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ABSTRACT

The optimal transport problem for measures supported on non-Euclidean spaces
has recently gained ample interest in diverse applications involving representation
learning. In this paper, we focus on circular probability measures, i.e., probabil-
ity measures supported on the unit circle, and introduce a new computationally
efficient metric for these measures, denoted as Linear Circular Optimal Transport
(LCOT). The proposed metric comes with an explicit linear embedding that al-
lows one to apply Machine Learning (ML) algorithms to the embedded measures
and seamlessly modify the underlying metric for the ML algorithm to LCOT. We
show that the proposed metric is rooted in the Circular Optimal Transport (COT)
and can be considered the linearization of the COT metric with respect to a fixed
reference measure. We provide a theoretical analysis of the proposed metric and
derive the computational complexities for pairwise comparison of circular proba-
bility measures. Lastly, through a set of numerical experiments, we demonstrate
the benefits of LCOT in learning representations of circular measures.

1 INTRODUCTION

Optimal transport (OT) (Villani, 2009; Peyré et al., 2019) is a mathematical framework that seeks
the most efficient way of transforming one probability measure into another. The OT framework
leads to a geometrically intuitive and robust metric on the set of probability measures, referred
to as the Wasserstein distance. It has become an increasingly popular tool in machine learning,
data analysis, and computer vision (Kolouri et al., 2017; Khamis et al., 2023). OT’s applications
encompass generative modeling (Arjovsky et al., 2017; Tolstikhin et al., 2017; Kolouri et al., 2018),
domain adaptation (Courty et al., 2017; Damodaran et al., 2018), transfer learning (Alvarez-Melis &
Fusi, 2020; Liu et al., 2022), supervised learning (Frogner et al., 2015), clustering (Ho et al., 2017),
image and pointcloud registration (Haker et al., 2004; Bai et al., 2022; Le et al., 2023), and even
inverse problems (Mukherjee et al., 2021), among others. Recently, there has been an increasing
interest in OT for measures supported on manifolds (Bonet et al., 2023; Sarrazin & Schmitzer,
2023). This surging interest is primarily due to: 1) real-world data is often supported on a low-
dimensional manifold embedded in larger-dimensional Euclidean spaces, and 2) many applications
inherently involve non-Euclidean geometry, e.g., geophysical data or cortical signals in the brain.

In this paper, we are interested in efficiently comparing probability measures supported on the unit
circle, aka circular probability measures, using the optimal transport framework. Such probability
measures, with their densities often represented as circular/rose histograms, are prevalent in many
applications, from computer vision and signal processing domains to geology and astronomy. For
instance, in classic computer vision, the color content of an image can be accounted for by its hue
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in the HSV space, leading to one-dimensional circular histograms. Additionally, local image/shape
descriptors are often represented via circular histograms, as evidenced in classic computer vision
papers like SIFT (Lowe, 2004) and ShapeContext (Belongie et al., 2000). In structural geology, the
orientation of rock formations, such as bedding planes, fault lines, and joint sets, can be represented
via circular histograms Twiss & Moores (1992). In signal processing, circular histograms are com-
monly used to represent the phase distribution of periodic signals (Levine et al., 2002). Additionally,
a periodic signal can be normalized and represented as a circular probability density function (PDF).

Notably, a large body of literature exists on circular statistics (Jammalamadaka & SenGupta, 2001).
More specific to our work, however, are the seminal works of Delon et al. (2010) and Rabin et al.
(2011), which provide a thorough study of the OT problem and transportation distances on the circle
(see also Cabrelli & Molter (1998)). OT on circles has also been recently revisited in various papers
(Hundrieser et al., 2022; Bonet et al., 2023; Beraha & Pegoraro, 2023; Quellmalz et al., 2023),
further highlighting the topic’s timeliness. Unlike OT on the real line, generally, the OT problem
between probability measures defined on the circle does not have a closed-form solution. This
stems from the intrinsic metric on the circle and the fact that there are two paths between any pair
of points on a circle (i.e., clockwise and counter-clockwise). Interestingly, however, when one of
the probability measures is the Lebesgue measure, i.e., the uniform distribution, the 2-Wasserstein
distance on the circle has a closed-form solution, which we will discuss in the Background section.

We present the Linear Circular OT (LCOT), a new transport-based distance for circular probability
measures. By leveraging the closed-form solution of the circular 2-Wasserstein distance between
each distribution and the uniform distribution on the circle, our method sidesteps the need for opti-
mization. Concisely, we determine the Monge maps that push the uniform distribution to each input
measure using the closed-form solution, then set the distance between the input measures based on
the disparities between their respective Monge maps. Our approach draws parallels with the Linear
Optimal Transport (LOT) framework proposed by Wang et al. (2013) and can be seen as an extension
of the cumulative distribution transform (CDT) presented by (Park et al., 2018) to circular probabil-
ity measures (see also, Aldroubi et al. (2022; 2021)). The idea of linearized (unbalanced) optimal
transport was also studied recently in various works (Cai et al., 2022; Moosmüller & Cloninger,
2023; Sarrazin & Schmitzer, 2023; Cloninger et al., 2023). From a geometric perspective, we pro-
vide explicit logarithmic and exponential maps between the space of probability measures on the
unit circle and the tangent space at a reference measure (e.g., the Lebesgue measure) Wang et al.
(2013); Cai et al. (2022); Sarrazin & Schmitzer (2023). Then, we define our distance in this tangent
space, giving rise to the terminology ‘Linear’ Circular OT. The logarithmic map provides a linear
embedding for the LCOT distance, while the exponential map inverts this embedding. We provide a
theoretical analysis of the proposed metric, LCOT, and demonstrate its utility in various problems.

Contributions. Our specific contributions in this paper include 1) proposing a computationally ef-
ficient metric for circular probability measures, 2) providing a theoretical analysis of the proposed
metric, including its computational complexity for pairwise comparison of a set of circular mea-
sures, and 3) demonstrating the robustness of the proposed metric in manifold learning, measure
interpolation, and clustering/classification of probability measures.

2 BACKGROUND

2.1 CIRCLE SPACE

The unit circle S1 can be defined as the quotient space

S1 = R/Z = {{x+ n : n ∈ Z} : x ∈ [0, 1)} .
The above definition is equivalent to [0, 1] under the identification 0 = 1. For the sake of simplicity
in this article, we treat them as indistinguishable. Furthermore, we adopt a parametrization of the
circle as [0, 1), designating the North Pole as 0 and adopting a clockwise orientation. This will serve
as our canonical parametrization.

Let | · | denote the absolute value on R. With the aim of avoiding any confusion, when necessary,
we will denote it by | · |R. Then, a metric on S1 can be defined as

|x− y|S1 := min{|x− y|R, 1− |x− y|R}, x, y ∈ [0, 1)

or, equivalently, as
|x− y|S1 := min

k∈Z
|x− y + k|R,
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where for the second formula x, y ∈ R are understood as representatives of two classes of equiv-
alence in R/Z, but these two representatives x, y do not need to belong to [0, 1). It turns out that
such a metric defines a geodesic distance: It is the smaller of the two arc lengths between the points
x, y along the circumference (cf. Jammalamadaka & SenGupta (2001), where here we parametrize
angles between 0 and 1 instead of between 0 and 2π. Besides, the circle S1 can be endowed with
a group structure. Indeed, as the quotient space R/Z it inherits the addition from R modulo Z.
Equivalently, for any x, y ∈ [0, 1), we can define the operations +,− as

(x, y) 7→
{
x± y, if x± y ∈ [0, 1)

x± y ∓ 1, otherwise.
(1)

2.2 DISTRIBUTIONS ON THE CIRCLE

Regarded as a set, S1 can be identified with [0, 1). Thus, signals over S1 can be interpreted as 1-
periodic functions on R. More generally, every measure µ ∈ P(S1) can be regarded as a measure
on R by

µ(A+ n) := µ(A), for every A ⊆ [0, 1) Borel subset, and n ∈ Z. (2)
Then, its cumulative distribution function, denoted by Fµ, is defined as

Fµ(y) := µ([0, y)) =

∫ y

0

dµ, ∀y ∈ [0, 1) (3)

and can be extended to a function on R by

Fµ(y + n) := Fµ(y) + n, ∀y ∈ [0, 1), n ∈ Z. (4)

Figure 2 shows the concept of Fµ and its extension to R.

In the rest of this article, we do not distinguish between the definition of measures on S1 or their
periodic extensions into R, as well as between their CDFs or their extended CDFs into R.
Definition 2.1. [Cumulative distribution function with respect to a reference point] Let µ ∈ P(S1),
and consider a reference point x0 ∈ S1. Assume that S1 is identified as [0, 1) according to our
canonical parametrization. By abuse of notation, also denote by x0 the point in [0, 1) that corre-
sponds to the given reference point when considering the canonical parametrization. We define

Fµ,x0(y) := Fµ(x0 + y)− Fµ(x0).

Figure 1: Visualization of densities (blue and or-
ange) on S1 and after unrolling them to [0, 1) by
considering a cutting point x0. The blue density
is the uniform distribution on S1, represented as
having height 1 over the unit circle in black.

The reference point x0 can be considered as the
“origin” for parametrizing the circle as [0, 1)
starting from x0. That is, x0 will correspond
to 0, and from there, we move according to the
clockwise orientation. Thus, we can think of x0

in the above definition as a “cutting point”: A
point where we cut S1 into a line by x0 and so
we can unroll PDFs and CDFs over the circle
into R. See Figures 1 and 2.

Besides, note that Fµ,x0
(0) = 0 and

Fµ,x0
(1) = 1 by the 1-periodicity of µ. This

is to emphasize that in the new system of coor-
dinates, or in the new parametrization of S1 as
[0, 1) starting from x0, the new origin x0 plays
the role of 0. Finally, notice that if x0 is the North Pole, which corresponds to 0 in the canonical
parametrization of the circle, then Fµ,x0 = Fµ.

Definition 2.2. The quantile function F−1
µ,x0

: [0, 1] → [0, 1] is defined as F−1
µ,x0

(y) := inf{x :
Fµ,x0

(x) > y}.

2.3 OPTIMAL TRANSPORT ON THE CIRCLE

2.3.1 PROBLEM SETUP

Given µ, ν ∈ P(S1), let c(x, y) := h(|x− y|S1) be the cost of transporting a unit mass from x to y
on the circle, where h : R → R+ is a convex increasing function. The Circular Optimal Transport
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cost between µ and ν is defined as

COTh(µ, ν) := inf
γ∈Γ(µ,ν)

∫
S1×S1

c(x, y) dγ(x, y), (5)

where Γ(µ, ν) is the set of all transport plans from µ to ν, that is, γ ∈ Γ(µ, ν) is such that γ ∈
P(S1×S1) having first and second marginals µ and ν, respectively. There always exists a minimizer
γ∗ of 5, and it is called a Kantorovich optimal plan (see, for example, Santambrogio (2015, Th. 1.4)).

When h(x) = |x|p, for 1 ≤ p < ∞, we denote COTh(·, ·) = COTp(·, ·), and COTp(·, ·)1/p defines
a distance on P(S1). In general,

COTh(µ, ν) ≤ inf
M :M#µ=ν

∫
S1
h(|M(x)− x|S1) dµ(x), (6)

and a minimizer M∗ : S1 → S1 of the right-hand side of 6, among all maps M that pushforward µ
to ν 1, might not exist. In this work, we will consider the cases where a minimizer M∗ does exist,
for example, when the reference measure µ is absolutely continuous with respect to the Lebesgue
measure on S1 (see McCann (2001); Santambrogio (2015)). In these scenarios, such map M∗ is
called an optimal transportation map or a Monge map. Moreover, as µ, ν ∈ P(S1) can be regarded
as measures on R according to equation 2, we can work with transportation maps M : R → R that
are 1-periodic functions satisfying M#µ = ν.

Proposition 2.3. Two equivalent formulations of COTh are the following:

COTh(µ, ν) = inf
x0∈[0,1)

∫ 1

0

h(|F−1
µ,x0

(x)− F−1
ν,x0

(x)|R) dx (7)

= inf
α∈R

∫ 1

0

h(|F−1
µ (x)− F−1

ν (x− α)|R) dx. (8)

When there exist minimizers xcut and αµ,ν of equation 7 and equation 8, respectively, the relation
between them is given by

αµ,ν = Fµ(xcut)− Fν(xcut). (9)

Moreover, if µ = Unif(S1) and h(x) = |x|2, it can be verified that αµ,ν is the antipodal of E(ν),
i.e.,

αµ,ν = xcut − Fν(xcut) = E(ν)− 1/2. (10)

The proof of equation 8 in Proposition 2.3 is provided in Delon et al. (2010) for the optimal coupling
for any pair of probability measures on S1. For the particular and enlightening case of discrete
probability measures on S1, we refer the reader to Rabin et al. (2011). In that article, equation 7 is
introduced. Finally, equation 10 is given for example in Bonet et al. (2023, Proposition 1).

1The pushforward M#µ is defined by the change of variables
∫
φ(y) dM#µ(y) :=

∫
φ(M(x)) dµ(x), for

every continuous function φ : S1 → C.

Figure 2: Left: The density of a probability measure, µ. Middle: visualization of the periodic
extension to R of a CDF, Fµ, of measure µ on [0, 1) ∼ S1. Right: Visualization of Fµ,x0

given in
Definition 2.1, where the parameterization of the circle is changed; now, the origin 0 is the point x0.
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Proposition 2.3 allows us to see the optimization problem of transporting measures supported on the
circle as an optimization problem on the real line by looking for the best “cutting point” so that the
circle can be unrolled into the real line by 1-periodicity.
Remark 2.4. In general, if h is strictly convex, the minimizer of equation 8 is unique (see Ap-
pendix A.2), but there can be multiple minimizers for equation 7 (see Figure 8 in Appendix A.2
and equation 9). However, when a minimizer xcut of equation 7 exists, it will lead to the optimal
transportation displacement on a circular domain (see Section 2.3.2 below).

2.3.2 A CLOSED-FORM FORMULA FOR THE OPTIMAL CIRCULAR DISPLACEMENT

Let xcut be a minimizer of equation 7, that is,

COTh(µ, ν) =

∫ 1

0

h(|F−1
µ,xcut

(x)− F−1
ν,xcut

(x)|R) dx. (11)

From equation 11, one can now emulate the Optimal Transport Theory on the real line (see, for
e.g., Santambrogio (2015)): The point xcut provides a reference where one can “cut” the circle.
Subsequently, computing the optimal transport between µ and ν boils down to solving an optimal
transport problem between two distributions on the real line.

We consider the parametrization of S1 as [0, 1) by setting xcut as the origin and moving along the
clockwise orientation. Let us use the notation x̃ ∈ [0, 1) for the points given by such parametrization,
and the notation x ∈ [0, 1) for the canonical parametrization. That is, the change of coordinates
from the two parametrizations is given by x = x̃+ xcut. Then, if µ does not give mass to atoms, by
equation 11 and the classical theory of Optimal Transport on the real line, the optimal transport map
(Monge map) that takes a point x̃ to a point ỹ is given by

F−1
ν,xcut

◦ Fµ,xcut
(x̃) = ỹ (12)

That is, 12 defines a circular optimal transportation map from µ to ν written in the parametrization
that establishes xcut as the “origin.” If we want to refer everything to the original labeling of the
circle, that is, if we want to write equation 12 with respect to the canonical parametrization, we need
to change coordinates {

x̃ = x− xcut

ỹ = y − xcut
. (13)

Therefore, a closed-form formula for an optimal circular transportation map in the canonical coor-
dinates is given by

Mν
µ (x) := F−1

ν,xcut
◦ Fµ,xcut

(x− xcut) + xcut = y, x ∈ [0, 1), (14)
and the corresponding optimal circular transport displacement that takes x to y is

Mν
µ (x)− x = F−1

ν,xcut
◦ Fµ,xcut

(x− xcut)− (x− xcut), x ∈ [0, 1). (15)
In summary, we condense the preceding discussion in the following result. The proof is provided
in Appendix A.1. While the result builds upon prior work, drawing from Bonet et al. (2023); Rabin
et al. (2011); Santambrogio (2015), it offers an explicit formula for the optimal Monge map.
Theorem 2.5. Let µ, ν ∈ P(S1). Assume that µ is absolutely continuous with respect to the
Lebesgue measure on S1 (that is, it does not give mass to atoms).

1. If xcut is a minimizer of equation 7, then equation 14 defines an optimal circular trans-
portation map. (We will use the notation Mν

µ for the Monge map from µ to ν.)

2. If αµ,ν minimizes equation 8, then

Mν
µ (x) = F−1

ν (Fµ(x)− αµ,ν) (16)

3. If x0, x1 are two minimizers of equation 7, then
F−1
ν,x0

◦ Fµ,x0
(x− x0) + x0 = F−1

ν,x1
◦ Fµ,x1

(x− x1) + x1 ∀x ∈ [0, 1).

4. If the cost function h is strictly convex, the optimal map defined by the formula equation 14
is unique. (The uniqueness is as functions on S1, or as functions on R up to modulo Z).

5. If also ν does not give mass to atoms, then (Mν
µ )

−1 = Mµ
ν .

Having established the necessary background, we are now poised to introduce our proposed metric.
In the subsequent section, we present the Linear Circular Optimal Transport (LCOT) metric.
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3 METHOD

3.1 LINEAR CIRCULAR OPTIMAL TRANSPORT EMBEDDING (LCOT)

By following the footsteps ofWang et al. (2013), starting from the COT framework, we will define
an embedding for circular measures by computing the optimal displacement from a fixed reference
measure. Then, the Lp-distance on the embedding space defines a new distance between circular
measures (Theorem 3.6 below).
Definition 3.1 (LCOT Embedding). For a fixed reference measure µ ∈ P(S1) that is absolutely
continuous with respect to the Lebesgue measure on S1, we define the Linear Circular Optimal
Transport (LCOT) Embedding of a target measure ν ∈ P(S1) with respect to the cost COTh(·, ·),
for a strictly convex increasing function h : R → R+, by

ν̂µ,h(x) := F−1
ν,xcut

(Fµ(x− xcut))− (x− xcut) = F−1
ν (Fµ(x)− αµ,ν)− x, x ∈ [0, 1), (17)

where xcut is any minimizer of equation 7 and αµ,ν is the minimizer of equation 8.

The LCOT-Embedding corresponds to the optimal (circular) displacement that comes from the prob-
lem of transporting the reference measure µ to the given target measure ν with respect to a general
cost COTh(·, ·) (see equation 16 from Theorem 2.5 and equation 15).
Definition 3.2 (LCOT discrepancy). Under the settings of Definition 3.1, we define the LCOT-
discrepancy by

LCOTµ,h(ν1, ν2) :=

∫ 1

0

h

(
min
k∈Z

{|ν̂1µ,h(t)− ν̂2
µ,h(t) + k|R}

)
dµ(t), ∀ν1, ν2 ∈ P(S1).

In particular, when h(·) = | · |p, for 1 < p < ∞, we define the LCOTµ,p distance as

LCOTµ,p(ν1, ν2) := ∥ν̂1µ,h − ν̂2
µ,h∥pLp(S1,dµ) =

∫ 1

0

(
min
k∈Z

{|ν̂1µ,h(t)− ν̂2
µ,h(t) + k|R}

)p

dµ(t)

where Lp(S1, dµ) := {f : S1 → R | ∥f∥Lp(S1,dµ) :=

(∫
S1
|f(t)|pS1 dµ(t)

)1/p

< ∞}. (18)

If µ = Unif(S1), we use the notation Lp(S1) := Lp(S1, dµ).

The embedding ν 7→ ν̂ as outlined by equation 17 is consistent with the definition of the Logarithm
function given in (Sarrazin & Schmitzer, 2023, Definition 2.7) (we also refer to Wang et al. (2013)
for the LOT framework). However, the emphasis of the embedding in this paper is on computational
efficiency, and a closed-form solution is provided. Additional details are available in Appendix A.6.
Remark 3.3. If the reference measure is µ = Unif(S1), given a target measure ν ∈ P(S1), we
denote the LCOT-Embedding ν̂µ,h of ν with respect to the cost COT2(·, ·) (i.e., h(x) = |x|2) simply
by ν̂. Due to Theorem 2.5 and equation 10, the expression 17 reduces to

ν̂(x) := F−1
ν

(
x− E(ν) +

1

2

)
− x, x ∈ [0, 1). (19)

In this setting, we denote LCOTµ,h(·, ·) simply by LCOT (·, ·). That is, given ν1, ν2 ∈ P(S1),

LCOT (ν1, ν2) := ∥ν̂1 − ν̂2∥2L2(S1) =

∫ 1

0

(
min
k∈Z

{|ν̂1(t)− ν̂2(t) + k|R}
)2

dt. (20)

All our experiments are performed using the embedding ν̂ given by 19 due to the robustness of the
closed-form formula 10 for the minimizer αµ,ν of equation 8 when h(x) = |x|2 and µ = Unif(S1).
Remark 3.4. Let µ ∈ P(S1) be absolutely continuous with respect to the Lebesgue measure on S1,
and h : R → R+ a strictly convex increasing function. Given ν ∈ P(S1).

COTh(µ, ν) =

∫ 1

0

h
(
|ν̂µ,h(t)|S1

)
dt =

∫ 1

0

h
(
|ν̂µ,h(t)− µ̂µ,h(t)|S1

)
dt = LCOTµ,h(µ, ν).

In particular,
COT2(µ, ν) = ∥ν̂∥2L2(S1) = ∥ν̂ − µ̂∥2L2(S1) = LCOT (µ, ν).
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Proposition 3.5 (Invertibility of the LCOT-Embedding.). Let µ ∈ P(S1) be absolutely continuous
with respect to the Lebesgue measure on S1, h : R → R+ a strictly convex increasing function, and
let ν ∈ P(S1). Then,

ν = (ν̂µ,h + id)#µ.

We refer to Proposition A.2 in the Appendix for more properties of the LCOT-Embedding.

Theorem 3.6. Let µ ∈ P(S1) be absolutely continuous with respect to the Lebesgue measure on S1,
and let h(x) = |x|p, for 1 < p < ∞. Then LCOTµ,p(·, ·)1/p is a distance on P(S1). In particular,
LCOT (·, ·)1/2 is a distance on P(S1).

3.2 LCOT INTERPOLATION BETWEEN CIRCULAR MEASURES

Given a COT Monge map and the LCOT embedding, we can compute a linear interpolation between
circular measures (refer to Wang et al. (2013) for a similar approach on the Euclidean setting). First,
for arbitrary measures σ, ν ∈ P(S1) the COT interpolation can be written as:

ρCOT
t := ((1− t)id + tMν

σ )# σ, t ∈ [0, 1]. (21)

Similarly, for a fixed reference measure µ ∈ P(S1), we can write the LCOT interpolation as:

ρLCOT
t := ((1− t)(σ̂ + id) + t(ν̂ + id))# µ, t ∈ [0, 1], (22)

where we have ρCOT
t=0 = ρLCOT

t=0 = σ and ρCOT
t=1 = ρLCOT

t=1 = ν. In Figure 3, we show such
interpolations between the reference measure µ and two arbitrary measures ν1 and ν2 for COT
and LCOT. As can be seen, the COT and LCOT interpolations between µ and νis coincide (by
definition), while the interpolation between ν1 and ν2 is different for the two methods. We also
provide an illustration of the logarithmic and exponential maps to, and from, the LCOT embedding.

LCOT
Embedding

LCOT
InterpolationCOT

Interpolation

Machine learning algorithms are applied in the 
Euclidean embedding space 

Figure 3: Left: Illustration of the LCOT embedding, the linearization process (logarithmic map), and
measure interpolations. Right: Pairwise interpolations between reference measure µ and measures
ν1 and ν2, using formulas in equation 21 (COT) and equation 22 (LCOT).

We refer to Appendix A.5.1 for a real data application.

3.3 TIME COMPLEXITY OF LINEAR COT DISTANCE BETWEEN DISCRETE MEASURES

According to (Delon et al., 2010, Theorem 6.2), for discrete measures ν1, ν2 with N1, N2 sorted
points, the binary search algorithm requires O((N1 +N2) log(1/ϵ)) computational time to find an
ϵ-approximate solution for αν1,ν2 . If M is the least common denominator for all probability masses,
an exact solution can be obtained in O((N1+N2) lnM). Then, for a given ϵ > 0 and K probability
measures, {νk}Kk=1, each with N points, the total time to pairwise compute the COT distance is
O(K2N ln(1/ϵ)). For LCOT, when the reference µ is the Lebesgue measure, the optimal αµ,νk

has a closed-form solution (see equation 10) and the time complexity for computing the LCOT
embedding via equation 19 is O(N). The LCOT distance calculation between νi and νj according
to equation 20 requires O(N) computations. Hence, the total time for pairwise LCOT distance
computation between K probability measures, {νk}Kk=1, each with N points, would be O(K2N +
KN). See Appendix A.3 for further explanation.
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To verify these time complexities, we evaluate the computational time for COT and LCOT algo-
rithms and present the results in Figure 4. We generate K random discrete measures, {νk}Kk=1, each
with N samples, and for the reference measure, µ, we choose: 1) the uniform discrete measure,
and 2) a random discrete measure, both with N0 = N samples. To calculate αµ,νk

, we considered
the two scenarios, using the binary search Delon et al. (2010) for the non-uniform reference, and
using equation 10 for the uniform reference. We labeled them as, “uniform ref.” and “non-uniform
ref.” Then, in our first experiment, we set K = 2 and measured the wall-clock time for calculating
COT and LCOT while varying N ∈ {100, 200, . . . , 20000}. For our second experiment, and for
N ∈ {500, 1000, 5000}, we vary K ∈ {2, 4, 6, . . . , 64} and measure the total time for calculating
pairwise COT and LCOT distances. The computational benefit of LCOT is evident from Figure 4.

Figure 4: Computational time analysis of COT and LCOT, for pairwise comparison of K dis-
crete measures, each with N samples. Left: Wall-clock time in seconds for K = 2 and
N ∈ {100, 200, . . . , 20000}. Right: Wall-clock time in seconds for N ∈ {500, 1000, 5000}, and
K ∈ {2, 4, 6, . . . , 64}. Solid lines are COT, dotted are LCOT with a uniform reference and dash-
dotted are LCOT with a non-uniform reference.

4 EXPERIMENTS

To better understand the geometry induced by the LCOT metric, we perform Multidimensional Scal-
ing (MDS) (Kruskal, 1964) on a family of densities, where the discrepancy matrices are computed
using LCOT, COT, OT (with a fixed cutting point), and the Euclidean distance.

Experiment 1. We generate three families of circular densities, calculate pairwise distances between
them, and depict their MDS embedding in Figure 5. In short, the densities are chosen as follows; we
start with two initial densities: (1) a von Mises centered at the south pole of the circle (µ=0.5), (2)
a bimodal von Mises centered at the east (µ=0.25) and west (µ=0.75) ends of the circle. Then, we
create 20 equally distant circular translations of each of these densities to capture the geometry of the
circle. Finally, we parametrize the COT geodesic between the initial densities and generate 20 extra
densities on the geodesic. Figure 5 shows these densities in green, blue, and red, respectively. The
representations given by the MDS visualizations show that LCOT and COT capture the geometry
of the circle coded in the translation property in an intuitive fashion. In contrast, OT and Euclidean
distances do not capture the underlying geometry of the problem.

Experiment 2. To assess the separability properties of the LCOT embedding, we follow a similar
experiment design as in Landler et al. (2021). We consider six groups of circular density functions
as in the third row of Figure 5: unimodal von Mises (axial: 0◦), wrapped skew-normal, symmetric
bimodal von Mises (axial: 0◦ and 180◦), asymmetric bimodal von Mises (axial: 0◦ and 120◦),
symmetric trimodal von Mises (axial: 0◦, 120◦ and 240◦), asymmetric trimodal von Mises (axial:
0◦, 240◦ and 225◦). We assign a von Mises distribution with a small spread (κ = 200) to each
distribution’s axis/axes to introduce random perturbations of these distributions. We generate 20
sets of simulated densities and sample each with 50-100 samples. Following the computation of
pairwise distances among the sets of samples using LCOT, COT, OT, and Euclidean methods, we
again employ MDS to visualize the separability of each approach across the six circular density
classes mentioned above. The outcomes are presented in the bottom row of Figure 5. It can be seen
that LCOT stands out for its superior clustering outcomes, featuring distinct boundaries between the
actual classes, outperforming the other methods.

Experiment 3. In our last experiment, we consider the calculation of the barycenter of circular
densities. Building upon Experiments 1 and 2, we generated unimodal, bimodal, and trimodal von
Mises distributions. For each distribution’s axis/axes, we assigned a von Mises distribution with a
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small spread (κ = 200) to introduce random perturbations. These distributions are shown in Figure
6 (left). Subsequently, we computed both the Euclidean average of these densities and the LCOT
barycenter. Notably, unlike COT, the invertible nature of the LCOT embedding allows us to directly
calculate the barycenter as the inverse of the embedded distributions’ average (see Appendix A.4).
The resulting barycenters are illustrated in Figure 6. As observed, the LCOT method accurately
recovers the correct barycenter without necessitating additional optimization steps.

Unimodal von Mises 
Distributions

Transition from 
Unimodal to
Bimodal

Bimodal von Mises 
Distributions

Figure 5: MDS for embedding classes of probability densities into an Euclidean space of dimension
2 where the original pair-wise distances (COT-distance, LOT-distance, Euclidean or L2-distance)
are preserved as well as possible.

Figure 6: The LCOT barycenter compared to the Euclidean mean.

5 CONCLUSION AND DISCUSSION

In this paper, we present the Linear Circular Optimal Transport (LCOT) discrepancy, a new met-
ric for circular measures derived from the Linear Optimal Transport (LOT) framework Wang et al.
(2013); Kolouri et al. (2016); Park et al. (2018); Cai et al. (2022); Aldroubi et al. (2022); Moosmüller
& Cloninger (2023). The LCOT offers 1) notable computational benefits over the COT metric,
particularly in pairwise comparisons of numerous measures, and 2) a linear embedding where the
∥ · ∥L2(S1) between embedded distributions equates to the LCOT metric. We consolidated scattered
results on circular OT into Theorem 2.5 and introduced the LCOT metric and embedding, validating
LCOT as a metric in Theorem 3.6. In Section 3.3, we assess LCOT’s computational complexity for
pairwise comparisons of K circular measures, juxtaposing it with COT. We conclude by showcas-
ing LCOT’s empirical strengths via MDS embeddings on varied circular densities using different
metrics.
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A APPENDIX

A.1 PROOFS

Proof of Proposition 2.3. The proof of Proposition 2.3 is provided in Delon et al. (2010) for the
optimal coupling for any pair of probability measures on S1. For the particular and enlightening
case of discrete probability measures on S1, we refer the reader to Rabin et al. (2011).

For completeness, notice that the relation between x0 and α hols by changing variables, using 1-
periodicity of µ and ν and Definition 2.2 (see also Bonet et al. (2023, Proposition 1)):∫ 1

0

h(|F−1
µ,x0

(x)− F−1
ν,x0

(x)|R) dx

=

∫ 1

0

h(|(Fµ(·+ x0)− Fµ(x0))
−1(x)− (Fν(·+ x0)− Fν(x0))

−1(x)|R) dx

=

∫ 1

0

h(|(Fµ − Fµ(x0))
−1(x)− (Fν − Fν(x0))

−1(x)|R) dx

=

∫ 1

0

h(|F−1
µ (x+ Fµ(x0))− F−1

ν (x+ Fν(x0))|R) dx

=

∫ 1

0

h(|F−1
µ (x+ Fµ(x0)− Fν(x0)︸ ︷︷ ︸

α

)− F−1
ν (x)|R) dx

In particular, if h(x) = |x|2, and µ = Unif(S1), then

COT2(µ, ν) = inf
α∈R

∫ 1

0

|F−1
µ (x+ α)− F−1

ν (x)|2R dx

= inf
α∈R

∫ 1

0

|x+ α− F−1
ν (x)|2 dx

= inf
α∈R

(∫ 1

0

|F−1
ν (x)− x|2 dx− 2α

∫ 1

0

(F−1
ν (x)− x) dx+ α2

)
= inf

α∈R

(∫ 1

0

|F−1
ν (x)− x|2 dx− 2α

(∫ 1

0

x dν(x)− 1

2

)
+ α2

)
= inf

α∈R

(∫ 1

0

|F−1
ν (x)− x|2 dx− 2α

(
E(ν)− 1

2

)
+ α2

)
=

∫ 1

0

|F−1
ν (x)− x|2 dx− 2

(
E(ν)− 1

2

)
︸ ︷︷ ︸

αµ,ν

2

.

Therefore, in this case, the minimizer αµ,ν of equation 8 is unique and has the closed-form αµ,ν =
E(ν)− 1/2.

Proof of Remark 2.4. We will show that, in general, the minimizer αµ,ν of equation 8 is unique. Our
arguments are based on the paper Delon et al. (2010). Specifically, the role played by the function
(F θ)−1, where F θ(x) = F (x) + θ in Delon et al. (2010) is substituted by F−1(x− α) in our case
(i.e., our parameter α correspond to −θ in the mentioned paper).

Our hypotheses are the following:

1. Let c(x, y) := h(|x − y|) for h : R → R+ strictly convex (for example h(x) = |x|p with
p > 1), or, more generally, let c : R×R → R satisfying the Monge condition or the (strict)
cyclical monotonicity condition:

c(u1, v1) + c(u2, v2) < c(u1, v2) + c(u2, v1) ∀u1 < u2, v1 < v2. (23)
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2. Let µ, ν be two probability measures absolutely continuous with respect to the Lebesgue
measure on S1.

The idea of the proof will rely on showing that the cost function

Cost(α) :=
∫ 1

0

c(F−1
µ (x), F−1

ν (x− α)) dx (24)

is strictly convex and continuous (as a function on α), and so it has a unique global minimum (that
we will denote by αµ,ν).

Let
cµ,ν(x, y) := c(F−1

µ (x), F−1
ν (y)) (25)

Under the above conditions, it holds that cµ,ν(·, ·) satisfies the Monge condition equation 23. Then,
to prove strictly convexity of Cost(α) it is sufficient to show that

Cost
(
α′ + α′′

2

)
<

Cost(α′) + Cost(α′′)

2
(26)

Assume α′ ≤ α′′ and let α := α′+α′′

2 . On the one hand, since

Cost (α) =
∫ 1

0

cµ,ν(x, x− α) dx

=

∫ 1+α′′−α

α′′−α

cµ,ν(x, x− α) dx

=

∫ 1

0

cµ,ν(y + α′′ − α, y − α′) dy,

where in the last line we used the change of variables y = x+α′′−α and the fact that 2α−α′′ = α′.
Therefore,

2Cost (α) =
∫ 1

0

cµ,ν(z, z − α) dz +

∫ 1

0

cµ,ν(z + α′′ − α, z − α′) dz. (27)

On the other hand, by repeating the same idea we have,

Cost(α′′) =

∫ 1

0

cµ,ν(x, x− α′′) dx =

∫ 1+α′′−α

α′′−α

cµ,ν(x, x− α′′) dx

=

∫ 1

0

cµ,ν(y + α′′ − α, y − α) dy,

and so,

Cost(α′) + Cost(α′′) =

∫ 1

0

cµ,ν(z, z − α′) dz +

∫ 1

0

cµ,ν(z + α′′ − α, z − α) dz. (28)

Since u1(z) := z < z + α′′ − α =: u2(x) and v1(z) := z − α < z − α′ =: v2(z), we have that

c(u1(z), v1(z)) + c(u2(z), v2(z)) < c(u1(z), v2(z)) + c(u2(z), v1(z))

because cµ,ν(·, ·) satisfies Monge condition equation 23. Thus, from equation 27 and equation 28
we obtain

2Cost(α) =

∫ 1

0

cµ,ν(u1(z), v1(z)) dz +

∫ 1

0

cµ,ν(u2(z), v2(z)) dz

<

∫ 1

0

cµ,ν(u1(z), v2(z)) dz +

∫ 1

0

cµ,ν(u2(z), v1(z)) dz = Cost(α′) + Cost(α′′),

and so equation 26 holds. The continuity of α 7→ Cost(α) holds as the integral in equation 24 is
finite for all α.
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Remark A.1. We mention that in the case that c(x, y) = h(x − y) for h(x) = |x| (studied for
example in Cabrelli & Molter (1998); Hundrieser et al. (2022)) we have convexity but not strictly
convexity. However, the authors in Hundrieser et al. (2022) prove that a closed-formula for a mini-
mizer αµ,ν of equation 8:

αµ,ν = min

{
argmin

u∈R

∫ 1

0

|(Fµ − Fν)(t)− u|dt
}

called the Level Median of the function Fµ − Fν . To show that, it is used the fact that in this case
equation 8 takes the form

COTh(µ, ν) = inf
α∈R

∫ 1

0

|Fµ(t)− Fν(t)− α| dt.

Proof of Theorem 2.5.

1. First, we will show that the map Mν
µ given by equation 14 satisfies (Mν

µ )#µ = ν. Here µ

and ν are the extended measures form S1 to R having CDFs equal to Fµ and Fν , respec-
tively, defined by equation 3 and 4. By choosing the system of coordinates x̃ ∈ [0, 1) that
starts at xcut (see Figure 7) then,

Mν
µ (x̃) = F−1

ν,xcut
◦ Fµ,xcut(x̃)

(see equation 12). Let µxcut
and νxcut

be the (1-periodic) measures on R having CDFs
Fµ,xcut

and Fν,xcut
, respectively, i.e., Fν,xcut

(x̃) = µxcut
([0, x̃)) (analogously for νxcut

).
That is, we have unrolled µ and ν from S1 to R, where the origin 0 ∈ R corresponds to
xcut ∈ S1 (see Figure 1). Thus, a classic computation yields

(F−1
ν,xcut

◦ Fµ,xcut
)#µxcut

= (F−1
ν,xcut

)# ((Fµ,xcut
)#µxcut

) = (F−1
ν,xcut

)#LS1 = νxcut

where LS1 = Unif(S1) denotes the Lebesgue measure on the circle. We used that
(Fµ)#µ = LS1 as µ does not give mass to atoms, and so, if we change the system of
coordinates we also have (Fµ,xcut

)#µxcut
= LS1 .

Finally, we have to switch coordinates. Let

z(x̃) := x̃+ xcut

(that is, z(x̃) = x). To visualize this, see Figure 7. It holds that

z#νcut = ν (29)

(where we recall that ν is the extended measure form S1 to R having CDF equal to Fµ as
in equation 3 and 4). Let us check this fact for intervals:

z#νxcut([a, b]) = νxcut(z
−1([a, b])) = ν([z−1(a), z−1(b)])

= νxcut
([a− xcut, b− xcut])

= Fν,xcut
(b− xcut)− Fν,xcut

(a− xcut)

= Fν(b)− Fν(xcut)− (Fν(a)− Fν(xcut))

= Fν(b)− Fν(a)

= ν([a, b]).

Besides, it holds that
Fµ,xcut(· − xcut)#µ = Unif(S1), (30)

in the sense that it is the Lebesgue measure on S1 extended periodically (with period 1) to
the real line, which we denote by LS1 . Let us sketch the proof for intervals. First, notice
that Fµ,xcut

(x − xcut) = Fµ(x) − Fµ(xcut) and so its inverse is y 7→ F−1
µ (y + xcut).

Therefore,

(Fµ,xcut
(· − xcut))#µ ([a, b]) = µ

(
[F−1

µ (a+ xcut), F
−1
µ (b+ xcut)]

)
= Fµ(F

−1
µ (a+ xcut))− Fµ(F

−1
µ (b+ xcut)) = b− a.
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Figure 7: The unit circle (black) can be parametrized as [0, 1) in many different ways. In the figure,
we marked in black the North Pole as 0. The canonical parametrization of S1 identifies the North
Pole with 0. Then, also in black, we pick a point xcut. The distance in blue x that starts at 0 equals
the distance in red x̃ that starts at xcut plus the corresponding starting point xcut. This allows us to
visualize the change of coordinates given by equation 13.

Finally,

(Mν
µ )#µ =

(
F−1
ν,xcut

(Fµ,xcut
(· − xcut) + xcut)

)
#
µ

=
(
z(F−1

ν,xcut
(Fµ,xcut(· − xcut)))

)
#
µ

= z#(F
−1
ν,xcut

)#(Fµ,xcut(· − xcut))#µ

= z#(F
−1
ν,xcut

)#LS1 (by equation 30)

= z#νxcut

= ν (by equation 29).

Now, let us prove that Mν
µ is optimal.

First, assume that µ is absolutely continuous with respect to the Lebesgue measure on S1
and let fµ denote its density function. We will use the change of variables{

u = Fµ,xcut(x− xcut) = Fµ(x)− Fµ(xcut)

du = fµ(x) dx.

So,∫ 1

0

h(|Mν
µ (x)− x|R) dµ(x) =

∫ 1

0

h(|F−1
ν,xcut

(Fµ,xcut
(x− xcut))− (x− xcut)|R) fµ(x)dx︸ ︷︷ ︸

dµ(x)

=

∫ 1−xcut

−xcut

h(|F−1
ν,xcut

(u)− F−1
µ,xcut

(u)|R) du

=

∫ 1

0

h(|F−1
ν,xcut

(u)− F−1
µ,xcut

(u)|R) du

= COTh(µ, ν).

Now, let us do the proof in general:∫ 1

0

h(|Mν
µ (x)− x|R) dµ(x) =

∫ 1

0

h(|F−1
ν,xcut

(Fµ,xcut
(x− xcut))− (x− xcut)|R) dµ(x)

=

∫ 1

0

h(|F−1
ν,xcut

(y)− F−1
µ,xcut

(y)|R) d(Fµ,xcut
(· − xcut))#µ(y)

=

∫ 1

0

h(|F−1
ν,xcut

(u)− F−1
µ,xcut

(u)|R) du

= COTh(µ, ν).

In the last equality we have used that Fµ,xcut(· − xcut)#µ is the Lebesgue measure (see
equation 30).
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2. Using the definition of the generalized inverse (quantile function), we have

Mν
µ (t) = F−1

ν,xcut
(Fµ,xcut

(x− xcut)) + xcut

= inf{x′ : Fν,xcut(x
′) > Fµ,xcut(x− xcut)}+ xcut

= inf{x′ : Fν(x
′ + xcut)− Fν(xcut) > Fµ(x)− Fµ(xcut)}+ xcut

= inf{x′ : Fν(x
′ + xcut) > Fµ(x)− Fµ(xcut) + F (xcut)}+ xcut

= inf{x′ : Fν(x
′ + xcut) > Fµ(x)− αµ,ν}+ xcut

= inf{y − xcut : Fν(y) > Fµ(x)− αµ,ν}+ xcut

= inf{y : Fν(y) > Fµ(x)− αµ,ν}+ xcut − xcut

= F−1
ν (Fµ(x)− αµ,ν).

3. This part follows from the previous item as the right-hand side of equation 16 does not
depend on any minimizer of equation 7.

4. From (McCann, 2001, Theorem 13), there exists a unique optimal Monge map for the
optimal transport problem on the unit circle. Therefore, by using Remark 2.4, Mν

µ is the
unique optimal transport map from µ to ν. For the quadratic case h(x) = |x|2, we refer
for example to Santambrogio (2015, Th. 1.25, Sec. 1.3.2)). Moreover, in this particular
case, there exists a function φ such that Mν

µ (x) = x − ∇φ(x), where φ is a Kantorovich
potential (that is, a solution to the dual optimal transport problem on S1) and the sum is
modulo Z.

5. The identity (Mν
µ )

−1 = (Mµ
ν ) holds from the symmetry of the cost equation 5 that one

should optimize. Also, it can be verified using equation 16 and the fact that from equation 9
αµ,ν = −αν,µ:

Mµ
ν ◦Mν

µ (x) = F−1
µ

(
Fν(F

−1
ν (Fµ(x)− αµ,ν))− αν,µ

)
= F−1

µ (Fµ(x)− αµ,ν + αµ,ν) = x.

Proposition A.2 (Properties of the LCOT-Embedding). Let µ ∈ P(S1) be absolutely continuous
with respect to the Lebesgue measure on S1, and let ν ∈ P(S1).

1. µ̂µ,h ≡ 0.

2. ν̂µ,h(x) ∈ [−0.5, 0.5] for every x ∈ [0, 1).

3. Let ν1, ν2 ∈ P(S1) with ν1 that does not give mass to atoms, then the map

M := (ν̂2
µ,h − ν̂1

µ,h) ◦ ((ν̂1µ,h + id)−1) + id, (31)

satisfies M#ν1 = ν2 (however, it is not necessarily an optimal circular transport map).

Proof of Proposition A.2.

1. It trivially holds that the optimal Monge map from the distribution µ to itself is the identity
id, or equivalently, that the optimal displacement is zero for all the particles.

2. It holds from the fact of being the optimal displacement, that is,

COTh(µ, ν) = inf
M :M#µ=ν

∫
S1
h(|M(x)− x|S1) dµ(x) =

∫
S1
h(|ν̂µ,h(x)|S1) dµ(x),

and from the fact that |z|S1 is at most 0.5.

3. We will use that ν̂µ,h = Mν
µ − id, and that (Mν

µ )
−1 = Mµ

ν :
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M(x) = (ν̂2
µ,h − ν̂1

µ,h) ◦Mµ
ν1
(x) + x

= (Mν2
µ −Mν1

µ ) ◦Mµ
ν1
(x) + x

= Mν2
µ ◦Mµ

ν1
(x)− x+ x

= Mν2
µ ◦Mµ

ν1
(x).

Finally, notice that

(Mν2
µ ◦Mµ

ν1
)#ν1 = (Mν2

µ )#
(
(Mµ

ν1
)#ν1

)
= (Mν2

µ )#µ = ν2.

Now, we will proceed to prove Theorem 3.6. By having this result, it is worth noticing that
LCOTµ,p(·, ·)1/p endows P(S1) with a metric-space structure. The proof is based on the fact that
we have introduced an explicit embedding and then we have considered an Lp-distance. It will
follow that we have defined a kernel distance (that is in fact positive semidefinite).

Proof of Theorem 3.6. From equation 20, it is straightforward to prove the symmetric property and
non-negativity.

If ν1 = ν2, by the uniqueness of the optimal COT map (see Theorem 2.5, Part 3), we have ν̂1
µ,h =

ν̂2
µ,h. Thus, LCOTµ,h(ν1, ν2) = 0.

For the reverse direction, if LCOTµ,h(ν
1, ν2) = 0, then

h(min
k∈Z

{|ν̂1µ,h(x)− ν̂2
µ,h(x) + k|}) = 0 µ− a.s.

Thus,
ν̂1

µ,h(x) ≡1 ν̂2
µ,h(x) µ− a.s.

(where ≡1 stands for the equality modulo Z). That is,

Mν1
µ (x) = ν̂1

µ,h(x) + x ≡1 ν̂2
µ,h(x) + x = Mν2

µ (x) µ a.s.

Let S ⊆ [0, 1) denote the set of x such that the equation above holds, we have µ(S) = 1, µ(S1\S) =
0. Equivalently, for any (measurable) B ⊆ S1, µ(B ∩ S) = µ(B). Pick any Borel set A ⊆ S1, we
have:

ν1(A) = µ
(
(Mν1

µ )−1(A)
)

= µ
(
(Mν1

µ )−1(A) ∩ S
)

= µ
(
(Mν2

µ )−1(A) ∩ S
)

= µ((Mν2
µ )−1(A))

= ν2(A) (32)

where the first and last equation follows from the fact Mν1
µ ,Mν2

µ are push forward mapping from µ
to ν1, ν2 respectively.

Finally, we verify the triangular inequality. Here we will use that h(x) = |x|p, for 1 ≤ p < ∞. Let
ν1, ν2, ν3 ∈ P(S1),

LCOTµ,p(ν1, ν2)
1/p =

(∫ 1

0

(|ν̂1(t)− ν̂2(t)|S1)p dµ(t)
)1/p

≤
(∫ 1

0

(|ν̂1(t)− ν̂3(t)|S1 + |ν̂3(t)− ν̂2(t)|S1)p dµ(t)

)1/p

≤
(∫ 1

0

|ν̂1(t)− ν̂3(t)|pS1 dµ(t)
)1/p

+

(∫ 1

0

|ν̂3(t)− ν̂2(t)|pS1 dµ(t)
)1/p

= LCOTµ,p(ν1, ν3)
1/p + LCOTµ,p(ν2, ν3)

1/p

where the last inequality holds from Minkowski inequality.
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A.2 UNDERSTANDING THE RELATION BETWEEN THE MINIMIZERS OF EQUATION 7 AND
EQUATION 8

We briefly revisit the discussion in Section equation 2.3.1, specifically in Remark equation 2.4,
concerning the optimizers xcut and αµ,ν of equation 7 and equation 8, respectively.

Assuming minimizers exist for equation 7 and equation 8, we first explain why we adopt the ter-
minology ”cutting point” (xcut) for a minimizer of equation 7 and not for the minimizer αµ,ν of
equation 8. On the one hand, the cost function presented in 7 is given by

Cost(x0) :=

∫ 1

0

h(|F−1
µ,x0

(x)− F−1
ν,x0

(x)|R) dx. (33)

We seek to minimize over x0 ∈ [0, 1) ∼ S1, aiming to find an optimal x0 that affects both CDFs Fµ

and Fν . By looking at the cost 33, for each fixed x0, we change the system of reference by adopting
x0 as the origin. Then, once an optimal x0 is found (called xcut), it leads to the optimal transportation
displacement, providing a change of coordinates to unroll the CDFs of µ and ν into R and allowing
the use the classical Optimal Transport Theory on the real line (see Section equation 2.3.2 and the
proofs in Appendix equation A.1). On the other hand, the cost function in 8 is

Cost(α) :=
∫ 1

0

h(|F−1
µ (x+ α)− F−1

ν (x)|R) dx,

and the minimization runs over every real number α. Here, the shift by α affects only one of the
CDFs, not both. Therefore, it will not allow for a consistent change in the system of reference. This
is why we do not refer to α as a cutting point in this paper, but we do refer to the minimizer of
equation 7 as xcut.

Finally, Figure 8 below is meant to provide a visualization of Remark 2.4, that is, to show through
an example that, when minimizers for 7 and equation 8 do exist, while one could have multiple
minimizers of 7, the minimizer of 8 is unique.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8
Densities on the circle

Target den ity, ν
Uniform den ity, μ

0.0 0.2 0.4 0.6 0.8 1.0
x0

Co t a  a funtion of x0

Co t = ∫
1
0 |F

−1
μ, x0(x) − F−1

ν, x0(x)|2μx

−0.4 −0.2 0.0 0.2 0.4
α

Co t a  a function of α

Co t = ∫
1
0 |F

−1
μ (x+α) − F−1

ν (x)|2μx
optimal α

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.2

0.0

Clo e formula for the optimal α
Fμ(x) − Fν(x)
optimal α

Figure 8: Top left: Uniform density, µ, and a random target density ν on S1. Top right: The circular
transportation cost

∫ 1

0
|F−1

µ,x0
(x)−F−1

ν,x0
(x)|2 dx is depicted as a function of the cut, x0, showing that

the optimization in equation 7 can have multiple minimizers. Bottom right: Following equation 9,
we depict the difference between the two CDFs, Fµ(x)−Fν(x), for each x ∈ [0, 1) ∼ S1. As can be
seen, for the optimal cuts (dotted red lines), the difference is constant, indicating that the optimal α
for equation 8 is unique. Bottom left: The optimizer for the circular transportation cost in equation 8
is unique, and given that µ is the uniform measure, it has a closed-form solution E(ν)− 1

2 .
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A.3 TIME COMPLEXITY OF LINEAR COT

In this section, we assume that we are given discrete or empirical measures.2

First, we mention that according to (Delon et al., 2010, Section 6), given two non-decreasing step
functions F and G represented by

[ [x1, . . . , xN1
], [F (x1), . . . , F (xN1

)] ] and [ [y1, . . . , yN2
], [G(y1), . . . , G(yN2

)] ],

the computation of an integral of the form∫
c(F−1(x), G−1(x)) dx

requires O(N1 +N2) evaluations of a given cost function c(·, ·).
Now, by considering the reference measure µ = Unif(S1) we will detail our algorithm for comput-
ing LCOT (ν1, ν2). Let us assume that ν1, ν2 are two discrete probability measures on S1 having
N1 and N2 masses, respectively. We represent these measures νi =

∑Ni

j=1 m
i
jδxi

j
(that is, ν1 has

mass m1
j at location x1

j for j = 1, . . . , N1, and analogously for ν2) as arrays of the form

νi = [ [xi
1, . . . , x

i
Ni

], [mi
1, . . . ,m

i
Ni

] ], i = 1, 2.

Algorithm to compute LCOT:

1. For i = 1, 2, compute αµ,νi = E(νi)− 1/2.
2. For i = 1, 2, represent Fνi(·) + αµ,νi as the arrays

[ [xi
1, . . . , x

i
Ni

], [ci1, . . . , c
i
Ni

] ]

where
ci1 := mi

1 + αµ,νi
, cij := cij−1 +mi

j , for j = 2, . . . , Ni.

3. Use that

F−1
ν (x− αµ,ν) = (Fν(·) + αµ,ν)

−1(x),

and the algorithm provided in (Delon et al., 2010, Section 6) mentioned above with F =
Fν1(·) + αµ,ν1 and G = Fν2(·) + αµ,ν2 to compute

LCOT (ν1, ν2) = ∥ν̂1 − ν̂2∥2L2(S1)

=

∫ 1

0

|
(
F−1
ν1

(x− αµ,ν1)− x
)
−
(
F−1
ν2

(x− αµ,ν2)− x
)
|2S1 dx

=

∫ 1

0

|(Fν1(·) + αµ,ν1︸ ︷︷ ︸
F

)−1(x)− (Fν2
(·) + αµ,ν2︸ ︷︷ ︸

G

)−1(x)|2S1 dx

Each step requires O(N1+N2) operations. Therefore, the full algorithm to compute LCOT (ν1, ν2)
is of order O(N1 +N2).

A.4 LCOT BARYCENTER

Although the following definition holds for any non-atomic reference measure µ ∈ P(S1), for
simplicity, we consider the reference measure as µ = Unif(S1).

Given N target measures ν1, . . . , νN ∈ P(S1), as LCOT2(·, ·) is a distance, their LCOT barycenter
is defined by the measure νb such that

νb = argminν∈P(S1)
1

N

N∑
j=1

LCOT2(ν, νj) = argminν∈P(S1)
1

N

N∑
j=1

∥ν̂ − ν̂j∥2L2(S1).

2It is worth mentioning that for some applications, the LCOT framework can be also used for continuous
densities, as in the case of the CDT Park et al. (2018).
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In the embedding space, it can be shown that the minimizer of

argminν̂
1

N

N∑
j=1

∥ν̂ − ν̂j∥2L2(S1)

is given by the circular mean

ν(x) := circle mean({ν̂1(x), . . . ν̂N (x)}) := 1

2π
arg tan

(∑N
i=1 sin(2πν̂i(x))∑N
i=1 cos(2πν̂i(x))

)
.

For each x ∈ [0, 1), the last value is the average of the angles {2πν̂1(x), . . . , 2πν̂N (x)}, which is
then normalized to fall within the range [−0.5, 0.5]. By using the closed formula for the inverse of
the LCOT Embedding provided by Proposition 3.5, we can go back to the measure space obtaining
the LCOT barycenter between ν1, . . . , νN as

νb = (ν + id)#µ. (34)

In our experiments, we use the expression equation 34.

A.5 EXTRA FIGURES AND EXPERIMENTS

The following Figure 9 is from an experiment analogous to Experiment 1 but for a different family
of measures (Figure 9 Left). We include it to have an intuition of how the LCOT behaves under
translations and dilations of an initial von Mises density.

Figure 9: MDS for embedding classes of probability densities into an Euclidean space of dimension
2 where the original pair-wise distances (COT-distance, LOT-distance, Euclidean or L2-distance)
are preserved as well as possible.

A.5.1 LCOT–INTERPOLATION: REAL DATA APPLICATION

Hue transfer experiment: In Figures 10, 11, and 12 we interpolate the hue channel between pairs
of images using LCOT interpolation (given by equation 22), and COT interpolation (given by equa-
tion 21). Given a pair of images, one is considered as the source and the other as the target. Each
image of M ×N pixels is represented using Hue, Saturation, and Value channels (HSV). We com-
pute a density-normalized histogram of the Hue values across all pixels and consider this histogram
as a circular density. Each bin represents at the same time a color variety (Hue value) and a point
(angle) in the circle. Thus, displacements in the circle correspond to color conversions. Each inter-
polation (LCOT / COT) provides a curve of color conversions parametrized between t = 0 (source)
and t = 1 (target). For three different pairs of images, Figures 10, 11, and 12 depict color-converted
images using steps t = 0.25, 0.5, 0.75 for each interpolation type.
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Figure 10: LCOT and COT color interpolations.

Figure 11: LCOT and COT color interpolations.

Figure 12: LCOT and COT color interpolations.
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A.5.2 LCOT FOR HUE-BASED IMAGE RETRIEVAL

Given a data set of N = 100 flower images represented using hue, saturation, and value channels
(HSV), we use the hue channel for image retrieval. For this, the hue information of an image is used
as a primary feature for searching. We extract the hue component from the images of the data set
and compute density-normalized histograms of the hue values across all pixels. We consider these
histograms as circular densities {νi}Ni=1 (similarly to A.5.1).

For LCOT comparison and retrieval, we compute the LCOT transforms {ν̂i}Ni=1. Given a new
query image, we compute its hue histogram denoted σ. Then, we perform LCOT-matching, that
is, we embed the input image in LCOT space by computing σ̂ so that we can calculate N squared
Euclidean distances ∥σ̂ − ν̂i∥22 (i.e., we are computing LCOT2(σ, νi) for i = 1, . . . , N ). We sort
the obtained LCOT-distance values in ascending order. In Figure 13 we show the four closest and
furthest images recovered using this technique.

In Figure 14, we repeat the same experiment but using classic COT-matching for the same data set.
As before, given a query image, we first compute its hue histogram denoted by σ. Then, we perform
N COT-distances COT2(σ, νi), for i = 1, . . . , N , and We sort the obtained COT-distance values.

Figure 13: LCOT-approach for Hue-based image retrieval. The leftmost image is the original query
image. In the upper row, we retrieve the 4 closest images in Hue space according to LCOT, while
the bottom row shows the 4 furthest images with respect to LCOT-distance.

Figure 14: COT-distance for Hue-based image retrieval. The leftmost image is the original query
image. In the upper row, we retrieve the 4 closest images in Hue space according to COT-distance,
while the bottom row shows the 4 furthest images with respect to COT-distance.

In both figures, the retrieval of images with similar color content is evident. The advantage of using
LCOT over COT is that when using COT each new image requires to solve N new circular optimal
transport problems whereas LCOT only requires to solve one followed by N Euclidean distance
calculations for comparison and sorting. For M queries we have to compute MN COT distances
when using the COT approach (N for each query) but only solve N+M COT problems when using
LCOT (N for pre-processing the data set + one per query).
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A.6 UNDERSTANDING THE EMBEDDING IN DIFFERENTIAL GEOMETRY

Our embedding ν 7→ ν̂ as given by equation equation 17 aligns with the definition of the Logarithm
function presented in (Sarrazin & Schmitzer, 2023, Definition 2.7). To be specific, for µ, ν ∈ S1
and the Monge mapping Mν

µ , the Logarithm function as introduced in Sarrazin & Schmitzer (2023)
is expressed as:

P2(S1) ∋ ν 7→ logCOT
µ (ν) ∈ L2(S1, TS1;µ).

Here, the tangent bundle of S1 is represented as

TS1 := {(x, Tx(S1))|x ∈ S1},

where Tx(S1) denotes the tangent space at the point x ∈ S1. The space L2(S1, TS1;µ) is the set
of vector fields on S1 with squared norms (based on the metric on TS1), that are µ-integrable. The
function (vector field) logCOT

µ (ν) is defined as:

logCOT
µ (ν) := (S1 ∋ x 7→ (x, vx)) ∈ TS1,

where vx 7→ Tx(S1) is the initial velocity of the unique constant speed geodesic curve x 7→ T ν
µ (x).

The relation between logCOT
µ (ν) and ν̂ in equation 19 can be established as follows: For any x in

S1, the spaces Tx(S1) and S1 can be parameterized by R and [0, 1), respectively. Then, the unique
constant speed curve x 7→ Mν

µ (x) is given by:

x(t) := x+ t(Mν
µ (x)− x), ∀t ∈ [0, 1].

Then, the initial velocity is Mν
µ (x) − x. Drawing from equation 15, Theorem 2.5, and Proposition

A.2, we find ν̂(x) = Mν
µ (x)− x for all x in S1, making ν̂ and logCOT

µ (ν) equivalent.

However, it is important to note that while logCOT
µ is defined for a generic (connected, compact,

and complete3) manifold, it does not provide a concrete computational method for the embedding
logCOT

µ . Our focus in this paper is on computational efficiency, delivering a closed-form formula.

Regarding the embedding space, in Sarrazin & Schmitzer (2023), the space L2(S1, TS1;µ) is
equipped with the L2, induced by TS1. Explicitly, for any f belonging to L2(S1, TS1;µ),

∥f∥2 =

∫ 1

0

∥f(x)∥2xdx =

∫ 1

0

|f(x)|2 dx,

where ∥f(x)∥2x represents the norm square in the tangent space Tx(S1) of the vector f(x). By
parameterizing S1 and Tx(S1) as [0, 1) and R, respectively, this squared norm becomes |f(x)|2.
Consequently, L2(S1, TS1;µ) becomes an inner product space, whereby the expression (polariza-
tion identity) ∥f + g∥2 − ∥f∥2 − ∥g∥2 establishes an inner product between f and g.

However, in this paper, the introduced embedding space L2(S1, dµ) presented in equation 18. This
space uses the L2-norm on the circle, defined for each f in L2(S1, dµ) as:

∥f∥2L2(S1;dµ) =

∫
S1
|f(x)|2S1 dµ.

Unlike the previous space, this does not induce an inner product (in fact, |·|S1 is not a norm). As such,
throughout this paper, we term our embedding as a “linear embedding” rather than a “Euclidean
embedding”.

3In Sarrazin & Schmitzer (2023), the Riemannian manifold is not necessarily compact. However, the mea-
sures µ, ν must have compact support sets. For brevity, we have slightly overlooked this difference.
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