distribution of global modes, but controls the local variance of samples around it.

We perform experiments to highlight the broad applicability of TSR. We show that it can efficiently
allow local temperature sampling for denoising diffusion and flow matching models and is compat-
ible with generic stochastic and deterministic samplers. We study diverse applications like image
generation, depth estimation, pose prediction, robot manipulation, and protein generation. Across
these applications, we show that TSR can provide a plug-and-play solution to control the sampling
diversity of pre-trained models and leads to consistent performance gains e.g., allowing more precise
depth and pose inference, or enabling image generation to better match real data distribution.

2 PRIOR ART

Guided Inference. A widely adopted mechanism for steering sampling in diffusion and flow mod-
els is to leverage Classifier-Free Guidance (CFG) (Ho & Salimans, 2022). While this allows one
to trade off likelihood and diversity by controlling the effect of the conditioning on the drawn sam-
ples, it is fundamentally different from temperature scaling. Moreover, CFG cannot be applied to
unconditional models and even for conditional ones, requires training with condition dropout. An al-
ternative to CFG by Karras et al. (2024) is to use a ‘bad version’ of the diffusion model for guidance,
but its probabilistic interpretation is unclear and it also requires intermediate checkpoints which are
not widely available even for open-weight models. In comparison, TSR serves as a plug-and-play
technique compatible with any diffusion and flow matching model without any requirement on train-
ing. Moreover, as we empirically demonstrate for image generation, our method is orthogonal to
CFG and can be applied together for further improvement in quality.

Temperature Scaling in Diffusion Models. We are not the first to consider temperature sampling
in context of diffusion models. In particular, Shih et al. (2023) presented a technique to finetune
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diffusion (and autoregressive) models for temperature scaled inference. Their approach assigned an
importance weight to each training sample based on its likelihood approximated by computing its
ELBO with respect to a pretrained diffusion model on the same data. However, this approach is
not training-free, making it difficult to leverage for large models and impossible in scenarios where
training data is unavailable. An alternative training-free approach is to modify the reverse sampling
by applying a stochastic MCMC corrector at each denoising step (Song et al., 2021b; Du et al.,
2023). However, this increases the computational cost at inference by an order of magnitude and
does not support deterministic sampling. In contrast TSRis a training-free approach that does not
increase the inference cost and can be leveraged for stochastic and deterministic sampling.

Pesudo-temperature Sampling via Noise Scaling. Perhaps the closest to our approach in terms of
being efficient and training-free is the technique of ‘Constant Noise Scaling’ (CNS) where one scales
the stochastic noise at each sampling step by a constant. More formally, following the definition by
Song et al. (2021b), CNS can be viewed as sampling the following reverse SDE:

dx = [f(x, t)− g(t)2∇ log pt(x)]dt+
g(t)√
k
dw̄ (1)

where f(x, t), g(t) denote the drift and diffusion coefficient, and dw̄ is a standard Wiener process.
Compared to regular reverse diffusion SDE, the noise term is scaled by a constant 1/

√
k. While CNS

is the de facto approach to control sample variance in several domains (Yim et al., 2023; Geffner
et al., 2025), as Shih et al. (2023) point out, it is only a ‘pseudo temperature’ sampling method. Intu-
itively, the noise-to-score ratio controls the strength of exploration versus converging to distribution
modes during sampling. By scaling down this ratio by a constant, CNS over-suppresses exploration
at high noise levels and under-suppresses it at low noise levels, leading to inadequate exploration of
the data space when the model should recover global structure. We empirically show in Section 4
that CNS behaves differently from temperature scaling and drop modes even for simple distribu-
tions. Moreover, CNS only applies to stochastic samplers and struggles with modern flow-matching
models (see Section 5.1). In contrast, we propose a time-dependent score scaling schedule that pre-
serves the global structure of the sampled distribution and is compatible with both deterministic and
stochastic samplers.

3 FORMULATION

3.1 PRELIMINARIES

Both diffusion and flow matching models fall under the family of stochastic interpolants (Albergo
et al., 2023), which convert samples from data distribution x0 ∼ p0(x) to gaussian noise ϵ ∼
N (0, I). The interpolant process can be defined as:

xt = αtx0 + σtϵ (2)

Different noise schedules αt, σt correspond to different formulations of stochastic interpolants. For
example, for flow matching models, it is common to set αt = 1 − t, σt = t, while for variance-
preserving diffusion models, they are defined such that α2

t + σ2
t = 1.

We can sample from the data distribution by training a model sθ(x, t) = ∇ log pt(x) that estimates
the score of the noisy distribution. Starting from xT ∼ N (0, I), the sampling process usually solves
either a reverse-time SDE or a probability flow ODE. In practice, the learned model could pre-
dict various equivalent parameterization of the score, such as noise ϵθ(xt, t) (common in denoising
diffusion) or the probability flow velocity vθ(xt, t) (common in flow matching), which can all be
expressed as linear combinations of score and xt (See Section 3.3).

3.2 TEMPORAL SCORE RESCALING

Given a pre-training score function sθ, we are interested in designing a temperature sampling process
that does not require training or additional computation at inference. In particular, we propose a
mechanism that achieves local temperature scaling, which can steer the variance of the sampled
distribution while preserving the global distribution structure (e.g., without mode dropping). More
formally, we define local temperature scaling as the task that takes in a data distribution p0(x)
modeled as a mixture of (an unknown set of ) Gaussians and generates the corresponding ‘sharper’

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

or ‘flatter’ distributions p̃k0(x) (parameterized by k):

p0(x) ≡
∑
m

wmN (x;µm,Σm) ⇒ p̃k0(x) ≡
∑
m

wmN (x;µm,
1

k
Σm)

Intuitively, p̃k0(x) represents a distribution where the variance near each local mode in the data
distribution is scaled by 1

k , while preserving all the means and weights. Such a local scaling effect
is different from the traditional temperature scaling that would change the weights of modes and
alter the distribution structure. We now formulate our problem statement as: How can we alter the
pretrained score function sθ so that a diffusion or flow sampler yields p̃k0(x) instead of p0(x)?

Isotropic Gaussian Data. To instantiate this, we start with a simple scenario where the data are
drawn from a single isotropic Gaussian distribution x0 ∼ N (µ, σ2I). The target is to sample
from the locally scaled distribution p̃k0(x) ≡ N (µ, σ2

k I). Under the stochastic interpolant process
(Eq. 2), we define pt(x), p̃

k
t (x) as the noisy distributions at time t for the original and scaled data

distribution, respectively. Since both the original and scaled data distributions are Gaussian, their
corresponding noisy distribution can also be shown to be Gaussian:

pt(x) = N (αtµ, (α
2
tσ

2 + σ2
t )I), p̃kt (x) = N (αtµ, (α

2
t

σ2

k
+ σ2

t )I) (3)

Then, we can derive the corresponding score functions for the above distributions:

∇ log pt(x) = − x− αtµ

α2
tσ

2 + σ2
t

, ∇ log p̃kt (x) = − x− αtµ

α2
t
σ2

k + σ2
t

(4)

Comparing the two score functions above, we observe that the score for the scaled distribution and
the score for the original distribution follow a time-dependent linear relationship:

∇ log p̃kt (x) =
ηtσ

2 + 1

ηt
σ2

k + 1
∇ log pt(x) (5)

where ηt = α2
t /σ

2
t is the signal-to-noise ratio. Note that k = 1.0 recovers the original score. Given

a score estimator sθ(x, t) = ∇ log pt(x), we can compute the score of p̃kt with the above score
rescaling equation and thus sample from p̃k0 from the same sampling process.

Mixture of Gaussians. We can show that the score ratio relationship (Eq. 5) is also a valid approx-
imation if the data distribution is a mixture of well-separated isotropic Gaussians. In Section B, we
prove that the expected error between the score computed by Eq. 5 and the real score are bounded
at all timestep t. On the high level, we derive an exponential bound for small t, where the modes
are well-separated and only one Gaussian component dominates. For large t, we derive a polyno-
mial bound based on the intuition that the distributions are similar to pure noise N (0, I). The error
vanishes at both ends when t converges to 0 or 1. The maximum error at any intermediate t also
converges to zero as the modes becoome more separated. We also empirically verify these results in
Section A.5

3.3 STEERING INFERENCE IN DIFFUSION AND FLOW MATCHING

While the above analytical derivation for a score rescaling function focused on simple distributions,
we empirically find that it can be applied across generic distributions and we operationalize Eq. 5 to
define TSR sampling, a simple algorithm for steering sampling in diffusion and flow models:

Sampling with Temporal Score Rescaling TSR (k, σ)

Given a pre-trained score model sθ, TSR sampling substitutes its score prediction with:

s̃θ(x, t) = rt(k, σ) sθ(x, t), rt(k, σ) :=
ηtσ

2 + 1

ηt
σ2

k + 1
(6)

where k, σ are user-defined parameters, and ηt is the signal-to-noise ratio of the forward process.
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This makes TSR a plug-and-play method compatible with any parameterization of sθ and sampling
algorithm, since conversions between score and model predictions are always linear and invertible.

Denoising Diffusion: These models are typically instantiated via neural networks ϵθ that learn to
predict the noise added. We can infer the predicted score from this noise via a simple linear relation
sθ(x, t) = −σ−1

t ϵθ(x, t). We can thus perform TSR sampling in denoising diffusion models by
simply using a rescaled noise prediction ϵ̃θ(x, t) in any diffusion sampler (e.g., DDPM, DDIM):

ϵ̃θ(x, t) = rt(k, σ)ϵθ(x, t) (7)

Flow Matching: For flow matching models predicting the probability flow velocity vθ(x, t), the
corresponding score function can be computed by (Ma et al., 2024):

sθ(x, t) = −αtvθ(x, t)− α̇tx

σt(α̇tσt − αtσ̇t)
(8)

Combining Eq. 6 and Eq. 8, we can derive the corresponding flow velocity ṽθ for the scaled distri-
bution, such that s̃θ is a proper scaled version of the original score:

ṽθ(x, t) = α−1
t (rt(k, σ)(αtvθ(x, t)− α̇tx) + α̇tx) (9)

Applying this scaled velocity ṽθ in the flow samplers yields desired samples from the scaled distri-
bution. Similar conversion can also be derived for other parameterizations of diffusion models like
x0-prediction and v-prediction.

4 ANALYSIS

To understand the behavior of TSR, we first empirically validate it on toy data and show it is more
effective in scaling the variance of samples while preserving each local mode compared to existing
approaches. Then, we analyze how the input parameters (k, σ) control TSR and interpret their
meanings in general settings.

4.1 VALIDATION ON TOY DISTRIBUTIONS

Mixture of 1D Gaussians. We begin with a simple conditional generation task using a uniform
mixture of 1D isotropic Gaussians in figure 2, where the left three and right three modes correspond
to two different classes. We apply classifier-free guidance (CFG) with guidance scale 10, constant
noise scaling (CNS) and TSR with k = 10 individually to scale the conditional distribution and eval-
uate whether each method preserves all modes under scaling. As shown in figure 2, CFG produces
imbalanced samples, often favoring outer modes, while CNS shifts mass toward central modes at
the expense of others. By contrast, TSR samples evenly across all modes while reducing intra-mode
variance, demonstrating that it preserves the multimodal structure even under conditioning.

General 2D Distributions. We also apply TSR to unconditional generation on two complex 2D
distributions: checkerboard and swiss roll. We train a small-scale diffusion model for each distri-
bution and compare the scaled distribution sampled by CNS and TSRin figure 3. We observe that
CNS consistently biases samples toward the central modes, resulting in mode collapse and poor
coverage of peripheral regions. This supports the intuition that reducing noise too aggressively re-
stricts exploration during the sampling process. In contrast, TSR maintains coverage of the global
distribution while reducing local variance around each mode, producing samples aligning with the
true distribution. These results show that, although derived for isotropic Gaussian data, TSR gen-
eralizes to more complex scenarios and provides consistent improvements in both conditional and
unconditional generation.

4.2 INTERPRETING RESCALING HYPERPARAMETERS

In the derivation of TSR, k referred to the factor of variance reduction and σ referred to the variance
of the modes in data distribution. However, in real-world scenarios with more complex distributions,
the variance of the data distribution is unknown. We provide an intuitive explanation of the role of
k and σ on the rescaling factor rt to democratize the practical use of TSR in various scenarios.
Specifically, we show how the rescaling factor rt changes over sampling time with different k and σ

5
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Figure 2: Comparison on Uniform Mixture of 1D Isotropic Gaussians. The uniform mixture of
Gaussians distribution is divided into two classes (subplot 1). We apply CFG, CNS, and TSR to
scale the conditional distribution of Class 1 (subplot 2). CFG and CNS lead non-uniform weights
and tend to lose modes, while TSR preserve all modes and effectively reduce the variance of the
samples.

Figure 3: Left: Comparison on 2D Checkerboard and Swiss Roll Distributions. We compare
samples from CNS and TSR. While CNS biases sampling towards the central modes and drops
peripheral ones, TSR preserves all modes while reducing variance without generating divergent
samples. Right: Effect of Hyperparameters on the Rescaling Factor. In the rightmost column,
we plot the TSR rescaling factor rt on y-axis against diffusion time t. With σ = 1.0, varying k
controls the asymptotic value of rt (top); with k = 2.0, varying σ determines how early rescaling
takes effect during sampling (bottom).

values in Fig. 3. Intuitively, k indicates the max/min of the rescaling factor rt. As t → 0, signal-to-
noise ratio ηt → ∞, and rt → k. Meanwhile, σ indicates how early we want to steer the sampling
process. The larger σ, the earlier the sampling is steered. A very small σ lets us use the original
diffusion sampling (rt ≈ 1.0) and only steer the last few denoising steps.

5 APPLICATIONS

We demonstrate the broad applicability and effectiveness of TSR by applying it to a diverse set
of real-world applications, spanning image generation (Section 5.1), protein design (Section 5.2),
depth estimation (Section 5.3), pose prediction (Section 5.4), and robot manipulation (Section 5.5).
For image generation, we find that a smaller k enhances details and improves performance, while
for other tasks, a larger k yields higher accuracy of model predictions.

5.1 TEXT-TO-IMAGE GENERATION

We examine the effect of steering the sampling distribution for diversity versus likelihood with
TSR on Stable Diffusion 3 (Esser et al., 2024), a leading flow matching text-to-image model. As a
creative task, image generation benefits from sampling a flatter distribution, which helps to recover
more pleasing images with more high frequency details. We evaluate FID (Heusel et al., 2017;
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Figure 4: Qualitative Examples for Varying k. TSR allows for tuning the generated outputs to be
more diverse and detailed (lower k) or more smooth and likely (higher k). While neither extreme is
desirable, we notice a k slightly smaller than 1 gives pleasing images with enhanced details.

SD3 SD2 Flux.1 dev

FID ↓ CLIP ↑ FID ↓ CLIP ↑ FID ↓ CLIP ↑
Default Scheduler 24.77 32.82 22.81 33.66 53.99 31.97
+ TSR 22.81 33.05 19.75 33.75 51.79 32.14

Table 1: Evaluation of Text-to-Image Generation across Models. TSR consistently improve im-
age quality across Stable Diffusion 3 Esser et al. (2024), Stable Diffusion 2 Rombach et al. (2022),
and Flux.1 dev Labs (2024). The optimal (k, σ) found on SD3 generalize effectively to other mod-
els. For SD3 and Flux.1 dev, the default scheduler is Euler-ODE. For SD2 the default scheduler is
DDPM.

Parmar et al., 2022) and CLIP (Radford et al., 2021) scores against a 5k image subset from LAION
Aesthetics (Schuhmann et al., 2022) across different CFG guidance scale wcfg, TSR parameter k
and σ. We fix the number of sampling steps to 30. In figure 5, we see adjusting wcfg makes a
trade-off between text-alignment and image fidelity—higher wcfg increases CLIP score at the cost
of worse FID. Meanwhile, TSR allows for additional improvement beyond the Pareto frontier of
CFG. Compared to the regular Euler ODE sampling, TSR reduces FID score from 24.77 (± 0.10) to
22.81 (± 0.13) and increases CLIP score from 32.82 (± 0.014) to 33.05 (± 0.018). These results are
averaged over 5 random seeds. TSR achieves the optimal performance with k = 0.93, σ = 3.0. To
verify the transferability of these parameters, we apply the same (k, σ) to Flux.1 dev (Labs, 2024)
and Stable Diffusion 2 (Rombach et al., 2022) and report the results in Table 1. The optimal (k, σ)
found on SD3 consistently improve performance on other models as well, suggesting the robustness
of the choice for (k, σ) across models.

Notably, while it is possible to perform stochastic sampling with flow models like SD3, we found that
it performs significantly worse than ODE sampling with the same compute budget (see Section A.1),
making CNS impractical. We also show in Section A.1 that TSR achieves superior performance
with denoising diffusion model (SD2, Rombach et al. (2022)) compared to CNS and other common
samplers. Qualitatively, we observe in Fig. 4 that lower k leads to images with more high-frequency
detail (in the extreme case more noise), and higher k leads to smoother images. We infer that
using a smaller k flattens the modeled distribution and allows better coverage of the desirable image
space. Overall, our results highlight that the control over the likelihood-diversity trade-off enabled
by TSR is beneficial in image generation.

5.2 PROTEIN GENERATION

Generative models have emerged as a powerful paradigm in AI for Science. For example, Protein
discovery (Abramson et al., 2024; Jumper et al., 2021; Wu et al., 2024) is an application where

7
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Figure 5: Image Generation. TSR achieves
better text-alignment (CLIP) and image fidelity
(FID), improving upon the Pareto frontier of
CFG, which trades off between FID and CLIP.

Figure 6: Protein Generation. TSR improves
the designability score while preserving the di-
versity (FID) better compared to CNS. The orig-
inal sampling has a designability score of 0.22.

such models have seen widespread adoption. However, not all generated proteins are valid in the
real world. Thus, improving the designability of generated proteins is an important goal. CNS has
previously been used to enhance sampling quality (Yim et al., 2023; Geffner et al., 2025).

We conduct experiments with FoldingDiff (Wu et al., 2024), a diffusion-based protein generation
method, and compare TSR with CNS. Evaluation uses two complementary metrics: designabil-
ity score(Wu et al., 2024), measuring structural quality and real-world feasibility, and protein
FID(Faltings et al., 2025), capturing distributional similarity and thus diversity. Ideally, a method
should achieve a high designability score and a low FID. As shown in fig. 6, samples from TSR lie
in the bottom right regions, which shows TSR maintains protein diversity better than CNS, while
improving the designability.

5.3 DEPTH ESTIMATION

The task of monocular depth estimation is inherently challenging due to its uncertainty—an object
may appear large but distant, or small but close. Recent methods (Duan et al., 2024; Saxena et al.,
2023; Ke et al., 2024) address this with diffusion models, where different samples correspond to
plausible variations or interpolations of the underlying depth structure. We adopt Marigold (Ke
et al., 2024), which fine-tunes a pre-trained text-to-image diffusion model for depth estimation and
achieves strong results. However, individual samples can be suboptimal due to both the sampling
stochasticity and the ambiguity of depth estimation ( Ke et al. (2024)). To mitigate this issue, it is
desirable to increase the likelihood of each sampled estimate—i.e., to encourage samples to concen-
trate around the dominant modes of the learned distribution. Doing so reduces sampling variability
and suppresses uncertain or noisy depth predictions.

ETH3D NYUv2
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

DDIM 7.1 90.4 6.0 95.9
+ CNS 6.82 95.6 5.85 96.0
+TSR 6.68 95.7 5.84 96.0

Table 2: Quantitative Evaluation of Depth Es-
timation. TSR improves depth estimation and
outperforms the naive baseline.

We evaluate on the ETH3D (Schops et al., 2017)
and NYUv2 (Nathan Silberman & Fergus, 2012)
datasets. As shown in Table 2, TSR outperforms
the default DDIM and CNS on prediction accu-
racy. By sampling from a sharper distribution,
TSR yields more probable outputs given the input
image. Qualitative comparisons in Fig.7 further
show that TSR produces cleaner depth maps than
DDIM, particularly in high-uncertainty regions.

5.4 POSE PREDICTION

Previous work Leach et al. (2022); Hsiao et al. (2024); Wang et al. (2023); Zhang et al. (2024) has
shown that diffusion models can effectively predict object and camera poses in the SO(3) space.
We demonstrate TSR can improve such models’ accuracy by sampling from a sharper distribution.
Our evaluations are based on the SO(3) diffusion models proposed by Hsiao et al. (2024), where we
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ETH 3DNYUv2

Input 

DDIM 

TSR 

Figure 7: Qualitative Depth Estimation Comparisons. Compared to DDIM, TSR with k > 1
predicts cleaner depth in the regions with high uncertainty (highlighted by pink boxes).

Error (deg) ↓ Acc@ (deg) ↑
0.2 0.5 1.0

Score Sampling 0.444 9.4 68.3 97.9
+ CNS (1600) 0.350 20.0 84.9 99.1
+ TSR (7.0, 0.5) 0.356 18.5 84.0 99.0

Table 3: Pose Prediction. Mean error (deg)
and accuracy within thresholds 0.2, 0.5, 1.
(k, σ) = (7.0, 0.5) for TSR, k = 1600 for
CNS.

Figure 8: Predicted poses on SYMSOL. TSR re-
duces pose prediction error: each dot marks a sam-
ple’s first canonical axis (colored by rotation), while
circles denote ground-truth poses.

apply TSR and evaluate on the SYMSOL dataset Murphy et al. (2021), which contains geometric
shapes with a high order of symmetries. We visualize the effect of TSR in 8 where we show
the sampled poses on an example image from SYMSOL. TSR samples poses more concentrated
around ground truth modes (the circle centers) than the baseline score matching sampling used
in Hsiao et al. (2024). In quantitative evaluation (3). TSR predictions have lower average error
and higher accuracy under a range of accuracy thresholds compared to score matching sampling,
highlighting the benefits of predicting samples close to modes. We find that CNS also reduces
pose error, achieving a performance slightly better than TSR on SYMSOL. However, we note that
TSR remain robust and applicable over many tasks and sampling methods where constant noise
scaling is not possible.

5.5 ROBOTIC MANIPULATION

Lastly, we examine the applicability of TSR on predicting robot actions, with a focus on robotic
manipulation. One notable difference of this domain compared to others is that the policy only
models a distribution of actions for a short horizon, as it is a sequential decision-making problem.

We chose Pi-0 (Black et al., 2025), a generalist robotic flow-matching policy released by Physical
Intelligence, finetuned on LIBERO (Liu et al., 2023a), a simulation benchmark for robotic manipu-
lation. Specifically, we evaluate the policy over 10 tasks in the LIBERO-10 benchmark with shared
(k, σ) values. The results are in Table 4. Without any further training, TSR improves the perfor-
mance of 6 tasks and maintains performance for 2 tasks. One notable point is that the two tasks
(Task ID 2 and 8) where TSR shows worse performance are precisely those in which the base Pi-0
policy itself exhibits low success rates. This suggests that the suboptimal performance may be due
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to a common ‘sharpening’ (k > 1) hyper-parameter across tasks as this may be suboptimal when
the policy is not correct, and that tuning TSR’s k for each task may yield further gains.

Model / Task ID 0 1 2 3 4 5 6 7 8 9 Average
Pi-0 86.0 97.3 80.7 96.0 84.7 93.3 81.3 94.7 23.3 80.0 81.7
+ TSR(1.25,0.25) 86.7 97.3 77.3 97.3 84.7 96.0 82.7 96.0 21.3 88.7 82.8

Table 4: Results for Robotic Manipulation. Success rates are computed across 3 seeds, 10 tasks,
with 50 rollouts per task. The results are computed with the best (k, σ) for TSR.

6 DISCUSSION

We presented TSR, an approach to alter the sampling distribution for pre-trained diffusion and flow
models. While we demonstrated its efficacy across several (toy and real) tasks, there are fundamen-
tal limitations worth highlighting. First, unlike temperature scaling, TSR can only alter the ‘local’
sampling and there might exist applications where a global temperature scaling is more desirable
e.g., TSR does not change the weights of the components in a gaussian mixture, only the variance.
Moreover, while TSR does empirically steer the sampling diversity in generic scenarios, the theoret-
ical guarantees are limited to simpler settings and one may be able to derive a better algorithm for
different distributions. Nevertheless, as TSR can be readily applied to any off-the-shelf denoising
diffusion and flow matching model, we believe it would a generally useful technique for the commu-
nity to explore. In particular, the alternative strategy of ‘constant noise scaling’ is already adopted
across applications (Yim et al., 2023; Geffner et al., 2025), and our work offers an alternative that is
empirically better and more widely applicable (e.g., in deterministic sampling).

REPRODUCIBILITY STATEMENT

We described the proposed algorithm TSR for diffusion and flow models in Section 3.3. We include
the Python code implementation in the supplementary materials. All of the experiments presented
in this paper are based on open-sourced methods and datasets. The detailed configurations of the
experiments are described in Section 5 and Section A.
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A ADDITIONAL RESULTS

A.1 IMAGE GENERATION

We show additional qualitative examples generated by Stable Diffusion 3 with TSR in figure 11. We
show TSR with varying k and highlight the control over the expression of high-frequency details.
To better demonstrate the effect of user-input parameters (k, σ) on image quality, we plot FID and
CLIP scores ablating over different (k, σ) in figure 9. The trends in figure 9 clearly demonstrate that
TSR with a k slightly smaller than 1 and various σ values improves both metrics. and the optimal
performance is achieved at k = 0.93, σ = 3.0. We compare the regular Euler-ODE sampling and
TSR on different CFG guidance scales in figure 10, highlighting that TSR is orthogonal to CFG and
improves model performance at various CFG settings. In figure 10, we also present the performance
of CNS, which has to be applied on a stochastic sampler (Euler-SDE). As Stable Diffusion 3 is a
flow matching model, stochastic samplers perform significantly worse than ODE samplers, espe-
cially when the inference steps are less than 100. These results align with the findings in Ma et al.
(2024). Therefore, CNS does not practically apply to flow matching models like SD3. In Table 5, we
additionally present quantitative results on Stable Diffusion 2, which is a denoising diffusion-based
model. While CNS can improve over DDPM sampling, it is outperformed by TSR.

Figure 9: Ablations over the TSR parameters (k, σ) on Stable Diffusion 3

Figure 10: Ablations over CFG scale and samplers Left: Comparing regular sampling with
TSR with various CFG guidance scale on Stable Diffusion 3. Right: Comparing deterministic and
stochastic samplers with TSR or CNS. Stochastic sampling is much worse on flow models, making
CNS impractical.
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Figure 11: Additional qualitative examples of TSR on Stable Diffusion 3
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FID ↓ CLIP ↑
DDIM 21.28 33.54
+ TSR (0.95, 1.0) 20.05 33.61
DDPM 22.81 33.66
+ Constant Noise Scaling (0.96) 19.87 33.68
+ TSR (0.9, 1.0) 19.57 33.77
EulerDiscrete 22.11 33.54
+ TSR (0.95, 1.0) 19.95 33.61

Table 5: Results on Stable Diffusion 2. TSR improve FID and CLIP on various samplers, outper-
forming CNS.

A.2 POSE PREDICTION

We show more pose prediction results in figure 13. TSR predicts tighter samples around the ground
truth mode, which can be observed by the low spread of sampled poses compared to score sam-
pling. We also include ablations over parameters (k, σ) in figure 12, showing that TSR consistently
improves accuracy by increasing k, across different σ.

Figure 12: Ablations over (k, σ) on pose prediction. TSR with various (k, σ) configurations
effectively outperforms the baseline sampling method k = 1. While TSR is not sensitive to σ in
pose estimation, TSR reaches optimal performance with k ≈ 7.

A.3 DEPTH ESTIMATION

We also show the effect of σ and k on the AbsRel metric in fig. 14. Compared with the DDIM sample
(k = 1), TSR demonstrates consistent performance gain in various (k, σ) configurations. We also
include more depth samples and comparisons fig. 15. A consistent improvement of TSR result can
be observed, compared to the DDIM samples.
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Figure 13: More predicted poses on SYMSOL. We show all 5 classes of shapes in SYMSOL.
We use σ = 1, k = 7 for these visualizations. TSR consistently reduces prediction error across all
classes compared to score sampling. We modify the location of samples to exaggerate error by a
factor of 15 to show the visual difference given plotting constraints.
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Figure 14: Effects of (k, σ) on depth estimation. Comparing with DDIM sample (k = 1),
TSR demonstrates consistent performance gains in various (k, σ) configurations.
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Figure 15: More Depth Prediction Comparison. We include more samples from NYUv2 and
ETH3D. PSR demonstrates consistent improvement compared to the DDIM samples.
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A.4 QUANTIFYING MODE COLLAPSE

To systematically evaluate the mode-collapse behavior of temperature-scaling approaches (Constant
Noise Scaling and TSR), we train an unconditional DDPM on the MNIST dataset( Deng (2012))
and apply each sampling method. We additionally train a classifier to label generated samples and
assess whether Constant Noise Scaling or TSR exhibits mode drop, i.e., produces an imbalanced
distribution of digits.

Figures 16 and 17 summarize the results, using k = 5.0 for Constant Noise Scaling (CNS) and
(k, σ) = (5.0, 1.0) for TSR. CNS disproportionately generates digits ‘1’ (40.4%) and ‘9’ (28.7%),
likely because their straight or curved components appear frequently across other digits, making
them easier to synthesize under decreased noise. In contrast, TSR produces a distribution of digits
that closely matches that of DDPM, indicating that it preserves all modes. Furthermore, TSR gener-
ates noticeably clearer samples than DDPM, demonstrating the benefit of tempered sampling.

In summary, TSR maintains mode coverage on MNIST while improving sample quality.

Figure 16: Samples generated on MNIST using DDPM, Constant Noise Scaling (CNS), and TSR.
CNS tends to favor generating 1 and 9 while making TSR produces clearer digits while preserving
diversity across modes.

Figure 17: Class distribution of generated MNIST samples under DDPM, CNS, and TSR (CNS:
k = 5.0; TSR: (k, σ) = (5.0, 1.0)). CNS exhibits mode imbalance, whereas TSR maintains a
balanced distribution consistent with the dataset.
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A.5 EMPIRICAL ANALYSIS ON SCORE APPROXIMATION

To empirically analyze the our proposed approximation, we conduct an experiment using a 2D
mixture of four Gaussian distributions, which is visualized in figure 18. We denote the distance
between neighboring modes as ∆ and the variance of each mode as σ. Setting the scaling parameter
k = 2, we systematically vary ∆ and σ to study the behavior of the approximation error. We quantify
the deviation by computing the expected absolute relative difference (Abs. Rel.) between the score
estimated by TSR and the ground-truth score.

As illustrated in figure 18, the error vanishes at both ends in the range of timestep t peaks at interme-
diate t. Furthermore, we analyze the maximum error occurring across all timesteps with respect to σ
and ∆. The results demonstrate that the maximum error vanishes as the mode variance σ decreases
or the mode separation ∆ increases, verifying that the approximation becomes exact as the modes
are more separated. These results empirically confirm the theoretical bound we proved in Section B.

Δ

Δ

𝜎

Δ

Δ

𝜎

Figure 18: Empirical Score Approximation Error: For the mixture of gaussians depicted in the
left, with mode distance ∆ and mode variance σ, we compute the expected error of TSR approxi-
mation at k = 2. The maximum error is bounded and decreases as σ decreases or σ increases (right
column).

A.6 ADDITIONAL COMPARISON WITH CONSTANT SCORE SCALING

A less common method that can have similar effect as CNS in temperature sampling is constant
score scaling (CSS). Instead of scaling down the noise term like CNS in Eq. 10, CSS constantly
scale the score prediciton at each diffusion step, which is equivalent to solving the following reverse
SDE:

dx = [f(x, t)− kg(t)2∇ log pt(x)]dt+ g(t)dw̄ (10)

This method is adopted by Skreta et al. (2025). In figure 19, we additionally evaluate and compare
this method on the checkerboard distribution, observing a similar mode-collapse behavior as CNS.
We use the same setup as in figure 3.
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Figure 19: Evaluating Constant Score Scaling (CSS): On the 2D checkerboard distribution, both
CNS and CSS demonstrates mode-dropping behavior, while only TSR preserves all modes.

B PROOF FOR TSR FOR MIXTURE OF WELL-SEPARATED GAUSSIANS

We show that for a mixture of well-separated Gaussians, the score approximation in TSR is valid,
with the approximation error vanishing asymptotically.

We begin by introducing the notation and defining the estimation error in Section B.1. Our main
result is stated in Section B.2. The proof of this result is given in Section B.3, supported by several
lemmas whose proofs are provided in Section B.4.

Notations:

• αt, σt, k: Diffusion/flow schedule coefficients and sharpening factor.

• pkt (x): Induced distribution at time t given the data distribution sharpened by k.

• ∆ ≫ δ: Distance between two mixture means at t = 0. Define ∆t = αt∆.

• σ: Variance of each Gaussian in the mixture at t = 0.

• σ2
t,k ≡ α2

tσ
2

k + σ2
t : Variance of each Gaussian at time t with sharpening factor k.

• δt,n(x) ≡ x − αtµn: Offset vector from x to the center of the n-th Gaussian at diffusion
time t.

• pkt,n(x) ∝ exp
(
−∥δt,n(x)∥2

σ2
t,k

)
: Unnormalized density of x under the n-th Gaussian.

• wk
t,n(x) ≡

pk
t,n(x)∑

m pk
t,m(x)

: Responsibility of the n-th Gaussian for x.

• N : Number of Gaussians in the mixture. Dependent on the dataset only.

• d: Dimensionality of the data. i.e. d = 2 for 2D Gaussian Mixture.

• ∆max = maxi,j |µi − µj |: Maximum pairwise distance between Gaussian means in the
mixture. For a general dataset, this term is bounded by (N − 1)∆.

B.1 ERROR IN TSR SCORE APPROXIMATION.

Score. The score of the original data is given by:

∇ log pt(x) = − 1

(α2
tσ

2 + σ2
t )

∑
n

w1
t,n(x)δt,n(x)

For the target distribution pk(x0) =
∑

i N (x;µi,
σ2

k I) the corresponding noisy distribution

pk(xt) =
∑

i N (x;αtµi, (
α2

tσ
2

k + σ2
t )I), we have:

∇ log pkt (x) = − 1

(α2
tσ

2/k + σ2
t )

∑
n

wk
t,n(x)δt,n(x)
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In TSR, we approximate the score of pk(xt) by:

∇ log p̃kt (x) ≈
α2
tσ

2 + σ2
t

α2
tσ

2/k + σ2
t

∇ log pt(x) =
σ2
t,1

σ2
t,k

(
− 1

σ2
t,1

∑
n

w1
t,nδt,n(x)

)
= − 1

σ2
t,k

∑
n

w1
t,nδt,n(x)

Definition B.1 (Error in TSR Score Approximation). Define the amount of error in the score ap-
proximation as the expected difference between the scores:

Error(t) = Ex∼pk
t

1

σ2
t,k

∥
∑
n

(w1
t,n(x)− wk

t,n(x))δt,n(x)∥

B.2 UPPER BOUND OF THE ERROR

The objective of this proof is to establish a bound on the error term Error(t). Our main results are
as follows:

Theorem B.2 (Upper Bound of the Error). For Error(t), there exists two upper bounds:

Error(t) ≤ Bexp = 6 · αt∆max

σ2
t,k

· exp

(
−α2

t∆
2

8σ2
t,1

)

Error(t) ≤ Bpoly =
αt∆max

4σ2
t,k

( 1

σ2
t,k

− 1

σ2
t,1

)
N
(
dσ2

t,k + α2
t∆

2
max

)
Theorem B.3 (Vanishing Behavior of Error). Assuming σ = ϵ∆, when 1− α2

t >
√
ϵ, we have:

Bpoly ∼ O(
√
ϵ)

; When 1− α2
t ≤

√
ϵ, (i.e. αt ≈ 1) we have:

Bexp ∼ O(
1√
ϵ∆

exp(− 1√
ϵ
))

Conclusion. Combining theorem B.2 and theorem B.3, when ϵ → 0, we have Error(t) → 0.
Therefore, when the Gaussians are well-seperated (ϵ → 0), the approximation error vanishes to 0.

B.3 PROOF OF THEOREM

Before proving the theorems, we first state several lemmas that are useful to the proof, whose proof
will be given in the next section.

Lemma B.4. The TSR approximation error Error(t) is bounded as follows:

Error(t) ≤ αt∆max

σ2
t,k

Ex∼pk
t
∥dist(w1

t (x), w
k
t (x))∥ (11)

, where dist(w1
t (x), w

k
t (x)) =

∑
n ∥w1

t,n(x)− wk
t,n(x)∥.

Lemma B.5. There exists a polynomial bound for Ex∼pk
t
∥dist(w1

t (x), w
k
t (x))∥:

Ex∼pk
t
∥dist(w1

t (x), w
k
t (x))∥ ≤ 6 · exp

(
−α2

t∆
2

8σ2
t,1

)

Lemma B.6. There exists an exponential bound for Ex∼pk
t
∥dist(w1

t (x), w
k
t (x))∥:

Ex∼pk
t
∥dist(w1

t (x), w
k
t (x))∥ ≤ 1

4

( 1

σ2
t,k

− 1

σ2
t,1

)
N
(
dσ2

t,k + α2
t∆

2
max

)
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Proof of Theorem B.2. Combining Lemma B.4 and Lemma B.5, we obtain the polynomial bound
for Error(t).

Similarly, Lemma B.4 and Lemma B.6 will give us the exponential bound for Error(t).

Proof of Theorem B.3. For simplicity, we assume diffusion scheduling, that is, σ2
t = 1− α2

t in this
part. We also assume σ = ϵ∆. As the dataset is fixed, we can rewrite ∆max = c∆, where c is a
constant that only depends on the dataset.

Vanishing of Polynomial Bound

Following the polynomial bound from B.2, we have:

Bpoly = N
αt∆max

σ2
t,k

(
(1− 1/k)σ2α2

t

σ2
t,1σ

2
t,k

)(dσ2
t,1 + α2

t∆
2
max)

= N(1− 1/k)
α3
t∆maxσ

2

σ4
t,k

(d+
α2
t∆

2
max

σ2
t,1

)

Consider 1− α2
t >

√
ϵ∆2, we have: σ2

t,k = α2
tσ

2/k + (1− α2
t ) > (1− α2

t ) >
√
ϵ∆2. Therefore,

we have:

α3
t∆maxσ

2

σ4
t,k

d ≤ cα3
t ϵ

2∆3

ϵ∆4
d = α3

t cd
ϵ

∆

Since αt ≤ 1 and c and d are constant given a dataset, we can absorb them into a constant. Therefore,
α3

t c∆maxσ
2

σ4
t,k

d ≤ C1
ϵ
∆ , for some C1 = O(cd).

Similarly to previously proved, for the second term, α3
t∆maxσ

2

σ4
t,k

· α2
t∆

2
max

σ2
t,1

, we have:

α5
tσ

2∆3
max

σ4
t,k σ

2
t,1

≤ α5
t c

3∆3(ϵ2∆2)

ϵ∆4 ·
√
ϵ∆2

≤ C2

√
ϵ

∆

, where C2 is a constant term based on the dataset (and αt).

Therefore, we have the following.

Bpoly ≤ C1
ϵ

∆
+ C2

√
ϵ

∆
≤ C

√
ϵ

∆

We can see that the polynomial bound is O(
√
ϵ) for such αt, which goes to 0 as ϵ → 0

Vanishing of Exponential Bound

Assuming the diffusion schedule, and consider αt such that 1− α2
t <

√
ϵ∆2, we have:

Bexp = 6
αt∆max

α2
tσ

2/k + 1− α2
t

exp(− α2
t∆

2

8(α2
tσ

2 + 1− α2
t )
)

With our assumption of σ = ϵ∆, for a small ϵ:

α2
t,1 = α2

tσ
2 + 1− α2

t = α2
t ϵ

2∆2 + (1− α2
t )

≤ 2(1− α2
t ) ≤ 2

√
ϵ∆2

−α2
t∆

2

8α2
t,1

≤ − α2
t∆

2

8 · 2
√
ϵ∆2

= − α2
t

16
√
ϵ

Therefore,

exp
(
− α2

t∆
2

8α2
t,1

)
≤ exp

(
− α2

t

16
√
ϵ

)
As α2

tσ
2/k + 1− α2

t is dominant by 1− α2
t , we have α2

tσ
2/k + 1− α2

t ≈ 1− α2
t .

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Therefore, we have:

Bexp ≤ 6
αt∆max

α2
tσ

2/k + 1− α2
t

exp(− α2
t

16
√
ϵ
) ≈ 6cαt√

ϵ∆
exp(− α2

t

16
√
ϵ
)

As we consider αt such that 1 − α2
t <

√
ϵ∆2, then we can write the exponential bound as

O( 1√
ϵ∆

exp(− 1√
ϵ
)), which also vanishes as ϵ → 0.

Conclusion

In both cases, at least one bound is vanishingly small as ϵ → 0.

B.4 PROOF OF LEMMA

Proof of Lemma B.4. Upper bound of the error

Using the triangle inequality and the fact that
∑

n w
1
t,n(x) = 1 and

∑
n w

k
t,n(x) = 1, we have the

following result:

Error(t) = Ex∼pk
t

1

σ2
t,k

∥
∑
n

(w1
t,n(x)− wk

t,n(x))δt,n(x)∥

≤ 1

σ2
t,k

Ex∼pk
t
∥
∑
n

(w1
t,n(x)− wk

t,n(x))∥δt,n(x)∥ ∥

≤ 1

σ2
t,k

Ex∼pk
t
∥
∑
n

(
(w1

t,n(x)− wk
t,n(x))αtδmax∥

≤ αtδmax

σ2
t,k

Ex∼pk
t

∑
n

∥w1
t,n(x)− wk

t,n(x)∥

Therefore, the approximation error is bounded as follows:

Error(t) ≤ αt∆max

σ2
t,k

Ex∼pk
t
∥dist(w1

t (x), w
k
t (x))∥ (12)

, where dist(w1
t (x), w

k
t (x)) =

∑
n ∥w1

t,n(x)− wk
t,n(x)∥.

Proof of Lemma B.5. Exponential Bound

Following our problem setting, we have:

pt(x) =
1

N

N∑
i=1

N (x;αtµi, (α
2
tσ

2 + σ2
t )I).

and

qt(x) =
1

N

N∑
i=1

N (x;αtµi, (
α2
tσ

2

k
+ σ2

t )I).

, where pt(x) is the original distribution, and qt(x) is the desired distribution with altered variance.

For each x, the responsibility vector under a mixture is defined as:

r(p)(x) =
(
r
(p)
1 (x), . . . , r

(p)
N (x)

)
, where r

(p)
i (x) =

N (x; αtµi,α
2
tσ

2+σ2
t )∑N

j=1 N (x; αtµj ,α2
tσ

2+σ2
t )

. r(q)(x) is defined analogously as r
(q)
i (x) =

N (x; αtµi,α
2
tσ

2/k+σ2
t )∑N

j=1 N (x; αtµj ,α2
tσ

2/k+σ2
t )

.
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Now we have Ex∼pk
t
∥dist(w1

t (x), w
k
t (x))∥ = Ex∼pk

t
[D(x)], where D(x) := ∥r(p)(x) −

r(q)(x)∥1.

Define i(x) = maxi ri, and ei as the one-hot vector where the ith entry is one. Using the triangle
inequality, we have:

D(x) = ∥r(p) − r(q)∥1 ≤ ∥r(p) − eip(x)∥1 + ∥eip(x) − eiq(x)∥1 + ∥eiq(x) − r(q)∥1.

, and that

∥r(p) − eip(x)∥1 = 2(1− rpip(x)(x))

∥eip − eiq∥1 = 2 ∗ 1{ip ̸= iq}
∥r(q) − eiq(x)∥1 = 2(1− rqiq(x)(x))

Concentration of responsibilities for the true component Let:

ϵ := max
i ̸=j

Px∼N (µi,σ2) [∥x− µj∥ < ∥x− µi∥]

That is, the probability that a sample from component i is closer to another component j. Then:

Ex∼p

[
1−max

j
r
(p)
j (x)

]
≤ ϵ ⇒ Ex∼p[D(x)] ≈ 2ϵ

Recall∆ := mini ̸=j ∥µi − µj∥ to be the minimum pairwise distance between the means. Using
Gaussian tail bounds, we can approximate:

ϵ ≈ exp

(
− ∆2

8σ2

)
Hence, we have:

Ex∼pk
t

(
2(1− rpip(x)(x))

)
≤ 2 · exp

(
−α2

t∆
2

8σ2
t,1

)

Ex∼pk
t

(
2(1− rqiq(x)(x))

)
≤ 2 · exp

(
−α2

t∆
2

8σ2
t,k

)

Bounding Pr(ip ̸= iq)

As pt(x) and qt(x) share the same modes, we have Pr(ip ̸= iq) ≤
∑

i Pr
(
ip ̸= iq | x ∼

component i
)
Pr(x from i), which can also be bounded using Gaussian tail bounds as above.

Therefore, we have:

Ex∼pk
t
(D(x)) ≤ Ex(∥r(p) − eip(x)∥1) + Ex(∥eip(x) − eiq(x)∥1) + Ex(∥eiq(x) − r(q)∥1)

= Ex

(
2(1− rpip(x)(x))

)
+ Ex

(
2 ∗ 1{ip ̸= iq}

)
+ Ex

(
2(1− rqiq(x)(x))

)
≤ 2 · exp

(
−α2

t∆
2

8σ2
t,1

)
+ (exp

(
−α2

t∆
2

8σ2
t,1

)
+ exp

(
−α2

t∆
2

8σ2
t,k

)
) + 2 · exp

(
−α2

t∆
2

8σ2
t,k

)

≤ 6 · exp

(
−α2

t∆
2

8σ2
t,1

)

Finally:

Ex∼pk
t
(D(x)) ≤ 6 · exp

(
−α2

t∆
2

8σ2
t,1

)
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Proof of Lemma B.6. Polynomial Bound

We consider the softmax representation of the responsibilities:

wk
t (x) = softmax

(
zkt (x)

)
, where zkt,n(x) := −∥x− αtµn∥2

2σ2
t,k

.

. Using the Softmax Lipschitz bound that ∥ softmax(z)− softmax(z′)∥1 ≤ 1/2∥z − z′∥1 , we
have:

∥wk
t (x)− w1

t (x)∥1 ≤ 1

2
∥zkt (x)− z1t (x)∥1.

Compute the logits difference coordinatewise:

zkt,n(x)− z1t,n(x) = −∥δt,n(x)∥2

2σ2
t,k

+
∥δt,n(x)∥2

2σ2
t,1

=
1

2

( 1

σ2
t,1

− 1

σ2
t,k

)
∥δt,n(x)∥2.

Adding absolute values,

∥zkt (x)− z1t (x)∥1 =
1

4

( 1

σ2
t,k

− 1

σ2
t,1

) N∑
n=1

∥δt,n(x)∥2

Bounding Ex

[∑N
n=1 ∥δt,n(x)∥2

]
Let x ∼ pkt be drawn from the mixture with means {αtµi} and variance σ2

t,k. Write expectation as
mixture-average:

Ex

[ N∑
n=1

∥δt,n(x)∥2
]
=

1

N

N∑
i=1

Ex∼N (αtµi,σ2
t,kI)

[ N∑
n=1

∥x− αtµn∥2
]
.

When the sample was generated from component i, for any other n, we have

E∥x− αtµn∥2 = E
[
∥x− αtµi + αtµi − αtµn∥2

]
= E∥x− αtµi∥2 + ∥αtµi − αtµn∥2

, because the cross-term has zero mean.

Since the first term equals the trace of the covariance = dσ2
t,1, we have:

E∥x− αtµn∥2 = dσ2
t,1 + ∥αt(µi − µn)∥2

Summing over all N (including n=i, for which the pairwise term is zero) gives
Ex∼N (αtµi,σ2

t,1I)

[∑N
n=1 δt,n(x)

]
= Ndσ2

t,1 +
∑N

n=1 ∥αt(µi − µn)∥2.

Now, bound the pairwise squared distances by the diameter squared: ∥αt(µt,i−µt,n)∥2 ≤ α2
t∆

2
max.

Therefore, we have: Ex

[∑N
n=1 ∥δt,n(x)∥2

]
≤ N

(
dσ2

t,1 + α2
t∆

2
max

)
.

We then have the polynomial bound as:

Ex∼p[D(x)] ≤ 1

4

( 1

σ2
t,k

− 1

σ2
t,1

)
N
(
dσ2

t,k + α2
t∆

2
max

)
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C CONSTANT NOISE SCALING

In this section, we provide a more detailed analysis of Constant Noise Scaling. As discussed in Sec-
tion 2, CNS has been adopted as a practical technique to control trade-off sample variance and diver-
sity. We intuitively explain and empirically verify that CNS does not correspond to true temperature
scaling. We now provide a more rigorous proof that CNS cannot produce the temperature-scaled
distribution. Following Song et al. (2021b), a regular score-based model sθ(x, t) = ∇ log pt(x)
trained on data distribution p0(x) can sample by solving the reverse time diffusion SDE:

dx = [f(t)x− g(t)2sθ(x, t)]dt+ g(t)dw̄ (13)

where f(t), g(t) are the time-dependent drift and diffusion coefficients, dw̄ is the standard Wiener
process. CNS solves the following SDE instead:

dx = [f(t)x− (
g(t)√
k
)2(ksθ(x, t))]dt+

g(t)√
k
dw̄ (14)

Practically, CNS scales the stochastic noise added at each sampling step by 1/
√
k. When k > 1,

less noise is added and the process generates samples with reduced variance, and vice versa. To
analyze the relationship between CNS and temperature scaling, we denote the temperature-scaled
data distribution q0(x), such that q0(x) ∝ p0(x)

k.

Theorem C.1. For general data distribution p0(x), there is no prior distribution q′T (x), such that
Eq. 14 starts from q′T (x) and generate the temperature scaled distribution q0(x) ∝ p0(x)

k.

Proof. We start by considering the following forward SDE:

dx = f(t)xdt+
g(t)√
k
dw (15)

Let the initial distribution at t = 0 be q0(x), we define the time-dependent distribution generated by
this forward SDE as qt(x). Then, one corresponding reverse SDE that can sample q0(x) takes the
form of

dx = [f(t)x− (
g(t)√
k
)2(∇ log qt(x))]dt+

g(t)√
k
dw̄ (16)

Comparing Eq. 14 and Eq. 16, we can infer the following Lemma:

Lemma C.2. The CNS reverse-time SDE Eq. 14 and the SDE Eq. 16 are equivalent if and only if
∇ log qt(x) = ksθ(x, t) for all time t.

By construction, Eq. 16 evolves from qT (x) to q0(x). Now we assume CNS (Eq. 14) starts from
the same prior distribution qT (x) = N (0, 1

k I), by Lemma C.2, CNS correctly perform temperature
scaling and sample from q0(x) if and only if ∇ log qt(x) = ksθ(x, t). Now we show that this
condition is not true in general.

Left Side: To compute qt(x), we need to solve the SDE in Eq. 15. For an initial condition x = X0,
the solution X(t) is given by the following stochastic interpolant:

X(t) = αq(t)X0 + σq(t)ϵ, ϵ ∼ N (0, I) (17)

αq(t) =

∫ t

0

f(s)ds = αt

σq(t) =

∫ t

0

g(s)2

k
exp (−2

∫ s

0

f(u)du)ds =
σt

k

Therefore, we can compute the qt(x) by

qt(x) =

∫
q0(y)N (x; αty,

σ2
t

k
I)dy (18)
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Right Side. For the original diffusion process without scaling, we can compute the noisy distribution
pt(x) at time t as

pt(x) =

∫
p0(y)N (x; αty, σ

2
t I)dy (19)

Comparing Eq. 18 and Eq. 19, we can infer that ∇ log qt(x) ̸= ksθ(x, t) for general distribution.
One simple counterexample is where p0(x) is a mixture of Gaussians. By previous reasoning, CNS
cannot generate q0(x) if the prior distribution is qT (x).

What if we allow initial samples drawn from distributions other than qT (x)? We consider the special
case where p0(x) = N (0, I), then pt(x) = p0(x), qt(x) = q0(x). The condition ∇ log qt(x) =
ksθ(x, t) trivially holds true. By Lemma C.2, CNS(Eq. 14) and Eq. 16 are equivalent. Therefore,
CNS can generate q0(x) if and only if the prior distribution at time T is the same as qT (x). For any
other prior distribution, CNS would not be able to generate q0(x).

In conclusion, there does not exist an prior distribution q′T (x), from which CNS can always generate
the temperature scaled distribution q0(x)

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilize LLMs to aid and refine some of the writing in the paper, such as correcting potential
grammatical errors and suggesting more suitable expressions based on our original writing in some
paragraphs.
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