
Topology-Aware Dynamic Reweighting for Distribution Shifts on Graph

Weihuang Zheng * 1 Jiashuo Liu * 2 Jiaxing Li 1 Jiayun Wu 2 Peng Cui 2 Youyong Kong 1

Abstract
Graph Neural Networks (GNNs) are widely used
for node classification tasks but often fail to gen-
eralize when training and test nodes come from
different distributions, limiting their practicality.
To address this challenge, recent approaches have
adopted invariant learning and sample reweight-
ing techniques from the out-of-distribution (OOD)
generalization field. However, invariant learning-
based methods face difficulties when applied to
graph data, as they rely on the impractical as-
sumption of obtaining real environment labels
and strict invariance, which may not hold in real-
world graph structures. Moreover, current sample
reweighting methods tend to overlook topologi-
cal information, potentially leading to suboptimal
results. In this work, we introduce the Topology-
Aware Dynamic Reweighting (TAR) framework
to address distribution shifts by leveraging the
inherent graph structure. TAR dynamically ad-
justs sample weights through gradient flow on the
graph edges during training. Instead of relying
on strict invariance assumptions, we theoretically
prove that our method is able to provide distribu-
tional robustness, thereby enhancing the out-of-
distribution generalization performance on graph
data. Our framework’s superiority is demon-
strated through standard testing on extensive node
classification OOD datasets, exhibiting marked
improvements over existing methods.

1. Introduction
Node classification tasks have widespread applications in
real life, such as advertising recommendation (Jiang et al.,
2023), social network anomaly detection (Tang et al., 2022),
and more. Recently, Graph Neural Networks (GNNs) have
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become cornerstone models for node classification. How-
ever, these GNN models typically assume that the training
and test graph data are drawn from the same distribution,
which does not always hold in practice. In real-world graph
data, sample selection bias (Fan et al., 2022; He et al., 2020)
and the methods used for graph construction (Qiao et al.,
2018; Zhou et al., 2023) often brings distribution shifts
between training nodes and test nodes. For instance, In
WebKB (Pei et al., 2020) datasets, web pages (nodes) and
categories (labels) are heavily affected by the university
they originate from, leading to distribution shifts among
nodes drawn from different universities. Therefore, address-
ing distribution shifts is crucial to improving the practical
effectiveness of GNNs for node classification.

To address the distribution shift problem on the node clas-
sification task, recent works (Wu et al., 2021; Xia et al.,
2024; Wu et al., 2022; Liu et al., 2023) adopt the idea of
invariant learning. Invariant learning (Arjovsky et al., 2019;
Liu et al., 2021a) stems from the causal inference litera-
ture, and now becomes one of the key approaches to solve
distribution shifts problem on graphs. The core concept of
invariant learning is to identify invariant features with stable
prediction mechanisms across different environments (distri-
butions), thereby mitigating performance degradation under
distribution shifts. Despite its success, methods based on
invariant learning are built upon strong invariance assump-
tions that lack further validation for their actual validity (Liu
et al., 2024). In different environments, invariant features
may not exist, as the environment can influence the mapping
relationship between features and labels. For example, in
social networks, users with the same profile (age, interests,
etc.) may exhibit different behaviors depending on their
location. In region A (where personalized ads are allowed),
they may frequently click on ads, while in region B (where
privacy regulations limit ad tracking), their click-through
rate may significantly decrease.

Besides, sample reweighting methods, particularly those
based on distributionally robust optimization (DRO), have
also been used to address distribution shifts in graph data
(Hu & Hong, 2013; Wang et al., 2024; Gui et al., 2022).
These methods reweight the probability distribution of train-
ing samples within a predefined distribution set to identify
the worst-case distribution under which the model performs
the poorest. By optimizing against this worst-case distribu-
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tion, these methods theoretically ensure improved robust-
ness to potential distribution shifts. For example, KL-DRO
(Hu & Hong, 2013) improves robustness by assigning higher
sample weights to high-risk samples. DR-GNN (Wang et al.,
2024) builds on the idea of KL-DRO to address distribution
shift issues in recommender systems. Furthermore, (Gui
et al., 2022) demonstrated the effectiveness of Group DRO
(Sagawa et al., 2019) for node classification under distribu-
tion shifts by assigning greater losses to the group of nodes
with the highest loss in the graph. However, these methods
directly adopt general-domain reweighting strategies with-
out considering the topological structure of graphs, which
may lead to suboptimal results.

In this work, we focus on the problem of distributional shift
in node classification tasks. Instead of adopting invariant
learning that relies on strict invariance assumptions, as in
most current approaches, we adopt a sample reweighting
method. Specifically, we propose the Topology-Aware Dy-
namic Reweighting (TAR) framework to remedy the issues
above. During training, TAR assigns more densities to
high-risk nodes, thereby prompting the prediction model to
prioritize these nodes. Additionally, we theoretically prove
that this method can identify the local worst distribution,
and by optimizing this distribution, the model can achieve
improved robustness. Our main contributions are as follows:

• Method: Our TAR framework involves a minimax pro-
cedure, where the inner maximization problem learns
sample probability densities (also referred to as sample
weights) under the entropy and topology constraints,
and the outer minimization problem optimizes the
GNN model under the learned distribution. For the
reweighting scheme (inner problem), as illustrated in
Figure 1, we perform gradient flow along the graph
edges to assign greater sample weight to nodes with
higher loss. In this way, we incorporate the topologi-
cal structure information into the learning of sample
probability densities. Furthermore, we propose lever-
aging graph extrapolation to expand the given data
distribution, further enhancing the model’s resilience
to potential distribution shifts.

• Theory: In Section 3.2, we theoretically prove that
our gradient flow procedure is equivalent to finding
the local worst-case distribution, which enhances the
distributional robustness of our GNN model. We also
characterize the error rate introduced by our gradient
flow as e−CTin (Tin is the number of steps).

• Experiments: Experimental results on standard OOD
node classification datasets demonstrate the effective-
ness of the TAR framework, showing its superiority in
addressing distributional shift problems.

2. Preliminaries
Notations. X ∈ X denotes the covariates, Y ∈ Y de-
notes the target, Ps(X,Y ) and Pt(X,Y ) represent the
joint source distribution and the target distribution, ab-
breviated with Ps and Pt respectively. The prediction
model is denoted by fθ(·) : X → Y , for which we
use graph neural networks (GNN) throughout this paper.
[N ] = {1, 2, . . . , N} denotes the set of integers from 1 to
N . A weighted finite graph is denoted by G0 = (V,E,W ),
where V = {v1, . . . , vN} is the node set, E is the edge set,
and W = (wij)(i,j)∈E are the edge weights. N (i) denotes
the set of adjacent nodes for the i-th node.

Problem setting. In this paper, we focus on the problem
of distribution shift in node classification. Specifically, our
goal is to learn a predictor f∗

θ that generalizes well under
target distribution. Formally, we aim to find f∗

θ that satisfy:

f∗
θ = argmin

fθ
E(X,Y )∼Pt

[ℓ(fθ(X), Y )] ,

where ℓ(·, ·) is a predefined loss function. As the target
distribution is not available during training, previous ap-
proaches typically optimize the empirical loss on the train-
ing source distribution E(X,Y )∼Ps

[ℓ(fθ(X), Y )] as a surro-
gate. However, the distribution shifts between Ps and Pt

can lead to the failure of the predictor.

Sample Reweighting. Formally, sample reweighting is
formulated as:

f∗
θ = argmin

fθ
max

P∈S(Ps)
E(X,Y )∼P [ℓ(fθ(X), Y )] ,

where S(Ps) indicates the potential distribution set around
the source distribution. By adjusting the probability den-
sities q(x, y) (i.e. reweight samples) to simulate the worst
potential shifts in the inner maximization, this method can
ensure the predictor’s robustness when encountering poten-
tial unseen distributions. Typically, S(P) is constrained by
d(P,Ps) ≤ d̂, where d(·, ·) is a distance metric measuring
the difference between two distributions, d̂ is a predefined
constant. This constraint ensures that the reweighting avoids
unrealistic distributions, focusing only on plausible shifts.

Discrete geometric Wasserstein distance. We review
some key concepts and introduce the discrete geometric
Wasserstein distance (Chow et al., 2017), where we adopt
the notations used in (Chow et al., 2017; Liu et al., 2022).

The (empirical) probability set supported on all nodes of G0

is denoted as:

P(G0) =

{
p = (pi)

N
i=1 :

N∑
i=1

pi = 1, pi ≥ 0, for i ∈ [N ]

}
,

which contains all empirical distributions on the node set
V , and the interior of P(G0) is denoted as Po(G0). A
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Figure 1. Illustration of TAR. Given graph g0, we first conduct graph extrapolation to generate G1. Next, we compute the classification
loss, initially assigning equal sample weights to each node. Subsequently, we perform topology-aware reweighting. Specifically, nodes
with higher loss values attract more sample weight through gradient flow from neighboring nodes. Finally, nodes with higher losses are
assigned greater weights, while nodes with identical loss values exhibit different weights due to variations in their topological positions.

velocity field v = (vij)i,j∈V ∈ RN×N on graph G0 is a
skew-symmetric matrix on the edge set E:

vij =

{
−vij if (i, j) ∈ E,

0 otherwise.

Given the probability function p ∈ P(G0) and a velocity
field v, the flux function is defined as the product pv ∈
RN×N :

pv := (vijξij(p))(i,j)∈E ,

where ξij(p) is a predefined ”cross-sectional area”, typically
interpolated with the associated nodes’ densities pi, pj . To
ensure the positiveness of p during optimization, we adopt
the upwind interpolation from statistical mechanics (Hsu,
1981): ξij(p) = I(vij > 0)pj + I(vij ≤ 0)pi throughout
this paper, which relies on the corresponding velocity field.
Intuitively, this characterizes the “flux” of sample density
from node i to j. Based on this, the divergence vector of pv
on graph G0 is defined as:

divG0
(pv) := −(

∑
j∈V :(i,j)∈E

√
wijvijξij(p))

N
i=1 ∈ RN ,

which is supposed to lie in the tangent space of Po(G0).
Intuitively, the i-th element in divG0(pv) sums over all the
in-fluxes and out-fluxes along edges to a certain target node
i, with each source edge j transporting a probability density√
wijvijξij(p).

Now we define the discrete geometric Wasserstein distance:

Definition 2.1 (Discrete Geometric Wasserstein Distance).
Given a finite graph G0, for any pair of distributions
p0, p1 ∈ Po(G0), the discrete geometric Wasserstein dis-
tance is defined as:

GW2
G0

(p0, p1) := inf
v


∫ 1

0

1

2

∑
(i,j)∈E

ξij(p(t))v
2
ijdt

 ,

s.t.
dp

dt
+ divG0

(pv) = 0, p(0) = p0, p(1) = p1,

where the infimum is taken over all velocity fields on G0,
and ξij(p) is a pre-defined interpolation function between pi
and pj . Note that p(t) is a continuously differentiable curve
p(t) : [0, 1]→ Po(G0), which characterizes the probability
densities at time t.

Remark 2.2. In contrast with the conventional Wasserstein
distance defined within Euclidean space, the geometric
Wasserstein distance necessitates that the transportation
of probability density is along the geodesic determined
by the graph structure G0. In particular, the constraint
dp
dt + divG0

(pv) = 0 imposes the condition that the change
in probability density remains continuous with respect to
G0.

3. Method
Motivated by the discrete geometric Wasserstein distance in
Definition 2.1, we propose the Topology-Aware Dynamic
Reweighting (TAR) algorithm to deal with node classifica-
tion tasks under distribution shifts. As shown in Figure 1,
our proposed TAR consists of two key stages. In the first
stage, we employ graph extrapolation to expand the orig-
inal data distribution, thereby generating a more diverse
and comprehensive set of node samples. Building upon
this expanded graph data, the second stage introduces a
topology-aware dynamic sample reweighting mechanism,
which aims to simulate the potential worst-case distribution.
By training the model to perform well on this constructed
distribution, our method enhances the model’s robustness
against unseen distribution shifts.

Consider source data Ds = {(xi, yi)}Ni=1 and the corre-
sponding graph structure G0 = (V,E,W ). Denote the
empirical marginal distribution as P̂s, the overall objective
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of our TAR algorithm is formulated as:

min
θ∈Θ

max
q∈Po(G0)

N∑
i=1

qiℓ(fθ(xi), yi)︸ ︷︷ ︸
Weighted loss

− β ·
N∑
i=1

qi log qi︸ ︷︷ ︸
Entropy penalty

−λ · GW2
G0

(P̂s, q)︸ ︷︷ ︸
Topology penalty

,

(1)

where β is the hyper-parameter, and the objective function
in general is a minimax optimization over model parame-
ters θ and sample probability densities q. Note that for the
parameter λ, we set it as λ = 1

2τ in our optimization (for
details, please refer to Section 3.1). During training, the
inner maximization assigns more densities to high-risk sam-
ples, thereby prompting the prediction model to prioritize
these points. This approach aims for a uniformly robust
performance across all samples on the graph and helps miti-
gate potential distribution shifts. Moreover, to mitigate the
risk of overemphasizing unrealistic distributions (e.g., noisy
nodes accumulating excessive densities), we introduce en-
tropy and topology penalties as regularization terms. These
penalties integrate topology information for smooth sample
weight assignments along the graph structure.

Illustrations. Here we make some remarks on our objec-
tive function:
(a) Entropy penalty: (−

∑N
i=1 qi log qi) represents the en-

tropy of empirical probability distribution q. As illustrated
in Section 3.2, this term serves as a non-linear graph Lapla-
cian operator that encourages sample weights to be smooth
along the manifold, avoiding extreme sample weights in the
weighted distribution.
(b) Topology penalty: GW2

G0
(P̂s, q) represents the optimal

transport distance between the source distribution P̂s and
the weighted distribution q, measured along the graph struc-
ture. This term explicitly integrates topology information
to enforce minimal changes in sample densities along the
manifold. As detailed in Section 3.1, this term transfers
the optimization of sample densities from Euclidean space
to geometric Wasserstein space. Here, densities are con-
strained to change exclusively along the graph structure.
This enforcement encourages local smoothness of sample
densities relative to the manifold, which helps to mitigate
against potential noisy samples and edges.

3.1. Topology-Aware Dynamic Reweighting

The main challenge of Problem 1 lies in the computation
of discrete geometric Wasserstein distance GW2

G0
(P̂s, q),

which itself involves an complicated optimization problem
and does not have an analytical form. In this section, we pro-
pose to leverage Wasserstein gradient flow to approximately
solve the inner maximization problem. The whole algorithm

Algorithm 1 Topology-Aware Dynamic Reweighting (TAR)
Scheme

Input: Labeled training nodes D = {(xi, yi)}Ni=1, learn-
ing rate γ, gradient flow iterations Tin, entropy term β,
graph structure G0 = (V,E,W ).
Initialization: Sample probability densities initialized as
(1/N, . . . , 1/N)T . Model parameters initialized as θ(0).

for i = 0 to Epochs do
1. G1 = g(G0), detailed in 3.3.
2. Simulate gradient flow for Tin time steps according
to Equation 3 and 4 to learn an approximate worst-case
probability weight qTin .
3. θ(i+1) ← θ(i) − γ∇θ(

∑
i q

Tin
i ℓ(fθ(xi), yi))

end for

involves a minimax optimization, where we iteratively per-
form gradient ascents (on q) for the inner maximization and
descents (on θ) for the outer minimization. The pseudo-code
of our algorithm is shown in Algorithm 1.

Inner maximization problem. For easy notion, we define

L(θ, q) :=
N∑
i=1

qiℓ(fθ(xi), yi)− β ·
N∑
i=1

qi log qi.

Generally, the goal of the inner maximization problem in
Equation 1 is to maximizeL(θ, q) and to minimize the topol-
ogy penalty GW2

G0
(P̂s, q) w.r.t. sample densities q. Instead

of directly computing the topology penalty, we solve the in-
ner maximization via gradient ascents on q in the geometric
Wasserstein space (Po(G0),GWG0), where the topology
penalty GW2

G0
(P̂s, q) is approximated by the length of the

gradient flow trajectory in the metric space.

As stated in Definition 2.1, the continuous gradient flow
is denoted by q : [0, 1] → Po(G0), and q(t) represents
the sample density at time t ∈ [0, 1]. In order to derive
empirical optimization approaches, we introduce the time-
discretized gradient flow, denoted by qτ : [0, T ]→ Po(G0),
and the superscript τ is the value of time step (here we
introduce this superscript because different time steps refer
to different time-discretized gradient flow function). For the
approximate optimization, we leverage this time-discretized
gradient flow (with time step τ ) of−L(θ, q) in the geometric
Wasserstein space (Po(G0),GWG0

) as:

qτ (t+ τ)← arg max
q∈Po(G0)

L(θ, q)− 1

2τ
· GW2

G0
(qτ (t), q),

(2)
which aims to obtain the “local” maximum of L(θ, q)
around qτ (t) at time t and restricts the topology distance
GW2

G0
(qτ (t), q). We derive the analytical form of Equa-

tion 2 as τ → 0. For the ease of notion, the sample density
of the i-th node at time t, originally denoted by qτi (t), is
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Figure 2. Illustration of the gradient flow in the geometric Wasserstein space (Po(G0),GWG0
), where each point denotes a probability

distribution in Po(G0), and the distance is measure by the discrete geometric Wasserstein distance. The black circle denotes the local
distribution set around a distribution, and the blue arrow represents the one-step gradient flow. qτ (T ) denotes the approximated inner
maximizer obtained by our algorithm, and q⋆ denotes the ground-truth inner maximizer (defined in Theorem 3.3). In Theorem 3.2, we
demonstrate that the one-step gradient flow is equivalent to distributionally robust optimization around a local uncertainty set, and in
Theorem 3.3, we characterize the approximation error rate between qτ (T ) and q⋆.

abbreviated as qi(t), and then Equation 2 becomes:

dqi(t)

dt
=

∑
j:(i,j)∈E

wijvij

(
I(vij > 0)qj + I(vij ≤ 0)qi

)
vij = ℓi − ℓj + β(log qj − log qi), for (i, j) ∈ E

(3)
where E is the edge set of graph G0, wij is the edge weight
between node i and j, I(·) is the indicator function, and ℓi
represents the prediction error on the i-th node. Intuitively,
vij can be viewed as the transferring velocity of the sample
density from node j to node i.

Let λ = 1
2τ , Equation 2 exactly aligns with the goal of

our inner maximization problem in Problem 1. Specifi-
cally, the original topology penalty calculates the distance
GW2

G0
(P̂s, q

τ (t)) between P̂s and qτ (t), and our gradient
flow approximates it via

∑t
i=1 GW

2
G0

(qτ (i−1), qτ (i)) (see
blue curves in Figure 2). In Theorem 3.3, we characterize
the error rate of this approximation.

Remark 3.1. Here we make some remarks on Equation 3:
(a) The gradient of the i-th node’s probability density de-
pends on its neighbors in graph G0. This corresponds with
our motivation that the reweighting scheme should incorpo-
rate topology information. Furthermore, since the transfer
is between neighbors, the probability density p remains lo-
cally smooth w.r.t. the graph structure (or manifold), which
avoids overemphasis on some noisy samples.
(b) Combined with our topology penalty, the entropy penalty
acts as a non-linear graph Laplacian operator to further
the smoothness of probability densities along the manifold.
(c) The gradient flow in Equation 3 is implemented by mes-
sage propagation, which scales linearly with sample size
and enjoys parallelization by GPU. For a detailed complex-
ity analysis, please refer to Appendix F.

(d) Due to the random sampling of labeled nodes during
training for node classification tasks, it means that for cer-
tain nodes we cannot compute the loss, which disrupts the
connectivity and hinders the calculation of Equation 3, we
intuitively set the loss for these unlabeled nodes to the mean
loss of the labeled nodes, and this approach has proven to
be adequate. For other potential solutions, please refer to
the Appendix E.

Based on Equation 3, we can solve the inner maximization
problem via gradient ascent as:

qi(0)← 1/N, (4)
qi(t+ 1)← qi(t) + τ · dqi(t)/dt, for i ∈ [N ]. (5)

In addition, we demonstrate the equivalence between Equa-
tion 2 and distributional robustness in Theorem 3.2, justify-
ing how our proposed TAR can provide robustness against
distribution shifts. And in Theorem 3.3, we characterize the
error rate of our approximation as e−CTin , which allows a
relatively accurate approximation with finite Tin steps.

Outer minimization problem. For the outer minimiza-
tion problem, we perform gradient descent on model param-
eters θ. According to the overall objective in Equation 1,
the loss function is simply a weighted average:

θ(t+1) ← θ(t) − γ · ∇θ

( N∑
i=1

qi(Tin) · ℓ(fθ(xi), yi)

)
, (6)

where γ is the learning rate, and qi(Tin) denotes the proba-
bility density of the i-th node (after Tin steps gradient flow).

3.2. Theoretical Analysis

In this section, we investigate in-depth our proposed op-
timization algorithm. As illustrated in Figure 2, we first
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Table 1. The performance on OOD benchmark datasets under Covariate Shift , using GCN as the backbone. We report the average test
accuracy (except for Twitch, where we use ROC-AUC as the evaluation metric) and standard deviations over 5 runs. The best results are
shown in bold, and the second best results are shown in underline. OOM denotes out of memory.

Dataset CBAS WebKB Twitch Cora Arxiv Require domain
informationDomain color university language word degree time degree

Base ERM 78.29±3.10 19.37±6.01 50.04±2.53 64.72±0.54 55.33±0.90 71.48±0.30 57.59±0.36 No

Invariant Learning IRM 78.00±3.73 21.59±9.30 50.97±3.62 64.70±0.45 55.34±0.88 71.36±0.13 57.54±0.15 Yes
VREx 78.57±2.02 36.83±1.99 51.26±4.82 65.02±0.45 55.44±0.78 71.58±0.28 57.60±0.27 Yes

Domain Generalization Coral 78.00±3.59 30.16±5.67 53.46±0.41 64.85±0.33 55.21±0.90 71.48±0.40 57.23±0.16 Yes
DANN 77.71±3.13 33.49±9.61 50.47±3.14 64.72±0.39 55.32±0.92 71.68±0.19 57.25±0.23 No

Graph OOD

SRGNN 76.86±1.56 22.86±10.79 49.71±1.81 64.63±0.34 55.22±1.05 70.78±0.18 57.53±0.24 Yes
EERM 75.14±3.29 33.97±11.42 OOM 64.88±0.38 55.30±0.89 OOM OOM No

FLOOD 83.14±4.21 33.97±3.09 55.14±1.78 64.91±0.45 54.78±0.82 71.75±0.37 58.90±0.22 No
CIT 80.86±2.96 28.89±9.09 OOM 64.34±0.72 54.74±0.82 OOM OOM No

Sample Reweighting KL-DRO 77.71±1.63 32.06±16.96 53.76±4.19 64.85±0.51 55.14±0.87 71.58±0.24 57.59±0.30 No
GroupDRO 77.14±2.67 25.24±9.57 50.48±2.04 64.95±0.59 55.05±0.83 71.46±0.33 57.25±0.23 Yes

Ours TAR 87.43±5.09 37.46±4.84 57.82±2.13 65.64±0.37 56.62±0.23 71.99±0.23 59.65±0.14 No

prove that each step of the gradient flow exactly finds the
worst-case distribution within a local uncertainty set (see
black circle in Figure 2).

Theorem 3.2 (Distributional robustness). For any γ >
0, t > 0 and given θ, denote the solution of Equation 2
as

q⋆ = arg max
q∈Po(G0)

L(θ, q)− γGW2
G0

(p, q).

Let ϵ = GW2
G0

(p, q⋆), we have

max
q∈Po(G0)

L(θ, q)− γGW2
G0

(p, q)︸ ︷︷ ︸
one-step gradient flow at time t

=

max
q:GW2

G0
(p,q)≤ϵ

L(θ, q).︸ ︷︷ ︸
the worst-case distribution within a local distribution set

(7)

The proof can be found in Appendix G.

Theorem 3.2 shows that, for the inner maximization, our
proposed gradient flow is equivalent to finding the worst-
case distribution within a small distribution set. Therefore,
the weighted average loss function in Equation 6 captures
the worst-case distribution that may occur in testing, which
shares the similar idea with distributionally robust optimiza-
tion (Duchi & Namkoong, 2018; Blanchet et al., 2019; Liu
et al., 2022). This demonstrates the strength of our proposed
TAR framework in dealing with potential distribution shifts.

Then based on the results in (Chow et al., 2017, Theorem 5)
and (Liu et al., 2022, Theorem 3.2), we move on to analyze
the error rate of our approximation in Theorem 3.3.

Theorem 3.3 (Approximation error rate). Given the GNN
parameter θ, denote the approximate sample densities in
Equation 3 after Tin steps of gradient flow as q(Tin), and ϵ =

GW2
G0

(P̂s, q(Tin)) is the geometric Wasserstein distance

from the original source distribution. Denote the ground-
truth worst-case distribution with the same distance ϵ as:

q⋆ = arg max
q:GW2

G0
(P̂s,q)≤ϵ

L(θ, q),

Then we have:

L(θ, q(Tin))− L(θ, P̂s)

L(θ, q⋆)− L(θ, P̂s)
> 1− e−CTin , (8)

where C > 0 is a constant and its value depends on the
loss function ℓ, hyper-parameter β, and sample size N . The
proof can be found in Appendix G.

Remark 3.4. We make some remarks here:
(1) Since the goal of our reweighting is to maximize L(θ, q)
w.r.t. q, we utilize the increase of L to characterize how
“approximate” is our optimization. In Equation 8, the de-
nominator of the left-hand side represents the maximal in-
crease, and the numerator is the increase attained through
our approximation. As the ratio approaches 1.0, our approx-
imation becomes increasingly precise.
(2) Our theoretical results show that the error rate is e−CTin ,
which shrinks fast as the number of time step Tin increases.
This further demonstrates that our optimization is able to
find good approximations in finite (usually small) number
of gradient flow steps.

3.3. Graph Extrapolation

In the previous section, we proved that gradient flow is
equivalent to distributionally robust optimization around a
local uncertainty set. Given that the source distribution is
fixed, the scope of the uncertainty set is inherently limited.
To address this limitation, we propose a Graph Extrapola-
tion (GE) approach g(·) to expand the source distribution,
thereby enlarging the uncertainty set and further enhancing
robustness against potential distribution shifts. Specifically,
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we adopt two graph data augmentation techniques, DropE-
dge (Rong et al.) and MaskFeature (You et al., 2020), to
expand the source data distribution i.e. generate a new graph
G1 according to G1 = g(G0). During training, we first con-
duct GE to the input graph to construct an augmented graph
at the beginning of each epoch, then conduct TAR on the
augmented graph to train the model.

4. Experiment
We conduct experiments on five widely used node classifi-
cation datasets from GOOD benchmark (Gui et al., 2022)
to validate the effectiveness of TAR in improving out-of-
distribution (OOD) generalization.

4.1. Datasets and Baselines

Datasets. We use five node classification datasets under
both concept shift and covariate shift (the detailed definition
of these two shift are provided in Appendix B) : WebKB (Pei
et al., 2020), CBAS (Ying et al., 2019), Twitch (Rozember-
czki & Sarkar, 2020), Cora (Bojchevski & Günnemann,
2017) and Arxiv (Hu et al., 2020). We followed the GOOD
benchmark (Gui et al., 2022) for data splitting, a standard
widely adopted in prior research (Sui et al., 2023; Liu et al.,
2023; Guo et al., 2024). The statistics of these datasets and
detailed information are provided in Appendix B.

Baselines. We compare our proposed TAR method with
several commonly used baseline methods using GCN (Kipf
& Welling, 2017) as the backbone (we also provide results
using recently proposed sota graph transformer polynormer
(Deng et al., 2024) as backbone, please refer to Appendix
D). These include Empirical Risk Minimization (ERM) and
two general invariant learning methods: IRM (Arjovsky
et al., 2019) and VREx (Krueger et al., 2021). Addition-
ally, we compare with two sample reweighting methods,
KL-DRO (Hu & Hong, 2013) and Group DRO (Sagawa
et al., 2019). Furthermore, we evaluate our method against
two common domain generalization approaches: DANN
(Ganin et al., 2016) and Deep Coral (Sun & Saenko, 2016),
as well as four graph-specific domain generalization base-
lines: EERM (Wu et al., 2021), SRGNN (Zhu et al., 2021),
FLOOD (Liu et al., 2023), and CIT (Xia et al., 2024).
Among these methods, only KL-DRO, DANN, EERM,
FLOOD, and CIT do not require domain labels to address
distribution shifts. Similarly, our proposed TAR method
does not require domain labels. Please refer to Appendix C
for more implementation details.

4.2. Performance Comparison

Table 1 and 2 summarize the results of our method and
other baselines on four datasets under both covariate shift
and concept shift. We have the following observations:
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Figure 3. The effects of Tin (the number of gradient flow) of our
proposed TAR algorithm, we provide the results under covariate
shift.

Graph OOD methods generally achieve better results, as
they obtain the second-best performance in 7 out of 14 set-
tings. We attribute this to their ability to account for graph
topology when addressing distribution shifts, leading to
improved outcomes. This highlights the necessity of incor-
porating graph topology information when tackling node
classification tasks. Additionally, VREx also performs well,
achieving the second-best results in 5 out of 14 settings.
However, this method relies on domain information (i.e.,
environment labels), which is often difficult to obtain in real-
world applications, thereby limiting its applicability. Group
DRO achieves the second-best results in the remaining two
settings, demonstrating the robustness of sample reweight-
ing methods. However, since it does not consider graph
topology, its performance improvement remains limited.

As shown in Tables 1 and 2, our proposed method, TAR,
consistently outperforms other baselines across all datasets
under both concept shift and covariate shift. This highlights
the effectiveness of TAR in addressing different types of
distribution shifts. In particular, for the CBAS dataset, TAR
achieves performance improvements of 4.29% and 3.00%
under covariate shift and concept shift, respectively, com-
pared to the best-performing baseline. Similarly, for the
Twitch dataset, TAR demonstrates improvements of 2.68%
and 1.45%, respectively, over the best-performing baseline.
These results underscore the superiority of our method and
emphasize the importance of incorporating topological in-
formation when addressing distribution shift challenges in
node classification tasks.
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Table 2. The performance on OOD benchmark datasets under Concept Shift, using GCN as the backbone. We report the average test
accuracy (except for Twitch, where we use ROC-AUC as the evaluation metric) and standard deviations over 5 runs. The best results are
shown in bold, and the second best results are shown in underline. OOM denotes out of memory.

Dataset CBAS WebKB Twitch Cora Arxiv Require domain
informationDomain color university language word degree time degree

Base ERM 82.43±2.56 27.16±0.93 51.59±3.63 64.03±0.28 60.30±0.46 65.64±0.27 54.81±0.40 No

Invariant Learning IRM 82.00±1.88 26.06±0.73 49.78±3.27 63.93±0.35 60.26±0.49 65.54±0.34 56.72±0.30 Yes
VREx 82.86±2.42 26.61±1.42 55.75±1.37 64.03±0.29 60.53±0.39 65.92±0.14 56.68±0.35 Yes

Domain Generalization Coral 81.57±1.59 28.07±2.64 51.80±3.32 64.04±0.31 60.30±0.45 65.79±0.50 55.14±0.24 Yes
DANN 83.57±1.52 29.36±3.31 51.67++3.50 63.96±0.29 60.23±0.51 65.67±0.42 55.34±0.45 No

Graph OOD

SRGNN 82.14±2.12 26.42±1.78 51.58±3.64 63.96±0.34 60.27+0.35 65.64±0.34 55.08±0.25 Yes
EERM 65.71±0.90 29.91±0.50 OOM 63.42±0.35 60.21±0.55 OOM OOM No

FLOOD 84.29±1.82 28.62±6.29 54.22±3.92 64.01±0.26 60.31±0.48 65.66±0.26 58.59±1.56 No
CIT 83.71±0.60 28.99±2.11 OOM 63.77±0.36 60.05±0.59 OOM OOM No

Sample Reweighting KL-DRO 81.14±1.48 29.54±1.37 51.87±3.16 64.03±0.32 60.52±0.22 65.51±0.16 54.70±0.35 No
GroupDRO 82.71±1.78 29.17±1.76 52.24±4.05 64.10±0.38 60.43±0.40 65.93±0.24 56.24±0.44 Yes

Ours TAR 87.29±0.78 30.83±1.90 57.20±3.97 64.73±0.23 61.73±0.22 66.08±0.23 59.26±1.40 No

Table 3. Results of ablation atudy
Dataset CBAS Twitch

Shift concept covariate concept covariate

TAR 87.29±0.78 87.43±5.09 57.20±3.97 57.82±2.13
w/o SR 83.57±1.52 84.29±4.52 49.78±3.27 55.14±1.78
w/o GE 83.14±3.14 79.43±1.63 55.39±3.35 54.54±4.70

ERM 82.43±2.56 78.29±3.10 51.59±3.63 50.04±2.53

4.3. Hyper-Parameter Analysis

We analyze the impact of the key parameters proposed in
Algorithm 1: Tin , its value determines the number of iter-
ations over which the sample weights propagate along the
graph edges. A larger Tin allows weights to transfer over a
broader range, whereas a smaller Tin limits weight propaga-
tion to a few neighboring hops. As illustrated in Figure 3,
performance reaches the best at Tin = 1 for the WebKB
dataset and at Tin = 3 for the CBAS dataset. However,
for the Twitch and Axiv datasets, performance continues
to improve until Tin = 20. We attribute this to the larger
size of these two datasets. Larger graphs may require more
iterations to effectively propagate sample weights.

4.4. Ablation Study

We conducted an ablation study to investigate the effects of
different modules in TAR, including the sample reweight-
ing procedure (SR) and Graph Extrapolation module (GE).
As shown in Table 3, we compared the TAR with its two
variants ”w/o SR” and ”w/o GE” based on whether the SR
and GE were enabled. Both modules contribute to the final
result. Specifically, on the Twitch dataset, when SR is not
used and only GE is applied, the performance is even lower
than that of ERM. This highlights the importance of TAR’s
adjustment of sample weights in enhancing robustness.

major node(avg weight=0.99)
minor node(avg weight=1.11)
unlabeled node

Figure 4. Learned node weight of TAR on CBAS under concept
shift. The size of each node is proportional to its sample weight.
TAR assigned greater node weight to these minor nodes.

4.5. Visualization

We conducted visualization experiments on the CBAS
dataset under concept shift to provide an intuitive expla-
nation for the effectiveness of our method. In this dataset,
there is a spurious correlation between most nodes (major
nodes) and their labels, while a small number of nodes (mi-
nor nodes) do not exhibit this spurious correlation. If the
model primarily learns these spurious correlations from the
major nodes during training, its performance will degrade
when tested on a distribution that does not contain such
correlations. As shown in Figure 4, TAR assigns higher
training weights to these minority nodes that do not exhibit
the spurious correlation, encouraging the model to focus
more on these nodes and avoid learning the spurious cor-
relation. As a result, TAR achieves a 4.86% improvement
over ERM.

5. Conclusion
Through this work, we innovatively propose the Topology-
Aware Dynamic Reweighting (TAR) framework to address
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the distribution shift problem in node classification tasks.
TAR utilizes a minimax approach to enhance the general-
ization ability of GNN models, incorporating topological
structure information through gradient flows along graph
edges. We further conduct theoretical analysis to reveal the
ability of TAR to enhance the distributional robustness of
GNNs. Experimental results confirm the effectiveness of
TAR node classification under distribution shifts. Our TAR
opens a new direction for addressing the distribution shift
problem for node classification tasks.
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A. Related Works
Out of Distribution Generalization. Out-of-Distribution (OOD) generalization aims to address the challenge of ensuring
model robustness and generalization when faced with data that differ from the training distribution. Numerous studies
have been dedicated to addressing the problem of OOD generalization, leading to the development of various methods
for tackling OOD issues(Liu et al., 2021b). By accurately identifying the causal relationships between features and their
corresponding labels, causal learning methods are expected to perform well even when the data distribution changes, as the
underlying causal structure is often assumed to remain invariant across different environments or domains. Shifting the
focus from strict causality to invariance, invariant learning aims to develop a representation or model that remains consistent
across various environments. Invariant Risk Minimization (IRM)(Arjovsky et al., 2019) and Variance Risk Extrapolation
(VREx) (Krueger et al., 2021) are two prominent methods specifically designed to address these challenges. IRM focuses on
learning invariant features by ensuring that the optimal classifier remains the same across different environments, whereas
VREx aims to minimize the variance of risks across environments, ensuring stable performance under distributional shifts.
Another line of research focused on addressing OOD generalization problems involves distributionally robust optimization
methods. These model-agnostic techniques come with strong theoretical guarantees and achieve OOD generalization by
incorporating distributional robustness into the training process. This ensures that the model’s performance remains stable
across different data distributions. KL-DRO (Duchi & Namkoong, 2018) minimizes the KL divergence between training
and potential test distributions. WDRO (Chen & Paschalidis, 2018; Sinha et al., 2017) leverages the Wasserstein distance
to ensure robustness to distributional changes. Group DRO (Sagawa et al., 2019) aims to provide consistent performance
across different subgroups by minimizing the worst-case risk among them. While invariant learning has been extensively
applied in graph tasks(Wu et al., 2021; Xia et al., 2024; Li et al., 2022; Sui et al., 2023; Wu et al., 2022), there is relatively
less application of distributionally robust optimization methods in graph tasks. Applying these methods to graphs requires
addressing the unique structural properties of graphs, posing challenges that are specific to graph data.

Graph Invariant Learning. Recently, graph invariant learning has shown enormous success in addressing graph out-of-
distribution problems(Wu et al., 2022; 2021; Sui et al., 2023; Zhou et al., 2022; Li et al., 2022; Xia et al., 2024). Graph
invariant learning aims to exploit the invariant relationships between graph features(which can be divided into topological
structures and node features) and labels across distribution shifts, while filtering out the variant spurious correlations caused
by the environment. Recently, many methods have been proposed for graph-level tasks. GIL (Li et al., 2022) captures
the invariant relationships between predictive graph structural information and labels in a mixture of latent environments.
DIR (Wu et al., 2022) selects a subset of causal rationales and conducts data augmentation to create multiple distributions
to improve generalization. MoleOOD (Yang et al., 2022) enhances the robustness of molecule learning and infers the
environment in a fully data-driven manner. AIA (Sui et al., 2023) generates new environments while preserving the original
stable features during the augmentation process with adversarial strategies. Compared to research on graph-level ood,
less attention has been paid to learning node-level representations under distribution shifts from the invariant learning
perspective (Wu et al., 2021; Liu et al., 2023; Xia et al., 2024). EERM (Wu et al., 2021) leverages multiple context explorers
that are adversarially trained to maximize the variance of risks from multiple virtual environments to learn a node invariant
predictor. Instead, FLOOD (Liu et al., 2023) applies data augmentation to construct multiple environments and maximize
the variance of risks from multiple virtual environments to learn a node invariant predictor. CIT (Xia et al., 2024) generates
nodes across different clusters, significantly enhances the diversity of the nodes, and helps GNNs learn the invariant
representations. However, this line of invariant learning typically focuses on specific types of invariance (e.g., subgraph
invariance in graphs), which may not cover all possible shifts. Besides, due to the lack of environmental information in the
real world, generating new samples might introduce bias or noise.

B. Datasets
We define the distribution shift problem in the node classification task following (Gui et al., 2022) below. The joint data
distribution can be decomposed as P(Y,X) = P(Y |X)P(X). The main causes of distribution shifts can be separated into
two types of shifts:

• Covariate shift (Ps(Y |X) = Pt(Y |X),Ps(X) ̸= Pt(X)): This indicates that the feature distribution differs between
the source distribution and the target distribution.

• Concept shift (Ps(Y |X) ̸= Pt(Y |X),Ps(X) = Pt(X)): This indicates that there are spurious statistical correlations
in the source distribution that may not hold in the target distribution.
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Table 4. Statistics of GOOD datasets
Dataset #Node #Edge #Class #Feat Domain

CBAS 700 3962 4 4 Color
WebKB 617 1138 5 1703 University
Twitch 34120 892346 2 128 Language
Cora 19793 126842 70 8710 Word/Degree
Arxiv 169343 1166243 40 128 Time/Degree

In this paper, we use five OOD node classification datasets from GOOD benchmark (Gui et al., 2022), including WebKB,
CBAS, Twitch, Cora, and Arxiv. The statistics of these datasets are shown in Table 4.

• CBAS is a synthetic dataset where the input graph is constructed by attaching 80 house-like motifs to a 300-node
Barabási–Albert base graph. The task involves predicting the role of each node, including whether a node is the top,
middle, or bottom of a house-like motif, or belongs to the base graph, resulting in a 4-class classification task. In CBAS,
different node colors are used as features, so OOD algorithms must address both covariate shifts caused by node color
differences and concept shifts driven by color-label correlations.

• WebKB is a university webpage network dataset. Each node corresponds to a webpage, with the words on the page
serving as node features, and edges representing hyperlinks between webpages. The task is a 5-class classification
problem, where the goal is to predict the category of each webpage. The dataset is split based on the domain of the
university, meaning the classification is based on the content of the webpages and their link structures, rather than on
university-specific attributes.

• Twitch is a gamer network dataset where nodes represent gamers, with their games serving as node features, and edges
representing friendships between gamers. The task is a binary classification problem aimed at predicting whether a
user streams mature content. The dataset is split based on user language, which implies that the prediction should not
be influenced by the language the user uses.

• Cora is a citation network dataset derived from the full Cora dataset. It consists of a small-scale citation graph where
nodes represent scientific publications and edges represent citation links. The task is a 70-class classification of
publication types. The dataset is split based on two domain criteria: word and degree. The first domain, word diversity,
is defined by the number of selected words in a publication, which is completely unrelated to the label. The second
domain is node degree, implying that the popularity of a paper (as indicated by its citation count) should not influence
its classification.

• Arxiv is a citation network adapted from OGB (Hu et al., 2020). The input is a directed graph representing the citation
network among arXiv papers in the field of computer science (CS). Nodes correspond to arXiv papers, and directed
edges represent citation links between them. The task is to predict the subject area of these CS papers, making it a
40-class classification problem. The dataset is split based on two domain criteria: time (publication year) and node
degree.

C. Implementation Details
In our experiments, we utilized GCN and a recently proposed sota graph transformer Polynormer (Deng et al., 2024) as the
backbone models.

• For GCN, we configured the models with 3 layers, a hidden dimension of 300, a dropout rate of 0.5, and a learning rate
of 0.01.

• For Polynormer, the layer of the local module is set to 5 and the global module is set to 1, with a hidden dimension of
512 and a learning rate of 0.001.

Throughout all experiments, we employed the Adam optimizer with a weight decay of 0. For all baselines, we conducted a
grid search as defined by the GOOD Benchmark or their original papers and reported their best results. Note that the graph
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OOD algorithm EERM (Wu et al., 2021) and CIT (Xia et al., 2024) encounters CUDA out of memory on Arxiv and Twitch
datasets due to its high memory requirement.

The searching spaces for all the hyper-parameters of TAR are as follows.

• Entropy term β: {1, 0.1, 0.01, 0.001}.

• TAR inner learning rate γ: {0.1, 0.01, 0.001}.

• Gradient flow iterations Tin: {1, 3, 5, 10, 20}.

• Graph extrapolation ratio: {0.0, 0.2, 0.4}

Software and Hardware. Our implementation is under the architecture of PyTorch (Paszke et al., 2019) and PyG (Fey &
Lenssen, 2019). All of our experiments are run on one GeForce RTX 3090 with 24GB. The detailed versions of some key
packages are listed below:

• python: 3.8

• pytorch: 1.13.1

• pyg: 2.3.1

D. Comparion on SOTA Graph Transformer
Apart from the result using GCNs as the backbone in Table 1 and 2, we also conducted comparative experiments using
Polynormer (Deng et al., 2024) as the backbone on the WebKB, CBAS and Twitch datasets.

As shown in the Tabel 5, we have the following observations: Compared to Tables 1 and 2, Polynormer with ERM
outperforms GCN in 4 out of 6 settings, demonstrating that Polynormer, as a recently proposed state-of-the-art Graph
Transformer, exhibits superior generalization capabilities compared to GCN. Our proposed method, TAR, achieves better
performance than all other baselines across all settings, particularly under concept shift on the Twitch dataset, where
it outperforms the second-best method by a significant margin of 7.4%. Experiments conducted with both GCN and
Polynormer as backbones further validate the versatility of our approach and its superiority over competing methods.

Table 5. The performance on three OOD benchmark datasets, using Polynormer (Deng et al., 2024) as the backbone. We report the
average test accuracy (except for Twitch, where we use ROC-AUC as the evaluation metric) and standard deviations over 5 runs. The best
results are shown in bold, and the second best results are shown in underline. OOM denotes out of memory.

Dataset CBAS WebKB Twitch Require domain
informationShift concept covariate concept covariate concept covariate

Base ERM 88.14+2.35 98.29±1.20 42.57±3.59 14.60±4.48 51.02±1.23 54.06±1.41 No

Invariant Learning IRM 87.86±3.23 97.14±2.12 42.57±5.25 13.81±1.44 51.07±1.15 54.08±1.33 Yes
VREx 89.43±1.37 99.14±1.28 44.04±2.90 15.71±2.71 52.80±0.85 54.30±1.10 Yes

Domain Generalization Coral 87.71±1.85 97.71±1.63 42.75±5.37 13.49±0.56 51.33±1.19 53.45±1.29 Yes
DANN 87.86±2.7 96.57±2.96 44.95±1.30 14.29±3.81 50.91±1.33 54.27±1.37 No

Graph OOD

SRGNN 87.43±3.06 98.00±2.96 41.10±1.29 14.60±2.95 51.00±1.24 54.23±1.30 Yes
EERM 85.71±2.81 97.14±2.67 43.49±3.92 25.71±7.89 OOM OOM No

FLOOD 88.57±2.08 98.57±1.01 41.28±1.83 14.92±4.14 51.75±3.02 54.50±0.35 No
CIT 89.57±0.81 98.29±1.20 43.12±4.54 14.76±3.30 OOM OOM No

Sample Reweighting KL-DRO 88.36±1.30 98.86±1.56 43.49±2.56 29.37±14.64 55.86±5.00 54.46±1.42 No
GroupDRO 88.71±1.37 99.14±1.92 43.49±3.35 14.29±1.59 53.62±3.52 54.21±1.26 Yes

Ours TAR 91.14±1.20 99.43±1.78 47.89±1.76 30.48±7.81 63.25±1.84 56.69±0.88 No
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E. Comparative Analysis of Solutions for Disconnected Trained Nodes
During the training of node classification tasks, the labeled nodes are randomly sampled, which often results in these labeled
nodes not being directly connected in the space. Consequently, the gradient defined in Equation 3 cannot be computed. In
this paper, we sets the loss of the unlabeled nodes to the mean loss of the labeled nodes, we also try other solutions, as
detailed below:

• TAR. This method sets the loss of the unlabeled nodes to the mean loss of the labeled nodes. This approach preserves
the original graph structure, allowing the gradient flow between training nodes to occur indirectly through the unlabeled
nodes.

• TAR-N. This method performs a breadth-first search for each labeled node during training to find K reachable labeled
nodes. Then, it adds edges between the current node and these K nodes, creating a new graph, and performs the
gradient flow on this new graph. This approach enables the gradient to propagate directly among the training nodes but
disrupts the original graph structure.

We conduct experiments both on CBAS and Cora (degree) to compare their performance. The results are summarized in
Table 6. TAR-N performed worse than TAR under all settings. This suggests that preserving the original graph structure
might be more reliable. Additionally, TAR-N requires extra computational overhead for the breadth-first search compared to
TAR.

Table 6. The performance of TAR with orginal graph or TAR with reconnected graph on graph OOD datasets.

Dataset CBAS Cora

Shift concept covariate concept covariate

ERM 82.43±2.56 78.29±3.10 60.30±0.46 55.33±0.90
TAR 87.29±0.78 87.43±5.09 61.73±0.22 56.62±0.23

TAR-N 86.71±2.29 86.29±2.96 61.57±0.22 56.17±0.44

F. Complexity Analysis
Our approach is model-agnostic, making it applicable to any graph neural network. Moreover, it does not involve any
learnable parameters, ensuring high efficiency.

Below, we analyze its time complexity: For an l-layer, d-dimensional GCN on a graph with n nodes and m edges, the time
cost of TAR includes: Outer Training: O(ld2n+ lm), which encompasses feature transformation and neighbor aggregation.
Inner Loop: The k iterations have a time complexity of O(kn+ km), introducing minimal additional computation since
k ≪ ld2. The inner loop of TAR operates in a message-passing style and is parameter-free, ensuring scalability comparable
to GCNs for large-scale graphs.

We compared the time complexity of our method with other model-agnostic approaches, as shown in Table 7. It can be
observed that our method, similar to Group DRO and VREx, introduces only little overhead, demonstrating excellent
scalability. In comparison to CIT, our approach achieves faster training speeds and avoids out-of-memory (OOM) issues,
making it more efficient and practical for large-scale applications.

Table 7. Time cost of different OOD methods (ms/epoch).

Methods ERM GroupDRO VREx CIT TAR (ours)

CBAS 10.1±0.2 10.3±1.2 10.8±0.2 15.0±4.3 12.0±2.2
Arxiv 181.8±1.0 232.9±1.4 231.8±0.8 OOM 235.1±3.1
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G. Proof
G.1. Proof of Theorem 1

Proof. Denote q⋆ = arg sup
q∈Po(G0)

L(θ, q)− 1
2τ GW

2
G0

(p, q), and we have ϵ = GW2
G0

(p, q⋆).

Then we prove by contradiction: we first assume

q
′
= arg sup

q:GW2
G0

(p,q)≤ϵ

L(θ, q)

, which indicates that L(θ, q′
) ≥ L(θ, q⋆) and GW2

G0
(p, q

′
) ≤ ϵ. Therefore, we have GW2

G0
(p, q

′
) ≤ GW2

G0
(p, q⋆).

Denote
R(θ, q) = L(θ, q)− 1

2τ
GW2

G0
(p, q)

, then we haveR(θ, q⋆) ≤ R(θ, q′
). This leads to contradiction since q⋆ is the supremum point ofR(θ, ·).

G.2. Proof of Theorem 2

Proof. Based on the (Chow et al., 2017, Theorem 5), we have

L(q(∞))− L(q(t)) ≤ e−Ct(L(q(∞))− L(q(0))),

where C > 0 is a constant depending on the loss function ℓ, hyper-parameter β, and the sample size N .

Then we denote the real worst-case distribution within the ϵ-radius discrete Geometric Wasserstein-ball as q∗, and we have

L(q(∞))− L(q⋆) + L(p⋆)− L(q(t)) ≤ e−Ct(L(q(∞))− L(q⋆) + L(q⋆)− L(q(0))).

Therefore, we have

L(q⋆)− L(q(t)) ≤ e−Ct(L(q⋆)− L(q(0)))− (1− e−Ct)(L(q(∞))− L(q⋆)),

and
L(q⋆)− L(q(t))
L(q⋆)− L(q(0))

≤ e−Ct − (1− e−Ct)
L(q(∞))− L(q⋆)
L(q⋆)− L(q(0))

< e−Ct.

H. Limitations and Future Work
In this paper, we propose a model-agnostic node classification OOD generalization algorithm TAR that leverages the
existing topological information in node classification tasks to achieve better local robustness. However, as discussed in
Appendix E, due to the random sampling of labeled nodes in node classification tasks, the nodes with computed losses are
not directly connected, with other nodes without computed losses in between. Although we explored two potential solutions
in Appendix E, we consider these solutions suboptimal. In the future, we aim to design a more effective method to address
this issue.
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