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ABSTRACT

Knowledge Distillation (KD) has been a popular paradigm for training a (smaller)
student model from its teacher model. However, little research has been done
on the practical scenario where only a subset of the teacher’s knowledge needs
to be distilled, which we term selective KD (SelKD). This demand is especially
pronounced in the era of foundation models, where the teacher model can be sig-
nificantly larger than the student model. To address this issue, we propose to re-
think the knowledge distillation problem from the perspective of Inverse Optimal
Transport (IOT). Previous Bayesian frameworks mapped each sample to the prob-
abilities of corresponding labels in an end-to-end manner, which fixed the number
of classification categories and hindered effective partial knowledge transfer. In
contrast, IOT calculates from the standpoint of transportation or matching, allow-
ing for the flexible selection of samples and their quantities for matching. Tradi-
tional logit-based KD can be viewed as a special case within the IOT framework.
Building on this IOT foundation, we formalize this setting in the context of clas-
sification, where only selected categories from the teacher’s category space are
required to be recognized by the student in the context of closed-set recognition,
which we call closed-set SelKD, enhancing the student’s performance on specific
subtasks. Furthermore, we extend the closed-set SelKD, introducing an open-set
version of SelKD, where the student model is required to provide a “not selected”
response for categories outside its assigned task. Experimental results on standard
benchmarks demonstrate the superiority of our approach.

1 INTRODUCTION

Knowledge Distillation (KD) (Hinton et al., 2015) has been a popular paradigm to transfer the
knowledge from large models (teachers) to small ones (students), which has been widely used in
different fields from visual recognition (Kong et al., 2019), speech recognition (Shen et al., 2020),
natural language processing (Jiao et al., 2019), to recommendation systems (Pan et al., 2019). Many
approaches have been proposed including matching the intermediate features (Romero et al., 2014),
learning the relationships (Lee et al., 2018) and adopting the multiple teachers (Liu et al., 2020).

Existing KD methods typically transfer the entire knowledge from one (Sun et al., 2024) or multi-
ple (Yuan et al., 2021) teacher models to a student model. However, in many real-world applications,
it is often preferable for the student model to learn only a subset of the teacher’s knowledge. This
scenario becomes particularly relevant when the teacher is a large foundation model, while the stu-
dent model is deployed in resource-constrained environments such as edge computing. Despite its
practical significance, this setting has received little attention in prior work.

To address this gap, we formalize the described setting as selective knowledge distillation (SelKD)
within the context of classification. Unlike traditional KD, SelKD requires the specification of cate-
gories (i.e., subsets of knowledge)1 as a side input, allowing the student model to focus exclusively
on learning this selected knowledge. This targeted approach makes SelKD particularly applicable
to real-world scenarios, where efficiency and task-specific learning are crucial.

1In the context of classification, including open-set settings, we use the terms “categories,” “knowledge,”
and “subtasks” interchangeably to refer to the designated portions for selective knowledge distillation.
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SelKD has practical applications in real-world scenarios. Typically, we tend to implement more
complex functionalities in relatively larger networks, which often run on high-performance servers.
However, for smaller devices such as smartphones and tablets with limited computational power, it is
often unnecessary to replicate the full functionality of models running on large servers. Instead, they
may only need to perform specific tasks that are tailored to the device’s capabilities. To improve the
model performance on different devices, traditional knowledge distillation methods require training
multiple teacher models for specific tasks to ensure consistency between teachers and students.
However, the advantage of the SelKD framework lies in the fact that we only need to train a single
strong teacher classifier capable of recognizing a wide range of categories. This teacher model
can then be utilized to selectively transfer the relevant knowledge to different students with their
respective subtasks. As a result, there is no need to retrain a teacher for each specific task, leading
to reduced computational costs and simplified training process.

In this paper, we adopt the inverse optimal transport (IOT) perspective to address the classification
problem. We define labels as a set of features, such as one-hot vectors or features extracted by a text
encoder. Our goal is to establish a matching or transportation (i.e., coupling) between the features of
images and texts. In this context, the learning process can be seen as the inverse of Entropic Optimal
Transport, while the testing inference can be viewed as the optimization of Optimal Transport. From
this perspective, we can naturally define the student categories as a subset of the categories of the
teacher, enabling the knowledge transfer in the SelKD setting.

We propose two distinct settings within our SelKD framework. The first, referred to as (closed-set)
SelKD, focuses on the teacher transferring knowledge related only to a specific subtask. In this
scenario, the student model is trained exclusively on the data relevant to the assigned subtask and
is not required to recognize categories beyond this scope. The second setting introduces open-set
SelKD, which extends the framework to handle the recognition of unselected classes. Specifically,
in resource-constrained devices, if a sample falls outside the subtask’s recognition domain, open-
set SelKD enables the student to provide a “not selected” or “reject due to unknown” response.
To tackle this challenge, we employ a modified inverse optimal transport approach that relaxes the
Softmax constraint, allowing the row-sum to be less than 1. The contributions of this paper can be
summarized as follows:

1) We revisit the Knowledge Distillation (KD) problem through the lens of Inverse Optimal Trans-
port (IOT), reformulating the vanilla KD problem as a bi-level optimization task. In the inner op-
timization, the goal is to learn the coupling (i.e., the matching probability) of the student model,
which is then supervised by both the ground truth and the teacher’s coupling to update the model
parameters.

2) Building on this IOT-based formulation, we introduce Selective Knowledge Distillation (SelKD),
where the student model is trained to learn only specific subtasks from the teacher model. Addition-
ally, by adjusting the constraints of the original closed-set SelKD for open-set scenarios, we propose
an open-set version of SelKD. In contrast to the closed-set version, the open-set SelKD requires the
model to recognize “not selected” knowledge, allowing for a more flexible and robust response to
unassigned tasks.

3) Our proposed method demonstrates superior performance compared to state-of-the-art techniques
in both the closed-set and open-set SelKD tasks, as evidenced by experimental results. This under-
scores the effectiveness of the IOT-based approach to KD, which holds promise for a wide range of
applications.

2 RELATED WORKS

2.1 KNOWLEDGE DISTILLATION

Logit-based KD. The idea of training smaller, cheaper models (students) to mimic larger ones
(teachers) can be dated back to (Bucila et al., 2006) and it has been applied to neural networks
among various tasks including classification (Hinton et al., 2015), speech recognition (Shen et al.,
2020), natural language processing (Jiao et al., 2019), Large-scale language-image pretraining (Wu
et al., 2023) etc. From a broader perspective, KD can be categorized into three types based on how
the students learn knowledge from the teachers: logit-based, feature-based and relation-based KD.
In particular, the logit-based KD methods distill the knowledge by aligning the logits between the
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Figure 1: Illustrative comparison between vanilla knowledge distillation and our selective knowl-
edge distillation with regard to classification tasks. In the vanilla KD framework, the student model
learns knowledge from all categories in the teacher model. In contrast, within the selective KD
framework, each student independently learns only a subset of categories from the teacher model,
with the collective knowledge acquired by the students encompassing the entirety of the teacher’s
knowledge.

teacher and student, which can be formulated as a loss as follows (Hinton et al., 2015):

Llogit = CE(y | σ(fs(x); τ)) + λ ·KL(σ(ft(x); τ) ∥ σ(fs(x); τ)), (1)

where fs(·) and ft(·) are the sample encoders of the student and teacher models, respectively, and y
denotes the ground truth (i.e., label) of the sample. σ(·) is the softmax function mapping the logits
to the category probabilities and τ is the temperature to control the smoothness of predictive distri-
bution. CE and KL denotes the cross entropy loss and KL divergence, respectively. The parameter
λ controls the weight between the two items. The concept of logit-based knowledge distillation is
straightforward and becomes particularly intuitive when viewed as a process of knowledge transfer.
From another perspective, the effectiveness of soft targets can be compared to techniques such as
label smoothing (Kim & Kim, 2017) or regularization methods (Müller et al., 2019; Ding et al.,
2019). However, traditional logit-based distillation typically relies on the output of the final layer,
like soft targets, which overlooks intermediate-level supervision from the teacher model—an essen-
tial component for effective representation learning in very deep neural networks (Romero et al.,
2014). Additionally, since soft logits reflect class probability distributions, logit-based distillation is
inherently limited to supervised learning scenarios.

Feature-based KD. In addition to logit-based KD methods, feature-based KD methods primarily
focus on aligning the intermediate features between the teacher and student models. This alignment
can be expressed as:

Lfeature = CE(y | σ(Fs; τ)) + λ · Dfeature(Tt(F
t) ∥ Ts(F

s)), (2)

where Ft and Fs represent the intermediate features from the teacher and student models, respec-
tively. Tt and Ts are feature transformation mappings for the teacher and student models, used to
align the dimensions of Ft and Fs. The term Dfeature measures the divergence to quantify the feature
difference between the two models, and the parameter λ controls the weight between the two items.

Self KD. In self KD, the student model itself plays the role of the teacher. Inspired by the analysis
of label smoothing regularization, a teacher–free KD method is proposed in (Yuan et al., 2019),
whose core idea involves the model generating soft labels from its own knowledge and using these
labels for training. (Yang et al., 2022) suggests integrating self-knowledge distillation with image
mixture and aggregating multi-stage features to generate soft labels. In the paper (Li, 2022), channel
features and layer features are utilized to transfer knowledge without the need for an additional
model. To conclude, the main advantage of self KD is that it allows training a student model with
a smaller teacher model size, while achieving performance comparable to the student model trained
using a larger teacher model. Compared to our SelKD, the teacher model in self KD shares the same
task to the students.

2.2 OPTIMAL TRANSPORT AND INVERSE OPTIMAL TRANSPORT

As originally introduced by (Kantorovich, 1942), Kantorovich’s Optimal Transport is to solve a lin-
ear program, which is widely used for many classical problems such as matching (Wang et al., 2013)

3
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and the more recent extension to and multi-modal learning (Shi et al., 2024a). Specifically, given
the cost matrix C and two histograms (i.e., probability vectors) a ∈ Rn,b ∈ Rm , Kantorovich’s
OT involves solving the coupling P (i.e., the joint probability matrix) by

min
P∈U(a,b)

< C,P >=

n∑
i=1

m∑
j=1

CijPij , (3)

where U(a,b) is the set of the couplings:

U(a,b) = {P ∈ Rn×m
+ | P1m = a,P⊤1n = b}. (4)

which is bounded and defined by n+m equality constraints.

A lot of methods (Bertsimas & Tsitsiklis, 1997; Benamou & Brenier, 2000; Shi et al., 2024b) are
proposed to solve the Kantorovitch OT problem and relaxing with the entropic regularization (Wil-
son, 1969) is one of the simple but efficient methods, whose objective reads:

min
P∈U(a,b)

< C,P > −ϵH(P), (5)

where ϵ > 0 is the coefficient for entropic regularization H(P) and the H(P) can be specified as

H(P) = −
∑
i,j

Pij(log(Pij − 1)). (6)

The objective in Eq. 5 is an ϵ-strongly convex function, and thus the optimization has a unique
solution, which can be solved with iterative methods (e.g. the Sinkorn method (Sinkhorn, 1967)). If
we use this entropic regularized OT to solve the matching problem, the hard matching problem may
convert to soft matching.

Inverse Optimal Transport (IOT) has been explored in several studies (Dupuy et al., 2016; Li et al.,
2019; Stuart & Wolfram, 2020), aiming to infer the unknown cost matrix C that generates the ob-
served coupling. The work by (Stuart & Wolfram, 2020) presents a systematic approach for infer-
ring these unknown costs, while (Chiu et al., 2022) develops the mathematical theory underpinning
IOT. In addition, (Shi et al., 2023) demonstrates a brand new series of contrastive losses with set
matching based on IOT. The IOT problem can be formulated as a bi-level optimization problem:

min
θ

KL(P̃ | Pθ) where Pθ = arg min
P∈U(a,b)

< Cθ,P > −ϵH(P). (7)

where P̃ is the ground truth for supervision.

IOT facilitates the capture of fine-grained relationships between sample features, thereby enhanc-
ing the transfer of structured knowledge from the teacher model to the student model during the
knowledge distillation process.

3 METHODOLOGY AND FORMULATIONS

In contrast to vanilla KD where the student learns all the information from the teacher, we propose
the setting of Selective KD (SelKD) that transfers only selective knowledge to the student. Without
loss of generality, in this paper we view the classification task with optimal transport, in which
labels are defined as a set of features (e.g. one-hot vectors or features extracted by a text encoder)
and images are also represented with features extracted by an image encoder. Our goal is to establish
a match or transportation between the features of images and texts with the formulation of OT. In
this case, variants of optimal transport with specific properties could be introduced to solve the KD
problem.

3.1 OPTIMAL TRANSPORT FORMULATED (LOGIT-BASED) KNOWLEDGE DISTILLATION

Teacher Training via IOT perspective. Given the batch data {(xi,yi)
N
i=1}, where yi is the one-

hot vector corresponding to sample xi and N is the batch size, the features of the samples and
labels can be represented by two sets: {fθ(xi)}Ni=1, {gθ(yj)}Mj=1. The label matrix is denoted as
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Figure 2: The overview of our approach for both closed-set and open-set SelKD tasks. We first
compute cost matrices with features extracted from image samples and labels with encoders (CNN)
respectively. The regularized OT is used to analyze and estimate the coupling of the student, which
is supervised with ground truth and the coupling of the teacher for representation learning.

Y = {yj}Mj=1. The training process of the teacher model can then be reformulated as a bi-level
optimization:

min
θ

KL(Y | Pθ) where Pθ = arg min
P1=1

< Cθ,P > −ϵH(P). (8)

Here the cost matrix Cθ ∈ Rn×m
+ is designed with features {fθ(xi)}Ni=1, {gθ(yj)}Mj=1 with param-

eters θ from the networks fθ and gθ. This bi-level optimization consists of an outer and an inner
optimization. As proved in (Shi et al., 2023), the outer optimization can be regarded as minimiza-
tion of the cross-entropy loss, while the inner optimization, resembling an optimal transport (OT)
problem, operates like a Softmax function, with the constraint P1 = 1 ensuring that the proba-
bilities across each category sum to 1. A detailed explanation can be found in Appendix B. These
constraints can be interpreted as simplified versions of the row and column sum constraints U(a,b)
in OT. From this perspective, the teacher’s learning process can be viewed as a bi-level optimization
within the framework of entropic regularized OT. Compared to the Bayesian approach, this method
offers greater flexibility in selecting desired categories, making it well-suited for implementing our
SelKD framework.

(Logit-based) KD via IOT perspective. Inspired by the Inverse Optimal Transport (IOT) frame-
work, as described in Eq. 7, we propose a novel approach to integrate IOT constraints into the
knowledge distillation (KD) process. Using logit-based KD as an example, we reformulate the
knowledge distillation process as a bi-level optimization problem:

min
θ

CE(Y | Pθ
s) + λ ·KL(Pt ∥ Pθ

s),

where Pt = arg min
P1=1

< Ct,P > −ϵH(P) Pθ
s = arg min

P1=1
< Cθ

s,P > −ϵH(P).
(9)

Here H(P) is the entropic regularization as defined in Eq. 6, and Y denotes the label matrix. In
this optimization, the cost matrix Ct ∈ Rn×m

+ is designed with features from the pre-trained teacher
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networks ft and gt, while Cθ
s ∈ Rn×m

+ is computed with features {fs,θ(xi)}Ni=1, {gs,θ(yj)}Mj=1

with parameters θ from the networks fs,θ and gs,θ. Different from previous works setting U = {P :
P1 = 1}, we think the constraint U can be designed according to the specific circumstances of the
problem, especially in the case of open-set tasks. We will discuss it in detail in the next subsection.
In the outer minimization, the coupling Pθ

s is calculated by OT’s inner minimization and Y is the
ground truth for supervision.

The aim of outer minimization is to supervise the student coupling with the ground truth and the
teacher coupling, in order to learn the feature extractor (i.e. fs,θ(·) and gs,θ(·)). Simultaneously, the
inner minimization formulates the distillation problem as an entropic regularized optimal transport
task. Our overarching goal is to derive the student coupling Pθ

s that aligns with the teacher coupling
Pt, utilizing the respective cost matrices Cθ

s and Ct.

To summarize, this innovative perspective on logit-based knowledge distillation (KD) through the
lens of Inverse Optimal Transport (IOT) reformulates the distillation process as a bi-level optimiza-
tion problem. By incorporating IOT constraints, it allows for a more structured approach to aligning
the teacher’s and student’s knowledge. In addition, the IOT-based view leads to the introduction
of Selective Knowledge Distillation (SelKD), which focuses on targeted and efficient knowledge
transfer and allows the student model to selectively learn relevant knowledge for specific subtasks.

3.2 SELECTIVE KNOWLEDGE DISTILLATION VIA INVERSE OPTIMAL TRANSPORT

In traditional knowledge distillation, the primary objective is to transfer the entire knowledge of the
teacher model to the student model in a straightforward end-to-end manner. However, this approach
can be inefficient and overly complex, especially in real-world applications where a student model
may only need to perform a subset of tasks. Our proposed method, Selective Knowledge Distillation
(SelKD), addresses this limitation by enabling the student model to learn only the relevant knowl-
edge from the teacher model for specific subtasks, with evaluations focused solely on those areas
during testing. Figure 1 illustates the difference between vanilla KD and our proposed SelKD.

Leveraging the perspective of Inverse Optimal Transport (IOT) in Eq. 9, we can formalize a general
bi-level optimization framework for SelKD, expressed as follows:

min
θ

CE(Y | Pθ
s) + λ ·KL(Pt ∥ Pθ

s),

where Pt = argmin
U

< Ct,P > −ϵH(P) Pθ
s = argmin

U
< Cθ

s,P > −ϵH(P).
(10)

In this formulation, U represents the general constraints for the coupling. A key advantage of this
approach is that it allows us to tailor the cost matrices Cθ

s and Ct according to the specific categories
we select for distillation. This flexibility enables a more nuanced and effective knowledge transfer,
as the constraints can be adjusted based on the particularities of the tasks at hand.

In the following sections, we will detail how to specify the constraints U and select feasible cate-
gories to formalize the optimization process, whether in closed-set or open-set scenarios.

3.2.1 (CLOSED-SET) SELECTIVE KNOWLEDGE DISTILLATION

We begin by analyzing Eq. 10 under the constraint U = {P : P1 = 1}. In this context, we partition
the training set based on the selected categories. Specifically, we define the complete category set as
C = {1, 2, · · · , N} where N represents the total number of categories. We set the entire dataset S =
{(xi,yi)

M
i=1} where M is the size of dataset and yi is the one-hot vector corresponding to sample

xi. Without loss of generality, denoting the selected categories set Cclosed-set = {1, 2, · · · , n} ⊂ C
with n < N , we denote Sclosed-set = {(xi,yi) | yi ∈ one-hot(Cclosed-set)}. Here one-hot(·) is a
mapping function that converts all elements in the set to their one-hot representations.

For the batch data {(xi,yi)
m
i=1} ⊂ Sclosed-set where m is the batch size, the features

of samples and labels can be represented by two sets {{fs,θ(xi)}mi=1, {gs,θ(yj)}nj=1} and
{{ft(xi)}mi=1, {gt(yj)}nj=1} regarding student and teacher extracted features. Denoting Simage =
{(xi)

m
i=1}, without loss of generality, we set Cs and Ct as follows:

(Cθ
s)ij = −fs,θ(xi) · gs,θ(yj) (Ct)ij = −ft(xi) · gt(yj) for i ∈ Simage, j ∈ Cclosed-set (11)
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For traditional classifiers, f(·) represents the image encoder and g(·) represents the label encoder
(e.g., one-hot encoding). For multimodal classifiers based on CLIP (Radford et al., 2021), f(·)
represents the image encoder while g(·) represents the text encoder. Our formulation generalizes
this approach, making it more adaptable to a wider range of methods.

Figure 2 illustrates the pipeline of our method. Initially, we compute the cost matrices using features
extracted from image samples and labels via encoders (CNN). These cost matrices are then incor-
porated into Eq. 11, forming the optimization formula for SelKD. To facilitate understanding, the
cost matrices can be interpreted as the negative of similarity matrices (ignoring constant factors in
the optimization problem).

3.2.2 OPEN-SET VERSION FOR SELECTIVE KNOWLEDGE DISTILLATION

We propose open-set SelKD, an ex-
tension of the SelKD framework
mentioned above, designed to ad-
dress the recognition of classes that
were not included in the student’s
training subset. Specifically, in
smaller or resource-constrained de-
vices, SelKD tasks does not allow the
student model to be trained on the
full set of classes from the teacher
model. Open-set SelKD requires stu-
dent models to handle cases where
an input sample falls outside the
scope of the subtask that the student
has been trained to recognize. In
such situations, rather than attempt-
ing to force a classification, the stu-
dent model is equipped to produce
a “not selected” or “reject due to
unknown” response, effectively ac-
knowledging that the sample does not
belong to any of the known classes.
This ability to reject unknown inputs
enhances the robustness and applicability of SelKD, especially in open-set or dynamic environments
where new or unseen classes may emerge.

To formulate open-set SelKD with an optimization based on the closed-set version, we first relax the
constraints by setting P1 = 1 to a new one motivated by Partial Optimal Transport given as

UM-POT = {P1 ≤ 1,1⊤P1 = γ} (12)

where γ is is the number of batch sample classified to the categories of the subtask.

Similarly, we define the complete category set as C = {1, 2, · · · , N} where N represents the total
number of categories. We set the entire dataset S = {(xi,yi)

M
i=1} where M is the size of dataset and

yi is the one-hot vector corresponding to sample xi. Without loss of generality, denoting the selected
categories set Cclosed-set = {1, 2, · · · , n} ⊂ C with n < N , we denote Copen-set = Cclosed-set ∪ {n+ 1}
where n+ 1 represents the union of “not selected” categories in the student model.

For the batch data {(xi,yi)
m
i=1} ⊂ S, the features of samples and labels can be represented by

two sets {{fs,θ(xi)}mi=1, {gs,θ(yj)}n+1
j=1 } and {{ft(xi)}mi=1, {gt(yj)}Nj=1} with footnotes. Denoting

Simage = {(xi)
m
i=1}, without loss of generality, we set Cs and Ct as follows:

(Cθ
s)ij = −fs,θ(xi) · gs,θ(yj) (Ct)ij = −ft(xi) · gt(yj) for i ∈ Simage, j ∈ Copen-set (13)
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Table 1: Top-1 accuracy (%) on CIFAR-100 for closed-set SelKD. We compare the performance
of vanilla knowledge distillation (KD), self-knowledge distillation (SKD) and our selective knowl-
edge distillation (SelKD) in the closed-set SelKD classification tasks. All the comparisons are con-
ducted based on feature-based distillation (FitNet Romero et al. (2014), FT Kim et al. (2018) and
AT Zagoruyko & Komodakis (2016)).

Student
Methods SubTask 0 SubTask 1 SubTask 2 SubTask 3 SubTask 4

Mean of #Param of
Networks SubTasks Teachers + Students

ResNet-8

Without KD 81.00 82.45 80.85 76.90 83.30 80.90 0 + 0.4M
FitNet-KD 81.50 83.55 82.20 78.50 85.65 82.28 117.7M + 0.4M
FitNet-SKD 81.70 83.25 81.55 77.75 85.05 81.86 0.4M + 0.4M
FitNet-SelKD 82.95 84.45 82.25 78.85 85.90 82.88 23.7M + 0.4M
FT-KD 81.50 83.50 82.95 78.50 86.15 82.52 117.7M + 0.4M
FT-SKD 81.20 82.80 80.70 77.80 83.70 81.24 0.4M + 0.4M
FT-SelKD 82.75 84.20 82.85 80.35 86.35 83.30 23.7M + 0.4M
AT-KD 81.05 84.35 81.60 78.10 85.05 82.03 117.7M + 0.4M
AT-SKD 80.15 82.80 81.25 77.40 83.50 81.02 0.4M + 0.4M
AT-SelKD 82.45 84.70 82.20 78.50 85.30 82.63 23.7M + 0.4M

ResNet-14

Without KD 83.60 85.40 84.10 81.20 86.55 84.17 0 + 0.9M
FitNet-KD 83.60 86.00 84.85 81.55 88.00 84.80 117.7M + 0.9M
FitNet-SKD 83.00 84.05 81.80 79.10 85.00 82.59 0.9M + 0.9M
FitNet-SelKD 84.30 86.20 84.90 81.85 88.30 85.11 23.7M + 0.9M
FT-KD 83.90 85.90 84.85 81.65 87.85 84.83 117.7M + 0.9M
FT-SKD 83.05 85.90 82.55 79.75 86.80 83.61 0.9M + 0.9M
FT-SelKD 85.30 87.55 84.75 82.80 87.90 85.66 23.7M + 0.9M
AT-KD 84.05 86.75 84.60 81.45 87.00 84.77 117.7M + 0.9M
AT-SKD 83.05 83.95 82.00 79.35 85.20 82.71 0.9M + 0.9M
AT-SelKD 85.00 87.05 85.75 82.95 87.25 85.60 23.7M + 0.9M

Then the optimization can be modified as

min
θ

CE(Y | Pθ
s) + λ ·KL(Pt ∥ Pθ

s),

where Pt = arg min
P1≤1,1⊤P1=γ

< Ct,P > −ϵH(P)

Pθ
s = arg min

P1≤1,1⊤P1=γ
< Cθ

s,P > −ϵH(P)

(14)

The entire process can be summarized by Algorithm 1. For the prediction in the inference process,
we calculate Eq. 14 given the batch testing data. Then for the prediction of sample i, we do the
argmax operation (Ps)i,j on every j and 1−

∑
j(Ps)i,j as the result.

4 EXPERIMENTS

4.1 BASIC SETTINGS

Our experiments are performed using PyTorch 1.4.0 and run on Intel Core i7-7820X CPU @
3.60GHz with Nvidia GeForce RTX 3080. We take single GPU for classification on CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and Tiny ImageNet (Le & Yang, 2015), and evaluate on test-
ing data by top-1 accuracy.

Experimental Setting Details. For CIFAR-10 and CIFAR-100, we adopt ResNet50 (He et al.,
2016) as the backbone teacher model, while for Tiny ImageNet, we use ResNet32 for training.
The settings for students also vary depending on datasets. For CIFAR-10 and CIFAR-100, the
experiments of image classification tasks are based on ResNet8 and ResNet14 as the backbone of
students. For Tiny ImageNet dataset, we adopt only ResNet8 for training. As for the learning rate,
we set 0.05 for all tasks with regard to CIFAR-10 and CIFAR-100 datasets, while for Tiny ImageNet,
learning rate 0.2 is given.

As the primary focus of this paper is to pose the problem of selective knowledge distillation, and
to find feasible ways to work on the problem, we do not adopt additional specialized techniques to
improve performance, such as resampling. This is to control variables and thus all the baselines used
in this study represent only the method of knowledge distillation proposed by them.

8
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Table 2: Top-1 accuracy (%) on Tiny ImageNet for closed-set SelKD. We compare the perfor-
mance of vanilla knowledge distillation (KD) and our selective knowledge distillation (SelKD) in
the closed-set SelKD classification tasks.

Student
Methods SubTask 0 SubTask 1 SubTask 2 SubTask 3 SubTask 4 Mean of SubTasks

Networks

ResNet-8

Without KD 52.05 53.40 53.00 50.15 54.85 52.69
FitNet-KD 52.55 54.00 54.10 51.25 55.60 53.50
FitNet-SelKD 53.20 54.95 54.80 52.05 56.40 54.28
FT-KD 52.45 53.95 54.15 52.00 55.60 53.63
FT-SelKD 53.15 55.05 54.70 52.10 56.55 54.31
AT-KD 52.95 54.60 54.45 51.05 55.25 53.66
AT-SelKD 52.90 54.70 55.20 51.90 55.90 54.12

4.2 EXPERIMENTS ON (CLOSED-SET) SELKD

For SelKD, we decompose the overall classification task into various subtasks, with scales varying
by dataset. Specifically, for the CIFAR-10 dataset, which consists of 10 classes, we split the task
into 2 subtasks, each containing 5 classes. In contrast, CIFAR-100 and Tiny ImageNet, with 100
classes each, are divided into 5 subtasks, each encompassing 20 classes. We combine feature-based
KD methods with different KD frameworks, including vanilla KD, self KD and our SelKD, for a
comprehensive comparison to highlight the advantages of our SelKD framework. For feature-based
KD, we select typical methods including FitNet (Romero et al., 2014), FT (Kim et al., 2018), and
AT (Zagoruyko & Komodakis, 2016). Notably, in both vanilla KD (KD) and self-KD (SKD), we
train separate teachers for each subtask, whereas in our SelKD approach, a single teacher is trained
to cover all subtasks.

The results of SelKD tasks on the CIFAR-100 and Tiny ImageNet dataset are presented in Table 1
and Table 2, with results for CIFAR-10 is shown in the Appendix A. Our findings clearly indicate
that, regardless of the feature-based distillation method employed, SelKD outperforms both KD
and SKD in terms of top-1 accuracy. Furthermore, our SelKD method requires fewer parameters
compared to KD, which necessitates training an additional teacher for each subtask. Experimental
results suggest that a teacher with comprehensive knowledge enhances the performance of subtask
students more effectively than multiple teachers with knowledge limited to specific areas. This is
because the additional knowledge from the comprehensive teacher aids students in mastering the
selected knowledge.

4.3 EXPERIMENTS ON OPEN-SET SELKD

We further examine the application of our SelKD method on open-set SelKD tasks. We first apply
Algorithm 1 on all the tasks similar to those of closed-set SelKD, but we add an extra class for
“not selected” knowledge in each subtask student model. Specifically, for CIFAR-10 dataset, the
whole task is separated into 2 subtasks with 6 classes each (5 for selected classes and 1 for all “not
selected” classes), while both CIFAR-100 and Tiny ImageNet classification tasks are separated into
5 subtasks with 21 classes each (20 for selected classes and 1 for all “not selected” classes). Table 3
demonstrates the results of open-set SelKD experiments on CIFAR-100.

We have observed that, in line with the results in closed-set SelKD tasks, the experiments conducted
on the open-set SelKD tasks reveal that training a group of students with different disjoint tasks
is more advantageous when facilitated by a teacher possessing comprehensive knowledge, as op-
posed to assigning separate teachers who are only well-versed in selected knowledge for each task.
This finding also highlights the notable advantage of employing our selective knowledge distillation
method in predicting samples that belong to “not selected” knowledge.

4.4 ABLATION STUDY

Regarding the previously presented experiments, the loss function can be divided into three parts,
namely from cross-entropy loss with dataset labels, KL divergence with teacher coupling and the
divergence with features from the teacher. Here we further explore how the accuracy of the student

9
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Table 3: Top-1 accuracy (%) on CIFAR-100 for open-set SelKD. We compare the performance
of vanilla knowledge distillation (KD), self-knowledge distillation (SKD) and our selective knowl-
edge distillation (SelKD) in the open-set SelKD classification tasks. All the comparisons are con-
ducted based on feature-based distillation (FitNet Romero et al. (2014), FT Kim et al. (2018) and
AT Zagoruyko & Komodakis (2016)).

Student
Methods SubTask 0 SubTask 1 SubTask 2 SubTask 3 SubTask 4

Mean of #Param of
Networks SubTasks Teachers + Students

ResNet-8

Without KD 82.19 82.82 82.62 82.44 81.42 82.30 0 + 0.4M
FitNet-KD 84.65 85.20 85.69 85.72 84.20 85.10 117.7M + 0.4M
FitNet-SKD 84.77 85.41 85.60 85.54 84.62 85.19 0.4M + 0.4M
FitNet-SelKD 85.63 86.46 86.69 86.61 85.65 86.21 23.7M + 0.4M
FT-KD 84.83 85.32 86.03 86.05 84.82 85.41 117.7M + 0.4M
FT-SKD 84.79 85.06 85.48 85.47 84.86 85.13 0.4M + 0.4M
FT-SelKD 86.17 86.62 87.28 86.99 86.35 86.69 23.7M + 0.4M
AT-KD 84.46 85.32 85.85 86.16 84.31 85.22 117.7M + 0.4M
AT-SKD 84.62 85.21 85.56 85.69 84.73 85.16 0.4M + 0.4M
AT-SelKD 85.81 86.57 87.20 86.59 85.76 86.39 23.7M + 0.4M

ResNet-14

Without KD 84.15 83.68 83.15 84.22 82.93 83.63 0 + 0.9M
FitNet-KD 86.92 87.21 87.64 87.75 87.26 87.36 117.7M + 0.9M
FitNet-SKD 87.52 87.54 87.54 87.76 87.95 87.54 0.9M + 0.9M
FitNet-SelKD 87.27 87.70 87.81 87.85 87.68 87.66 23.7M + 0.9M
FT-KD 87.46 88.04 88.24 88.44 88.02 88.04 117.7M + 0.9M
FT-SKD 87.33 87.99 88.04 87.96 87.92 87.86 0.9M + 0.9M
FT-SelKD 87.60 88.46 88.24 88.82 88.64 88.35 23.7M + 0.9M
AT-KD 86.93 87.58 87.96 88.04 87.29 87.56 117.7M + 0.9M
AT-SKD 86.54 87.13 87.15 86.61 85.90 86.67 0.9M + 0.9M
AT-SelKD 87.03 87.67 88.04 88.01 87.47 87.64 23.7M + 0.9M

Table 4: Test on removal of loss components on the SelKD tasks. CIFAR-100 dataset is selected as
the basis for comparison.

Loss Settings SubTask 0 SubTask 1 SubTask 2 SubTask 3 SubTask 4 Mean of SubTasks
Without Distillation 83.50 85.85 83.20 80.95 87.45 84.19

Without Logit-based Loss 83.60 86.05 83.80 80.60 85.85 83.98
Without Feature-based Loss 83.95 86.15 84.70 81.80 88.15 84.95

Ours 84.30 86.20 84.90 81.85 88.30 85.11

model is influenced when certain components are absent from the three aforementioned parts. To
be more precise, we conduct separate tests to evaluate the impact of each component’s absence and
compare the obtained results with the original outcome. The results of these tests are summarized
and presented in the Table 4.

Based on the analysis of the table data, it is apparent that the removal of any component from the
loss function results in a reduction in the accuracy of the student model. Hence, it is imperative
to include all parts of losses in the final settings when seeking a more suitable training method for
handling Selective KD tasks. Each module plays a crucial role and is indispensable for achieving
optimal performance.

5 CONCLUSION AND FUTURE WORK

We have proposed a new and practical setting for Knowledge Distillation, called Selective Knowl-
edge Distillation (SelKD), which transfers the partial knowledge to student instead of the whole
knowledge in vanilla KD. OT is applied for the SelKD, to help the student learn the subtask. Our
current work is focused on classification (including open-set setting). Future work can explore other
more complex tasks. In addition, while OT is used for matching or transportation in the probability
output layer for KD, it does not consider the network’s feature level. Therefore, Gromov-Wasserstein
distance may be helpful in learning the match between the features of teacher and student models.
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Wei Wang, Dejan Slepčev, Saurav Basu, John A Ozolek, and Gustavo K Rohde. A linear optimal
transportation framework for quantifying and visualizing variations in sets of images. Interna-
tional journal of computer vision, 101:254–269, 2013.

Alan Geoffrey Wilson. The use of entropy maximising models, in the theory of trip distribution,
mode split and route split. Journal of transport economics and policy, pp. 108–126, 1969.

Kan Wu, Houwen Peng, Zhenghong Zhou, Bin Xiao, Mengchen Liu, Lu Yuan, Hong Xuan, Michael
Valenzuela, Xi Stephen Chen, Xinggang Wang, et al. Tinyclip: Clip distillation via affinity mim-
icking and weight inheritance. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 21970–21980, 2023.

Chuanguang Yang, Zhulin An, Helong Zhou, Linhang Cai, Xiang Zhi, Jiwen Wu, Yongjun Xu, and
Qian Zhang. Mixskd: Self-knowledge distillation from mixup for image recognition. In European
Conference on Computer Vision, pp. 534–551. Springer, 2022.

Fei Yuan, Linjun Shou, Jian Pei, Wutao Lin, Ming Gong, Yan Fu, and Daxin Jiang. Reinforced
multi-teacher selection for knowledge distillation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 14284–14291, 2021.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisit knowledge distillation: a
teacher-free framework. 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sergey Zagoruyko. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

A MORE EXPERIMENT RESULT

The result of closed-set SelKD tasks on the CIFAR-10 dataset are presented in Table 5, and it is
obvious that SelKD outperforms both KD and SKD in terms of top-1 accuracy.

Table 5: Top-1 accuracy (%) on CIFAR-10 for closed-set SelKD. We compare the performance of
vanilla knowledge distillation (KD), self-knowledge distillation (SKD) and our selective knowledge
distillation (SelKD) in the closed-set SelKD classification tasks.

Student
Methods SubTask 0 SubTask 1

Mean of
Networks SubTasks

ResNet-8

Without KD 91.28 94.76 93.02
FitNet-KD 91.56 95.72 93.64
FitNet-SKD 91.42 95.34 93.12
FitNet-SelKD 91.88 95.88 93.88
FT-KD 91.98 96.22 94.10
FT-SKD 91.53 95.99 93.25
FT-SelKD 93.68 96.50 95.09
AT-KD 91.66 95.60 93.63
AT-SKD 91.68 95.09 93.65
AT-SelKD 92.90 96.12 94.51

ResNet-14

Without KD 94.42 96.54 95.48
FitNet-KD 94.86 96.40 95.63
FitNet-SKD 91.56 95.72 93.64
FitNet-SelKD 95.04 97.72 96.38
FT-KD 94.56 97.04 95.80
FT-SKD 91.56 95.72 93.64
FT-SelKD 95.66 97.92 96.79
AT-KD 94.02 96.76 95.39
AT-SKD 91.56 95.72 93.64
AT-SelKD 94.84 97.64 96.24

We further add more experiments for closed-set SelKD on CIFAR-100 with WideResNet-40-
2 (Zagoruyko, 2016) as the teacher model and WideResNet-16-2 as the student model. The results
are shown in Table 6.

B A DETAILED EXPLANATION OF THE BI-LEVEL OPTIMIZATION

We mainly follow (Shi et al., 2023) that understanding or designing the loss via bi-level optimization:
min
θ

KL(Y | Pθ) s.t. P θ = arg min
P1=1

< Cθ,P > −ϵH(P)

where Cθ represents the cosine distance for image feature and text/label feature, with parameters
θ, and Y is the known supervision for learning. As proven in (Shi et al., 2023), H(P) = − <
P, logP − 1 > is the entropic regularization with coefficient ϵ. The inner optimization is exactly
equivalent to the softmax activation, while the outer optimization corresponds to cross-entropy. Thus
we can find the above bi-level optimization equals to InfoNCE loss:

min
θ

L =
∑
i,j

Yij log(
e−Cθ

ij/ϵ∑
k e

−Cθ
ik/ϵ

)
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Table 6: Results for closed-set SelKD on CIFAR-100 with WideResNet-40-2 as the teacher model
and WideResNet-16-2 as the student model.

Methods SubTask 0 SubTask 1 SubTask 2 SubTask 3 SubTask 4 Mean
FitNet-KD 85.67 86.52 85.14 81.97 87.72 85.40

FitNet-SelKD 86.15 87.68 85.83 82.76 88.04 86.09
FT-KD 85.42 85.56 86.08 82.13 88.45 85.53

FT-SelKD 85.92 87.23 86.17 82.56 88.73 86.12
AT-KD 85.17 85.49 85.43 81.87 87.71 85.13

AT-SelKD 85.55 87.25 86.38 82.41 88.52 86.02

Thus, bi-level optimization is fundamentally a method for designing activation layers or loss func-
tions. In (Shi et al., 2023), modifications to the inner optimization improve the loss. Our work fol-
lows this learning framework, but we modify the inner optimization with new constraints to adapt to
open-set scenarios, solving it with iterative algorithm (Benamou et al., 2015) to obtain the predicted
probability matching matrix. The outer optimization is adjusted to use the original KL Divergence
in KD as the loss, resulting in an application in KD problems.
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