
Slack-Free Spiking Neural Network Formulation for
Hypergraph Minimum Vertex Cover

Tam Ngoc-Bang Nguyen1, Anh-Dzung Doan1, Zhipeng Cai2, Tat-Jun Chin1

1 Australian Institute for Machine Learning, The University of Adelaide,
2 Intel Labs

{tam.nb.nguyen,dzung.doan,tat-jun.chin}@adelaide.edu.au
zhipeng.cai@intel.com

Abstract

Neuromorphic computers open up the potential of energy-efficient computation
using spiking neural networks (SNN), which consist of neurons that exchange
spike-based information asynchronously. In particular, SNNs have shown promise
in solving combinatorial optimization. Underpinning the SNN methods is the
concept of energy minimization of an Ising model, which is closely related to
quadratic unconstrained binary optimization (QUBO). Thus, the starting point for
many SNN methods is reformulating the target problem as QUBO, then executing
an SNN-based QUBO solver. For many combinatorial problems, the reformulation
entails introducing penalty terms, potentially with slack variables, that implement
feasibility constraints in the QUBO objective. For more complex problems such
as hypergraph minimum vertex cover (HMVC), numerous slack variables are
introduced which drastically increase the search domain and reduce the effective-
ness of the SNN solver. In this paper, we propose a novel SNN formulation for
HMVC. Rather than using penalty terms with slack variables, our SNN architecture
introduces additional spiking neurons with a constraint checking and correction
mechanism that encourages convergence to feasible solutions. In effect, our method
obviates the need for reformulating HMVC as QUBO. Experiments on neuromor-
phic hardware show that our method consistently yielded high quality solutions for
HMVC on real and synthetic instances where the SNN-based QUBO solver often
failed, while consuming measurably less energy than global solvers on CPU.

1 Introduction

Neuromorphic computing research aims to develop computational models inspired by neural archi-
tectures found in nature. Spiking neural networks (SNN), in which a network of processing units
(neurons) asynchronously transmit spike-based messages to each other [34], is a notable representa-
tive of the neuromorphic paradigm. Through parallelism, stochastic behavior, event-driven computing
and other biologically-inspired properties, SNNs promise higher energy efficiency than conventional
computing, which includes the successful artificial neural networks (ANN) [16].

The advent of neuromorphic computing hardware that can implement SNNs has boosted research
in the area. Notable examples include IBM TrueNorth [25] and Intel Loihi [12, 30, 35]. Rigorous
benchmarking [13] indicate the promise of SNNs in delivering energy efficient computations, which
not only benefit edge computing applications, but also reducing the energy consumption of data cen-
ters. The recent introduction of Intel Hala Point [1], the world’s largest neuromorphic supercomputer
with 1.15 billion neurons and 138.2 billion synapses, is a testament of confidence in the technology.

Two major classes of problems have been explored for SNNs: machine learning and combinatorial
optimization [13]. Representative approaches in the former include training SNNs using asynchronous

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

variants of backpropagation, and converting pre-trained ANNs into equivalent SNNs for deployment
on neuromorphic hardware. Works in the latter develop SNNs to solve specific optimization problems,
where the spike-based temporal information processing is exploited to achieve computational benefits
over classical methods. Our work focuses on combinatorial optimization.

The concept of energy minimization of the Ising model underpins SNN techniques for combinatorial
optimization. The task is closely related to quadratic unconstrained binary optimization (QUBO)

min
z∈{0,1}N

zTQz, (1)

where Q ∈ ZN×N is a symmetric coefficient matrix (we restrict Q to integers to facilitate the SNN
treatment; integers are sufficient nonetheless for the targeted combinatorial problem). Several SNNs
have been developed to solve QUBO [6, 14, 3, 32]; Sec. 3.2 will describe such a method. To bring
such SNNs to bear on other combinatorial problems, the problems must first be reformulated into
QUBO [11, 22]. For problems with feasibility constraints, penalty terms and often slack variables
will be added to the QUBO objective to implement the constraints. Examples are provided below.

Problem 1 (Minimum vertex cover (MVC)). Let G = (V,E) be a graph with vertices V =
{1, . . . , N} and edges E = {e1, . . . , eK}, where each ek = ⟨i(k), j(k)⟩ ⊂ V connects two vertices.
A vertex cover of G is a subset Z of V such that every edge is incident with at least a vertex in Z.
The goal of MVC is to find the vertex cover with the smallest number of vertices. Let

z = [z1, . . . , zN]T ∈ {0, 1}N (2)

be a binary vector whose role is to select a subset of V , where zi = 1 indicates that the i-th vertex is
selected, and zi = 0 means otherwise. MVC can be expressed as

min
z∈{0,1}N

∥z∥1

s.t. (1− zi(k))(1− zj(k)) = 0, ∀k = 1, . . . ,K.
(3)

Note that ∥z∥1 = ∥z∥2 for binary z and the equality constraints in (3) are quadratic in z. Rewriting
the equality constraints as penalty terms, we obtain the QUBO

min
z∈{0,1}N

∥z∥22 + λ

K∑
k=1

(1− zi(k))(1− zj(k)). (4)

Intuitively, solutions z that violate the constraints in (3) will raise the total cost in (4) and hence be
penalized. The quantity λ ∈ Z is the penalty weight that controls the degree of penalization due
to constraint violations. Note that while (4) is not exactly in the form (1) due to the existence of a
constant, the remaining steps to rearrange (4) to (1) are minor; see supplementary material.

Problem 2 (Hypergraph minimum vertex cover (HMVC)). Let H = (V, F) be an r−uniform
hypergraph with vertices V = {1, . . . , N} and hyperedges F = {f1, . . . , fK}, where each fk ⊂ V
is incident with exactly r vertices, r ≥ 2. A vertex cover of H is a subset Z of V such that every
hyperedge is incident with at least a vertex in Z. The goal of HMVC is to find the vertex cover with
the smallest number of vertices. Note that HMVC reduces to MVC if r = 2. For each hyperedge fk,
define a binary vector

b(k) = [b
(k)
1 , . . . , b

(k)
N]T ∈ {0, 1}N , (5)

where ∥b(k)∥1 = r, and b
(k)
i = 1 means that vertex i is incident to fk and b

(k)
i = 0 means otherwise.

HMVC can then be written as

min
z∈{0,1}N

∥z∥1

s.t. b(k)T z ≥ 1, ∀k = 1, . . . ,K,
(6)

which is a 0-1 integer linear program (ILP). Since r variables (r ≥ 2) exist in each linear inequality
constraint, in general it is not possible to express it as a quadratic equality constraint, cf . (3). Instead,
the path to QUBO will involve converting each inequality into an equality constraint

b(k)T z− 1T
r′y

(k) = 1, (7)

2

which requires introducing r′ binary slack variables for each fk

y(k) = [y
(k)
1 , . . . , y

(k)
r′]T ∈ {0, 1}r

′
, (8)

where r′ = r − 1 and 1r′ is a column vector of 1 of size r′. Installing the equality constraints as
quadratic penalty terms, we obtain the QUBO

min
z∈{0,1}N ,{y(k)}K

k=1∈{0,1}r′×K
∥z∥22 + λ

K∑
k=1

(
b(k)T z− 1T

r′y
(k) − 1

)2

, (9)

where λ ∈ Z is the penalty weight. See supp. material for rewriting the QUBO in form (1).

A major difference between the QUBO reformulations for MVC and HMVC is that the latter requires
slack variables, the quantity of which scales linearly with the number K and degree r of hyperedges.
This significantly increases the search space and difficulty of the optimization. As we will show in
Sec. 5, the existing SNN-based QUBO solver [3] is unable to satisfactorily solve HMVC based on (9).
This presents an obstacle towards applying SNNs to a combinatorial problem with many practical
applications, e.g., computational biology [9], computer network security [19], resource allocation [7]
and social network analysis [23]. Fundamentally, HMVC is a general optimization problem that
encompasses several related formulations, such as set cover, hitting set, and traversal [5], giving it
wide applicability. The issue calls for a more effective SNN for HMVC.

1.1 Contributions

To solve HMVC more effectively, we propose an SNN that is composed of a mix of non-equilibrium
Boltzmann machine (NEBM) spiking neurons [32] and a custom feedback spiking neuron. One
feedback neuron is introduced for each constraint in (6) to check for constraint violations and
encourage the overall state to return to feasibility. A major benefit of our handcrafted SNN is
obviating the need to reformulate HMVC as QUBO based on the penalty method, which not only
avoids the usage of slack variables, but also removes the necessity to tune the penalty weight.

Results on Intel Loihi 2 [30] indicate that our SNN significantly outperformed the QUBO approach on
HMVC, in that our method consistently yielded high-quality solutions on synthetic and real problem
instances where the SNN-based QUBO solver [3] often failed to return feasible results. Moreover,
our SNN consumed measurably much less energy than global solvers on CPU.

Our work follows the spirit of other handcrafted SNNs for combinatorial optimization [8, 31, 17, 21,
36]. However, such works have mainly been targeted at constraint satisfaction problems, whereas our
SNN is aimed at a graph-based optimization problem, i.e., HMVC (more details in Sec. 2).

2 Related work

Previous studies have shown that an SNN with a topology corresponding to the matrix Q can
efficiently solve QUBO [3, 6, 14]. This enables neuromorphic computing to solve combinatorial
problems that can be encoded as QUBO, such as graph partitioning [26]. In addition, via the penalty
method [29, Chap. 17], other combinatorial problems with constraints can be reformulated into
QUBO [15]. Problem 1 has discussed this for MVC, which has been evaluated on a neuromorphic
processor [11]. Other works that employed QUBO reformulation include [32, 22] who solved
maximum independent set and ILP. However, more complex problems will require the introduction
of slack variables, which increases the search space and difficulty for an SNN solution. Problem 2
has illustrated this for HMVC.

The majority of handcrafted SNNs for combinatorial optimization aim to solve constraint satisfaction
problems (CSPs). Jonke et al. [21] proposed a stochastic SNN for traveling salesman problem. Since
then, several SNN solvers have been proposed for CSPs, such as, Sudoku [8, 31], graph coloring [17],
and Boolean satisfiability problem [21, 36]. These existing approaches share a common strategy:
constructing a specific SNN topology that is strongly tailored to the constraints of each CSP. This is
to ensure that these SNN solvers can seek valid values for a set of variables that satisfy the specified
constraints. In other words, the primary objective of these handcrafted SNNs is to find feasible
solutions to the combinatorial optimization problem. Although our approach shares a similar spirit

3

1

2 3 4

(a) Vertices V =
{1, 2, 3, 4}, hyperedges
f1 = {1, 2, 3}, f2 =
{1, 3, 4}, f3 = {1, 2, 4}

n1

n2 n4n3

n5 n6 n7

n9 n10

n8

(b) QUBO-SNN

n1

n2

m1 m3

m2

n3
n42

3

2
1

11 2

222

1

1

1

11

1 1 1 1

(c) SF-HMVC

Figure 1: (a) HMVC input hypergraph: a 3-uniform hypergraph with 4 vertices and 3 hyperedges.
(b) SNN for QUBO (9) derived from (a). Both the variables zi and introduced slack variables are
NEBM neurons. The edge weights are omitted for brevity. (c) The SNN from our method for input
(a). NEBM and FB neurons are in orange and green resp. Dashed circles indicate self-connections.

to these handcrafted SNNs in that we directly construct SNN topology using constraints, our SNN
topological graph is specifically designed to seek not only a feasible solution but also the optimal one.

The QUBO formulation is amenable to Ising-specific analog and digital hardware solvers, including
spintronics, memristors, and quantum annealers [27]. However, given our focus on SNNs, we leverage
the state-of-the-art Loihi 2 neuromorphic accelerator to implement the SNN solutions for both QUBO
and our method, due to its high flexibility in SNN design and programmable neuron model. For a
comprehensive overview of Loihi 2’s capabilities, we refer readers to [24, 32, 35].

There is a large body of work on SNNs for machine learning; we refer to [13] for a thorough
survey. While SNNs are usually less accurate than ANNs [28], under certain temporal dynamics,
SNNs can surpass ANNs. SNNs have also been used for robotics. For instance, [24] implemented
their SNN-based quadratic programming solver for model predictive control on Loihi 2, achieving
two orders-of-magnitude gains in energy-delay product compared to CPU solvers. Another study
demonstrated the applications of SNN in optical flow estimation for event cameras [33], which
showed significant potential for real-time operations. In addition, SNNs have been applied to depth
estimation for event sensors [10], where their method computed the optical flow on the neuromorphic
chip and integrated the optical flow with camera velocity to estimate depth.

3 Preliminaries

An SNN can be viewed as a “program” for a neuromorphic computer [34]. Formally, an SNN
comprises a set of spiking neurons N = {ni}Ni=1 and synapses, where each synapse connects a pair
of neurons. The interconnections can be summarized by a matrix W = [wij] ∈ ZN×N , where the
element wij indicates the strength of connection between ni and nj , and wij = 0 signifies an absence
of connection between the pair. The architecture of an SNN and the model of the spiking neuron
define the behavior of the program. Here, we describe the NEBM spiking neuron model (Sec. 3.1)
and the NEBM-based SNN for QUBO (Sec. 3.2), adapted from Intel’s original implementation [32].

3.1 NEBM

NEBM neurons produce outputs probabilistically based on the Boltzmann distribution [32]. An
NEBM neuron ni contains a binary state si ∈ {0, 1} that indicates whether the neuron is firing
(si = 1) or not (si = 0), and an internal state ui ∈ Z that accumulates outputs from connected
neurons.

While in theory spiking neurons operate asynchronously, practical neuromorphic computers such
as Intel Loihi are fully digital devices [12]. The continuous time dynamics of a spiking neuron
are approximated using fixed-size discrete timesteps t. It should be reminded that t relates to the
algorithmic time of the computation rather than the time of a global synchronous clock.

4

Based on the algorithmic time formalism, at timestep t, an NEBM neuron ni accumulates inputs
from connected neurons into its internal state

u
(t)
i = u

(t−1)
i +

∑
j ̸=i

wij∆s
(t−1)
j , (10)

where ∆s
(t−1)
j is the output spike of neuron nj from the previous timestep. The internal state of ni

is then converted to a switching probability

P
(
s
(t)
i = 1

)
=

1

1 + eu
(t)
i /T

, (11)

where T is the temperature. If the switching probability (11) exceeds a randomly generated threshold
θi ∈ [0, 1], si is set to 1. From here, an output or delta spike is calculated

∆s
(t)
i = s

(t)
i − s

(t−1)
i . (12)

If ∆s
(t)
i takes a non-zero value, i.e., the state si changes from the previous timestep, ni propagates

a delta spike to all its connected neurons and enters a refractory period for ri timesteps. Within
the refractory period, the binary state si remains unchanged. Note that temperature T and length
of the refractory period ri are hyperparameters of NEBM neurons. For more details of NEBM, its
hyperparameters and how it is implemented on Loihi 2 given hardware constraints (i.e. no division
operator), we refer readers to [32].

3.2 NEBM-based SNN for QUBO

The energy encoded by the neuronal states in an SNN is

E =

N∑
i=1

siui. (13)

Following [32], the NEBM-based SNN algorithm to minimize the energy is summarized in Alg. 2
(see Appendix). Intuitively, the method repeatedly samples and explores the neuronal states guided
by the structure of the synapses and evolving state values [21]. The algorithm is executed on the
neuromorphic hardware for M algorithmic timesteps, and the state configurations probed at the M
timesteps are returned. The state configurations are evaluated off-chip, with the best one returned
as the solution. Note that we employ an early version of NEBM where T is kept constant in Alg. 2,
though T can be annealed to fine-tune the search. We refer interested readers to [32] for recent
advancements of NEBM and the general-purpose NEBM-based QUBO solver.

To enable Alg. 2 to solve QUBO, following [32], we perform the following mapping:

• Assign each binary variable zi to a neuron ni, and equating the state si with the value of zi.
• Associate the quadratic coefficients Q = [qij] ∈ ZN×N with the synapse weights W, i.e., Q = W.

This also implies the existence of self connections for the neurons, where qii = wii is the strength
of the self connection for neuron ni.

Fig. 1b illustrates the mapping. Note that the “mapping” does not imply that E equates to the QUBO
cost; rather, the minimization of E by Alg. 2 tends to lead to the minimization of the QUBO cost. In
this sense, the SNN is a heuristic method to solve QUBO.

4 Slack-free SNN formulation for HMVC

Instead of converting HMVC to QUBO following the derivations in Problem 2 and applying the SNN
described in Sec. 3.2, we develop a novel slack-free SNN that directly solves HMVC. Referring to
the 0-1 ILP (6), we construct our SNN, named SF-HMVC, as follows:

• As before, each binary variable zi is encoded as the state si of an NEBM neuron ni.

• Each k-th constraint b(k)T z ≥ 1 is represented by a neuron mk, whose dynamics are governed by
a custom neuron model called feedback or FB (more details below).

5

Algorithm 1 Our proposed SF-HMVC (note: the algorithm is executed for each NEBM neuron ni

and FB neuron mk on the neuromorphic hardware in a parallel way; see [13] for details).

Require: Co-occurrence matrix F, adjacency matrix A, temp. T and refract. period ri.
1: Initialize s

(0)
i ← 0, ∆s

(0)
i ← 0, u

(0)
i ← −fii, refract_counter(0)i ← 0

2: for each timestep t do

3: u
(t)
i ← u

(t−1)
i +

N∑
j ̸=i

fij∆s
(t−1)
j +

K∑
k=1

aik∆c
(t−1)
k

4: p
(t)
i ←

1

1 + exp(u(t)
i /T)

5: θi ← rand(0, 1)
6: if neuron ni is not in refractory period then
7: if p(t)i ≥ θi then
8: s

(t)
i ← 1

9: else
10: s

(t)
i ← 0

11: else
12: s

(t)
i ← s

(t−1)
i

13: refract_counter(t)i ← max(refract_counter(t−1)
i − 1, 0)

14: ∆s
(t)
i ← s

(t)
i − s

(t−1)
i

15: send ∆s
(t)
i to connected neurons

16: if ∆s
(t)
i ̸= 0 then

17: neuron ni enters refractory period
18: refract_counter(t)i ← ri

NEBM
neuron

Require: Adjacency matrix A.
1: for each timestep t do

2: v
(t)
k ←

N∑
i=1

aiks
(t)
i

3: if v(t)k = 0 then
4: c

(t)
k ← 1,∆c

(t)
k ← −1

5: else
6: if c(t−1)

k = 0 then
7: c

(t)
k ← 0,∆c

(t)
k ← 0

8: else
9: c

(t)
k ← 0,∆c

(t)
k ← 1

10: send ∆c
(t)
k to connected neurons

FB
neuron

• The weight matrix of our SNN which consists of N +K neurons [s1, . . . , sN ,m1, . . . ,mK] is

W =

[
F A
AT 0K×K

]
∈ Z(N+K)×(N+K), (14)

where 0K×K is a K ×K matrix of zeros,

– A = [b(1) · · ·b(K)] ∈ {0, 1}N×K is the adjacency matrix between NEBM and FB neurons
(intuitively, the k-th FB neuron mk is connected to the NEBM neurons corresponding to zi’s
that appear in the k-th constraint); and

– F = [fij] = AAT ∈ ZN×N is the co-occurrence matrix of the NEBM neurons (intuitively,
fij is high if zi and zj appear frequently together in the constraints, while fii is high if zi
appear in many constraints).

Fig. 1c illustrates the proposed SNN construction, while Alg. 1 summarizes the associated algorithm.

6

Note that Alg. 1 involves two types of neurons that implement different dynamics, and the neurons
are executed in parallel on the neuromorphic hardware [13]. The internal state for mk is

v
(t)
k =

N∑
i=1

aiks
(t)
i (15)

where aik is the element of i-th row and k-th column of matrix A. An FB neuron mk is determin-
istically activated (i.e., its binary state ck becomes 1) whenever the connected NEBM neurons are
all inactive (i.e., vk = 0), and vice versa. Then, a negative spike ∆ck is generated if the value of
ck is 1, so as to send excitatory signals to the connected NEMB neurons to attempt to satisfy the
constraint; otherwise no spikes are generated. The point here is not to over-excite NEBM neurons.
Then, the internal state of an NEBM neuron ni accumulates inhibitory signals from the connected
NEBM neurons and excitatory signals from the connected FB neurons, i.e.,

u
(t)
i = u

(t−1)
i +

N∑
j ̸=i

fij∆s
(t−1)
j +

K∑
k=1

aik∆c
(t−1)
k . (16)

Similar to Alg. 2, Alg. 1 is executed on the neuromorphic hardware for M algorithmic timesteps,
and the best state configuration probed and evaluated off-chip is taken as the solution. Note that the
probing mechanism incurs significant overhead in the execution time of current implementation [10],
and an on-chip evaluation strategy could be implemented to address this bottleneck [24, 32].

Scalability analysis Based on the construction of the QUBO-based SNN and the proposed SF-
HMVC, we can model the number of spiking neurons required to encode each SNN:

• nneurons(QUBO) = N + (r − 1)K

• nneurons(SF-HMVC) = N +K

As N,K and r collectively define the size of the input problem, we can conclude that SF-HMVC
scales linearly whereas the QUBO-based SNN scales quadratically with respect to the problem size.

5 Experiments

Implementation Our method SF-HMVC was implemented on the Loihi assembly language through
Lava framework [2] and deployed on the neuromorphic chip of Intel Loihi 2 [30] with M = 1000
algorithmic timesteps (denoted as SF-HMVC-Loihi). Using grid search, we selected temperature T
from the range [2, 4, 8, 16, 24, 32], refractory period ri from the range [8, 16, 32, 64, 128] (note that
all NEBM neurons were given the same refractory period). We set λ = 2 for QUBO (4) (same as
[11]) and grid search λ = [1, 10, 100, 1000] for QUBO (9). Note that we were unable to change the
seed of the random number generator on Intel Loihi 2, which prevented us from repeatedly executing
SNNs to obtain error bars in the solution quality. Also, we noticed that energy consumption and
runtime of our method and all competitors remained fairly consistent across different runs.

5.1 MVC

Dataset We employed the DIMACS benchmark dataset [20]. DIMACS includes graph instances
that are both synthetically generated and sourced from real-world applications, including coding
theory, fault diagnosis, Keller’s conjecture, etc. The original DIMACS graphs were for maximum
clique problems; we converted these to MVC instances by taking the complement graphs. Only 15
MVC instances where the corresponding SNN for SF-HMVC could fit on Loihi 2 were selected.

Competitors SF-HMVC-Loihi was compared to the following methods:

• ILP-CPU: MVC was solved using the ILP (3) with Gurobi [18] and evaluated on CPU.
• QUBO-CPU: MVC was solved using QUBO (4) with Gurobi [18] and evaluated on CPU. We set
λ = 2 (same as [11]).

• QUBO-Loihi: MVC was solved using QUBO (4) with NEBM-based SNN (see Sec. 3.2) and
evaluated on Intel Loihi 2. We set T = 16, ri = 64, λ = 2.

7

Table 1: Solution quality ∥z∥1 of the MVC methods for all DIMACS MVC instances.

Instance |V | |E| ILP- QUBO- QUBO- SF-HMVC-
CPU CPU Loihi Loihi

C125.9 125 787 91 91 122 116
C250.9 250 3141 206 206 239 240
gen200_p0.9_44 200 1990 156 156 185 199
gen200_p0.9_55 200 1990 145 145 187 191
hamming6-2 64 192 32 32 51 32
hamming6-4 64 1312 60 60 64 61
hamming8-2 256 1024 128 128 236 128
johnson8-2-4 28 168 24 24 28 24
johnson8-4-4 70 560 56 56 59 69
johnson16-2-4 120 1680 112 112 120 119
keller4 171 5100 160 160 171 170
MANN_a9 45 72 29 29 38 37
MANN_a27 378 702 252 252 352 324
san200_0.9_1 200 1990 130 130 178 199
sanr200_0.9 200 2037 158 158 184 199

Table 2: Runtime (in seconds) and energy usage (in Joules) of MVC methods. Note that∞ indicates
that the energy was too high for pyJoules to measure.

Instance ILP-CPU QUBO-CPU QUBO-Loihi SF-HMVC-Loihi

Time Energy Time Energy Time Energy Time Energy

C125.9 0.37 32.41 1.00 94.53 3.79 0.09 3.77 0.05
C250.9 >3600 144380.56 >3600 ∞ 7.36 0.26 7.37 0.18
gen200_p0.9_44 0.1 8.92 4.60 387.83 6.03 0.09 5.18 0.14
gen200_p0.9_55 0.03 2.12 2.59 203.84 5.98 0.04 5.17 0.01
hamming6-2 0 0.07 0.01 0.46 2.09 0.02 1.84 0.06
hamming6-4 0.03 2.25 0.36 25.83 2.91 0.07 1.83 0.06
hamming8-2 0 0.19 0.03 1.53 7.64 0.04 7.55 0.04
johnson8-2-4 0.01 0.41 0.05 3.16 1.06 0.08 0.94 0.02
johnson8-4-4 0 0.15 0.26 18.83 2.26 0.02 1.99 0.05
johnson16-2-4 0.5 3.74 4.46 316.75 3.71 0.03 3.72 0.05
keller4 1.14 114.13 1628.92 185173.36 5.13 0.11 5.15 0.03
MANN_a9 0 0.97 0.02 2.24 1.55 0.07 1.35 0.01
MANN_a27 0.18 12.06 0.82 72.92 10.95 0.31 9.58 0.09
san200_0.9_1 0.01 0.87 0.27 22.70 5.99 0.25 5.28 0.04
sanr200_0.9 77.92 10111.06 163.98 20591.27 5.95 0.18 5.17 0.3

All hyperparameters of the competitors were selected using grid search. The configuration that
demonstrated consistent performance across all problem instances was selected for each method. For
SF-HMVC-Loihi, we set T = 4, ri = 8.

Metrics Solution quality, runtime (in seconds), and energy consumption (in Joules) were reported
for all methods. Runtime and energy consumption on Intel Loihi 2’s Oheo Gulch board were measured
through the built-in profiler of Lava-Loihi v0.6.0 extension. Runtime on CPU was recorded using
built-in functions of Gurobi and the energy usage was recorded using pyJoules [4] on a workstation
with an Intel Core i7-11700K CPU @ 3.6GHz and 32GB RAM running Ubuntu 20.04.6 LTS.

Results Tabs. 1 and 2 display the results. Overall, SF-HMVC-Loihi was comparable to
QUBO-Loihi in all three aspects: solution quality, runtime, and energy usage (the discrepancy
between them will be clearer in the next experiment). ILP-CPU and QUBO-CPU outperformed
SF-HMVC-Loihi in terms of solution quality (see Tab. 1), since both ILP-CPU and QUBO-CPU were
globally optimal methods. The equal solution quality of the global methods also indicated the
existence of a suitable penalty weight for QUBO (4) in the grid search range of λ. On runtime (see
Tab. 2), though ILP-CPU and QUBO-CPU solved many instances in under 1 s, a few instances took
them minutes to hours to solve. In contrast, SF-HMVC-Loihi consistently solved all instances within
10 s. Also, on energy usage, our method significantly outperformed ILP-CPU and QUBO-CPU.

8

Table 3: Solution quality ∥z∥1 of the HMVC methods for all synthetic HMVC instances. Infeasible
solutions are indicated in red, with number of constraint violations in brackets. N/A means that the
SNN was not able to be embedded into the Loihi 2 due to capacity limitations.

Instance |V | |F | ILP- QUBO- QUBO- SF-HMVC-
CPU CPU Loihi Loihi

3-uniform_HMVC01 30 981 3 3 3 (68) 3
3-uniform_HMVC02 30 2129 9 9 19 (1214) 9
3-uniform_HMVC03 30 2888 15 15 N/A 15
3-uniform_HMVC04 30 3327 22 30 N/A 29
3-uniform_HMVC05 50 3506 5 5 N/A 5
3-uniform_HMVC06 50 6538 8 8 N/A 8
3-uniform_HMVC07 50 7333 10 50 N/A 10
3-uniform_HMVC08 70 7326 4 4 N/A 4
3-uniform_HMVC09 100 5979 20 20 N/A 20
3-uniform_HMVC10 200 7430 10 10 N/A 19
4-uniform_HMVC11 30 4914 3 15 N/A 5

5.2 HMVC

Dataset We generated 11 synthetic HMVC instances as follows: first, a set of N vertices V were
created, then a set of K degree-r hyperedges F were randomly generated. The values of N , K and r
were selected to ensure that the SNN (for SF-HMVC) could fit on Loihi 2.

Competitors SF-HMVC-Loihi was compared to the following methods:

• ILP-CPU: HMVC was solved using the ILP Eq. (6) with Gurobi [18] and evaluated on CPU.
• QUBO-CPU: HMVC was solved using QUBO Eq. (9) with Gurobi [18] and evaluated on CPU. We

set λ = 10.
• QUBO-Loihi: HMVC was solved using QUBO Eq. (9) with NEBM-based SNN (see Sec. 3.2) and

evaluated on Intel Loihi 2 [30]. We set T = 32, ri = 8, λ = 10.

All hyperparameters of these competitors were selected using grid search. The configuration that
demonstrated consistent performance across all problem instances was selected for each method. For
SF-HMVC-Loihi, we set T = 8, ri = 8.

Results Tabs. 3 and 4 display the results. As expected, ILP-CPU outperformed SF-HMVC-Loihi in
solution quality, since ILP-CPU was a global method. Interestingly, our method occasionally found
better solutions than QUBO-CPU. This was probably because, as the problem difficulty (number of
variables) increases, it became more challenging for QUBO-CPU. Note that SF-HMVC-Loihi handled
all instances reasonably well. In contrast, QUBO-Loihi either could not find feasible solutions, or
correspoding SNN could not be embedded onto Loihi 2. This suggests that the introduction of slack
variables in QUBO-Loihi made the search space and/or problem size too large.

As presented in Table 4, while ILP-CPU performed better than SF-HMVC-Loihi in terms of runtime,
our method was more efficient in terms of energy consumption. Furthermore, our method significantly
surpassed QUBO-CPU and QUBO-Loihi in both runtime and energy efficiency.

6 Limitations and conclusions

Several limitations of our work can be identified:

L1: The capacity of the neuromorphic computer available to us (a single Intel Loihi 2 chip [30]
which has 128 neuromorphic cores) was relatively low, which prevented testing of large problem
instances.

L2: There is a lack of public benchmarks on HMVC problems. L1 and L2 together precluded an
assessment of the generalizability of the methods more practical problem instances.

L3: Changing the seed of the random number generator on Intel Loihi 2 was inaccessible to us,
which precluded error bars in solution quality.

9

Table 4: Runtime (in seconds) and energy usage (in Joules) of HMVC methods. Note that∞ indicates
that the energy was too high for pyJoules to measure, while N/A indicates the instance could not be
embedded into Loihi 2 due to capacity limitations.

Instance ILP-CPU QUBO-CPU QUBO-Loihi SF-HMVC-Loihi

Time Energy Time Energy Time Energy Time Energy

3-uniform_HMVC01 0.00 0.24 198.38 14748.67 57.82 18.89 1.02 0.04
3-uniform_HMVC02 0.01 0.27 1464.06 110916.35 174.32 269.43 1.00 0.02
3-uniform_HMVC03 0.09 4.64 21.89 1548.77 N/A N/A 1.00 0.04
3-uniform_HMVC04 0.26 15.79 >3600 27582.99 N/A N/A 1.02 0.01
3-uniform_HMVC05 0.01 0.58 >3600 ∞ N/A N/A 1.49 0.07
3-uniform_HMVC06 0.02 1.03 >3600 33883.58 N/A N/A 1.78 0.08
3-uniform_HMVC07 0.03 1.52 >3600 54487.73 N/A N/A 1.52 0.16
3-uniform_HMVC08 0.02 0.67 >3600 ∞ N/A N/A 2.32 0.05
3-uniform_HMVC09 0.02 0.66 >3600 ∞ N/A N/A 3.18 0.03
3-uniform_HMVC10 0.02 2.50 >3600 19186.52 N/A N/A 6.03 1.38
4-uniform_HMVC11 0.02 0.45 >3600 106312.87 N/A N/A 1.18 0.03

L4: SNNs are ultimately heuristic algorithms, which complicate theoretical analyses on solution
quality and runtime complexity.

Despite the limitations above, the results showed clear trends of the greater scalability of the proposed
method SF-HMVC, in that it was able to solve HMVC problem instances where the existing method
could not. Moreover, SF-HMVC on Loihi 2 exhibited measurably lower energy consumption than
global solvers on CPU, further supporting neuromorphic computing as an energy-efficient alternative.

Acknowledgments and Disclosure of Funding

We would like to acknowledge Intel Labs and the Intel Neuromorphic Research Community (INRC)
for providing access to Loihi 2. We thank Intel’s Neuromorphic Computing Lab (NCL) for developing
NEBM algorithm and NEBM-based QUBO solvers, which was central to our work. We thank Philipp
Stratmann from NCL for the documentation related to NEBM. We also thank all the members of NCL
for their support on technical issues. Tat-Jun Chin is SmartSat CRC Professorial Chair of Sentient
Satellites.

10

References
[1] Intel Builds World’s Largest Neuromorphic System to Enable More Sustain-

able AI. https://www.intel.com/content/www/us/en/newsroom/news/
intel-builds-worlds-largest-neuromorphic-system.html.

[2] Lava: A software framework for Neuromorphic Computing, Intel Corporation. https://
github.com/lava-nc/lava.

[3] Quadratic Unconstrained Binary Optimization (QUBO) with Lava, Intel Corpora-
tion. https://github.com/lava-nc/lava-optimization/blob/main/tutorials/
tutorial_02_solving_qubos.ipynb.

[4] Spirals, 2019. pyjoules. https://pyjoules.readthedocs.io/en/latest/.

[5] Vertex cover in hypergraphs, Wikipedia. https://en.wikipedia.org/wiki/Vertex_
cover_in_hypergraphs.

[6] M. Z. Alom, B. V. Essen, A. T. Moody, D. P. Widemann, and T. M. Taha. Quadratic uncon-
strained binary optimization (qubo) on neuromorphic computing system. In International Joint
Conference on Neural Networks, 2017.

[7] N. Bansal and S. Khot. Inapproximability of hypergraph vertex cover and applications to
scheduling problems. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide,
and P. G. Spirakis, editors, Automata, Languages and Programming, pages 250–261, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[8] J. Binas, G. Indiveri, and M. Pfeiffer. Spiking analog vlsi neuron assemblies as constraint
satisfaction problem solvers. In IEEE International Symposium on Circuits and Systems, 2016.

[9] C. Chauve, M. Patterson, and A. Rajaraman. Hypergraph covering problems motivated by
genome assembly questions. In T. Lecroq and L. Mouchard, editors, Combinatorial Algorithms,
pages 428–432. Springer Berlin Heidelberg, 2013.

[10] S. Chiavazza, S. M. Meyer, and Y. Sandamirskaya. Low-latency monocular depth estimation
using event timing on neuromorphic hardware. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4071–4080, 2023.

[11] K. Corder, J. V. Monaco, and M. M. Vindiola. Solving vertex cover via ising model on a
neuromorphic processor. In IEEE International Symposium on Circuits and Systems, 2018.

[12] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[13] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra, P. Joshi, P. Plank, and
S. R. Risbud. Advancing neuromorphic computing with loihi: A survey of results and outlook.
Proceedings of the IEEE, 109(5):911–934, 2021.

[14] Y. Fang and A. S. Lele. Solving quadratic unconstrained binary optimization with collaborative
spiking neural networks. In IEEE International Conference on Rebooting Computing, 2022.

[15] F. Glover, G. Kochenberger, R. Hennig, and Y. Du. Quantum bridge analytics i: a tutorial on
formulating and using qubo models. Annals of Operations Research, 2022.

[16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[17] G. A. F. Guerra and S. B. Furber. Using stochastic spiking neural networks on spinnaker to
solve constraint satisfaction problems. Frontiers in neuroscience, 2017.

[18] Gurobi. https://www.gurobi.com/. Accessed: 2024-05-22.

11

https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html
https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html
https://github.com/lava-nc/lava
https://github.com/lava-nc/lava
https://github.com/lava-nc/lava-optimization/blob/main/tutorials/tutorial_02_solving_qubos.ipynb
https://github.com/lava-nc/lava-optimization/blob/main/tutorials/tutorial_02_solving_qubos.ipynb
https://pyjoules.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Vertex_cover_in_hypergraphs
https://en.wikipedia.org/wiki/Vertex_cover_in_hypergraphs
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.gurobi.com/

[19] A. Guzzo, A. Pugliese, A. Rullo, and D. Saccà. Intrusion detection with hypergraph-based attack
models. In M. Croitoru, S. Rudolph, S. Woltran, and C. Gonzales, editors, Graph Structures
for Knowledge Representation and Reasoning, pages 58–73. Springer International Publishing,
2014.

[20] D. S. Johnson and M. A. Trick. Cliques, coloring, and satisfiability: second DIMACS imple-
mentation challenge, October 11-13, 1993, volume 26. American Mathematical Soc., 1996.

[21] Z. Jonke, S. Habenschuss, and W. Maass. Solving constraint satisfaction problems with networks
of spiking neurons. Frontiers in neuroscience, 10:156676, 2016.

[22] A. Kumar and L. Vijaykumar. On neuromorphic computing: A case study on radio resource
allocation with lava software framework. 2023.

[23] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, and N. S. Glance. Cost-
effective outbreak detection in networks. In P. Berkhin, R. Caruana, and X. Wu, editors,
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Jose, California, USA, August 12-15, 2007, pages 420–429. ACM, 2007.

[24] A. R. Mangalore, G. A. Fonseca, S. R. Risbud, P. Stratmann, and A. Wild. Neuromorphic
quadratic programming for efficient and scalable model predictive control: Towards advancing
speed and energy efficiency in robotic control. IEEE Robotics & Automation Magazine, 2024.

[25] P. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson,
N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir,
M. Flickner, W. P. Risk, R. Manohar, and D. S. Modha. A million spiking-neuron integrated
circuit with a scalable communication network and interface. Science, 345:668 – 673, 2014.

[26] S. M. Mniszewski. Graph partitioning as quadratic unconstrained binary optimization (qubo)
on spiking neuromorphic hardware. In Proceedings of the International Conference on Neuro-
morphic Systems.

[27] N. Mohseni, P. L. McMahon, and T. Byrnes. Ising machines as hardware solvers of combinatorial
optimization problems. Nature Reviews Physics, 4(6):363–379, 2022.

[28] T. Moraitis, A. Sebastian, and E. Eleftheriou. Optimality of short-term synaptic plasticity in
modelling certain dynamic environments. arXiv preprint arXiv:2009.06808, 2020.

[29] J. Nocedal and S. J. Wright. Numerical Optimization. Springer New York, New York, NY,
2006.

[30] G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T. Sommer, and
M. Davies. Efficient neuromorphic signal processing with Loihi 2. In IEEE Workshop on Signal
Processing Systems (SiPS), pages 254–259, 2021.

[31] C. Ostrau, C. Klarhorst, M. Thies, and U. Rückert. Comparing neuromorphic systems by solving
sudoku problems. In International Conference on High Performance Computing & Simulation,
2019.

[32] A. Pierro, P. Stratmann, G. A. F. Guerra, S. Risbud, T. Shea, A. R. Mangalore, and A. Wild.
Solving qubo on the loihi 2 neuromorphic processor. arXiv preprint arXiv:2408.03076, 2024.

[33] Y. Schnider, S. Woźniak, M. Gehrig, J. Lecomte, A. Von Arnim, L. Benini, D. Scaramuzza, and
A. Pantazi. Neuromorphic optical flow and real-time implementation with event cameras. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4128–4137, 2023.

[34] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, B. Kay, et al. Opportunities for
neuromorphic computing algorithms and applications. Nature Computational Science, 2(1):10–
19, 2022.

[35] S. B. Shrestha, J. Timcheck, P. Frady, L. Campos-Macias, and M. Davies. Efficient video
and audio processing with loihi 2. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 13481–13485. IEEE, 2024.

12

[36] C. Yakopcic, N. Rahman, T. Atahary, T. M. Taha, and S. Douglass. Leveraging the manycore
architecture of the Loihi spiking processor to perform quasi-complete constraint satisfaction. In
International Joint Conference on Neural Networks, 2020.

13

Appendix

Algorithm 2 NEBM-based SNN for energy minimization (note: the algorithm is executed for each
neuron ni on the neuromorphic hardware in a parallel way; see [13] for details).

Require: Weight matrix W, temperature T and length of refractory period ri.
1: Initialize s

(0)
i ← 0, ∆s

(0)
i ← 0, u

(0)
i ← −wii, refract_counter(0)i ← 0

2: for each timestep t do

3: u
(t)
i ← u

(t−1)
i +

N∑
j ̸=i

wij∆s
(t−1)
j

4: p
(t)
i ←

1

1 + exp(u(t)
i /T)

5: θi ← rand(0, 1)
6: if neuron ni is not in refractory period then
7: if p(t)i ≥ θi then
8: s

(t)
i ← 1

9: else
10: s

(t)
i ← 0

11: else
12: s

(t)
i ← s

(t−1)
i

13: refract_counter(t)i ← max(refract_counter(t−1)
i − 1, 0)

14: ∆s
(t)
i ← s

(t)
i − s

(t−1)
i

15: send ∆s
(t)
i to connected neurons

16: if ∆s
(t)
i ̸= 0 then

17: neuron ni enters refractory period
18: refract_counter(t)i ← ri

14

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: A novel SNN is introduced to solve HMVC. The derivation in Sec. 4 show the
proposed SNN does not require new slack variables, as claimed in the abstract and intro-
duction. The experimental results align with the claims that the proposed SNN consistently
yields high quality solutions on synthetic and real HMVC instances where the established
method mostly fails (to reach feasibility), and that the proposed SNN measurably consumed
less energy on the neurmorphic hardware than the CPU solution.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Sec. 6 discusses the limitations of the work (see L1 to L4).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

15

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided a detailed methodology description and pseudo code in
Sec. 4. The data generation process and the experiment setup are fully described in Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

16

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release all MVC and HMVC problem instances after the peer reviewing
period. Release of source code is not possible at the moment due to internal organizational
policy and contractual restrictions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all experiment details in Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not available due to hardware limitations (see L3 in Sec. 6).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Sec. 5 for details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and followed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on combinatorial optimization at the fundamental level,
which does not have immediate societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

18

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: High risk data or models are not involved in this research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly referenced all relevant data, code and papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided the pseudo code of the algorithm and all implementation
details of the method.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Contributions

	Related work
	Preliminaries
	NEBM
	NEBM-based SNN for QUBO

	Slack-free SNN formulation for HMVC
	Experiments
	MVC
	HMVC

	Limitations and conclusions

